JP4730639B2 - Light alloy wheel for vehicle and die for casting - Google Patents

Light alloy wheel for vehicle and die for casting Download PDF

Info

Publication number
JP4730639B2
JP4730639B2 JP2001264845A JP2001264845A JP4730639B2 JP 4730639 B2 JP4730639 B2 JP 4730639B2 JP 2001264845 A JP2001264845 A JP 2001264845A JP 2001264845 A JP2001264845 A JP 2001264845A JP 4730639 B2 JP4730639 B2 JP 4730639B2
Authority
JP
Japan
Prior art keywords
mold
bolt hole
hub
light alloy
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264845A
Other languages
Japanese (ja)
Other versions
JP2003072302A (en
Inventor
哉 伊藤
謙治 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001264845A priority Critical patent/JP4730639B2/en
Publication of JP2003072302A publication Critical patent/JP2003072302A/en
Application granted granted Critical
Publication of JP4730639B2 publication Critical patent/JP4730639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用軽合金ホイールに関して特に安全性および意匠性の高いものに関する。また、その車両用軽合金ホイールを製造するための鋳造用金型、特に低圧鋳造用の金型に関するものである。
【0002】
【従来の技術】
車両用ホイールの1つである自動車のロードホイールには種々の材質、構造のものがあるが、自動車の軽量化及び外観や意匠性の向上を目的として、鉄製からアルミニウム合金、マグネシウム合金やチタン合金などの軽合金製への変換が進んでおり、とくにアルミニウム合金製のアルミホイールを装着する比率が増大している。
【0003】
図4に示すように一般に軽合金製ホイール30は、ボルトとナットにより車軸に取付けられる厚肉のハブ部31と厚肉部と薄肉部が混在するデザイン部32からなるディスク部と、タイヤが取着される薄肉のリム部33から構成されている。また、リム部33はフロントフランジ部、リアフランジ部、リム部とディスク部が交差する交差部、リム中央部からなる。デザイン部32にはスポーク部と意匠穴が設けられている。ハブ部31にはボルトで車体と固着するためのボルト穴34が設けられている。
【0004】
ホイールは車両の外観性を左右するものであり、種々多様の形状で生産されている。大別してスポークタイプ、ディッシュタイプ、フィンタイプ、メッシュタイプ等のタイプがある。また、ボルト穴の周囲に形成される凹形状のボルト穴用凹部の周囲も前記のタイプや仕様によってさらに様々な形態をもつ。
【0005】
このボルト穴用凹部の底に形成されるボルト穴の部分は車体とボルト締めにより固定され、駆動力をタイヤに伝えるために負荷がかかる。しかしながら軽合金ホイールに要望される軽量化から厚肉・強化することは難しい。また、鋳造法案的にこのハブ部近傍は最終凝固部となることが多く、冷却速度が遅いために強度の向上が難しいという問題があり、まだ検討の余地を残していた。また、ボルト穴用凹部を成形する金型は凸形状となり、溶湯による離型材の損耗が激しい。特にハブ部キャビティから溶湯が注湯される鋳造法案のものでは顕著である。そのために始終金型の手直しが必要であり、生産性の悪化に繋がっていた。さらにはボルト穴用凹部のテーパ部傾きが小さいものをつくろうとしても金型との離型がうまく行かず、カジリ等の傷が残りやすかった。
【0006】
【発明が解決しようとする課題】
よって本発明の目的は従来にない高強度、安全性及び高意匠の抜け勾配の形状を成形し、シャープ感を出したホイールを安価に提供することである。
【0007】
【課題を解決するための手段】
本発明の車両用軽合金ホイールは、上記の問題に伴い検討した結果、従来に無い冷却構造を設けたことで解決に至った。つまり本発明は、ハブ部及びデザイン部を含むディスク部とリム部を有する車両用軽合金ホイールであって、前記リム部とディスク部との交差部のDAS値より前記ハブ部に設けられたボルト穴近傍のDAS値の方が小さいことを特徴とする。また、ハブ部及びデザイン部を含むディスク部とリム部を有する車両用軽合金ホイールであって、前記リム部とディスク部との交差部のDAS値より前記ハブ部に設けられたボルト穴近傍のDAS値の方が小さく、前記ハブ部に設けられたボルト穴近傍の少なくとも一部のDAS値が30μm未満であることを特徴とする。
【0008】
本発明の車両用ホイールに見られる特徴としてハブ部の冷却速度を従来よりも速めることが可能である。その結果、ボルト穴近傍、さらにはハブ部でのDAS値が従来よりもはるかに小さく強度向上も果たせるものである。また、センターゲート近傍の冷却を行うことで製造上不具合が劇的に改善され、複雑形状であるハブ部での金型と鋳造ホイールとのカジリがなくなる。これにより離型時のホイール表面の傷がなくなり、不良の発生が少なくなる。さらにはこのボルト穴用凹部を形成する凸形状の金型部分での溶湯による溶損がなくなり、生産効率が向上する。本発明においてボルト穴近傍のDAS値は図3に示す斜線部の部分で測定した。図中、34はボルト穴でありボルト穴用凹部37から入れられたナットがボルト接触部39で接触して車体とホイールとが固定される。38は所定寸法に加工されたハブ穴であり、36はスポーク部の端部である。湯口は通常、図中でハブ穴38の下部に備えられた状態で鋳造される。
【0009】
溶湯の鋳造性の観点から本技術の利点を記載する。ハブ部のボルト穴近傍はナットによりかしめられるため強度を必要とする部分である。ハブ部のみから溶湯を注湯する法案(センターゲート法案)ではボルト穴近傍が湯口に近いため溶湯の冷却速度は遅くなり強度が他の部分に比べて落ちやすい。ディスク部一面の強度を向上させるにはハブ部近傍、特にボルト穴付近での冷却が特に重要である。
【0010】
センターゲート法案においてはこの部分を冷却するとハブ部での溶湯が先に凝固してリム部での押し湯効果が不足しやすいため、他の部分の金型冷却を適宜設定することが重要である。また、リム部を形成するキャビティ部分に溶湯の堰を設けて注湯するサイドゲート法案で行なうことも可能である。また、ハブ部とリム部を形成するキャビティ部分各々に溶湯の堰を設けて注湯するマルチゲート法案のアルミホイールの一体鋳造で行えばハブ部近傍での冷却を行なっても他の部分の冷却機構と組合せて押湯効果を効かせた指向性凝固をする設定がしやすく好ましい。スポーク部のひけ巣防止のための押し湯効果はリム部側の堰(サイドゲート)からの圧力である程度まかなえるため、ボルト穴となる部分に冷却機構を設けても鋳造不良を起こすことなく鋳造サイクルの短縮とハブ部での強度向上がバランス良く行える。特にボルト穴近傍はボルトが締め付けられ、車体に固定される部分であり強度が必要である。冷却速度が速いためボルト穴周囲の強度を向上させるため薄肉軽量化しても問題がない。本発明の冷却条件ではディスク部への溶湯押湯効果時間が比較的短くなるため、リム部の体積が比較して大きいものに適用しやすい。具体的には製造に適するホイールの形状はリム部とディスク部の重量比率で表せばリム部:ディスク部=6:4かリム部がそれ以上の比率を占めるものである。
【0011】
本発明においては交差部のDAS値とボルト穴近傍のDAS値との関係を規定しているがその技術的理由を述べる。前記2つのDAS値の比較はリム側とディスク中心部の湯口からの押し湯効果についてどちらを最終的に残すべきかを検討したものである。例えば細いスポーク部をもつ車両用ホイールをマルチゲート法案で一体鋳造するには早めにディスク中心部からの押し湯効果を終了させ、残った未凝固の部分をリム部からの押し湯効果でもって指向性凝固させることがホイールの鋳造上好ましいということを知見した。これにより複雑形状で意匠性を主に司るディスク部の冷却を速め、気泡混入等の鋳造性を良好にできる。結果蒸着メッキ等の被覆処理を行なっても外観性に問題なく処理可能である。よってサイドゲートが設けられるリム部よりもハブ部を重点的に冷却することが好ましい。実施例においてはボルト穴の中でもスポーク部に近い図3に示す測定部(スポークにハブ部側から押し湯効果を与える部分)のDAS値と交差部(スポークにリム部側から押湯効果を与える部分)でのDAS値で比較している。これはセンターゲート法案でもリム部周囲に押湯手段を設けることで達成でき、またサイドゲートでもハブ部近傍に押湯手段を設けることで達成できる。
【0012】
本発明に好適な車両用軽合金ホイールの鋳造用金型として、ディスク部を形成する金型キャビティの中央にセンターゲートを備え、リム部を形成する金型キャビティにサイドゲートを備え、前記リム部での金型冷却の強さより前記ハブ部での金型冷却の強さの方が大きくすることが可能な金型冷却構造を具備することが好ましい。金型冷却の強さは鋳造品の鋳出し後に下型と横型の金型表面温度をサーモグラフィ等で測定すれば判別可能である。
【0013】
DAS値はアルミ鋳物材において強度をしめすものであり小さい程高強度となる。本発明のようにスポーク部のDAS値を小さくできたのは、ハブ部及びデザイン部を含むディスク部とリム部を有する車両用軽合金ホイール用の鋳造用金型であって、前記ハブ部のボルト穴形成用凸部の中に冷却手段を設けたことを特徴とする鋳造用金型を用いることで達成された。さらにこの冷却手段は前記ボルト穴形成用凸部の凸方向に向かって空洞となる冷却部が形成され、かつ前記冷却部の凸部近傍側にミストを吹き付けるための噴出口を備えさせた冷却管を冷却部内に備えた構造が好適である。また別の構造として、前記ボルト穴形成用凸部の凸方向に向かって内装された外筒と内筒からなる2重管構造を備えた構造が好適である。詳細は実施例にて述べる。
【0014】
ボルト穴凹部を形成するための金型では図1、2中のボルト穴形成用凸部81となるが、この部分はセンターゲート法案などで溶湯が最初にキャビティ内に入る位置に近く、高熱になる。また、略円筒状のリム部と異なりボルト穴などを有する比較的複雑形状である。鋳込まれる溶湯からみれば垂直方向の壁状であり、この壁面で金型の溶損、溶湯の焼き付き等が発生しやすい。よってボルト穴近傍を強く冷却するようにボルト穴用凹部に沿って冷却管を設けるような構造の金型を用いることが非常に好ましい。また、離型性も向上し、テーパ部傾きが5.0°以下、さらには3.0°以下のボルト穴用凹部を形成可能である。
【0015】
テーパ部傾きの小さなボルト穴形状とするためには金型から凝固したホイールを取り出す際に、厳密な金型の駆動制御が必要である。ディスク部を形成する下型または上型を型開けする際、可動プラテンを3ヶ所以上で同期に押し上げする平行制御駆動装置を用いて動かすことが好ましい。上型プラテンに同期ピストンを設け、上板を押し上げ、最下端の位置にある上板を20〜30mm程度の高さまで平行に移動させればよい。もしくは下型プラテンに3ヶ所以上の同期の油圧シリンダを設けて、直接可動プラテンを押し上げても良い。2ヶ所以下であると可動プラテンが傾きやすく、テーパ部傾きの小さい製品は作り難い。
【0016】
従来のホイール鋳造機においては単に1本の油圧シリンダーで可動プラテンを引き上げ、単純に型開きを行っていた。しかしホイールの鋳造においては下型プラテンの近傍に保持炉を備える構造であり、そのような構成においては下型プラテンが熱膨張しやすい。上型プラテンと下型プラテンの熱膨張による寸法差が異なる為、ガイドの内径とガイドポストの外径とは0.3〜0.5mm程の隙間を取る必要がある。しかしこの隙間により可動プラテンは絶えずどこか一方で傾きながら上昇するという現象を起こす。スポーク部やハブ部の凹部等に6.0〜8.0°のテーパ部傾きが設けているものであれば上記可動プラテンの傾きは問題にならない許容範囲であり、成形品の形状を損なうことなく製品を離型することができたが、テーパ部傾きが5°以下の製品ではこの傾きが起こるとスポーク部やハブ部の凹部でカジリが発生しやすい。下型からの離型時、製品は400〜450℃有り、強度が低い。特にデザイン面が複雑な形状をしている場合、下型に取られやすくまた引き抜き方向に対して強度が弱く、垂直にスムーズに上昇させないとデザイン部のカジリを起す。よって離型時の上型が備えられた可動プラテンの詳細な配慮は非常に重要な技術である。上型が下型に対して平行上昇しなければいけない距離は、型締め位置から最大で5〜20mm程度である。それより上昇してしまえば多少可動プラテンが傾いてもデザイン面と下型がぶつかることは無い。この程度まで厳密な制御によって可動プラテンを持ち上げるためには上型または上型と固着している可動プラテンでの3箇所以上を同時に同じ移動量で押し上げる平行移動制御をさせる必要がある。4本同期の垂直シリンダー方式が特に有効である。シリンダーの駆動は電流制御バルブやサーボバルブを用いれば良い。
【0017】
また、鋳造上型は一般的に200kN型締め力で下型を押している。油圧で10MPa程度である為、この10MPaを0.01秒未満の速さで実質0MPaにまで落とすと鋳造機にかかる応力による変形も1度に開放され、油圧回路中にサージ圧が発生しこれにより、鋳造機全体が振動し、可動プラテンが下型に対して平行に移動しなかったり、下型に対して上型が横方向に移動し、下型とデザイン面のカジリを起こしやすくする。実際のバルブが全開になるまでの時間は0.02秒ほどであるが、型締め力が0MPaになるのはその半分ほどの時間である。よって型締め力を0.05秒以上、さらに好ましくは0.10秒以上の長い時間をかけて型締め力を抜くことで急激な油の減圧による鋳造機の衝撃を和らげ、結果カジリの無いデザイン面を成形可能である。
【0018】
また、型締めの際には不要な振動・応力を与えないように型締め力を上げていくことが好ましい。急激に型締めを行うと鋳造記全体に振動が発生してしまう。可動プラテンや下型の重量を総和すると3〜4トン近くなり、上型プラテンや下型プラテンに、垂直方向に1mmほどの応力歪を発生させる。また、型締めの際、平行方向にも影響を与える為、テーパ部傾きの少ないアルミホイールを製造するには所定の速度で型締めを行うことが好ましい。
【0019】
リム部でのサイドゲートを用いて鋳造する場合、湯口位置は少なくともデザイン部表面よりも上にあることが好ましく、さらにはデザイン部裏面よりも高いことが好ましい。このようにすればデザイン面でのセンターゲートとサイドゲートとから注湯された溶湯の湯境面の発生を低減できる。さらにはサイドゲートを高く設けることでセンターゲート近傍を早めに凝固してもリム部に残る溶湯の重量による押し湯効果で不良の発生を低減できる。
【0020】
【発明の実施の形態】
(実施例1)
以下、本発明の詳細を図面により説明する。
図7は本願発明の車両用軽合金製ホイールの鋳造を行う1例で、アルミニウム合金製のホイールを低圧鋳造で行う場合の設備の概略を示す図である。密閉容器1内に保持炉2があり、密閉容器1の上に下型プラテン3が取り付けられ、密閉容器1を密閉している。下型プラテン3には中央部にアルミニウム合金の溶湯5を金型に補給するストーク4が取り付けてあり、各ストークの下端は保持炉2中の溶湯5に浸漬されている。ストークの上端は、下型プラテン3および金型の下型8に嵌入された湯口ブッシュ6を介し金型の湯口部7に連なっている。ストーク4を介して注湯される溶湯は下型8に流れ込み、ホイールのハブ部を形成するキャビティに注湯される。
【0021】
金型の下型8は下型プラテン3に取り付けられている。下型8は固定型で、ホイールではデザイン部を形成する面である。本実施例においては最小のテーパ部傾きを3.5°とし、スポーク部の最小断面積を100〜250mmをとした。また、軸方向の厚さは25mm以上、最小幅を4.0〜10.0mmとし、スポーク部のテーパ部傾きの50%以上の部分でテーパ部傾き3.5°とした。両横は横可動型10で、ホイールのリム部の外周面を形成する。金型の上型12は、可動プラテン14に取り付けられている。上型12は所謂可動型で、ホイールを車に取り付けるデザイン部裏面及びリム部の内周面を形成する。可動プラテン14はガイドポスト15に固着されており、ガイドポスト15は上型プラテン13に備えられたガイド16に沿って上下に動くことが可能である。また、前記ガイドポスト15は上端を上板17に固定され、上型プラテンに備えられた油圧シリンダー21がこの上板を動かし、それに追従して可動プラテン14および上型12が上下して動く。図7中、上板17が最下端まで来た位置を破線で示す。この最下端の位置は上型12が横型10および下型8と型締めされた際の位置である。
【0022】
下型8の詳細な形態を図2に示す。図2に示すように下型8には冷却用の水冷機構50、51を内部に配置している。水冷機構51は主にハブ部近傍を冷却するようにホイールのディスク面に形成されるボルト穴用凹部となるボルト穴形成用凸部81に端部を向けて配置されている。ボルト穴形成用凸部81のテーパ部傾きは3.0〜5.0°である。冷却水をボルト穴形成用凸部81に向かって水冷機構50の外管50aに内管50b内を介して流しこむ。冷却部は二重管構造であり、内管中の水の流れ方向と外管50aと内管50bの間の水の流れは逆方向になるように構成されている。ボルト穴形成用凸部81の先端に内管から到達した冷却水は外管50bの中を流れて戻る構成になっている。冷却部には2本の冷却管50cが設けられ、冷却水が所定の鋳造タイミングで内部を通るよう制御されている。また、ディスク部(特にスポーク部)を冷却するための冷却機構51は下型のスポーク部金型82近傍にホイール軸を中心として略円形状となるように下型下部に溝51aが形成され、その溝51aを密封部材51bにより密封し、冷却水通路としている。この冷却水通路に冷却管51cから水を流してスポーク部金型82近傍を冷却する。ボルト穴形成用凸部81のテーパ部傾きが3〜5°の場合、ボルト穴形成用凸部での金型表面温度が450°以上であると塗型がはがれ金型と溶湯が反応して焼き付きをおこすので最高温度がその温度以下になるよう冷却条件を定めている。
【0023】
鋳造作業は、以下の手順による。下型8、上型12、横型10の金型を閉じた後、空気や不活性ガス等の0.02〜0.05MPaの加圧気体を加圧気体送入管18より密閉容器内1に送り込む。送り込まれた加圧気体により、保持炉2内で約700℃に保持されたアルミの溶湯5がストーク4bを介して押し上げられ金型温度を350〜450℃に保持された金型内のキャビテイに入る。金型のキャビテイ部は保温と離型を兼ねた塗型でコーテイングが施してある。約2〜3分の後、加圧を排気し、未凝固のストーク4内の溶湯5を保持炉2に戻し、金型内の溶湯が凝固するのを待つ。金型内の溶湯の凝固が完了し、約400〜450℃の取り出し温度に達したところで金型を開き、上型に鋳造製品(ホイール)がついた状態のまま上型を上昇させる。ある程度上昇した時点で上型プラテンに固着した押し出しピンによりホイールを上型から離し脱着アーム11を用いてホイールを取り出す。このサイクルを繰り返し、製品を鋳造していく。
【0024】
0.20秒かけて下降油圧圧力を10MPaから0MPaにまで落とし、上型を下型に対して上昇させた。油圧は0.20秒を通して徐々に下がり鋳造機に大きな振動を与えることはなかった。さらに可動プラテンは終始ほとんど傾かずに上型プラテンに対して平行度を保ったまま上昇していくことを確認した。またスポーク部のテーパ部傾きの50%以上の部分で5°以下の車両用軽合金ホイールを20ヶ製造し、デザイン面でのカジリ、変形があるか観察を行った。意匠面のカジリの発生は確認されず、良好な形状を有するホイールが得られた。また表1に図4で示す▲1▼〜▲3▼の部分を測定したDASの値を記す。また、ボルト穴近傍の組織観察写真を図5に示す。ボルト穴近傍のDAS値が非常に小さく、交差部よりも小さい値であることを確認した。また、表中のDASの値はサイドゲート位置断面での測定であるが、その90°側でのDAS値も同様の傾向が見られた。また、サイドゲート法、マルチゲート法で行っても同様の効果が得られた。
【0025】
【表1】

Figure 0004730639
【0026】
(比較例1)
図2に記載の水冷機構51のみに冷却水を流し、水冷機構50には冷却水を流さず鋳造を行った。鋳造を200〜300サイクルほど行うと図2のボルト穴形成用凸部81の周囲に溶湯の焼き付きが発生し、製品の不良成形となった。又、金型のメンテナンスに時間を費やさなければ成らなかった。DAS値の測定値を表1に併記する。特にボルト穴近傍でのDAS値が本発明のものとは異り大きい。組織観察写真を図6に示す。
【0027】
(実施例2)
また、別の下型の詳細な形態を図1に示す。図1と図2で同一の構造のものは同一符号で示す。図1に示すように下型8には冷却用の水冷機構52、51を内部に配置している。水冷機構52は主にハブ部近傍を冷却するようにホイールのディスク面に形成されるボルト穴用凹部となるボルト穴形成用凸部81内に凸方向に延出した空洞部52aが配置されている。前記空洞部52aの奥にまで冷却管52bを挿入し、外部冷却管52cからミストを供給し、空洞部内を冷却した。排出されたミストは凸部近傍を冷却した後、冷却管52bと空洞部52aの間を介して戻り、連通部83から下型外へ排出される。
【0028】
【発明の効果】
以上に記述の如く、本発明によれば、下形のボルト穴形成用凹部に最適な冷却構造を内装したことで、従来よりもはるかに強度がよく、安全性の高いホイールを提供できた。また、離型性が良くなったことで溶湯をハブ部から注湯する法案においてもテーパ部傾きの少ないボルト穴用凹部を形成することが可能である。
また、本発明の金型を用いることでホイール離型時のカジリが発生しなくなり、作業効率の向上を計ることができた。
【図面の簡単な説明】
【図1】下型の冷却機構を示す断面図である。
【図2】別の下型の冷却機構を示す断面図である。
【図3】ボルト穴周辺の要部断面図である。
【図4】ホイールの断面形状を示す図である。
【図5】本発明のボルト穴近傍の金属組織写真である。
【図6】従来のセンターゲート法案でのボルト穴近傍の金属組織写真である。
【図7】本発明に用いた鋳造機の1例である。
【符号の説明】
1:密閉容器、2:保持炉、3:下型プラテン、4:ストーク、5:溶湯、6:湯口ブッシュ、7:湯口部、8:下型、9:ガイドピン、10:横型、11:脱着アーム、12:上型、13:上型プラテン、14:可動プラテン、15:ガイドポスト、16:ガイド、17:上板、18:加圧気体挿入管、20:4本同期ピストン、21:油圧シリンダ、30:アルミホイール、31:ハブ部、32:デザイン部、33:リム部、34:スポーク部、35:意匠穴、36:ボルト穴用凹部、37:ボルト穴、38:ハブ穴、39ボルト接触部、40:テーパ部傾き、41:意匠面側、42:天井肉厚、43:鋳抜き部抜け勾配、44:鋳抜き部、50,51:冷却機構、81:ボルト穴形成用凸部、82スポーク部金型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle with a light alloy wheel that is particularly safe and highly designable. The present invention also relates to a casting mold for producing the light alloy wheel for a vehicle, particularly to a low pressure casting mold.
[0002]
[Prior art]
There are various materials and structures for automobile road wheels, which are one of the wheels for vehicles, but from iron to aluminum alloys, magnesium alloys and titanium alloys for the purpose of reducing the weight and improving the appearance and design of automobiles. Conversion to light alloys such as these is progressing, and the ratio of mounting aluminum wheels made of aluminum alloys is increasing.
[0003]
As shown in FIG. 4, generally, a light alloy wheel 30 includes a thick hub portion 31 attached to an axle by bolts and nuts, a disk portion including a design portion 32 in which a thick portion and a thin portion are mixed, and a tire. It is composed of a thin rim portion 33 to be worn. The rim portion 33 includes a front flange portion, a rear flange portion, an intersection where the rim portion and the disk portion intersect, and a rim center portion. The design part 32 is provided with a spoke part and a design hole. The hub portion 31 is provided with a bolt hole 34 for fixing to the vehicle body with a bolt.
[0004]
The wheel determines the appearance of the vehicle and is produced in various shapes. There are broadly classified types such as spoke type, dish type, fin type, and mesh type. Further, the periphery of the concave bolt hole recess formed around the bolt hole has various forms depending on the type and specification.
[0005]
The bolt hole portion formed at the bottom of the bolt hole recess is fixed to the vehicle body by bolting, and a load is applied to transmit the driving force to the tire. However, it is difficult to increase the thickness and strengthen the weight of the light alloy wheel that is required. Further, in the casting method, the vicinity of the hub portion often becomes the final solidified portion, and there is a problem that it is difficult to improve the strength because the cooling rate is slow, and there is still room for examination. Moreover, the metal mold | die which shape | molds the recessed part for bolt holes becomes convex shape, and the wear of the mold release material by molten metal is intense. This is particularly noticeable in the casting method in which molten metal is poured from the hub cavity. For this reason, it was necessary to rework the mold at all times, which led to deterioration in productivity. Furthermore, even when trying to make a bolt hole recess with a small taper slope, the mold could not be released from the mold and scratches such as galling were likely to remain.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a low-intensity wheel that is shaped with a high-strength, safety, and high-definition shape that has never been achieved before and that has a sharp feeling.
[0007]
[Means for Solving the Problems]
The light alloy wheel for a vehicle according to the present invention has been studied along with the above problems, and as a result, has been solved by providing an unprecedented cooling structure. In other words, the present invention is a light alloy wheel for a vehicle having a disc portion including a hub portion and a design portion and a rim portion, and a bolt provided on the hub portion based on a DAS value at an intersection of the rim portion and the disc portion. The DAS value near the hole is smaller. Also, a light alloy wheel for a vehicle having a disc portion including a hub portion and a design portion and a rim portion, in the vicinity of a bolt hole provided in the hub portion from a DAS value of an intersection portion of the rim portion and the disc portion. The DAS value is smaller, and at least a part of the DAS value near the bolt hole provided in the hub portion is less than 30 μm.
[0008]
As a feature seen in the vehicle wheel of the present invention, it is possible to increase the cooling rate of the hub portion as compared with the conventional one. As a result, the DAS value in the vicinity of the bolt hole and also in the hub portion is much smaller than the conventional one, and the strength can be improved. In addition, cooling in the vicinity of the center gate dramatically improves manufacturing problems, and eliminates galling between the mold and the casting wheel at the hub portion having a complicated shape. This eliminates scratches on the wheel surface during mold release and reduces the occurrence of defects. Further, the molten metal is not damaged by the molten metal in the convex mold portion that forms the concave portion for the bolt hole, and the production efficiency is improved. In the present invention, the DAS value in the vicinity of the bolt hole was measured at the shaded portion shown in FIG. In the figure, 34 is a bolt hole, and a nut inserted from a bolt hole recess 37 comes into contact with a bolt contact portion 39 to fix the vehicle body and the wheel. Reference numeral 38 denotes a hub hole machined to a predetermined dimension, and 36 denotes an end portion of the spoke portion. The gate is usually cast in a state where it is provided below the hub hole 38 in the figure.
[0009]
The advantages of the present technology are described from the viewpoint of the castability of the molten metal. The vicinity of the bolt hole of the hub portion is a portion that requires strength because it is caulked by a nut . In the bill of pouring molten metal only from the hub (center gate bill), the vicinity of the bolt hole is close to the pouring gate, so the cooling rate of the molten metal becomes slow and the strength tends to drop compared to other parts. In order to improve the strength of the entire surface of the disk portion, cooling near the hub portion, particularly near the bolt hole is particularly important.
[0010]
In the center gate bill, when this part is cooled, the molten metal at the hub part solidifies first, and the hot metal effect at the rim part tends to be insufficient, so it is important to set the mold cooling for other parts as appropriate. . It is also possible to use the side gate method in which a molten metal dam is provided in the cavity portion forming the rim portion and poured. In addition, even if cooling is performed in the vicinity of the hub, if the multi-gate aluminum wheel is cast integrally with a molten metal weir in each cavity that forms the hub and rim, cooling is performed in the vicinity of the hub. It is preferable to set the directional solidification with the effect of the hot water in combination with the mechanism. The effect of the hot water for preventing the sinkholes in the spokes can be achieved to some extent by the pressure from the dam (side gate) on the rim side. Therefore, even if a cooling mechanism is provided in the bolt hole, a casting cycle will not occur. Shortening and improving the strength at the hub can be performed in a well-balanced manner. Particularly in the vicinity of the bolt hole, the bolt is fastened and fixed to the vehicle body and needs strength. Since the cooling rate is fast, there is no problem even if the thickness is reduced to improve the strength around the bolt hole. In the cooling condition of the present invention, the molten metal feeder effect time on the disk portion is relatively short, so that it can be easily applied to a rim portion having a larger volume. Specifically, the wheel shape suitable for manufacturing is expressed by the weight ratio of the rim portion to the disc portion, and the rim portion: disk portion = 6: 4 or the rim portion occupies a higher ratio.
[0011]
In the present invention, the relationship between the DAS value at the intersection and the DAS value in the vicinity of the bolt hole is defined. The technical reason will be described. The comparison of the two DAS values examined which of the hot water from the rim side and the pouring gate at the center of the disc should be finally left. For example, in order to integrally cast a vehicle wheel with a thin spoke part by the multi-gate method, the hot water effect from the center of the disk is terminated early, and the remaining unsolidified part is directed by the hot water effect from the rim part. It was found that it is preferable for the casting of the wheel to be coagulated. As a result, the cooling of the disk portion that mainly controls the design with a complex shape can be accelerated, and the castability such as mixing of bubbles can be improved. As a result, even if coating treatment such as vapor deposition plating is performed, it can be processed without any problem in appearance. Therefore, it is preferable to cool the hub portion more preferentially than the rim portion where the side gate is provided. In the embodiment, the DAS value of the measuring portion (portion that gives the hot water effect from the hub portion side) shown in FIG. 3 close to the spoke portion in the bolt hole and the crossing portion (the hot water effect from the rim portion side is given to the spoke) Comparison is made with the DAS value in (Part). This can be achieved by providing a feeder in the periphery of the rim portion even in the center gate bill, and by providing a feeder in the vicinity of the hub portion in the side gate.
[0012]
As a casting mold for a light alloy wheel for a vehicle suitable for the present invention, a center gate is provided at the center of a mold cavity forming a disk portion, a side gate is provided in a mold cavity forming a rim portion, and the rim portion It is preferable to provide a mold cooling structure in which the mold cooling strength at the hub portion can be made larger than the mold cooling strength at. The strength of mold cooling can be determined by measuring the surface temperature of the lower mold and the horizontal mold by thermography after casting the cast product.
[0013]
The DAS value indicates the strength of the cast aluminum material, and the smaller the DAS value, the higher the strength. The DAS value of the spoke part as in the present invention can be reduced by a casting mold for a light alloy wheel for a vehicle having a disk part and a rim part including a hub part and a design part. This was achieved by using a casting mold characterized by providing cooling means in the bolt hole forming convex portion. Further, this cooling means is a cooling pipe in which a cooling part that becomes a cavity toward the convex direction of the bolt hole forming convex part is formed, and a jet outlet for spraying mist on the vicinity of the convex part of the cooling part is provided. A structure in which is provided in the cooling unit is preferable. Further, as another structure, a structure having a double pipe structure composed of an outer cylinder and an inner cylinder, which are built in the convex direction of the bolt hole forming convex portion, is preferable. Details will be described in Examples.
[0014]
The mold for forming the bolt hole concave portion is the bolt hole forming convex portion 81 in FIGS. 1 and 2, but this portion is close to the position where the molten metal first enters the cavity by the center gate method, etc. Become. Further, unlike a substantially cylindrical rim portion, it has a relatively complicated shape having bolt holes and the like. When viewed from the molten metal to be cast, it is a wall shape in the vertical direction, and this wall surface tends to cause melting of the mold, seizure of the molten metal, and the like. Therefore, it is very preferable to use a mold having a structure in which a cooling pipe is provided along the bolt hole recess so as to strongly cool the vicinity of the bolt hole. In addition, the releasability is improved, and a concave portion for a bolt hole having a taper portion inclination of 5.0 ° or less, and further 3.0 ° or less can be formed.
[0015]
In order to obtain a bolt hole shape with a small inclination of the taper portion, strict drive control of the mold is necessary when the solidified wheel is taken out of the mold. When opening the lower mold or the upper mold forming the disk portion, it is preferable to move the movable platen by using a parallel control drive device that pushes up the movable platen at three or more locations synchronously. A synchronous piston is provided on the upper platen, the upper plate is pushed up, and the upper plate at the lowermost position is moved in parallel to a height of about 20 to 30 mm. Alternatively, three or more synchronous hydraulic cylinders may be provided on the lower platen to directly push up the movable platen. If the number is less than two, the movable platen tends to tilt, making it difficult to make a product with a small taper tilt.
[0016]
In a conventional wheel casting machine, the movable platen is simply lifted by a single hydraulic cylinder and the mold is simply opened. However, wheel casting has a structure in which a holding furnace is provided in the vicinity of the lower mold platen. In such a configuration, the lower mold platen is likely to thermally expand. Since the dimensional difference due to thermal expansion differs between the upper mold platen and the lower mold platen, it is necessary to leave a gap of about 0.3 to 0.5 mm between the inner diameter of the guide and the outer diameter of the guide post. However, this gap causes the phenomenon that the movable platen constantly rises while tilting somewhere. If the inclined part of the spoke part or the hub part has a tapered part inclination of 6.0 to 8.0 °, the inclination of the movable platen is an acceptable range that does not cause a problem, and the shape of the molded product is impaired. The product could be released without any problem. However, when the inclination of the taper portion is 5 ° or less, galling is likely to occur in the concave portion of the spoke portion or the hub portion. When released from the lower mold, the product has a temperature of 400 to 450 ° C. and has low strength. In particular, when the design surface has a complicated shape, it is easy to be taken by the lower mold and the strength is weak with respect to the pulling direction. Therefore, detailed consideration of the movable platen equipped with the upper mold at the time of mold release is a very important technology. The distance that the upper mold must rise parallel to the lower mold is about 5 to 20 mm at the maximum from the clamping position. If it rises more than that, even if the movable platen tilts somewhat, the design surface and the lower mold will not collide. In order to lift the movable platen by strict control up to this level, it is necessary to perform parallel movement control in which the upper mold or the movable platen fixed to the upper mold is simultaneously pushed up by the same amount of movement. A four-synchronous vertical cylinder system is particularly effective. The cylinder may be driven using a current control valve or a servo valve.
[0017]
Further, the upper casting mold is generally pushing the lower mold with a clamping force of 200 kN. Since the hydraulic pressure is about 10 MPa, when this 10 MPa is dropped to substantially 0 MPa at a speed of less than 0.01 seconds, the deformation due to the stress applied to the casting machine is released at once, and surge pressure is generated in the hydraulic circuit. As a result, the entire casting machine vibrates and the movable platen does not move parallel to the lower mold, or the upper mold moves laterally with respect to the lower mold, and the lower mold and the design surface are easily galled. The time until the actual valve is fully opened is about 0.02 seconds, but the mold clamping force becomes 0 MPa in about half of the time. Therefore, the mold clamping force is removed for a long time of 0.05 seconds or more, more preferably 0.10 seconds or more, and the impact of the casting machine due to sudden oil pressure reduction is reduced, resulting in a design without galling. The surface can be molded.
[0018]
Further, it is preferable to increase the clamping force so that unnecessary vibration and stress are not applied during clamping. If the mold is abruptly clamped, the entire casting will be vibrated. The total weight of the movable platen and the lower die is about 3 to 4 tons, and stress strain of about 1 mm is generated in the vertical direction on the upper platen and the lower platen. In addition, since the parallel direction is also affected at the time of mold clamping, it is preferable to perform mold clamping at a predetermined speed in order to produce an aluminum wheel with a small taper portion inclination.
[0019]
When casting using the side gate at the rim part, the pouring gate position is preferably at least above the design part surface, and more preferably higher than the design part back surface. In this way, it is possible to reduce the occurrence of the hot water boundary surface of the molten metal poured from the center gate and the side gate in terms of design. Further, by providing a high side gate, it is possible to reduce the occurrence of defects due to the hot metal effect due to the weight of the molten metal remaining in the rim even if the vicinity of the center gate is solidified early.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
Hereinafter, the details of the present invention will be described with reference to the drawings.
FIG. 7 is an example of casting a light alloy wheel for a vehicle according to the present invention, and is a diagram showing an outline of equipment when an aluminum alloy wheel is cast by low pressure casting. A holding furnace 2 is provided in the sealed container 1, and a lower platen 3 is attached on the sealed container 1 to seal the sealed container 1. The lower mold platen 3 is provided with a stalk 4 for replenishing a molten aluminum alloy 5 to the mold at the center, and the lower end of each stalk is immersed in the molten metal 5 in the holding furnace 2. The upper end of the stalk is connected to the gate 7 of the mold through the gate bush 6 fitted in the lower mold platen 3 and the lower mold 8 of the mold. The molten metal poured through the stalk 4 flows into the lower mold 8 and is poured into a cavity that forms the hub portion of the wheel.
[0021]
The lower mold 8 of the mold is attached to the lower mold platen 3. The lower mold 8 is a fixed mold and is a surface that forms a design portion in the wheel. In the present embodiment, the minimum taper portion inclination was 3.5 °, and the minimum cross-sectional area of the spoke portion was 100 to 250 mm 2 . Further, the thickness in the axial direction was 25 mm or more, the minimum width was 4.0 to 10.0 mm, and the taper portion inclination was 3.5 ° at a portion of 50% or more of the taper portion inclination of the spoke portion. Both sides are laterally movable molds 10 and form the outer peripheral surface of the wheel rim. The upper mold 12 of the mold is attached to the movable platen 14. The upper mold 12 is a so-called movable mold, and forms the back surface of the design portion for attaching the wheel to the car and the inner peripheral surface of the rim portion. The movable platen 14 is fixed to a guide post 15, and the guide post 15 can move up and down along a guide 16 provided on the upper platen 13. The upper end of the guide post 15 is fixed to the upper plate 17, and a hydraulic cylinder 21 provided on the upper platen moves the upper plate, and the movable platen 14 and the upper die 12 move up and down following the movement. In FIG. 7, the position where the upper plate 17 has reached the lowest end is indicated by a broken line. This lowermost position is the position when the upper mold 12 is clamped with the horizontal mold 10 and the lower mold 8.
[0022]
A detailed form of the lower mold 8 is shown in FIG. As shown in FIG. 2, the lower mold 8 has cooling water cooling mechanisms 50 and 51 disposed therein. The water cooling mechanism 51 is disposed with its end facing the bolt hole forming convex portion 81 which is a bolt hole concave portion formed on the disk surface of the wheel so as to mainly cool the vicinity of the hub portion. The taper portion inclination of the bolt hole forming convex portion 81 is 3.0 to 5.0 °. Cooling water is poured into the outer tube 50a of the water cooling mechanism 50 toward the bolt hole forming convex portion 81 through the inner tube 50b. The cooling unit has a double-pipe structure, and is configured such that the flow direction of water in the inner pipe and the flow of water between the outer pipe 50a and the inner pipe 50b are opposite to each other. The cooling water that has reached the tip of the bolt hole forming convex portion 81 from the inner pipe flows through the outer pipe 50b and returns. Two cooling pipes 50c are provided in the cooling unit, and the cooling water is controlled to pass through the inside at a predetermined casting timing. A cooling mechanism 51 for cooling the disk portion (particularly the spoke portion) has a groove 51a formed in the lower portion of the lower die so as to be substantially circular around the wheel axis in the vicinity of the lower portion of the spoke portion die 82. The groove 51a is sealed by a sealing member 51b to form a cooling water passage. Water is supplied from the cooling pipe 51c to the cooling water passage to cool the vicinity of the spoke part mold 82. When the taper portion inclination of the bolt hole forming convex portion 3 is 3 to 5 °, if the mold surface temperature at the bolt hole forming convex portion is 450 ° or more, the coating mold is peeled off and the molten metal reacts. Since seizure occurs, the cooling conditions are set so that the maximum temperature is lower than that temperature.
[0023]
The casting operation is performed according to the following procedure. After closing the lower mold 8, the upper mold 12, and the horizontal mold 10, a pressurized gas of 0.02 to 0.05 MPa such as air or an inert gas is put into the sealed container 1 from the pressurized gas inlet pipe 18. Send it in. The molten metal 5 held at about 700 ° C. in the holding furnace 2 is pushed up through the stalk 4b by the fed pressurized gas, and the mold temperature is maintained at 350 to 450 ° C. enter. The cavity part of the mold is coated with a coating that combines heat retention and mold release. After about 2 to 3 minutes, the pressurization is evacuated, the molten metal 5 in the unsolidified stalk 4 is returned to the holding furnace 2, and the molten metal in the mold is awaited to solidify. When solidification of the molten metal in the mold is completed and the take-out temperature reaches about 400 to 450 ° C., the mold is opened, and the upper mold is raised with the cast product (wheel) attached to the upper mold. The wheel is separated from the upper mold by the push pin fixed to the upper mold platen when it rises to some extent, and the wheel is taken out using the detachable arm 11. This cycle is repeated to cast the product.
[0024]
The descending hydraulic pressure was reduced from 10 MPa to 0 MPa over 0.20 seconds, and the upper mold was raised relative to the lower mold. The oil pressure gradually decreased over 0.20 seconds and did not give a large vibration to the casting machine. Furthermore, it was confirmed that the movable platen was not tilted from beginning to end, but moved upward while maintaining parallelism with respect to the upper platen. In addition, 20 vehicle light alloy wheels of 5 ° or less were manufactured at 50% or more of the inclination of the spoke taper portion, and the design surface was observed for galling or deformation. Generation | occurrence | production of the galling of the design surface was not confirmed, but the wheel which has a favorable shape was obtained. Table 1 shows DAS values obtained by measuring the portions (1) to (3) shown in FIG. Moreover, the structure | tissue observation photograph of a bolt hole vicinity is shown in FIG. It was confirmed that the DAS value near the bolt hole was very small and smaller than the intersection. The DAS values in the table were measured at the side gate position cross section, but the same tendency was observed for the DAS values on the 90 ° side. Similar effects were obtained even when the side gate method or the multi-gate method was used.
[0025]
[Table 1]
Figure 0004730639
[0026]
(Comparative Example 1)
The cooling water was poured only into the water cooling mechanism 51 shown in FIG. 2, and casting was performed without flowing the cooling water into the water cooling mechanism 50. When casting was performed for about 200 to 300 cycles, the molten metal was seized around the bolt hole forming convex portion 81 shown in FIG. 2, resulting in defective molding of the product. In addition, it was necessary to spend time on the maintenance of the mold. The measured value of the DAS value is also shown in Table 1. In particular, the DAS value near the bolt hole is different from that of the present invention. A tissue observation photograph is shown in FIG.
[0027]
(Example 2)
Moreover, the detailed form of another lower mold | type is shown in FIG. 1 and 2 are denoted by the same reference numerals. As shown in FIG. 1, the lower mold 8 has cooling water cooling mechanisms 52 and 51 arranged therein. In the water cooling mechanism 52, a hollow portion 52a extending in a convex direction is disposed in a bolt hole forming convex portion 81 which is a concave portion for a bolt hole formed on the disk surface of the wheel so as to mainly cool the vicinity of the hub portion. Yes. The cooling pipe 52b was inserted deeply into the cavity 52a, and mist was supplied from the external cooling pipe 52c to cool the inside of the cavity. The discharged mist cools the vicinity of the convex portion, returns through the space between the cooling pipe 52b and the hollow portion 52a, and is discharged from the communicating portion 83 to the outside of the lower mold.
[0028]
【The invention's effect】
As described above, according to the present invention, the optimal cooling structure is housed in the lower concave portion for forming the bolt hole, so that a wheel having much higher strength and higher safety than the conventional one can be provided. In addition, it is possible to form a bolt hole recess with a small taper inclination even in a method of pouring molten metal from the hub portion due to improved releasability.
Further, by using the mold of the present invention, galling at the time of releasing the wheel is eliminated, and the working efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cooling mechanism of a lower mold.
FIG. 2 is a cross-sectional view showing another lower mold cooling mechanism.
FIG. 3 is a cross-sectional view of a main part around a bolt hole.
FIG. 4 is a diagram showing a cross-sectional shape of a wheel.
FIG. 5 is a photograph of the metal structure near the bolt hole of the present invention.
FIG. 6 is a photograph of a metal structure in the vicinity of a bolt hole in a conventional center gate bill.
FIG. 7 is an example of a casting machine used in the present invention.
[Explanation of symbols]
1: closed container, 2: holding furnace, 3: lower mold platen, 4: stalk, 5: molten metal, 6: gate gate, 7: gate part, 8: lower mold, 9: guide pin, 10: horizontal mold, 11: Desorption arm, 12: upper mold, 13: upper mold platen, 14: movable platen, 15: guide post, 16: guide, 17: upper plate, 18: pressurized gas insertion tube, 20: four synchronous pistons, 21: Hydraulic cylinder, 30: Aluminum wheel, 31: Hub part, 32: Design part, 33: Rim part, 34: Spoke part, 35: Design hole, 36: Recess for bolt hole, 37: Bolt hole, 38: Hub hole, 39 bolt contact part, 40: taper part inclination, 41: design surface side, 42: ceiling thickness, 43: cast-out part slope, 44: cast-out part, 50, 51: cooling mechanism, 81: for bolt hole formation Convex part, 82 spoke part mold

Claims (4)

ハブ部及びデザイン部を含むディスク部とリム部を有する車両用軽合金ホイールであって、前記リム部とディスク部との交差部のDAS値より前記ハブ部に設けられたボルト穴近傍のDAS値の方が小さいことを特徴とする車両用軽合金ホイール。  A light alloy wheel for a vehicle having a disk part and a rim part including a hub part and a design part, and a DAS value near a bolt hole provided in the hub part from a DAS value at an intersection of the rim part and the disk part. A light alloy wheel for vehicles characterized in that is smaller. ハブ部及びデザイン部を含むディスク部とリム部を有する車両用軽合金ホイールであって、前記リム部とディスク部との交差部のDAS値より前記ハブ部に設けられたボルト穴近傍のDAS値の方が小さく、前記ハブ部に設けられたボルト穴近傍のDAS値が30μm未満であることを特徴とする車両用軽合金ホイール。A light alloy wheel for a vehicle having a disk part and a rim part including a hub part and a design part, and a DAS value near a bolt hole provided in the hub part from a DAS value at an intersection of the rim part and the disk part. A light alloy wheel for a vehicle , wherein the DAS value in the vicinity of a bolt hole provided in the hub portion is smaller than 30 μm. 前記車両用軽合金ホイールは鋳造の際に少なくともハブ部の金型キャビティから溶湯を注湯する鋳造方法により製造された請求項1または2に記載の車両用軽合金ホイール。  The light alloy wheel for a vehicle according to claim 1 or 2, wherein the light alloy wheel for a vehicle is manufactured by a casting method in which a molten metal is poured from at least a mold cavity of a hub portion during casting. 前記車両用軽合金ホイールのディスク面の、前記ハブ部のボルト穴の周囲にはボルト穴用凹部が設けられ、前記ボルト穴用凹部のテーパ部傾きが5.0°以下である請求項1〜3のいずれかに記載の車両用軽合金ホイール。 A bolt hole recess is provided around the bolt hole of the hub portion on the disk surface of the vehicle light alloy wheel, and the taper portion inclination of the bolt hole recess is 5.0 ° or less. 4. The light alloy wheel for vehicles according to any one of 3 above.
JP2001264845A 2001-08-31 2001-08-31 Light alloy wheel for vehicle and die for casting Expired - Fee Related JP4730639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264845A JP4730639B2 (en) 2001-08-31 2001-08-31 Light alloy wheel for vehicle and die for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264845A JP4730639B2 (en) 2001-08-31 2001-08-31 Light alloy wheel for vehicle and die for casting

Publications (2)

Publication Number Publication Date
JP2003072302A JP2003072302A (en) 2003-03-12
JP4730639B2 true JP4730639B2 (en) 2011-07-20

Family

ID=19091385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264845A Expired - Fee Related JP4730639B2 (en) 2001-08-31 2001-08-31 Light alloy wheel for vehicle and die for casting

Country Status (1)

Country Link
JP (1) JP4730639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260437B (en) * 2021-12-25 2023-07-18 云南富源今飞轮毂制造有限公司 Enhanced cooling casting molding process for bolt holes of truck hub mounting plate
CN114260438B (en) * 2021-12-25 2023-11-07 云南富源今飞轮毂制造有限公司 Reinforced casting mold device and casting method for bolt holes of truck hub mounting plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058602A (en) * 1991-07-05 1993-01-19 Hitachi Metals Ltd Disk wheel
JPH07155928A (en) * 1993-12-02 1995-06-20 Toshiyuki Tsukamoto Mold structure for vehicle wheel
JPH07178531A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Method for casting disk blank for forging in road wheel and its casting device
JPH08229636A (en) * 1995-02-23 1996-09-10 Asahi Tec Corp Cooling device for copper alloy mold
JP2000005845A (en) * 1998-06-24 2000-01-11 Aisin Seiki Co Ltd Local cooling structure of die
JP2000219003A (en) * 1999-02-01 2000-08-08 Hitachi Metals Ltd Automobile wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058602A (en) * 1991-07-05 1993-01-19 Hitachi Metals Ltd Disk wheel
JPH07155928A (en) * 1993-12-02 1995-06-20 Toshiyuki Tsukamoto Mold structure for vehicle wheel
JPH07178531A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Method for casting disk blank for forging in road wheel and its casting device
JPH08229636A (en) * 1995-02-23 1996-09-10 Asahi Tec Corp Cooling device for copper alloy mold
JP2000005845A (en) * 1998-06-24 2000-01-11 Aisin Seiki Co Ltd Local cooling structure of die
JP2000219003A (en) * 1999-02-01 2000-08-08 Hitachi Metals Ltd Automobile wheel

Also Published As

Publication number Publication date
JP2003072302A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP2002205501A (en) Light alloy wheel for vehicle
CN108971431B (en) Manufacturing method of ductile iron cutter block type casting of automobile stamping die
KR20130123653A (en) Method for manufacturing aluminium wheelhub
CN105583395B (en) A kind of aluminium alloy automobile chassis casting metal-mold low-pressure casting shaping crystallization boosting method
JP5046106B2 (en) Low pressure casting apparatus and low pressure casting method
JP4730639B2 (en) Light alloy wheel for vehicle and die for casting
JP2006061986A (en) Low pressure casting device to light alloy wheel for vehicle
CN104786727A (en) Integral type aluminum wheel production process
JP2003306001A (en) Light alloy wheel for vehicle and producing method thereof
JP2005206151A (en) Wheel for vehicle
JP3781271B2 (en) Light alloy wheels for vehicles
CN105618710A (en) Fast pressurization method after pressure maintaining used for metal-mold low-pressure casting and forming of aluminum alloy wheel
JP2024504339A (en) Die casting machine with improved mounting plate
JP2003117625A (en) Light alloy car wheel, and manufacturing method thereof
JP5448019B2 (en) Vehicle wheel
CN110899621B (en) Die and process for casting torsion bar type aluminum alloy overturning support
CN211331267U (en) Hub low-pressure die core
US20020170700A1 (en) Metal-casting method and apparatus, casting system and cast-forging system
CN209972048U (en) High strength lightweight aluminum alloy wheel hub
CN112172405A (en) Manufacturing process for truck hub made of A356 aluminum
JP2002114002A (en) Light alloy wheel for vehicle
JP5871399B2 (en) Vehicle wheel and method of manufacturing the same
CN111889652A (en) Anti-gravity casting is mould locking device and anti-gravity casting equipment for local pressurization
CN215431483U (en) Zero gradient mould of OEM product low pressure
JP2018158363A (en) Metal mold cooling mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4730639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees