JP4727969B2 - Waste disposal method - Google Patents

Waste disposal method Download PDF

Info

Publication number
JP4727969B2
JP4727969B2 JP2004310370A JP2004310370A JP4727969B2 JP 4727969 B2 JP4727969 B2 JP 4727969B2 JP 2004310370 A JP2004310370 A JP 2004310370A JP 2004310370 A JP2004310370 A JP 2004310370A JP 4727969 B2 JP4727969 B2 JP 4727969B2
Authority
JP
Japan
Prior art keywords
waste
lead
sulfuric acid
acid
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004310370A
Other languages
Japanese (ja)
Other versions
JP2006122727A (en
Inventor
正己 只佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2004310370A priority Critical patent/JP4727969B2/en
Publication of JP2006122727A publication Critical patent/JP2006122727A/en
Application granted granted Critical
Publication of JP4727969B2 publication Critical patent/JP4727969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃棄物処理方法に関する。   The present invention relates to a waste treatment method.

従来より重金属を含む有害スラッジまたはその焼却灰あるいは集塵装置等によって集められたじん灰等の汚泥物あるいは粉状物は、有機物あるいは粉状コークスを加えて熱処理して、埋め立て処分されている。
例えば、重金属を含むスラッジまたはその焼却灰あるいは集じん装置等によって集められたじん灰等に有機物または粉状コークスを加え、非酸化性雰囲気で700〜1300℃の温度で熱処理し、カドミウム、亜鉛、鉛を揮散させ捕集回収することを特徴とする重金属を含むスラッジ等の処理方法が挙げられる。(例えば特許文献1参照)
また、例えば重金属を含むスラッジあるいは集じんダスト等を汚泥物または粉状物を、塩化ビニール樹脂を含む廃合成樹脂と共に焼却し、スラッジ等に含まれる重金属を塩化物として揮散させ捕集回収する処理方法が挙げられる。(例えば特許文献2参照)
その他、クロム酸鉛スラッジは、そのままあるいは無害化処理を施して、産業廃棄物の埋立処分基準にしたがって埋立処分されている。
特開昭49−107965号公報 特開昭49−107966号公報
Conventionally, sludge or powder such as heavy sludge containing heavy metals or its incineration ash or dust ash collected by dust collectors, etc. have been subjected to heat treatment with the addition of organic matter or powdered coke and disposed of in landfills.
For example, sludge containing heavy metal or its incinerated ash or dust ash collected by dust collector etc. is added organic matter or powdered coke, heat treated at a temperature of 700-1300 ° C. in a non-oxidizing atmosphere, cadmium, zinc, A method for treating sludge containing heavy metals, characterized by volatilizing and collecting lead, can be mentioned. (For example, see Patent Document 1)
In addition, for example, sludge or dust collection dust containing heavy metals is incinerated with sludge or powdered materials together with waste synthetic resin containing vinyl chloride resin, and the heavy metals contained in sludge etc. are volatilized as chlorides and collected and recovered. A method is mentioned. (For example, see Patent Document 2)
In addition, lead chromate sludge is landfilled according to the industrial waste landfill disposal standards as it is or after being detoxified.
JP-A-49-107965 JP-A-49-107966

従来法の内、熱処理する方法は、熱処理設備、揮散物質回収設備、排ガス処理設備等の多くの設備が必要となる上、燃料等の多大なエネルギーを必要とする。更に、最終的に埋立処分が必要な廃棄物が発生する。
また、そのままあるいは無害化処理を施して埋め立て処分する方法は、クロム酸鉛が水に対して難溶性の化合物であることから最も簡便な処分方法ではあるが、クロム酸鉛が6価クロム化合物であることに変わりなく、酸性あるいはアルカリ性の環境中では溶解して6価クロムと鉛を溶出する危険性を有している。又、近年、埋め立て処分は、用地の確保等が困難の理由で処分が出来にくく、これに代わる新しい処理方法の開発が望まれている。
Of the conventional methods, the heat treatment method requires many facilities such as a heat treatment facility, a volatile substance recovery facility, and an exhaust gas treatment facility, and also requires a large amount of energy such as fuel. In addition, waste that eventually needs to be disposed of is generated.
In addition, the landfill disposal method with or without detoxification is the simplest disposal method because lead chromate is a compound that is sparingly soluble in water, but lead chromate is a hexavalent chromium compound. There is no change, and there is a risk of dissolving and dissolving hexavalent chromium and lead in an acidic or alkaline environment. In recent years, landfill disposal is difficult to dispose of because of difficulty in securing land, and development of a new treatment method that replaces this has been desired.

従って本発明の目的は、熱処理する方法のような多大な設備とエネルギーを使わず、クロム酸鉛廃棄物を埋め立て処分することなく、クロムと鉛を分離してリサイクル可能にする処理方法及びリサイクル可能な鉛化合物を提供することにある。   Accordingly, an object of the present invention is to use a processing method and recyclable which can separate and recycle chromium and lead without using a large amount of equipment and energy as in the heat treatment method and without landfilling lead chromate waste. It is to provide a lead compound.

本発明は、クロム酸鉛(PbCrO 4 を含む廃棄物を硫酸水溶液中で加熱処理して、該廃棄物中に含まれるクロムを水溶性のクロム酸(H 2 CrO 4 にし、また鉛を難溶性の硫酸鉛に転換して、反応終了後の酸性スラリーを中和することなく、該スラリー中に溶解した該クロム酸と該難溶性の硫酸鉛を固液分離することを特徴とする廃棄物処理方法を提供するものである。
In the present invention, waste containing lead chromate (PbCrO 4 ) is heat-treated in a sulfuric acid aqueous solution to convert chromium contained in the waste into water-soluble chromic acid (H 2 CrO 4 ). Disposal characterized in that the chromic acid dissolved in the slurry and the hardly soluble lead sulfate are separated into solid and liquid without neutralizing the acidic slurry after completion of the reaction by converting into the hardly soluble lead sulfate. An object processing method is provided.

本発明で得られたクロム酸と鉛化合物は、それぞれクロム塩製造原料、鉛原料として有効利用が可能であり、実質的に埋め立て処分が不要となる。   The chromic acid and the lead compound obtained in the present invention can be effectively used as a chromium salt production raw material and a lead raw material, respectively, and substantially do not require landfill disposal.

以下、本発明の好適な廃棄物処理方法について説明する。
本発明の廃棄物処理方法は、クロム酸鉛を含む廃棄物を酸性水溶液中で加熱処理して、該廃棄物中に含まれるクロムを水溶性のクロム酸にし、また鉛を難溶性の鉛化合物に転換し固液分離することによって特徴付けられる。
ここでいう難溶性の鉛化合物とは、硫酸鉛である。
本発明のクロム酸鉛を含む廃棄物は、ろ過ケーキ状で供給されてもスラリーとして供給されてもかまわない。
つまり、廃棄物中にあらかじめクロム酸が存在しても処理が進行することを意味している。これは、強酸性のクロム酸を含む廃棄物のスラリーを厳密にろ過および洗浄を要しないことから、設備的且つ操作的に有利となる。なお、廃棄物のスラリーとして供給される場合は、必要に応じて沈降濃縮することが望ましい。
Hereinafter, a preferred waste treatment method of the present invention will be described.
In the waste treatment method of the present invention, a waste containing lead chromate is heat-treated in an acidic aqueous solution to convert the chromium contained in the waste into water-soluble chromic acid, and lead is a poorly soluble lead compound. And is characterized by solid-liquid separation.
The poorly soluble lead compound here is lead sulfate.
The waste containing lead chromate of the present invention may be supplied as a filter cake or as a slurry.
In other words, the treatment proceeds even if chromic acid is present in the waste in advance. This is advantageous in terms of equipment and operation because the slurry of waste containing strongly acidic chromic acid does not require strict filtration and washing. In addition, when supplying as a slurry of a waste, it is desirable to carry out sedimentation concentration as needed.

本発明の廃棄物処理方法における酸性水溶液としては、塩酸または硫酸を選択できるが、硫酸を選択する。その理由としては、クロム酸を含む廃棄物をクロム塩製造原料として利用する場合、塩素を含有するとクロム塩製造工程において有毒な塩化クロミルを生成する可能性があることや塩化鉛は硫酸鉛と比較して溶解度が大きいためクロム塩製造工程に鉛が混入してしまうためである。更に、塩化鉛を鉛原料として利用する場合、塩素ガスが発生して設備の腐食を招く恐れがあるためである。 The acidic aqueous solution in the waste processing method of the present invention can be selected hydrochloric acid or sulfuric acid, select the sulfuric acid. The reason for this is that when waste containing chromic acid is used as a raw material for producing chromium salts, the inclusion of chlorine may produce toxic chromyl chloride in the chromium salt production process, and lead chloride is compared to lead sulfate. This is because lead is mixed into the chromium salt manufacturing process because of its high solubility. Furthermore, when lead chloride is used as a lead raw material, chlorine gas is generated, which may cause corrosion of equipment.

本発明の廃棄物の処理方法における酸として硫酸を使用した場合の反応式は以下の通りである。
PbCrO4 + H2SO4 → PbSO4 + H2CrO4
The reaction formula when sulfuric acid is used as the acid in the waste treatment method of the present invention is as follows.
PbCrO 4 + H 2 SO 4 → PbSO 4 + H 2 CrO 4

前記の反応式に示すように、廃棄物中に含まれるクロム酸鉛を硫酸鉛に転換するのに要する硫酸の理論量(化学量論量)はクロム酸鉛1モルに対して硫酸1モルであるが、クロム酸鉛の全量を硫酸鉛に転換するためには、実質的にクロム酸鉛1モルに対して硫酸6モル以上(化学量論量の6倍以上)が必要である。好ましくは、限りなく化学量論量に近づけるべきである。
その理由としては、過剰の硫酸は反応に関与しないうえ、分離母液を中和する際に余分なアルカリ剤を消費してしまうためである。ただし、仕込計量設備の能力に応じてその過剰量を決定すればよく、必ずしも無駄に精度の高い仕込計量設備を必要とするものではない。
As shown in the above reaction formula, the theoretical amount (stoichiometric amount) of sulfuric acid required to convert lead chromate contained in waste into lead sulfate is 1 mole of sulfuric acid per mole of lead chromate. However, in order to convert the entire amount of lead chromate to lead sulfate, it is necessary to substantially have 6 moles or more (6 times or more the stoichiometric amount) of sulfuric acid per mole of lead chromate. Preferably, it should be as close to the stoichiometric amount as possible.
The reason is that excess sulfuric acid does not participate in the reaction and consumes an excess alkali agent when neutralizing the separated mother liquor. However, it is only necessary to determine the excess amount according to the capacity of the preparation weighing equipment, and it does not necessarily require useless high precision preparation measurement equipment.

本発明の廃棄物処理方法における添加順序は、クロム酸を含む廃棄物に酸を添加してもよく、酸水溶液に廃棄物を添加してもよい。つまり、添加終了後にクロム酸鉛と必要量の酸が存在していればよく、添加順序を限定するものではない。   As for the order of addition in the waste treatment method of the present invention, an acid may be added to a waste containing chromic acid, or a waste may be added to an aqueous acid solution. That is, it is sufficient that lead chromate and a necessary amount of acid exist after the addition is completed, and the order of addition is not limited.

本発明の廃棄物処理方法における加熱処理温度は40℃以上であるが、好ましくは40℃以上60℃以下である。その理由としては、40℃以下では反応が進まないかあるいは反応速度が著しく遅いので工業的に有利でないためである。また、60℃以上では加熱のための余分なエネルギーを消費してしまうためである。ただし、酸の希釈または添加により熱が発生する場合は、60℃以下に限定するものではない。   Although the heat processing temperature in the waste processing method of this invention is 40 degreeC or more, Preferably it is 40 degreeC or more and 60 degrees C or less. The reason is that the reaction does not proceed below 40 ° C. or the reaction rate is remarkably slow, which is not industrially advantageous. Moreover, it is because the excess energy for a heating will be consumed at 60 degreeC or more. However, when heat is generated by dilution or addition of acid, it is not limited to 60 ° C. or less.

本発明の廃棄物の処理方法は、反応終了後、中和することなく酸性スラリーで固液分離することによっても特徴付けられる。反応生成物の鉛化合物を含んだまま中和処理すると、鉛化合物が部分的にクロム酸鉛に戻ってしまうためである。分離母液ならびに鉛化合物の中和が必要な場合は、分離した後で別々に中和すべきである。   The waste treatment method of the present invention is also characterized by solid-liquid separation with an acidic slurry without neutralization after completion of the reaction. This is because the lead compound partially returns to lead chromate when the neutralization treatment is performed while containing the lead compound of the reaction product. If separation mother liquor and lead compounds need to be neutralized, they should be neutralized separately after separation.

本発明の鉛化合物は、クロムの含有量が低レベルであることによって特徴付けられる。詳細には、本発明の鉛化合物は、クロムの含有量が乾燥物状態で1重量%以下という低レベルのものである。本発明者の検討の結果、クロム含有量が1重量%以下である本発明の鉛化合物は、鉛原料としてリサイクル可能であることが判明した。   The lead compounds of the present invention are characterized by a low level of chromium content. Specifically, the lead compound of the present invention has a low chromium content of 1% by weight or less in a dry product state. As a result of the study by the present inventors, it has been found that the lead compound of the present invention having a chromium content of 1% by weight or less can be recycled as a lead raw material.

以下に実施例を挙げて本発明を具体的に説明する。特に断らない限り「%」は「重量%」を意味する。   The present invention will be specifically described below with reference to examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
500mlガラス製ビーカーに、水を210.2g入れ、更に試薬の95%硫酸40.1gを投入し、充分撹拌して硫酸水溶液を調整した。クロム酸鉛としてはクロムめっき業者Aから入手した表1に示す組成(乾燥物)のクロム酸鉛廃棄物22.5gを用いた。
[Example 1]
In a 500 ml glass beaker, 210.2 g of water was added, and further 40.1 g of 95% sulfuric acid as a reagent was added and stirred sufficiently to prepare an aqueous sulfuric acid solution. As the lead chromate, 22.5 g of lead chromate waste obtained from the chromium plating company A and having the composition (dried material) shown in Table 1 was used.

Figure 0004727969
Figure 0004727969

硫酸水溶液をヒーターで加熱し、液温が47℃となったところでクロム酸鉛を手動で添加した。添加に要した時間は30分である。添加終了時の液温は50℃で、この温度で60分間熟成した。熟成終了後、9cmφのブフナー式真空ろ過器で固液分離し、分離母液277.1g並びに結晶19.2gを回収した。得られた結晶はX線回折にてPbSO4であることが確認された。得られた分離母液と結晶の組成は表2の通りであった。 The sulfuric acid aqueous solution was heated with a heater, and when the liquid temperature reached 47 ° C., lead chromate was added manually. The time required for the addition is 30 minutes. The liquid temperature at the end of the addition was 50 ° C., and aging was carried out at this temperature for 60 minutes. After completion of aging, solid-liquid separation was performed with a 9 cmφ Buchner vacuum filter, and 277.1 g of the separated mother liquor and 19.2 g of crystals were recovered. The obtained crystal was confirmed to be PbSO 4 by X-ray diffraction. The composition of the obtained separation mother liquor and crystals was as shown in Table 2.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

〔実施例2〕
500mlガラス製ビーカーに、水を210.1g入れ、更に表1に示す組成のクロム酸鉛廃棄物22.5gを投入し、充分撹拌してクロム酸鉛スラリーを調整した。酸としては試薬の95%硫酸40.7gを用いた。
[Example 2]
In a 500 ml glass beaker, 210.1 g of water was added, and further 22.5 g of lead chromate waste having the composition shown in Table 1 was added and stirred sufficiently to prepare a lead chromate slurry. As the acid, 40.7 g of 95% sulfuric acid as a reagent was used.

クロム酸鉛スラリーの液温が28℃で硫酸を手動で滴下して添加した。添加に要した時間は10分である。必要に応じてヒーターで加熱して液温を53℃前後に保ちながら60分間以上熟成した。熟成終了後、9cmφのブフナー式真空ろ過器で固液分離し、分離母液264.6g並びに結晶19.5gを回収した。得られた結晶はX線回折にてPbSO4であることが確認された。得られた分離母液と結晶の組成は表3の通りであった。 Sulfuric acid was manually added dropwise at a liquid temperature of the lead chromate slurry of 28 ° C. The time required for the addition is 10 minutes. The mixture was aged for 60 minutes or more while maintaining the liquid temperature at around 53 ° C. by heating with a heater as necessary. After completion of aging, solid-liquid separation was performed with a 9 cmφ Buchner vacuum filter, and 264.6 g of the separated mother liquor and 19.5 g of crystals were recovered. The obtained crystal was confirmed to be PbSO 4 by X-ray diffraction. The composition of the obtained separated mother liquor and crystals was as shown in Table 3.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

〔実施例3〕
300mlガラス製ビーカーに、水を113.7g入れ、更に表1に示す組成のクロム酸鉛廃棄物22.5gと99.7%無水クロム酸9.1gを投入し、充分撹拌してクロム酸含有のクロム酸鉛スラリーを調整した。酸としては試薬の95%硫酸40.3gを用いた。なお、無水クロム酸の添加は、クロム酸鉛スラリー濃度が約30%のクロムめっき廃液(クロム酸濃度が20%)として受け入れることを想定したものである。
Example 3
In a 300 ml glass beaker, 113.7 g of water was added, and then 22.5 g of lead chromate waste and 9.1 g of 99.7% chromic anhydride having the composition shown in Table 1 were added and stirred sufficiently to contain chromic acid. The lead chromate slurry was prepared. As the acid, 40.3 g of 95% sulfuric acid as a reagent was used. The addition of chromic anhydride is assumed to be accepted as a chromium plating waste solution (chromic acid concentration is 20%) having a lead chromate slurry concentration of about 30%.

クロム酸含有のクロム酸鉛スラリーをヒーターで加熱し、液温が46℃となったところで硫酸を手動で添加した。添加に要した時間は10分である。添加終了時の液温は62℃で、この温度で60分間熟成した。熟成終了後、9cmφのブフナー式真空ろ過器で固液分離し、分離母液185.4g並びに結晶19.2gを回収した。得られた結晶はX線回折にてPbSO4であることが確認された。得られた分離母液と結晶の組成は表4の通りであった。 The chromic acid-containing lead chromate slurry was heated with a heater, and sulfuric acid was manually added when the liquid temperature reached 46 ° C. The time required for the addition is 10 minutes. The liquid temperature at the end of the addition was 62 ° C., and aging was performed at this temperature for 60 minutes. After completion of ripening, solid-liquid separation was performed with a 9 cmφ Buchner vacuum filter, and 185.4 g of the separated mother liquor and 19.2 g of crystals were recovered. The obtained crystal was confirmed to be PbSO 4 by X-ray diffraction. The composition of the obtained separation mother liquor and crystals was as shown in Table 4.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

〔実施例4〕
300mlガラス製ビーカーに、水を130.0g入れ、更にクロムめっき業者Bから入手した表5に示す組成のクロム酸鉛廃棄物36.5gを投入し、充分撹拌してクロム酸鉛スラリーを調整した。酸としては試薬の95%硫酸60.3gを用いた。
Example 4
In a 300 ml glass beaker, 130.0 g of water was added, and further 36.5 g of lead chromate waste having the composition shown in Table 5 obtained from the chromium plating supplier B was added and stirred sufficiently to prepare a lead chromate slurry. . As the acid, 60.3 g of 95% sulfuric acid as a reagent was used.

Figure 0004727969
Figure 0004727969

クロム酸鉛スラリーの液温が55℃で硫酸を手動で滴下して添加した。添加に要した時間は15分である。必要に応じてヒーターで加熱して液温を60℃前後に保ちながら60分間以上熟成した。熟成終了後、9cmφのブフナー式真空ろ過器で固液分離し、分離母液188.3g並びに結晶28.3gを回収した。得られた結晶はX線回折にてPbSO4であることが確認された。得られた分離母液と結晶の組成は表6の通りであった。 The sulfuric acid was manually added dropwise at a liquid temperature of the lead chromate slurry of 55 ° C. The time required for the addition is 15 minutes. The mixture was aged for 60 minutes or more while maintaining the liquid temperature at around 60 ° C. by heating with a heater as necessary. After completion of aging, solid-liquid separation was performed with a 9 cmφ Buchner type vacuum filter, and 188.3 g of separated mother liquor and 28.3 g of crystals were recovered. The obtained crystal was confirmed to be PbSO 4 by X-ray diffraction. The composition of the obtained separated mother liquor and crystals was as shown in Table 6.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

〔比較例1〕
300mlガラス製ビーカーに、水を149.0g入れ、更に表1に示す組成のクロム酸鉛廃棄物15.1gと99.7%無水クロム酸12.2gを投入し、充分撹拌してクロム酸含有のクロム酸鉛スラリーを調整した。酸としては試薬の95%硫酸30.1gを用いた。なお、無水クロム酸の添加は、クロム酸鉛スラリー濃度が約30%のクロムめっき廃液(クロム酸濃度が20%)として受け入れることを想定したものである。
[Comparative Example 1]
Into a 300 ml glass beaker, 149.0 g of water was added, and 15.1 g of lead chromate waste and 12.2 g of 99.7% chromic anhydride having the composition shown in Table 1 were added and stirred sufficiently to contain chromic acid. The lead chromate slurry was prepared. As the acid, 30.1 g of 95% sulfuric acid as a reagent was used. The addition of chromic anhydride is assumed to be accepted as a chromium plating waste solution (chromic acid concentration is 20%) having a lead chromate slurry concentration of about 30%.

室温(14℃)のクロム酸含有のクロム酸鉛スラリーに硫酸を手動で添加した。添加に要した時間は10分である。添加終了時の液温は33℃で、加熱せずに120分間熟成した。液温は熟成終了後、室温(14℃)に戻っており、9cmφのブフナー式真空ろ過器で固液分離し、分離母液206.9g並びに結晶13.7gを回収した。得られた結晶はX線回折にてPbCrO4が主成分であることが確認された。得られた分離母液と結晶の組成は表7の通りであった。 Sulfuric acid was manually added to a chromic acid-containing lead chromate slurry at room temperature (14 ° C.). The time required for the addition is 10 minutes. The liquid temperature at the end of the addition was 33 ° C., and aging was performed for 120 minutes without heating. The liquid temperature returned to room temperature (14 ° C.) after completion of ripening, and solid-liquid separation was performed with a 9 cmφ Buchner vacuum filter to recover 206.9 g of separated mother liquid and 13.7 g of crystals. The obtained crystal was confirmed by X-ray diffraction to contain PbCrO 4 as a main component. Table 7 shows the composition of the obtained separation mother liquor and crystals.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

〔比較例2〕
300mlガラス製ビーカーに、水を113.2g入れ、更に表1に示す組成のクロム酸鉛廃棄物22.6gと99.7%無水クロム酸9.0gを投入し、充分撹拌してクロム酸含有のクロム酸鉛スラリーを調整した。酸としては試薬の95%硫酸40.4gを用いた。また、反応液の中和には48.5%苛性ソーダ71.5gを使用した。なお、無水クロム酸の添加は、クロム酸鉛スラリー濃度が約30%のクロムめっき廃液(クロム酸濃度が20%)として受け入れることを想定したものである。
[Comparative Example 2]
Into a 300 ml glass beaker, 113.2 g of water was added, and 22.6 g of lead chromate waste having the composition shown in Table 1 and 9.0 g of 99.7% chromic anhydride were added and thoroughly stirred to contain chromic acid. The lead chromate slurry was prepared. As the acid, 40.4 g of 95% sulfuric acid as a reagent was used. Further, 71.5 g of 48.5% caustic soda was used for neutralization of the reaction solution. The addition of chromic anhydride is assumed to be accepted as a chromium plating waste solution (chromic acid concentration is 20%) having a lead chromate slurry concentration of about 30%.

クロム酸含有のクロム酸鉛スラリーをヒーターで加熱し、液温が37℃になったところで硫酸を手動で添加した。添加に要した時間は10分である。添加終了時の液温は57℃で、加熱しながら60℃前後で60分間熟成した。熟成終了後、苛性ソーダを添加して中和した。中和に要した時間は20分である。中和後、9cmφのブフナー式真空ろ過器で固液分離し、分離母液236.7g並びに結晶25.1gを回収した。得られた結晶はX線回折にてPbCrO4とPbSO4の混合物であることが確認された。得られた分離母液と結晶の組成は表8の通りであった。 The chromic acid-containing lead chromate slurry was heated with a heater, and sulfuric acid was manually added when the liquid temperature reached 37 ° C. The time required for the addition is 10 minutes. The liquid temperature at the end of the addition was 57 ° C., and aging was performed at around 60 ° C. for 60 minutes while heating. After completion of aging, caustic soda was added for neutralization. The time required for neutralization is 20 minutes. After neutralization, solid-liquid separation was performed with a 9 cmφ Buchner vacuum filter to recover 236.7 g of the separated mother liquor and 25.1 g of crystals. The obtained crystal was confirmed to be a mixture of PbCrO 4 and PbSO 4 by X-ray diffraction. Table 8 shows the composition of the obtained separation mother liquor and crystals.

Figure 0004727969
※理論値:原料のCrが分離母液中に100%回収された場合の計算値
Figure 0004727969
* Theoretical value: Calculated value when 100% of the raw material Cr is recovered in the separated mother liquor

Claims (5)

クロム酸鉛(PbCrO 4 を含む廃棄物を硫酸水溶液中で加熱処理して、該廃棄物中に含まれるクロムを水溶性のクロム酸(H 2 CrO 4 にし、また鉛を難溶性の硫酸鉛に転換して、反応終了後の酸性スラリーを中和することなく、該スラリー中に溶解した該クロム酸と該難溶性の硫酸鉛を固液分離することを特徴とする廃棄物処理方法。 Waste containing lead chromate (PbCrO 4 ) is heat-treated in an aqueous sulfuric acid solution to convert the chromium contained in the waste into water-soluble chromic acid (H 2 CrO 4 ) , and lead is a poorly soluble sulfuric acid. A waste treatment method characterized by solid-liquid separation of the chromic acid dissolved in the slurry and the poorly soluble lead sulfate without converting to lead and neutralizing the acidic slurry after completion of the reaction . 前記廃棄物中にあらかじめクロム酸が存在している請求項1記載の廃棄物処理方法。 The waste treatment method according to claim 1, wherein chromic acid is present in the waste in advance . 固液分離後に、分離された母液又は硫酸鉛を中和する請求項1又は2に記載の廃棄物処理方法。 The waste disposal method according to claim 1 or 2 , wherein the separated mother liquor or lead sulfate is neutralized after solid-liquid separation . 反応に必要な硫酸の量が、化学量論量の6倍以上であることを特徴とする請求項1ないし3の何れかに記載の廃棄物処理方法。 The waste treatment method according to any one of claims 1 to 3, wherein the amount of sulfuric acid required for the reaction is 6 times or more the stoichiometric amount. 前記加熱処理の温度が40℃以上であることを特徴とする請求項1ないし4の何れかに記載の廃棄物処理方法。   The waste treatment method according to any one of claims 1 to 4, wherein the temperature of the heat treatment is 40 ° C or higher.
JP2004310370A 2004-10-26 2004-10-26 Waste disposal method Expired - Fee Related JP4727969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310370A JP4727969B2 (en) 2004-10-26 2004-10-26 Waste disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310370A JP4727969B2 (en) 2004-10-26 2004-10-26 Waste disposal method

Publications (2)

Publication Number Publication Date
JP2006122727A JP2006122727A (en) 2006-05-18
JP4727969B2 true JP4727969B2 (en) 2011-07-20

Family

ID=36717965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310370A Expired - Fee Related JP4727969B2 (en) 2004-10-26 2004-10-26 Waste disposal method

Country Status (1)

Country Link
JP (1) JP4727969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690881B2 (en) * 2005-12-19 2011-06-01 三井金属エンジニアリング株式会社 Method for treating lead-containing sludge and method for treating lead-containing wastewater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107969A (en) * 1973-02-19 1974-10-14
JPS5315264A (en) * 1976-07-29 1978-02-10 Taisei Corp Method of stabilizing and depolluting sludges containing lead chromate
JPS5356106A (en) * 1976-11-01 1978-05-22 Hitachi Plant Eng & Constr Co Ltd Extracting method for valuable metals from sludge of plating
JPS56169737A (en) * 1980-06-02 1981-12-26 Nippon Chem Ind Co Ltd:The Method of recovering chromium from chromium-containing sludge
JP3574928B2 (en) * 2002-02-15 2004-10-06 同和鉱業株式会社 Method for treating fly ash from incinerators and melting furnaces

Also Published As

Publication number Publication date
JP2006122727A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4829610B2 (en) Production method of adsorbent mainly composed of hydroxyapatite crystals
US8603344B2 (en) Method and apparatus for removing metal from waste water
CN109665495B (en) Combined resource utilization method of high-salinity wastewater and bypass ash of washed fly ash
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
Gorazda et al. From sewage sludge ash to calcium phosphate fertilizers
WO2022022090A1 (en) Method for recovering vivianite from sludge incineration ash
CN101804330A (en) Heavy metal ion adsorbent and preparation and application method thereof
KR101789701B1 (en) Manufacturing method of potassium chloride using cement bypass dust
CN110639935A (en) Waste incineration fly ash treatment method
TWI646994B (en) Hazardous substance treatment agent
CN105883884A (en) Method for preparing industrial calcium chloride from thiourea waste residues
JP2002018394A (en) Treating method for waste
JP2008264627A (en) Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like
JP3924981B2 (en) Waste material processing method for cement
JP4727969B2 (en) Waste disposal method
CN106745308A (en) The recovery and treatment method of titanium tetrachloride dust-slag collection
JP2005246226A (en) Treating method for fly ash
JP2006346618A (en) Selenium-containing wastewater treatment method
JP2005246225A (en) Treating method for fly ash combined with fixation of carbon dioxide
WO2004090179A1 (en) Method of recovering vanadium oxide flake from diesel oil fly-ash or orimulsion fly-ash
JP3402535B2 (en) Treatment of alkaline fly ash
CN104402145B (en) The waste water Han ferrous salt is utilized to prepare the production method of hydrated ferric oxide.
JP3851206B2 (en) Fly ash treatment method
JP3105347B2 (en) How to treat phosphate sludge
JP2003326246A (en) Method for treating contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees