JP4730615B2 - Permeable passage member for buried disposal facility and buried disposal facility - Google Patents

Permeable passage member for buried disposal facility and buried disposal facility Download PDF

Info

Publication number
JP4730615B2
JP4730615B2 JP2006284174A JP2006284174A JP4730615B2 JP 4730615 B2 JP4730615 B2 JP 4730615B2 JP 2006284174 A JP2006284174 A JP 2006284174A JP 2006284174 A JP2006284174 A JP 2006284174A JP 4730615 B2 JP4730615 B2 JP 4730615B2
Authority
JP
Japan
Prior art keywords
air
permeable
water
disposal facility
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006284174A
Other languages
Japanese (ja)
Other versions
JP2008100154A (en
Inventor
卓 石井
至鎬 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2006284174A priority Critical patent/JP4730615B2/en
Publication of JP2008100154A publication Critical patent/JP2008100154A/en
Application granted granted Critical
Publication of JP4730615B2 publication Critical patent/JP4730615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Description

本発明は、施工が容易でバリア機能を当初から長期に亙って維持できると共に、ガスの逃げ道の起点となる埋設処分施設用の透気経路部材及びそれを用いた埋設処分施設に関する。   The present invention relates to an air passage member for a buried disposal facility that is easy to construct and can maintain a barrier function for a long time from the beginning, and serves as a starting point for a gas escape route, and a buried disposal facility using the same.

近年における最大のテーマは、社会産業の発展における結果としての産業廃棄物や一般廃棄物を埋め立てるための廃棄物処分施設の設置、さらには、原子力発電における高、低レベルの放射性廃棄物に関する数百年以上に及ぶ廃棄物の処置を社会生活に障害を与えることなく如何に処理するかである。   The biggest theme in recent years has been the establishment of waste disposal facilities to landfill industrial and municipal waste as a result of social industry development, and hundreds of high and low levels of radioactive waste in nuclear power generation. It is how to deal with waste disposal over more than a year without causing any obstacle to social life.

産業廃棄物や一般廃棄物を埋め立てるための処分施設では、産業廃棄物が人間の生活環境に影響を与えないようにするために、そこからの漏出汚水が地下に浸透することで環境汚染を引き起こさないように処置することが義務付けられており、地下に埋設することが種々提案されている。   In a disposal facility for reclaiming industrial waste and general waste, in order to prevent industrial waste from affecting the human living environment, the leaked sewage from it penetrates underground and causes environmental pollution. It is obliged to treat them so that they are buried under the ground.

放射性廃棄物を地下に埋設するための施設では地下水の流れが遅い良好な地層中に埋設すること、および廃棄物の周囲を例えばベントナイト等の難透水性材料で取り囲み、地下水の浸入および汚水地下水の施設外への漏出を抑制することが求められており、種々の提案がなされている。例えばベントナイトスラリーと高密度ベントナイト固状体とを混合させた状態で打設する提案がある(特許文献1)。また、現場での重錘落下転圧方法により設置する提案がある(特許文献2)。 In a facility for burying radioactive waste underground, bury it in a good formation where the flow of groundwater is slow, and surround the waste with a hardly permeable material such as bentonite, and infiltrate groundwater and sewage groundwater It is required to suppress leakage outside the facility, and various proposals have been made. For example, there is a proposal of placing a bentonite slurry and a high density bentonite solid in a mixed state (Patent Document 1). In addition, there is a proposal to install by a weight drop rolling method in the field (Patent Document 2).

このようなベントナイト等の難透水性材料を用いてなる遮水層を設けた施設の一例を図10に示す。図10は、地盤中に埋設する施設の概略を示すものであり、地下水位1以下の場所に支保工2の内部に難透水性の遮水層3が形成され、その内側に廃棄体4が設けられている。前記廃棄体4と遮水層3との間には透水性の例えばコンクリート等の充填材5が充填されている。   FIG. 10 shows an example of a facility provided with a water-impervious layer using such a poorly permeable material as bentonite. FIG. 10 shows an outline of a facility to be buried in the ground. A non-permeable water-impervious layer 3 is formed in the support 2 at a location below the groundwater level 1, and a waste body 4 is disposed on the inside thereof. Is provided. Between the waste body 4 and the water shielding layer 3, a water-permeable filler 5 such as concrete is filled.

また、密度の大きい固状体と粉体とを混合して転圧することによる高密度遮水材を構築することが提案されている(特許文献3)。さらに、高密度の粘土系遮水材の成形方法及び現地転圧方法の提案もなされている(特許文献4)。   In addition, it has been proposed to construct a high-density water shielding material by mixing and rolling a solid body having a high density and powder (Patent Document 3). Furthermore, a method for forming a high-density clay-based water shielding material and a field rolling method have also been proposed (Patent Document 4).

特開2003−211113号公報JP 2003-211113 A 特開2004−12356号公報JP 2004-12356 A 特開2003−255087号公報JP 2003-255087 A 特開2005−131923号公報JP 2005-131923 A

しかしながら、図10に示すような提案の施設においては、埋設する廃棄物の中には鉄材の長期間の嫌気性腐食によって微量ではあるが水素ガスを発生する。あるいは廃棄体4が放射性廃棄物の場合には、該廃棄体の周囲の水が放射分解を生じて、水素ガスを発生する。これらの水素ガス等のガスが施設内部に蓄積するとガス圧上昇によって施設構造が破壊されるおそれが想定されるので、ガス圧が低い段階で施設外部へ開放することが望ましい。   However, in the proposed facility as shown in FIG. 10, hydrogen gas is generated in the buried waste due to the long-term anaerobic corrosion of the iron material. Alternatively, when the waste body 4 is a radioactive waste, water around the waste body undergoes radiolysis and generates hydrogen gas. If gas such as hydrogen gas accumulates inside the facility, there is a possibility that the structure of the facility may be destroyed due to an increase in gas pressure, so it is desirable to open it to the outside of the facility when the gas pressure is low.

また、ベントナイト系の難透水性材料は不飽和状態ではガスを透気するものの、ひとたび地下水で飽和してしまうと、材料の有する膨潤圧を上回るガス圧が作用するまではガスを透過しない性質を有している。この結果として、高い圧力のガスが施設内部に蓄積することとなり、やがては施設の遮水層のバリア構造を破壊してしまうおそれがある。   In addition, although bentonite-based poorly permeable materials allow gas to pass through in an unsaturated state, once saturated with groundwater, they do not transmit gas until a gas pressure exceeding the swelling pressure of the material is applied. Have. As a result, high-pressure gas accumulates inside the facility, which may eventually destroy the barrier structure of the water shielding layer of the facility.

ところで、前記特許文献1では、遮水性を向上させるために、粘土材料中の空気を排出し、水を圧密充填することが提案されているが、粘土に水を含有させると結果として、粘土の均一層を形成した遮水材とすることで、遮水性の向上を図ることができるものの、遮水機能が堅牢なため、透気性が備わっていないので、廃棄体内部で発生したガスを開放することができない、という問題が発生する。   By the way, in the said patent document 1, in order to improve water shielding, it is proposed to discharge | emit the air in a clay material, and to carry out the consolidation filling of water, but when water is contained in clay, as a result, as a result of clay Although it is possible to improve water shielding by using a water shielding material with a uniform layer, it has a strong water shielding function and is not air permeable, so it releases the gas generated inside the waste. The problem of not being able to occur.

よって、ガス圧の比較的低い段階で施設外部へガスを効率的に開放することが望まれている。   Therefore, it is desired to efficiently release the gas to the outside of the facility at a relatively low gas pressure.

本発明は、上記実情に鑑みて、施工が容易でバリア機能を当初から長期に亙って維持できると共に、ガスの逃げ道の起点を備えた埋設処分施設用の透気経路部材及びそれを用いた埋設処分施設を提供することを課題とする。   In view of the above circumstances, the present invention is easy to construct and can maintain a barrier function for a long time from the beginning, and uses an air passage member for a buried disposal facility having a starting point for a gas escape path and the same. The objective is to provide a buried disposal facility.

上記の課題を達成する第1の発明は、地下水の存在する地盤中に設けられ、内部に廃棄体を埋設処分する施設内のガスを透気する透気経路部材であって、廃棄体の周囲を覆う難透水性の遮水層の少なくとも一部に設けられ、高剛性の両端開放筒状の容器と、前記筒状の容器の内部に充填される前記遮水層よりも透気し易い材料からなる充填部と、前記筒状容器に充填された充填部のガス発生源側に設けられる突起状高透気性部材とからなることを特徴とする埋設処分施設用の透気経路部材にある。   A first invention that achieves the above object is an air passage member that is provided in the ground where groundwater is present and that allows gas in a facility to bury and dispose of waste therein, and is disposed around the waste body. A highly rigid both-end open cylindrical container provided on at least a part of the poorly water-permeable water-shielding layer covering the material, and a material that is more permeable to air than the water-impermeable layer filled in the cylindrical container And a projecting highly air-permeable member provided on the gas generation source side of the filling portion filled in the cylindrical container.

第2の発明は、第1の発明において、前記突起状高透気性部材が、充填部内に脈状の透気通路を形成する鋭角なくさび状であることを特徴とする埋設処分施設用の透気経路部材にある。   According to a second invention, in the first invention, the protruding highly air-permeable member is a wedge-shaped permeable shape forming a pulse-like air-permeable passage in the filling portion. Located in the airway member.

第3の発明は、第1又は2の発明において、前記高剛性の両端開放筒状の容器が、金属、セラミックス、岩石のいずれかであり、且つ、前記突起状高透気性部材が、砥石、軽石、金属焼結材料、セラミックス、岩石、砂礫、粒状ガラスのいずれかであることを特徴とする埋設処分施設用の透気経路部材にある。   A third invention is the first or second invention, wherein the high-rigidity open-ended cylindrical container is one of metal, ceramics, and rock, and the protruding highly air-permeable member is a grindstone, It is an air passage member for a buried disposal facility, which is any one of pumice, sintered metal, ceramics, rock, gravel, and granular glass.

第4の発明は、第1乃至3のいずれか一つの発明において、前記遮水層よりも透気し易い材料が低密度ベントナイトであることを特徴とする埋設処分施設用の透気経路部材にある。   According to a fourth aspect of the present invention, there is provided the air passage member for a buried disposal facility according to any one of the first to third aspects, wherein the material that is more permeable to air than the water shielding layer is low density bentonite. is there.

第5の発明は、第1乃至4のいずれか一つの発明において、前記難透水性の遮水層が高密度ベントナイト又はベントナイト混合土であることを特徴とする埋設処分施設用の透気経路部材にある。   A fifth aspect of the present invention is the air passage member for buried disposal facilities according to any one of the first to fourth aspects, wherein the water-impervious impermeable layer is high-density bentonite or bentonite mixed soil. It is in.

第6の発明は、廃棄体埋設処分用の地下空洞に設けられた支保工と、前記支保工内に設置され、前記廃棄体の周囲を覆う遮水層と、前記遮水層の少なくとも一部に設けられる第1乃至5のいずれか一つの埋設処分施設の透気経路部材とからなることを特徴とする埋設処分施設にある。   According to a sixth aspect of the present invention, there is provided a support structure provided in an underground cavity for disposal of a waste body, a water shielding layer installed in the support structure and covering the periphery of the waste body, and at least a part of the water shielding layer And a gas permeable path member of any one of the first to fifth buried disposal facilities.

本発明に係る埋設処分施設用の透気経路部材によれば、高剛性の両端開放筒状の容器内に充填された遮水層よりも透気し易い材料からなる充填部に、脈状通路のガスの逃げ道の起点となる突起状高透気性部材を配置することで、充填部内でのガス領域の脈状貫入現象が確実に進展することとなる。この結果、内部のガス圧が比較的低い圧力において、早期に難透水性の遮水層を破過することができる。   According to the air passage member for a buried disposal facility according to the present invention, the vein passage is formed in the filling portion made of a material that is more easily air permeable than the water-impervious layer filled in the cylindrical container with both ends open. By disposing the protruding highly air-permeable member serving as the starting point of the gas escape path, the pulsatile penetration phenomenon of the gas region in the filling portion is surely progressed. As a result, it is possible to break through the water-impervious water-impervious layer at an early stage at a relatively low internal gas pressure.

以下に添付図面を参照して、本発明に係る埋設処分施設の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of a buried disposal facility according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る埋設処分施設の概略図である。
図1に示すように、本実施例にかかる埋設処分施設10用の透気経路部材11は、地下水の存在する地盤中に設けられ、内部に廃棄体を埋設処分する施設内のガスを透気する透気経路部材であって、支保工12内に設置された廃棄体13の周囲を覆う難透水性の遮水層14の少なくとも一部に設けられ、高剛性の両端開放筒状の容器15と、前記筒状の容器15の内部に充填される前記遮水層14よりも透気し易い材料からなる充填部16と、前記筒状容器に充填された充填部16の高圧ガス17の発生源側に設けられる突起状高透気性部材18とからなるものである。
FIG. 1 is a schematic view of a buried disposal facility according to the present invention.
As shown in FIG. 1, the air passage member 11 for the buried disposal facility 10 according to the present embodiment is provided in the ground where the groundwater is present, and the gas in the facility in which the waste body is buried is disposed. A highly rigid both-end open cylindrical container 15 that is provided on at least a part of a non-permeable water-permeable layer 14 that covers the periphery of the waste body 13 installed in the support 12. And a filling portion 16 made of a material that is more permeable to air than the water shielding layer 14 filled in the cylindrical container 15, and generation of a high-pressure gas 17 in the filling portion 16 filled in the cylindrical container It consists of the protruding highly air-permeable member 18 provided on the source side.

また、本実施例では、前記廃棄体13と前記遮水層14との間には廃棄体収納用躯体19が設けられており、また前記遮水層14と前記支保工12との間にはコンクリート等の充填材20が充填されている。   Further, in this embodiment, a waste body housing 19 is provided between the waste body 13 and the water shielding layer 14, and between the water shielding layer 14 and the support 12. Filler 20 such as concrete is filled.

ここで、本実施例に係る埋設処分施設10は、地下空洞内に構築される場合を示しており、支保工12で囲まれた空洞は、地下水の存在する地盤中に設けられ、内部に廃棄体13を埋設処分する施設である。   Here, the embedding disposal facility 10 according to the present embodiment shows a case where it is constructed in an underground cavity, and the cavity surrounded by the support work 12 is provided in the ground where the groundwater exists and is disposed inside. It is a facility where the body 13 is buried.

前記廃棄体13の周囲には難透水性の遮水層14が形成されており、前記遮水層14を貫通するように透気経路部材11が設けられている。なお、本実施例では埋設処分施設用の透気経路部材を一つとしているが、本発明はこれに限定されるものではなく、廃棄体の大きさやガスの透気状態を鑑みて、所定の個所に複数個配設するようにしてもよい。
また、透気経路部材11は遮水層の外側にはみ出ても良く、例えば上方には支保工12の外縁部まで、下方には廃棄体層13の内部まで延長させても良い。
A hardly water-permeable impermeable layer 14 is formed around the waste body 13, and an air-permeable path member 11 is provided so as to penetrate the impermeable layer 14. In this embodiment, there is one air passage member for the buried disposal facility, but the present invention is not limited to this, and in consideration of the size of the waste body and the gas air permeation state, a predetermined air passage member is used. You may make it arrange in multiple places.
Further, the air-permeable path member 11 may protrude outside the water-impervious layer. For example, the air-permeable path member 11 may be extended upward to the outer edge portion of the support 12 and downward to the inside of the waste body layer 13.

図2は埋設処分施設用の透気経路部材11の斜視図である。
図2に示すように、埋設処分施設用の透気経路部材11は、剛性の大きな長期劣化の少ない中空部材からなる高剛性の両端開放筒状の容器15と、この容器15の内部に前記遮水層14よりも透気し易い材料を充填して充填部16を構成している。そして、前記充填部16のガス発生源側(底部側)にポーラス材からなる突起状高透気性部材18が設置されている。
FIG. 2 is a perspective view of the air-permeable path member 11 for the buried disposal facility.
As shown in FIG. 2, the air permeation path member 11 for a buried disposal facility includes a highly rigid both-end open cylindrical container 15 made of a hollow member having a large rigidity and little long-term deterioration, and the shield 15 inside the container 15. The filling portion 16 is configured by filling a material that is more permeable than the water layer 14. A protruding highly air-permeable member 18 made of a porous material is installed on the gas generation source side (bottom side) of the filling portion 16.

前記突起状高透気性部材18は、前記充填部16内に、後述する脈状の透気通路21(図6参照)を形成する鋭角なくさび状であることが特に好ましい。   The protruding highly air-permeable member 18 is particularly preferably wedge-shaped with a sharp angle that forms a pulse-like air-permeable passage 21 (see FIG. 6) described later in the filling portion 16.

また、前記突起状高透気性部材18の材質としては、例えば砥石、軽石、金属焼結材料、セラミックス、岩石、砂礫、粒状ガラスのいずれかとすることが発生した高圧ガスの充填部16内への流入を促進する点から好ましい。特に、ガス透過性が良好で且つ数百年以上安定な材料であればいずれでもよい。
前記高剛性の両端開放筒状の容器15の材質としては、例えば金属、セラミックス、岩石のいずれかとすることが好ましく、特に剛性が大きく且つ透気性が小さく数百年以上安定な材料であればいずれでもよい。
Moreover, as a material of the said projecting highly air-permeable member 18, for example, any one of a grindstone, a pumice stone, a metal sintered material, a ceramic, a rock, a gravel, and a granular glass is generated. This is preferable from the viewpoint of promoting inflow. In particular, any material may be used as long as it has good gas permeability and is stable for several hundred years.
The material of the highly rigid both-end open cylindrical container 15 is preferably, for example, any one of metal, ceramics, and rock, and any material can be used as long as it has high rigidity, low air permeability, and is stable for several hundred years or more. But you can.

前記充填部16を構成する遮水層よりも透気し易い材料としては、例えば600〜1400kg/m3程度の低密度ベントナイトであることが好ましい。また、同様な通気性と低透水性を有する粘土を用いるようにしてもよい。 The material that is more permeable to air than the water shielding layer constituting the filling portion 16 is preferably a low density bentonite of about 600 to 1400 kg / m 3 , for example. Moreover, you may make it use the clay which has the same air permeability and low water permeability.

前記遮水層14を構成する前記難遮水材料としては、例えば1000〜2000kg/m3程度の高密度ベントナイト又はベントナイト混合土とすることが好ましい。 As the hardly water-impervious material constituting the water-impervious layer 14, for example, high density bentonite or bentonite mixed soil of about 1000 to 2000 kg / m 3 is preferable.

また、図3は両端開放筒状の容器15の斜視図である。図3に示すように、透気経路部材11を構成する両端開放筒状の容器15は、その高さHは、遮水層と同様としている。そして、遮水層14の厚さが1mの場合には、例えば高さHが1mとなり、その直径Dは0.3〜1m程度とするのが好ましい。
但し、高さHは前述のように遮水層14の高さを超えるようにしても良い。
FIG. 3 is a perspective view of a cylindrical container 15 having both ends open. As shown in FIG. 3, the open end cylindrical container 15 constituting the air permeation path member 11 has the same height H as that of the water shielding layer. When the thickness of the water shielding layer 14 is 1 m, for example, the height H is 1 m, and the diameter D is preferably about 0.3 to 1 m.
However, the height H may exceed the height of the water shielding layer 14 as described above.

また、図4は、前記突起状高透気性部材18の斜視図である。図4に示すように、前記突起状高透気性部材18の長さlは、前記容器15の内径をdとすると、d×1/10〜d×1/1とするのが好ましい。
また、突起状高透気性部材18の高さhは1〜50cm、幅wは1〜10cm程度とするのが好ましい。
FIG. 4 is a perspective view of the protruding highly air-permeable member 18. As shown in FIG. 4, it is preferable that the length 1 of the projecting highly air-permeable member 18 is d × 1/10 to d × 1/1, where d is the inner diameter of the container 15.
Moreover, it is preferable that the height h of the protruding highly air-permeable member 18 is about 1 to 50 cm and the width w is about 1 to 10 cm.

前記遮水層14は非常に難透水性の材料である高密度ベントナイトとするのが好ましいが、局部的に高透水な欠陥部分を設けずにスムースにガスを開放できるならば理想的である。しかし、遮水層14に適した例えば密度1600kg/m3級のベントナイトでは、低圧でガスが破過することは期待しにくく、材料に局部的に存在する弱部をねらってガスが侵入する現象を期待することになるが、これでは自然の成り行きまかせであり、確実に廃棄体から発生するガスを開放することができないこととなる。 The water shielding layer 14 is preferably made of high density bentonite, which is a very poorly permeable material. However, it is ideal if the gas can be smoothly released without providing a highly water permeable defective portion. However, in the case of bentonite having a density of, for example, 1600 kg / m 3 suitable for the water shielding layer 14, it is difficult to expect the gas to break through at a low pressure, and the gas penetrates into a weak part existing locally in the material. However, this is a natural phenomenon, and the gas generated from the waste cannot be reliably released.

そこで、本発明では遮水層14の一部に突起状高透気性部材18を有する透気経路部材11を設け、該突起状高透気性部材18により確実にガスを開放する透気通路形成に寄与するようにしている。   Therefore, in the present invention, the air permeation path member 11 having the projecting high air permeability member 18 is provided in a part of the water shielding layer 14, and the air permeation passage is formed by the projecting high air permeability member 18 to reliably release the gas. I try to contribute.

ここで、図面を用いて遮水層14内に透気経路部材11を設けた場合(図5−1)と、設けない場合(図5−2)について説明する。   Here, the case where the air permeation path member 11 is provided in the water shielding layer 14 (FIGS. 5-1) and the case where it does not provide (FIGS. 5-2) are demonstrated using drawing.

一般にベントナイトは吸水して膨潤圧22を発生する。前記膨潤圧22は、ベントナイトの密度が大きいほど高い圧力となる。低密度ベントナイトは膨潤圧が小さいので、より低いガス圧で透気経路が形成されるが、周囲に存在する高密度ベントナイトから高い膨潤圧22を受けると透気し難くなる。すなわち、図5−2に示すように、単純に低密度ベントナイトを高密度ベントナイトの一部に設けたのみでは、その周囲の高密度ベントナイトによって膨潤圧22が作用するので、圧縮され透気しにくくなる。
これに対し、図5−1に示すように剛性の大きい容器15を低密度ベントナイトと高密度ベントナイトの間に挿入することで、低密度ベントナイトは周囲から膨潤圧22の影響を受けにくくなり、透気し易くなる。
In general, bentonite absorbs water and generates a swelling pressure 22. The swelling pressure 22 increases as the density of bentonite increases. Since the low density bentonite has a low swelling pressure, an air permeation path is formed at a lower gas pressure. However, when the high density bentonite present in the surrounding area receives a high swelling pressure 22, the air becomes difficult to permeate. That is, as shown in FIG. 5B, when the low density bentonite is simply provided in a part of the high density bentonite, the swelling pressure 22 acts by the surrounding high density bentonite, so that it is difficult to be compressed and air permeable. Become.
On the other hand, as shown in FIG. 5-1, by inserting a rigid container 15 between the low density bentonite and the high density bentonite, the low density bentonite becomes less susceptible to the swelling pressure 22 from the surroundings, It becomes easy to care.

図6は、例えばくさび状の突起状高透気性部材18による脈状貫入通路の形成過程を示す模式図である。
均質な低密度ベントナイトからなる充填部16は高圧ガスのガス圧によって圧密作用を受け、あるいは粘性変形を受け、低密度ベントナイトの間隙を満たしていた間隙水を排除しながら、ガスの脈状貫入現象が徐々に上方側に進展していく。この進展により透気経路が形成されるが、このようなガスの脈状貫入現象は不確実現象であるのが、突起状高透気性部材18を設置することにより、ガスの脈状貫入現象のトリガーとなるので、確実に透気経路が形成されることになる。
FIG. 6 is a schematic view showing a process of forming a pulse-like penetration passage by, for example, a wedge-shaped protruding high air permeability member 18.
The filling portion 16 made of a homogeneous low density bentonite is subjected to a compacting action by the gas pressure of the high-pressure gas, or undergoes viscous deformation, and eliminates pore water that has filled the gaps of the low-density bentonite, while pulsing the gas. Gradually progresses upward. The gas flow path is formed by this development, but such a gas pulse penetration phenomenon is an uncertain phenomenon. Since it becomes a trigger, an air permeation path is surely formed.

このように、本発明によれば、埋設処分施設の透気経路部材11の筒状容器15内に充填した例えば低密度ベントナイトの充填部16の底部に例えばくさび型のポーラス材からなる突起状高透気性部材18を設置することにより、透気し易い低密度ベントナイトの充填部16へのガス領域の脈状貫入現象が確実に進展することとなる。これにより、低圧で且つ確実に廃棄体で発生したガスが低密度ベントナイトからなる充填部16を破過することとなる。   Thus, according to the present invention, the projecting height made of, for example, a wedge-shaped porous material at the bottom of the filling portion 16 of, for example, low-density bentonite filled in the cylindrical container 15 of the air passage member 11 of the buried disposal facility. By installing the air permeable member 18, the pulsed penetration phenomenon of the gas region into the filling portion 16 of the low density bentonite which is easily permeable is surely developed. As a result, the gas generated in the waste body at a low pressure surely breaks through the filling portion 16 made of low density bentonite.

ここで、充填部16の材料である低密度ベントナイトへのガス破過現象は、低密度ベントナイトと水で構成されている粘塑性材料を、ガスが微小破壊もしくは粘性破壊させながら脈状に侵入していく現象であると想定されている(穂刈、沖原他、「ベントナイト混合土の透気特性における寸法効果について」、放射性廃棄物研究、VOl.No.2、p97.1997)。すなわち、遮水層14はベントナイトと水との一体化物であるが、ベントナイト粘塑性材料中において高圧ガスの圧力によって、脈状の透気経路が三次元的網目状に広がって、やがてはベントナイト塑性材料を貫通し、その結果、ガスが透気することとなる。   Here, the gas breakthrough phenomenon to the low density bentonite which is the material of the filling part 16 is that the viscoplastic material composed of the low density bentonite and water penetrates in a pulse shape while causing the gas to undergo microfracture or viscous fracture. (Hokari, Okihara et al., “About the size effect on the air permeability characteristics of bentonite mixed soil”, Research on radioactive waste, Vol. No. 2, p97.1997). That is, the water-impervious layer 14 is an integrated product of bentonite and water, but in the bentonite viscoplastic material, the pulsed air-permeation path spreads in a three-dimensional network by the pressure of the high-pressure gas, and eventually bentonite plasticity. The material penetrates and as a result the gas is permeable.

よって、本発明によりこの脈状経路の形成のためのトリガーとして遮水層14の内面にポーラス材からなる突起状高透気性部材18を配置することにより、遮水層14へのガス領域の脈状侵入現象が確実に進展するので、より低圧で早期にガスは難透水性の遮水層14を破過することになる。
すなわち、遮水層14は地下をゆっくり流れる地下水程度の動水勾配では、該地下水は施設内部をほとんど透過せず、施設内部に蓄えられてガス圧の圧力が高まった時点ではガスはスムースに開放されるという、極めて優れた機能を発揮することになる。
Therefore, according to the present invention, by arranging the protruding highly air-permeable member 18 made of a porous material on the inner surface of the water shielding layer 14 as a trigger for forming this vein path, the gas region pulse to the water shielding layer 14 is provided. Since the state intrusion phenomenon surely progresses, the gas breaks through the impermeable layer 14 having low water permeability at an early stage at a lower pressure.
That is, the impermeable layer 14 has a hydrodynamic gradient similar to that of groundwater that slowly flows through the ground, and the groundwater hardly permeates the inside of the facility, and the gas is smoothly released when the pressure of the gas pressure increases as it is stored inside the facility. It will exhibit an extremely excellent function.

よって、このような埋設処分施設の透気経路部材11を廃棄体13の周囲を覆う遮水層14を貫通する形で1乃至複数個設けることによって、遮水層14はガスの施設外部へのスムースな移動を妨げないことができる。
一方、遮水層14は、地盤中をゆっくり流れる地下水は施設内部をほとんど透過せず、局部的に遮水層の中に設けられた透気経路部材11の遮水層よりも透気し易い材料16は前記遮水層14よりも若干透水性が大きいものの、当該部分を通過する地下水量はほとんど無視できる程度であるために、施設全体の地下水透過量は十分小さい量に抑制させるものとなる。
Therefore, by providing one or a plurality of air permeation path members 11 of such buried disposal facilities so as to penetrate the water shielding layer 14 covering the periphery of the waste body 13, the water shielding layer 14 is connected to the gas facility outside. Smooth movement can be prevented.
On the other hand, the water-impervious layer 14 hardly permeates the inside of the facility of groundwater flowing slowly through the ground, and is more easily permeable than the water-impervious layer of the air-permeable path member 11 provided locally in the water-impervious layer. Although the material 16 is slightly larger in water permeability than the water-impervious layer 14, the amount of groundwater passing through the portion is almost negligible, so that the amount of groundwater permeation of the entire facility is suppressed to a sufficiently small amount. .

<透気試験>
前記くさび型のポーラス材からなる突起状高透気性部材18の設置の有無による低密度ベントナイトの充填部のガス透過性の試験を行なった。
図7−1は本試験例による低密度ベントナイト(乾燥密度1200kg/cm3)に突起状高透気性部材18を設置した概略図であり、図7−2は前記突起状高透気性部材18を設置しない比較例のものである。
<Air permeability test>
The gas permeability test of the filling portion of the low density bentonite was performed depending on whether or not the protruding high air permeable member 18 made of the wedge-shaped porous material was installed.
FIG. 7-1 is a schematic view in which the protruding high air permeability member 18 is installed on the low density bentonite (dry density 1200 kg / cm 3 ) according to this test example, and FIG. 7-2 shows the protruding high air permeability member 18. The comparative example is not installed.

その結果を図8に示す。
図8はガス圧の載荷時間と押し出し水量(ガス圧によって圧密を受けた低密度ベントナイトの間隙を満たしていた間隙水が系外へ排除された量)との関係図である。低密度ベントナイトをガスが抜ける際に水が押出される量を時間で計測したものである。
図8に示すように、徐々に作用するガス圧を段階的に上昇させて、透気経路が形成されて透気開始するまで観測を続けた。
The result is shown in FIG.
FIG. 8 is a relationship diagram between the loading time of the gas pressure and the amount of extruded water (the amount of pore water that has filled the gaps of the low-density bentonite that has been consolidated by the gas pressure). This is a measure of the amount of water that is extruded when the gas escapes from the low density bentonite.
As shown in FIG. 8, the gas pressure acting gradually was increased stepwise, and the observation was continued until the air permeation path was formed and the air permeation started.

図7−1の本試験例に係る場合には、0.55MPaのときに透気通路が形成されて、透気が開始した。一方比較例に係る場合には、0.75MPaのときに透気が開始した。
この結果、本試験例の突起状高透気性部材18が存在する試験例の方がより透気しやすいことが確認された。
In the case of this test example in FIG. 7A, an air passage was formed at 0.55 MPa, and air permeability started. On the other hand, in the case of the comparative example, air permeation started at 0.75 MPa.
As a result, it was confirmed that the test example in which the projecting highly air-permeable member 18 of the present test example exists was more easily permeable.

また、図9−1、図9−2は前述した試験体をX線CTスキャン撮影によって撮影した断面写真である。
本試験例の突起状高透気性部材18が存在する試験体では、突起状高透気性部材18のくさびの先端から上方に透気通路21が形成されていることが明瞭に確認できた。
一方、比較例の場合には、透気通路は無数の網目状に形成されており、透気通路の形成により多くの時間を要することが判る。
FIGS. 9A and 9B are cross-sectional photographs taken by X-ray CT scanning of the above-described specimen.
In the test body in which the projecting highly permeable member 18 of the present test example was present, it was clearly confirmed that the air permeable passage 21 was formed upward from the tip of the wedge of the projecting highly permeable member 18.
On the other hand, in the case of the comparative example, the air passages are formed in an infinite number of meshes, and it can be seen that more time is required to form the air passages.

以上のように、本発明によれば、透気性材料からなる充填部のガス発生源側に突起状高透気性部材を配してなる透気経路部材を遮水層の一部に設けてなるので、廃棄体から発生するガスの透気経路部材中における充填部への脈状侵入現象が確実に進展でき、地下に廃棄体を埋設する施設に適用することに適している。   As described above, according to the present invention, the air permeation path member formed by arranging the protruding highly air permeable member on the gas generation source side of the filling portion made of the air permeable material is provided in a part of the water shielding layer. Therefore, the pulse-like intrusion phenomenon to the filling portion in the gas permeation path member of the gas generated from the waste can surely progress, and it is suitable for application to a facility where the waste is buried underground.

本実施例にかかる埋設処分施設の概略構成図である。It is a schematic block diagram of the buried disposal facility concerning a present Example. 埋設処分施設用の透気経路部材の斜視図である。It is a perspective view of the air-permeable route member for buried disposal facilities. 両端開放筒状の容器の斜視図である。It is a perspective view of a cylindrical container with open ends. 突起状高透気性部材の斜視図である。It is a perspective view of a protruding highly air-permeable member. 遮水層内に透気経路部材を設けた場合の膨潤圧の作用模式図である。It is an effect | action schematic diagram of the swelling pressure at the time of providing an air-permeable path member in a water shielding layer. 遮水層内に透気経路部材を設けない場合の膨潤圧の作用模式図である。It is an effect | action schematic diagram of the swelling pressure when not providing an air-permeable path member in a water-impervious layer. 突起状高透気性部材による脈状貫入通路の形成過程を示す模式図である。It is a schematic diagram which shows the formation process of the pulse-like penetration channel | path by a protrusion-like highly air-permeable member. 本試験例による低密度ベントナイトに突起状高透気性部材を設置した概略図である。It is the schematic which installed the protruding highly air-permeable member in the low density bentonite by this test example. 比較例による低密度ベントナイトに突起状高透気性部材を設置しない概略図である。It is the schematic which does not install a protruding highly air-permeable member in the low density bentonite by a comparative example. ガス圧の載荷時間と押し出し水量との関係図である。It is a related figure of the loading time of gas pressure, and the amount of extrusion water. 本試験体をX線CTスキャン撮影によって撮影した断面写真である。It is the cross-sectional photograph which image | photographed this test body by X-ray CT scan imaging | photography. 比較試験体をX線CTスキャン撮影によって撮影した断面写真である。It is a cross-sectional photograph which image | photographed the comparative test body by X-ray CT scan imaging | photography. 従来の埋設処分施設の概略構成図である。It is a schematic block diagram of the conventional buried disposal facility.

符号の説明Explanation of symbols

10 埋設処分施設
11 透気経路部材
12 支保工
13 廃棄体
14 遮水層
15 両端開放筒状の容器
16 充填部
17 高圧ガス
18 突起状高透気性部材
19 廃棄体収納用躯体
20 充填材
21 透気通路
22 膨潤圧
DESCRIPTION OF SYMBOLS 10 Burial disposal facility 11 Air permeation path member 12 Supporting work 13 Waste body 14 Water shielding layer 15 Cylindrical container 16 with both ends open 16 Filling part 17 High pressure gas 18 Protruding high air permeability member 19 Waste body housing 20 Filler 21 Permeation Air passage 22 Swelling pressure

Claims (6)

地下水の存在する地盤中に設けられ、内部に廃棄体を埋設処分する施設内のガスを透気する透気経路部材であって、
廃棄体の周囲を覆う難透水性の遮水層の少なくとも一部に設けられ、高剛性の両端開放筒状の容器と、
前記筒状の容器の内部に充填される前記遮水層よりも透気し易い材料からなる充填部と、
前記筒状容器に充填された充填部のガス発生源側に設けられる突起状高透気性部材とからなることを特徴とする埋設処分施設用の透気経路部材。
An air-permeable path member that is installed in the ground where groundwater is present and that allows gas inside the facility to bury and dispose of waste inside.
Provided in at least a part of the water-impervious water-impervious layer covering the periphery of the waste, and a highly rigid both-end open cylindrical container;
A filling portion made of a material that is more easily permeable than the water shielding layer filled in the cylindrical container;
An air-permeable path member for a buried disposal facility, comprising: a projecting highly air-permeable member provided on a gas generation source side of a filling portion filled in the cylindrical container.
請求項1において、
前記突起状高透気性部材が、充填部内に脈状の透気通路を形成する鋭角なくさび状であることを特徴とする埋設処分施設用の透気経路部材。
In claim 1,
An air-permeable route member for a buried disposal facility, wherein the protruding highly air-permeable member has a wedge shape with a sharp angle forming a pulse-like air-permeable passage in a filling portion.
請求項1又は2において、
前記高剛性の両端開放筒状の容器が、金属、セラミックス、岩石のいずれかであり、且つ、
前記突起状高透気性部材が、砥石、軽石、金属焼結材料、セラミックス、岩石、砂礫、粒状ガラスのいずれかであることを特徴とする埋設処分施設用の透気経路部材。
In claim 1 or 2,
The highly rigid both ends open cylindrical container is one of metal, ceramics, rock, and
An air-permeable path member for a buried disposal facility, wherein the protruding highly air-permeable member is any one of a grindstone, a pumice stone, a metal sintered material, ceramics, rock, gravel, and granular glass.
請求項1乃至3のいずれか一つにおいて、
前記遮水層よりも透気し易い材料が低密度ベントナイトであることを特徴とする埋設処分施設用の透気経路部材。
In any one of Claims 1 thru | or 3,
An air permeation path member for a buried disposal facility, wherein the material that is more air permeable than the water shielding layer is low density bentonite.
請求項1乃至4のいずれか一つにおいて、
前記難透水性の遮水層が高密度ベントナイト又はベントナイト混合土であることを特徴とする埋設処分施設用の透気経路部材。
In any one of Claims 1 thru | or 4,
An air permeation path member for a buried disposal facility, wherein the hardly water-permeable water shielding layer is high-density bentonite or bentonite mixed soil.
廃棄体埋設処分用の地下空洞に設けられた支保工と、
前記支保工内に設置され、前記廃棄体の周囲を覆う遮水層と、
前記遮水層の少なくとも一部に設けられる請求項1乃至5のいずれか一つの埋設処分施設の透気経路部材とからなることを特徴とする埋設処分施設。
A supporting work provided in an underground cavity for disposal of waste,
A water-impervious layer installed in the support structure and covering the waste body;
A buried disposal facility comprising the air-permeable path member of the buried disposal facility according to any one of claims 1 to 5 provided in at least a part of the water shielding layer.
JP2006284174A 2006-10-18 2006-10-18 Permeable passage member for buried disposal facility and buried disposal facility Active JP4730615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284174A JP4730615B2 (en) 2006-10-18 2006-10-18 Permeable passage member for buried disposal facility and buried disposal facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284174A JP4730615B2 (en) 2006-10-18 2006-10-18 Permeable passage member for buried disposal facility and buried disposal facility

Publications (2)

Publication Number Publication Date
JP2008100154A JP2008100154A (en) 2008-05-01
JP4730615B2 true JP4730615B2 (en) 2011-07-20

Family

ID=39434886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284174A Active JP4730615B2 (en) 2006-10-18 2006-10-18 Permeable passage member for buried disposal facility and buried disposal facility

Country Status (1)

Country Link
JP (1) JP4730615B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304597A (en) * 1996-05-15 1997-11-28 Ishikawajima Harima Heavy Ind Co Ltd Cushioning material for disposal of radioactive waste
JPH1057920A (en) * 1996-08-21 1998-03-03 Yoshio Niioka Container for waste matter provided with mechanism for automatically discharging gas in the container
JP3918408B2 (en) * 2000-07-04 2007-05-23 株式会社大林組 Low water permeability method for radioactive waste disposal facility, radioactive waste disposal facility
JP4051885B2 (en) * 2001-01-12 2008-02-27 株式会社大林組 Radioactive waste disposal facility
JP2003010808A (en) * 2001-07-02 2003-01-14 Shimizu Corp Waste disposal facilities
JP2006289244A (en) * 2005-04-08 2006-10-26 Shimizu Corp Reclamation facility
JP4552134B2 (en) * 2005-04-08 2010-09-29 清水建設株式会社 Buried disposal facility
JP3933187B2 (en) * 2006-07-07 2007-06-20 株式会社大林組 Low water permeability method for radioactive waste disposal facility, radioactive waste disposal facility

Also Published As

Publication number Publication date
JP2008100154A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US5857807A (en) Municipal solid waste landfill system
JP2007319732A (en) Gap filling material and water-shielding method
JP2006200141A (en) Method and structure for treatment of water inflow in tunnel
JP4730615B2 (en) Permeable passage member for buried disposal facility and buried disposal facility
AU2003269298C1 (en) Geotechnical barrier
JP2008093573A (en) Soil water-shielding material, and construction method and structure of water-shielding using the same
KR20100012272A (en) Landfill gas exclusion really structure which uses the waste tire chip
JP4552134B2 (en) Buried disposal facility
JP6126779B2 (en) Disposal of soil, sludge or incinerated ash contaminated with radioactive materials
JP5826678B2 (en) Banking using banking material containing harmful substances and banking construction method
JP4029335B2 (en) Consolidation accelerated landfill method
JP3164196B2 (en) Impermeable wall and method of constructing the same
JP2004012356A (en) Working method and construction system of high density clay-based soil material
JP4609794B2 (en) Soft ground improvement method under permeable upper ground
JP2006289244A (en) Reclamation facility
JP6359203B2 (en) Leachate discharge system and leachate discharge method for marine disposal sites
JP4002344B2 (en) Waste disposal facility
JP2008093499A (en) Polluted soil purifying method and soil pile
JP2001347242A (en) Water shielding structure of storage facility
JP3311733B2 (en) Contaminated soil containment treatment method and foundation structure construction method
CN218049585U (en) Three-dimensional guide-drainage structure for leachate of hazardous waste landfill
JP2006289246A (en) Water-shielding material and waste reclamation facility
JP3163955B2 (en) Construction method of impermeable wall
JP6110061B2 (en) Disposal of soil, sludge or incinerated ash contaminated with radioactive materials
JP2006322946A (en) Water permeability reducing method for radioactive waste disposal facility, and radioactive waste disposal facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150