JP4690881B2 - Method for treating lead-containing sludge and method for treating lead-containing wastewater - Google Patents
Method for treating lead-containing sludge and method for treating lead-containing wastewater Download PDFInfo
- Publication number
- JP4690881B2 JP4690881B2 JP2005364923A JP2005364923A JP4690881B2 JP 4690881 B2 JP4690881 B2 JP 4690881B2 JP 2005364923 A JP2005364923 A JP 2005364923A JP 2005364923 A JP2005364923 A JP 2005364923A JP 4690881 B2 JP4690881 B2 JP 4690881B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- sludge
- solid
- wastewater
- flocculant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010802 sludge Substances 0.000 title claims description 120
- 238000000034 method Methods 0.000 title claims description 118
- 239000002351 wastewater Substances 0.000 title claims description 98
- 239000000706 filtrate Substances 0.000 claims description 68
- 239000007788 liquid Substances 0.000 claims description 64
- 238000000926 separation method Methods 0.000 claims description 63
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 62
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 claims description 61
- 239000003795 chemical substances by application Substances 0.000 claims description 37
- 239000003513 alkali Substances 0.000 claims description 22
- 238000007599 discharging Methods 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 10
- 239000002244 precipitate Substances 0.000 claims description 9
- 239000007790 solid phase Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- 238000003756 stirring Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 26
- 238000004065 wastewater treatment Methods 0.000 description 24
- 239000002699 waste material Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000003672 processing method Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 9
- 229910001385 heavy metal Inorganic materials 0.000 description 9
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 7
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 7
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000000975 co-precipitation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000010881 fly ash Substances 0.000 description 5
- -1 for example Chemical compound 0.000 description 5
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012994 industrial processing Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 description 4
- 150000004692 metal hydroxides Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 238000010979 pH adjustment Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 239000010842 industrial wastewater Substances 0.000 description 3
- 229910000358 iron sulfate Inorganic materials 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Sludge (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
本発明は、鉛含有汚泥の処理方法および鉛含有廃水の処理方法に関する。特に、廃水処理剤として使用する凝集剤の使用量を低減でき、高純度の鉛を効率よく回収でき、かつ、新たな廃棄物を生じない簡便な鉛含有廃水の処理方法および鉛含有汚泥の処理方法に関する。 The present invention relates to a method for treating lead-containing sludge and a method for treating lead-containing wastewater. In particular, the amount of flocculant used as a wastewater treatment agent can be reduced, high-purity lead can be efficiently recovered, and a simple treatment method for lead-containing wastewater that does not produce new waste and treatment of lead-containing sludge Regarding the method.
鉛および/またはその塩を含有する廃水(本発明において、「鉛含有廃水」という。)の処理方法として、該廃水に塩化第2鉄、硫酸第2鉄または水酸化アルミニウム等の凝集剤を加えて液性をアルカリ性に調整し、鉄、アルミニウムおよび鉛等の化合物を金属水酸化物に変換し、これら水酸化物の共沈現象を利用して、廃水から鉛を鉄、アルミニウムと共に分別する方法(水酸化物沈殿法、中和凝集沈殿法)が知られている(非特許文献1参照。)。 As a treatment method of waste water containing lead and / or a salt thereof (referred to as “lead-containing waste water” in the present invention), a flocculant such as ferric chloride, ferric sulfate or aluminum hydroxide is added to the waste water. To adjust the liquidity to alkaline, convert compounds such as iron, aluminum and lead into metal hydroxides, and separate lead from wastewater together with iron and aluminum using the coprecipitation phenomenon of these hydroxides (Hydroxide precipitation method, neutralization aggregation precipitation method) are known (see Non-Patent Document 1).
しかし、該方法では、鉛の排水基準(水質汚濁防止法第3条第1項および第12条に定められている0.1mg/L)を満たすためには、廃水に含まれる鉛含有量に対して凝集剤を数〜十数倍、少なくとも5〜6倍用いる必要があり(質量換算)、上記共沈現象により沈殿する汚泥(スラッジともいう)が、非常に大量となるうえ、該汚泥中の水酸化鉛の含有量も少ない(約10質量%)。
したがって、大量かつ含有量の低い鉛含有汚泥から鉛を効率よく簡易な工程(操作)で回収することは困難であり、かつ、エネルギー消費量が多く経済的ではないという問題がある。また大量の鉛含有汚泥を廃棄する場合には莫大なコストを要し、廃棄物減量という社会的動向にも反するという問題がある。
However, in this method, in order to meet the lead drainage standard (0.1 mg / L defined in
Therefore, it is difficult to efficiently recover lead from a large amount and low content of lead-containing sludge by a simple process (operation), and there is a problem that energy consumption is large and not economical. Further, when a large amount of lead-containing sludge is discarded, there is a problem that enormous costs are required and it is against the social trend of waste reduction.
一方、飛灰の処理方法としては、焼却炉又は溶融炉から排出される鉛等の重金属類を含有する飛灰に、酸を加えて鉛以外の重金属類を抽出した後、固液分離し、次いで、固液分離して得られる鉛を含む残渣に、可溶化剤を加えて鉛を抽出した後、固液分離し、さらに、固液分離して得られる濾液に、不溶化剤を加えて鉛を不溶化物とした後、固液分離することを特徴とする飛灰中の鉛の回収方法が知られている(特許文献1参照。)。しかし、一般に飛灰では鉛含有率が極めて低く(約数質量%)、この数〜十数倍の含有率を有する上記鉛含有廃水または汚泥を処理する場合には、経済的ではないと考えられる。また二次廃棄物を生じ、近年の環境対策上、好ましい工業的処理方法とはいえない。 On the other hand, as a method for treating fly ash, acid is added to fly ash containing heavy metals such as lead discharged from an incinerator or melting furnace, and then heavy metals other than lead are extracted, followed by solid-liquid separation. Next, the lead-containing residue obtained by solid-liquid separation is added with a solubilizing agent to extract lead, followed by solid-liquid separation, and further, an insolubilizing agent is added to the filtrate obtained by solid-liquid separation to lead A method for recovering lead in fly ash is known (see Patent Document 1). However, in general, the fly ash has a very low lead content (about several mass%), and it is not economical when treating the above lead-containing wastewater or sludge having a content of several to dozens of times. . In addition, secondary waste is generated, which is not a preferable industrial treatment method for environmental measures in recent years.
また、他の処理方法として、5つの工程からなることを特徴とする廃棄物の焼却施設または溶融施設から排出される飛灰の再資源化処理方法が知られている(特許文献2参照。)。該方法は、5つの工程からなり、かつ、各工程の操作が煩雑であり、工業的規模には適さない。 As another processing method, there is known a method for recycling fly ash discharged from a waste incineration facility or melting facility characterized by comprising five steps (see Patent Document 2). . This method consists of five steps, and the operation of each step is complicated, and is not suitable for an industrial scale.
本発明は、上記課題の少なくとも1つを解決することを目的とする。
具体的には、本発明は、大量かつ含有量の低い鉛含有廃水または鉛含有汚泥から鉛を高純度で効率よく回収できる、鉛含有廃水または鉛含有汚泥の処理方法を提供することを目的とする。
また、本発明は、新たな廃棄物を生じない工業的規模に適した簡便(経済的)な鉛含有廃水および鉛含有汚泥の処理方法を提供することを目的とする。
さらに、本発明は、廃水処理剤として使用する凝集剤の使用量を低減でき、鉛含有廃水から生じる汚泥を減容し該汚泥の鉛含有量を高くできる鉛含有廃水の処理方法を提供することを目的とする。
The present invention aims to solve at least one of the above problems.
Specifically, an object of the present invention is to provide a treatment method for lead-containing wastewater or lead-containing sludge that can efficiently recover lead from a large amount of low-content lead-containing wastewater or lead-containing sludge with high purity. To do.
It is another object of the present invention to provide a simple (economic) lead-containing wastewater suitable for an industrial scale that does not generate new waste and a method for treating lead-containing sludge.
Furthermore, the present invention provides a method for treating lead-containing wastewater that can reduce the amount of flocculant used as a wastewater treatment agent, reduce the sludge generated from lead-containing wastewater, and increase the lead content of the sludge. With the goal.
本発明者らは、鉛含有廃水および鉛含有汚泥の処理方法について、鋭意検討した結果、鉛含有廃水から水酸化物沈殿法等により得られる鉛含有汚泥に硫酸を加えて固液分離することにより、硫酸鉛として鉛を簡便でかつ高純度で効率よく回収でき、かつ、ろ液を廃水処理用凝集剤としても再利用できることを知見した。
また、鉛、鉄等の水酸化物共沈殿法により得られる鉛含有汚泥の生成量に比して、上記方法による汚泥の生成量は少なく汚泥の減容化が達成でき、また、該ろ液を廃水処理用凝集剤として再利用することにより、凝集剤の使用量が低減でき、新たな廃棄物が生じることなく、連続的な処理が可能となることを見出した。
本発明者らは、上記知見に基づき、本発明を完成した。
As a result of intensive investigations on the treatment method of lead-containing wastewater and lead-containing sludge, the present inventors added solid sulfuric acid to lead-containing sludge obtained from the lead-containing wastewater by the hydroxide precipitation method, etc. In addition, it was found that lead can be easily and efficiently purified as lead sulfate, and the filtrate can be reused as a flocculant for wastewater treatment.
In addition, the amount of sludge produced by the above method is small compared to the amount of lead-containing sludge produced by a hydroxide coprecipitation method such as lead and iron, and the volume of sludge can be reduced. It has been found that the amount of the flocculant used can be reduced by reusing as a flocculant for wastewater treatment, and continuous treatment is possible without generating new waste.
The present inventors have completed the present invention based on the above findings.
すなわち、本発明は、以下の(1)〜(5)を提供する。 That is, the present invention provides the following (1) to (5).
(1)鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離する工程(b)を含む鉛含有汚泥の処理方法。
この方法により、大量かつ含有量の低い鉛含有廃水から鉛を高純度で効率よく回収でき、また、新たな廃棄物を生じることなく簡便(経済的)に処理できる。また、上記特性を有するため、該方法は工業的処理方法として好適である。
(1) A method for treating lead-containing sludge, comprising the step (b) of adding sulfuric acid to lead-containing sludge to adjust the pH to 1.3 or lower and solid-liquid separation using a precipitate containing lead sulfate as a solid phase.
By this method, lead can be efficiently recovered from a large amount of low-content lead-containing wastewater with high purity and can be simply (economically) treated without generating new waste. Moreover, since it has the said characteristic, this method is suitable as an industrial processing method.
(2)鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離する工程(a)と、
該工程(a)の固液分離により得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離する工程(b)とを含む鉛含有廃水の処理方法。
(2) Step (a) for solid-liquid separation after adding flocculant and alkali agent to lead-containing wastewater to adjust to alkalinity;
A step (b) of solid-liquid separation using a precipitate containing lead sulfate as a solid phase by adding sulfuric acid to the lead-containing sludge obtained by the solid-liquid separation in the step (a) to adjust the pH to 1.3 or less; A method for treating lead-containing wastewater.
(3)前記工程(b)の固液分離により得られるろ液またはその濃縮物を、前記工程(a)の凝集剤として用いる、上記(2)に記載の鉛含有廃水の処理方法。 (3) The method for treating lead-containing wastewater according to (2) above, wherein the filtrate obtained by solid-liquid separation in the step (b) or a concentrate thereof is used as the flocculant in the step (a).
上記(2)および(3)の方法により、大量かつ含有量の低い鉛含有廃水から鉛を高純度で効率よく回収でき、また、新たな廃棄物を生じることなく簡便(経済的)に処理でき、さらに、廃水処理剤として使用する凝集剤の使用量を低減でき鉛含有廃水から得られる汚泥を減容できる。
また、上記特性を有するため、該方法は工業的処理方法として好適である。
なお、本発明において、ろ液とは、固液分離等して得られる液体部分をいい、例えば、固液分離して得られるろ液の他に、デカンテーション(傾斜法)して得られる上澄み液等を含む。
By the methods (2) and (3) above, lead can be efficiently recovered from a large amount of low-content lead-containing wastewater with high purity and can be simply (economically) treated without generating new waste. Furthermore, the amount of flocculant used as a wastewater treatment agent can be reduced, and sludge obtained from lead-containing wastewater can be reduced.
Moreover, since it has the said characteristic, this method is suitable as an industrial processing method.
In the present invention, the filtrate refers to a liquid portion obtained by solid-liquid separation or the like. For example, in addition to the filtrate obtained by solid-liquid separation, the supernatant obtained by decantation (gradient method). Including liquids.
(4)鉛含有廃水の処理方法であって、
鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(c)と、
該工程(c)の固液分離により得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離し、硫酸鉛を回収する工程(d)と、
該工程(d)の固液分離により得られるろ液またはその濃縮物を、別の鉛含有廃水に、凝集剤として加えさらにアルカリ剤を加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(e)と、
を順に行い、引き続き、工程(d)と工程(e)を交互に繰返し行うことを特徴とする鉛含有廃水のサイクル処理方法。
(4) A method for treating lead-containing wastewater,
A step (c) of adding a flocculant and an alkali agent to lead-containing wastewater to adjust it to alkalinity, followed by solid-liquid separation, and discharging the obtained filtrate;
The lead-containing sludge obtained by the solid-liquid separation in the step (c) is added with sulfuric acid to adjust the pH to 1.3 or less, and the precipitate containing lead sulfate is solid-liquid separated as a solid phase to recover lead sulfate. Step (d);
The filtrate obtained by the solid-liquid separation in the step (d) or the concentrate thereof is added to another lead-containing wastewater as a flocculant, further adjusted to be alkaline by adding an alkali agent, and then subjected to solid-liquid separation to obtain a filtrate. A step (e) of discharging the liquid;
The lead-containing wastewater cycle treatment method is characterized in that the steps (d) and (e) are repeated alternately in order.
この方法により、大量かつ含有量の低い鉛含有廃水から鉛を高純度で効率よく回収でき、また、新たな廃棄物を生じることなく簡便(経済的)に処理でき、さらに、廃水処理剤として使用する凝集剤の使用量を低減でき鉛含有廃水から得られる汚泥を減容できる。特に、鉛を処理系外に排出せずに連続的に処理でき、自動制御等も可能となる。
このような特性を有するため、該方法は工業的処理方法として特に好適である。
With this method, lead can be efficiently recovered with high purity from a large amount of low-content lead-containing wastewater, and it can be easily (economically) treated without generating new waste, and used as a wastewater treatment agent. The amount of flocculant used can be reduced, and sludge obtained from lead-containing wastewater can be reduced. In particular, lead can be continuously processed without being discharged out of the processing system, and automatic control or the like is also possible.
Since it has such characteristics, the method is particularly suitable as an industrial treatment method.
なお、本発明においては、各ろ液等を放流するに際して、pH、金属含有量等を測定し、排水基準を満たしていることを確認するのが好ましい。
上記方法は、工程(d)において、固液分離するのが好ましい。
In the present invention, when discharging each filtrate, etc., it is preferable to measure pH, metal content, etc. to confirm that the drainage standard is satisfied.
In the method, it is preferable to perform solid-liquid separation in the step (d).
(5)前記工程(b)または工程(d)の固液分離により得られるろ液またはその濃縮物を含有する廃水処理用凝集剤。
本発明は、上記処理方法に好適に用いられる廃水処理用凝集剤を提供することをも目的とし、該凝集剤により、新たな廃棄物を生じることなく簡便(経済的)に鉛含有廃水を処理でき、さらに、廃水処理剤として使用する凝集剤の使用量を低減でき、また鉛含有廃水から得られる汚泥を減容できる。
上記特性を有するため、該廃水処理用凝集剤は、工業廃水、特に鉛含有廃水の処理用凝集剤として好適である。
(5) A flocculant for wastewater treatment containing a filtrate obtained by solid-liquid separation in the step (b) or the step (d) or a concentrate thereof.
Another object of the present invention is to provide a flocculant for wastewater treatment that is preferably used in the above-described treatment method, and the flocculant can easily (economically) treat lead-containing wastewater without generating new waste. In addition, the amount of flocculant used as a wastewater treatment agent can be reduced, and sludge obtained from lead-containing wastewater can be reduced.
Due to the above characteristics, the flocculant for treating wastewater is suitable as a flocculant for treating industrial wastewater, particularly lead-containing wastewater.
本発明により、大量かつ含有量の低い鉛含有廃水または鉛含有汚泥から鉛を高純度で効率よく回収できる、鉛含有廃水または鉛含有汚泥の処理方法を提供できる。
また、本発明により、新たな廃棄物を生じない工業的規模に適した簡便(経済的)な鉛含有廃水および鉛含有汚泥の処理方法を提供できる。
さらに、本発明により、廃水処理剤として使用する凝集剤の使用量を低減でき、鉛含有廃水から生じる汚泥を減容し該汚泥の鉛含有量を高くできる鉛含有廃水の処理方法を提供できる。
ADVANTAGE OF THE INVENTION By this invention, the processing method of the lead containing waste water or the lead containing sludge which can collect | recover lead with high purity efficiently from a large quantity and low content lead-containing waste water or lead containing sludge can be provided.
Moreover, according to the present invention, it is possible to provide a simple (economic) lead-containing wastewater and a method for treating lead-containing sludge suitable for an industrial scale that does not generate new waste.
Furthermore, according to the present invention, it is possible to provide a method for treating lead-containing wastewater that can reduce the amount of flocculant used as a wastewater treatment agent, reduce the sludge generated from the lead-containing wastewater, and increase the lead content of the sludge.
以下、本発明を詳細に説明する。
まず、本発明に用いられる鉛含有廃水および鉛含有汚泥について説明する。
Hereinafter, the present invention will be described in detail.
First, the lead-containing wastewater and lead-containing sludge used in the present invention will be described.
[鉛含有廃水]
本発明に用いられる鉛含有廃水に含まれる鉛は、金属鉛、そのイオン、その塩(例えば、水酸化鉛、硫酸鉛、塩化鉛等)等の無機鉛およびそれらの化合物である。
[Lead-containing wastewater]
Lead contained in the wastewater containing lead used in the present invention is inorganic lead such as metallic lead, its ions, salts thereof (for example, lead hydroxide, lead sulfate, lead chloride, etc.) and compounds thereof.
該鉛含有廃水は、上記した鉛を含有するものであれば特に限定されない。例えば、鉛含有廃水を排出する工場等、具体的には、鉛化成品工場、鉛精錬所、バッテリー工場等から排出される鉛含有廃水が挙げられる。
また、該廃水に含まれる鉛含有量も特に限定されない。
さらに、該廃水に含まれる鉛以外の重金属は、特に限定されないが、硫酸に不溶の金属、例えば、スズ等は後述する工程(b)の汚泥(硫酸鉛)中に残存し、該汚泥中の純度を低下させるので、硫酸に溶解する金属であるのが好ましい。
該重金属は、後述する工程(b)により鉛と分別できる重金属であるのがより好ましく、例えば、鉄、アルミニウム、亜鉛、銅、カドミウム等が挙げられる。
The lead-containing wastewater is not particularly limited as long as it contains lead as described above. For example, a factory that discharges lead-containing wastewater, specifically, a lead-containing wastewater that is discharged from a lead chemical factory, a lead smelter, a battery factory, or the like.
Moreover, the lead content contained in the wastewater is not particularly limited.
Further, the heavy metal other than lead contained in the wastewater is not particularly limited, but a metal insoluble in sulfuric acid, for example, tin or the like remains in the sludge (lead sulfate) in the step (b) to be described later. A metal that is soluble in sulfuric acid is preferred because it reduces the purity.
The heavy metal is more preferably a heavy metal that can be separated from lead in the step (b) described later, and examples thereof include iron, aluminum, zinc, copper, and cadmium.
[鉛含有汚泥]
本発明において、汚泥とは、上記の工場等から発生する廃水およびその処理過程で発生するスラッジの他、既に廃棄されている鉛等の水酸化物からなるスラッジ廃棄物を含む。
本発明に用いる鉛含有汚泥は、少なくとも水酸化鉛または硫酸鉛を含有し、好ましくは、それと水酸化物共沈殿物を形成する鉄、アルミニウム等の金属の水酸化物を含有する汚泥をいう。該金属の水酸化物としては、鉄、アルミニウムの水酸化物の他に、例えば、亜鉛、銅、カドミウム等の水酸化物、該共沈現象に悪影響を与えない金属等が挙げられる。
該汚泥は、少なくとも水酸化鉛または硫酸鉛を含有し、好ましくは、他の金属の水酸化物を含有するものであれば特に限定されない。
例えば、上記鉛含有廃水を排出する工場等から排出される鉛含有汚泥等、または、これらの工場等から排出される鉛含有廃水を処理した鉛含有汚泥等が挙げられる。
また、該汚泥に含まれる鉛含有量も特に限定されない。
[Lead-containing sludge]
In the present invention, sludge includes sludge waste made of hydroxide such as lead that has already been discarded, in addition to waste water generated from the above-mentioned factories and the like and sludge generated in the treatment process.
The lead-containing sludge used in the present invention refers to a sludge containing at least lead hydroxide or lead sulfate, and preferably containing a metal hydroxide such as iron or aluminum that forms a hydroxide coprecipitate with it. Examples of the metal hydroxide include hydroxides such as zinc, copper, and cadmium, as well as iron and aluminum hydroxides, and metals that do not adversely affect the coprecipitation phenomenon.
The sludge is not particularly limited as long as it contains at least lead hydroxide or lead sulfate, and preferably contains other metal hydroxides.
Examples thereof include lead-containing sludge discharged from factories that discharge the lead-containing wastewater, or lead-containing sludge that has been processed from lead-containing wastewater discharged from these factories.
Moreover, the lead content contained in the sludge is not particularly limited.
[鉛含有汚泥の処理方法]
本発明の第1態様は、鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離する工程(b)を含む鉛含有汚泥の処理方法である。
[Treatment method of lead-containing sludge]
The first aspect of the present invention is a lead-containing sludge comprising a step (b) of adding solid acid to lead-containing sludge to adjust the pH to 1.3 or less and solidifying a precipitate containing lead sulfate as a solid phase. It is a processing method.
本発明の第1態様の具体的な処理方法について述べる。
鉛含有汚泥を適量の水に投入し、撹拌しながら、濃硫酸を加え、液性をpH1.3以下に調整する。ここで、「適量」とは、撹拌操作が行える状態にある量であり、撹拌が行える限り該水量は特に限定されない。また、鉛含有汚泥がスラリー状態にあるときは水を必要としない場合もある。
上記pH調整の後、常温で1時間撹拌し、硫酸鉛等の不溶成分を固液分離して、必要であれば該不溶成分を水で洗浄して汚泥(硫酸鉛)を回収する。
A specific processing method according to the first aspect of the present invention will be described.
Lead-containing sludge is put into an appropriate amount of water, and while stirring, concentrated sulfuric acid is added to adjust the liquidity to pH 1.3 or less. Here, the “appropriate amount” is an amount in a state where a stirring operation can be performed, and the amount of water is not particularly limited as long as stirring can be performed. Further, when the lead-containing sludge is in a slurry state, water may not be required.
After the pH adjustment, the mixture is stirred at room temperature for 1 hour, and insoluble components such as lead sulfate are solid-liquid separated. If necessary, the insoluble components are washed with water to recover sludge (lead sulfate).
該方法は上記のように不溶成分の分離操作を主としているため簡便で経済的な方法であり、大量かつ含有量の低い鉛含有汚泥から鉛を効率よく回収でき、工業的に好適である。
また、上記不溶成分の分離操作により得られるろ液は、重金属(例えば、鉄、アルミニウム等)の硫酸塩を含んでおり、そのろ液のままの状態またはろ液を濃縮した状態として後述する鉛含有廃水の処理用凝集剤として再利用できるため、本発明の方法は、新たな廃棄物を生じることなく、近年の環境対策に沿うものであり、かつ、再資源化による廃棄物減量という社会的動向にも合致する。
This method is simple and economical because it mainly separates insoluble components as described above, and can efficiently recover lead from a large amount of low-content lead-containing sludge, which is industrially suitable.
Moreover, the filtrate obtained by the separation operation of the insoluble component contains sulfates of heavy metals (for example, iron, aluminum, etc.), and lead described later as the filtrate as it is or as the filtrate is concentrated. Since it can be reused as a coagulant for the treatment of contained wastewater, the method of the present invention is in line with recent environmental measures without generating new waste, and is a social reduction of waste by recycling. It matches the trend.
本発明の工程(b)では、上記鉛含有汚泥に硫酸を加え液性をpH1.3以下に調整する。
好ましくは、上記鉛含有汚泥に撹拌下、硫酸を加え液性をpH1.3以下に調整した後、さらに撹拌する。撹拌により、系内を均一に、かつ、pH調整を正確にできる。撹拌し難い場合には、適宜溶媒、例えば、水等を、適量添加することもできる。
In step (b) of the present invention, sulfuric acid is added to the lead-containing sludge to adjust the liquidity to pH 1.3 or less.
Preferably, sulfuric acid is added to the above-mentioned lead-containing sludge with stirring to adjust the liquidity to pH 1.3 or less, followed by further stirring. By stirring, the inside of the system can be made uniform and the pH can be adjusted accurately. When stirring is difficult, an appropriate amount of a solvent such as water can be added as appropriate.
硫酸の使用量は、硫酸添加後の系内の液性がpH1.3以下、好ましくは1.2以下となる量であれば特に限定されず、鉛含有汚泥の処理量、それに含まれる鉛の含有量等により任意に調整できる。pHを1.3以下に調整することにより、汚泥中に含まれる鉛以外の重金属(例えば、鉄、アルミニウム等)の硫酸塩と硫酸鉛を確実に分離できる。pHが1.5以上であると、鉛以外の重金属の溶解が不十分となり、鉛との分離能に劣る場合がある。
pH調整後に撹拌する場合には、撹拌時間は、0.2時間以上が好ましく、1〜2時間がより好ましい。この範囲であると、硫酸鉛の形成、および鉛以外の重金属の硫酸塩の溶解が確実に行われ、これら金属の分離能に優れる。
処理(撹拌)温度は、特に限定されないが、常温〜50℃程度が好ましい。
The amount of sulfuric acid used is not particularly limited as long as the liquidity in the system after the addition of sulfuric acid is pH 1.3 or less, preferably 1.2 or less, the amount of lead-containing sludge treated, the amount of lead contained in it It can be arbitrarily adjusted depending on the content. By adjusting the pH to 1.3 or less, sulfates and lead sulfates of heavy metals (for example, iron, aluminum, etc.) other than lead contained in the sludge can be reliably separated. When the pH is 1.5 or more, the dissolution of heavy metals other than lead becomes insufficient and the separation from lead may be poor.
In the case of stirring after pH adjustment, the stirring time is preferably 0.2 hours or more, and more preferably 1 to 2 hours. Within this range, the formation of lead sulfate and the dissolution of sulfates of heavy metals other than lead are reliably performed, and the separation ability of these metals is excellent.
Although processing (stirring) temperature is not specifically limited, About normal temperature-about 50 degreeC are preferable.
硫酸は、特に限定されず、濃硫酸、希硫酸等を用いることができる。該硫酸は10〜50質量%の濃度のものが硫酸鉛の形成等の反応性が高く好ましい。これらは上記の金属分離能に影響しない範囲で工業用硫酸、各種工程で回収した硫酸等を用いることもできる。 The sulfuric acid is not particularly limited, and concentrated sulfuric acid, dilute sulfuric acid and the like can be used. The sulfuric acid having a concentration of 10 to 50% by mass is preferable because of high reactivity such as formation of lead sulfate. As long as they do not affect the above-mentioned metal separation ability, industrial sulfuric acid, sulfuric acid recovered in various steps, and the like can be used.
不溶成分を固液分離する方法としては、特に限定されず、通常行われる方法、例えば、各種ろ過、脱水等の重力沈降法、比重分離法等を用いることができる。
なお、本発明の第1態様は、上記工程(b)を含有する方法であれば、他の処理、例えば、水洗工程、他の不純物除去工程等を含んでもよい。
A method for solid-liquid separation of insoluble components is not particularly limited, and a commonly performed method, for example, gravity sedimentation methods such as various filtrations and dehydration, specific gravity separation methods, and the like can be used.
In addition, if the 1st aspect of this invention is a method containing the said process (b), other processes, for example, a water washing process, another impurity removal process, etc. may be included.
また、上記工程(b)で得られる汚泥(硫酸鉛)には、固液分離時のろ液中に含まれる硫酸鉄、硫酸アルミニウム等の金属塩が残存する。回収される汚泥(硫酸鉛)にこれらの金属塩が含有するのが好ましくない場合、工程(b)の分離方法の条件等を変えることにより、汚泥(硫酸鉛)をより高純度で効率よく回収することもできる。そのような方法として、例えば、不溶成分の分離後に硫酸鉛を大量の水で洗浄する方法、強力な脱液力を有するろ過装置を使用する方法等が挙げられるが、これらの方法に限られない。 Moreover, metal salts, such as iron sulfate and aluminum sulfate contained in the filtrate at the time of solid-liquid separation, remain in the sludge (lead sulfate) obtained in the step (b). If it is not desirable to contain these metal salts in the recovered sludge (lead sulfate), the sludge (lead sulfate) can be recovered with higher purity and efficiency by changing the conditions of the separation method in step (b). You can also Examples of such methods include, but are not limited to, a method of washing lead sulfate with a large amount of water after separation of insoluble components, a method of using a filtration device having a strong drainage power, and the like. .
工程(b)のろ液は、鉛含有廃水の凝集剤として用いる金属の硫酸塩、例えば、硫酸第2鉄、硫酸アルミニウム等を含むので、そのろ液のままの状態で、または、ろ液を濃縮した状態で、廃水用処理剤として再利用できる。
これにより、上記工程(b)のろ液は、廃水処理剤としての効果を示す。
また、該工程(b)のろ液中に鉛が含まれていても、上記したように該ろ液を廃水処理剤として再利用すれば、ろ液中の鉛を系外に排出することもなく、また、該ろ液中の鉛を除去する必要もないため、新たな廃棄物を生じることなく、簡便(経済的)な処理方法として有用である。
The filtrate in step (b) contains a metal sulfate used as a coagulant for lead-containing wastewater, for example, ferric sulfate, aluminum sulfate, etc. In a concentrated state, it can be reused as a wastewater treatment agent.
Thereby, the filtrate of the said process (b) shows the effect as a waste-water-treatment agent.
Moreover, even if lead is contained in the filtrate of the step (b), if the filtrate is reused as a wastewater treatment agent as described above, lead in the filtrate may be discharged out of the system. In addition, since it is not necessary to remove lead in the filtrate, it is useful as a simple (economic) treatment method without generating new waste.
[鉛含有廃水の処理方法]
本発明の第2態様は、鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離する工程(a)と、
該固液分離して得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離する工程(b)とを含む鉛含有廃水の処理方法である。
[Treatment method of lead-containing wastewater]
The second aspect of the present invention includes a step (a) of solid-liquid separation after adding a flocculant and an alkali agent to lead-containing wastewater to adjust the alkalinity, and
A lead-containing wastewater comprising the step (b) of solid-liquid separation using a precipitate containing lead sulfate as a solid phase by adding sulfuric acid to the lead-containing sludge obtained by the solid-liquid separation to adjust the pH to 1.3 or less. It is a processing method.
本発明の第2態様の具体的な処理方法について図1を参照して述べる。
ここで、図1は、本発明の第2態様の処理方法の一例を示す概略フロー図である。
まず、鉛含有廃水に、適量の凝集剤(好ましくは工程(b)で回収した凝集剤)とアルカリ剤を加えて液性を約pH7以上に調整する。その後、常温で1時間撹拌し、析出物を固液分離し鉛含有汚泥を得る(工程(a))。なお、ろ液中の鉛含有量は上記した排水基準値未満となる。
次に、該鉛含有汚泥を適量の水に投入し、撹拌しながら、濃硫酸を加え、液性をpH1.3以下に調整する。その後、常温で1時間撹拌し、不溶成分を固液分離して必要であれば該不溶成分を水で洗浄し汚泥(硫酸鉛)を回収する(工程(b))。
A specific processing method according to the second aspect of the present invention will be described with reference to FIG.
Here, FIG. 1 is a schematic flowchart showing an example of the processing method of the second aspect of the present invention.
First, an appropriate amount of a flocculant (preferably the flocculant recovered in step (b)) and an alkali agent are added to lead-containing wastewater to adjust the liquidity to about pH 7 or more. Then, it stirs at normal temperature for 1 hour, solid-liquid-separates a deposit, and a lead containing sludge is obtained (process (a)). In addition, the lead content in the filtrate is less than the above-mentioned drainage standard value.
Next, the lead-containing sludge is put into an appropriate amount of water, and while stirring, concentrated sulfuric acid is added to adjust the liquidity to pH 1.3 or less. Then, it stirs at normal temperature for 1 hour, solid-liquid-separates an insoluble component, and if necessary, this insoluble component is wash | cleaned with water, and sludge (lead sulfate) is collect | recovered (process (b)).
好ましくは、工程(b)で得られるろ液は上記したように再利用する。これにより、本発明の第2態様の処理方法は、該ろ液中の鉛を系外に排出することもなく、また、該ろ液中の鉛を除去する必要もないため、新たな廃棄物を生じることなく、簡便(経済的)な処理方法である。
該ろ液の再利用方法は、第1態様で説明したのと同様である。
Preferably, the filtrate obtained in step (b) is reused as described above. As a result, the treatment method according to the second aspect of the present invention does not discharge lead in the filtrate out of the system and does not require removal of lead in the filtrate. This is a simple (economic) treatment method without causing any problems.
The method of recycling the filtrate is the same as that described in the first embodiment.
該方法は固液分離を主としているため簡便で経済的な方法であり、大量かつ含有量の低い鉛含有廃水から鉛を高純度で効率よく回収でき、工業的に好適である。
また、上記工程(a)の固液分離により得られるろ液は、鉛の廃水基準を満たしており、そのまま放流(廃棄)できる。なお、放流に際しては、pH、金属含有量等を測定し、排水基準を満たしていることを確認するのが好ましい。
さらに、廃水処理剤として使用する凝集剤の使用量を低減でき鉛含有廃水から得られる汚泥を減容できる。
さらにまた、該方法は、新たな廃棄物を生じることなく、近年の環境対策に沿うものであり、かつ、再資源化による廃棄物減量という社会的動向にも合致する。
This method is simple and economical because it mainly uses solid-liquid separation, and it is industrially suitable because lead can be efficiently recovered with high purity from a large amount and low content of lead-containing wastewater.
Moreover, the filtrate obtained by the solid-liquid separation in the step (a) satisfies the lead wastewater standard and can be discharged (discarded) as it is. In discharging, it is preferable to measure pH, metal content and the like to confirm that the drainage standard is satisfied.
Furthermore, the amount of flocculant used as a wastewater treatment agent can be reduced, and sludge obtained from lead-containing wastewater can be reduced.
Furthermore, the method is in line with the recent environmental measures without generating new waste, and also meets the social trend of waste reduction by recycling.
上記第2態様の工程(a)は、上記鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離する工程である。
好ましくは、上記鉛含有廃水に撹拌下、凝集剤およびアルカリ剤を加えた後、液性を約pH7以上に調整しさらに撹拌する。撹拌により、系内を均一に、かつ、pH調整を正確にできる。
The step (a) of the second aspect is a step of solid-liquid separation after adjusting the alkali by adding a flocculant and an alkali agent to the lead-containing wastewater.
Preferably, the flocculant and the alkali agent are added to the lead-containing wastewater with stirring, and then the liquid property is adjusted to about pH 7 or more and further stirred. By stirring, the inside of the system can be made uniform and the pH can be adjusted accurately.
凝集剤としては、特に限定されず、例えば、塩化第2鉄、硫酸第2鉄、硫酸アルミニウム、塩基性塩化アルミニウム等を挙げることができる。
また、凝集剤として、市販の高分子凝集剤も用いることができる。
これらの凝集剤は、単独で用いてもよく、2種以上を併用して用いてもよい。この中でも、塩化第2鉄、硫酸第2鉄、硫酸アルミニウム、塩基性塩化アルミニウムが後述する工程(b)で鉛と容易に分別できる点で好ましい。
The flocculant is not particularly limited, and examples thereof include ferric chloride, ferric sulfate, aluminum sulfate, and basic aluminum chloride.
A commercially available polymer flocculant can also be used as the flocculant.
These flocculants may be used alone or in combination of two or more. Among these, ferric chloride, ferric sulfate, aluminum sulfate, and basic aluminum chloride are preferable because they can be easily separated from lead in the step (b) described later.
アルカリ剤は、硫酸イオンと化合して固体となる、カルシウム、バリウム等以外のアルカリ化合物またはその溶液であれば特に限定されない。
アルカリ化合物としては、水酸化鉛を形成する化合物であれば特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等の水酸化物が挙げられ、溶液としては、例えば、これらの水溶液が挙げられる。アルカリ剤は、単独で用いてもよく、2種以上を併用して用いてもよい。
これらのアルカリ剤は、上記の金属分離能に影響しない範囲で、工業用のもの、各種工程で回収したものを用いることもできる。
The alkali agent is not particularly limited as long as it is an alkali compound other than calcium, barium or the like, or a solution thereof, which is combined with sulfate ions to become a solid.
The alkaline compound is not particularly limited as long as it is a compound that forms lead hydroxide, and examples thereof include hydroxides such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide. An aqueous solution may be mentioned. An alkaline agent may be used independently and may be used in combination of 2 or more types.
As these alkali agents, industrial ones and those recovered in various steps can be used as long as they do not affect the metal separation ability.
アルカリ剤の使用量は、アルカリ剤添加後の系内の液性が約pH7以上、好ましくは約9以上となる量であれば特に限定されず、処理する鉛含有廃水の容量、それに含まれる鉛の含有量等により任意に調整できる。pHを約7以上に調整することにより、廃水の凝集剤および鉛の水酸化物を該廃水から確実に沈殿分離できる。pHが約7未満の場合には、不溶化物である水酸化鉛の生成が不十分となりやすく、鉛の回収量が低下する傾向があり、固液分離したろ液を放流できない。なお、pHの調整は厳密に行う必要はなく中性、好ましくはアルカリ性にすればよい。
pH調整後に撹拌する場合には、撹拌時間は、0.5時間以上が好ましく、1〜1.5時間がより好ましい。
処理(撹拌)温度は、特に限定されないが、常温〜50℃程度が好ましい。
The amount of the alkali agent used is not particularly limited as long as the liquidity in the system after addition of the alkali agent is about pH 7 or more, preferably about 9 or more. The capacity of lead-containing wastewater to be treated and the lead contained therein It can be arbitrarily adjusted depending on the content of. By adjusting the pH to about 7 or more, the flocculant and lead hydroxide of the wastewater can be reliably separated from the wastewater. If the pH is less than about 7, the production of lead hydroxide, which is an insolubilized product, tends to be insufficient, and the amount of lead recovered tends to decrease, and the solid-liquid separated filtrate cannot be discharged. The pH need not be strictly adjusted, and may be neutral, preferably alkaline.
In the case of stirring after pH adjustment, the stirring time is preferably 0.5 hours or more, and more preferably 1 to 1.5 hours.
Although processing (stirring) temperature is not specifically limited, About normal temperature-about 50 degreeC are preferable.
固液分離する方法としては、特に限定されず、通常行われる方法、例えば、各種ろ過分離、脱水等の重力沈降法、比重分離法等を用いることができる。
なお、固液分離して得られる鉛含有汚泥の状態は、通常スラリー状または脱水汚泥状であるが、これらに限定されない。
The method for solid-liquid separation is not particularly limited, and a commonly performed method, for example, various types of filtration separation, gravity sedimentation method such as dehydration, specific gravity separation method and the like can be used.
In addition, although the state of the lead containing sludge obtained by solid-liquid separation is a slurry form or a dehydrated sludge form normally, it is not limited to these.
なお、本発明の第2態様は、上記工程(a)および(b)を含有する方法であれば、他の処理、例えば、水洗工程、他の不純物除去工程等を含んでもよい。 In addition, as long as the 2nd aspect of this invention is a method containing the said process (a) and (b), another process, for example, a water washing process, another impurity removal process, etc. may be included.
工程(b)は、上記第1態様で説明したのと基本的に同様である。
また、前記したとおり工程(b)の固液分離により得られるろ液は、鉛含有廃水の処理用凝集剤として再利用することができる。すなわち、工程(b)の固液分離により得られるろ液を、上記工程(a)の凝集剤として用いるのが好ましい。
Step (b) is basically the same as described in the first embodiment.
Further, as described above, the filtrate obtained by solid-liquid separation in the step (b) can be reused as a flocculant for treatment of lead-containing wastewater. That is, it is preferable to use the filtrate obtained by the solid-liquid separation in the step (b) as the flocculant in the step (a).
本発明の第3態様は、鉛含有廃水の処理方法であって、鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(c)と、該固液分離して得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離し、硫酸鉛を回収する工程(d)と、該工程(d)の固液分離により得られるろ液またはその濃縮物を、別の鉛含有廃水に、凝集剤として加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(e)とを順に行い、引き続き、工程(d)と工程(e)を交互に繰返し行うことを特徴とする鉛含有廃水のサイクル処理方法である。
なお、放流に際しては、pH、金属含有量等を測定し、排水基準を満たしていることを確認するのが好ましい。
A third aspect of the present invention is a method for treating lead-containing wastewater, which comprises adding a flocculant and an alkali agent to the lead-containing wastewater to adjust it to alkalinity, followed by solid-liquid separation, and discharging the resulting filtrate ( c) and the lead-containing sludge obtained by solid-liquid separation, sulfuric acid is added to adjust the pH to 1.3 or lower, and the precipitate containing lead sulfate is solid-liquid separated as a solid phase to recover lead sulfate. The step (d) and the filtrate obtained by solid-liquid separation in the step (d) or a concentrate thereof are added to another lead-containing wastewater as a flocculant and adjusted to be alkaline, and then obtained by solid-liquid separation. This is a cycle treatment method for lead-containing wastewater, characterized in that the step (e) for discharging the filtrate is sequentially performed, and then the step (d) and the step (e) are alternately repeated.
In discharging, it is preferable to measure pH, metal content and the like to confirm that the drainage standard is satisfied.
本発明は、上記工程(b)および(d)により得られるろ液に含まれる金属硫酸塩が凝集剤として再利用でき、この場合おいて各工程操作の簡易性、鉛の分離能および第3態様の特性等に影響せずに、連続的に処理できることを見出してなされたのである。 In the present invention, the metal sulfate contained in the filtrate obtained by the above steps (b) and (d) can be reused as a flocculant. In this case, the ease of operation of each step, the separation ability of lead, and the third It was made by finding that it can be continuously processed without affecting the characteristics of the embodiment.
本発明の第3態様の特に好ましい処理方法について図2を参照して具体的に述べる。
ここで、図2は、本発明の第3態様の処理方法の好ましい一例を示す概略フロー図である。
まず、鉛含有廃水に、適量の凝集剤とアルカリ剤を加えて液性を約pH7以上に調整する。その後、常温で1時間撹拌し、析出物を固液分離鉛含有汚泥を得、ろ液を放流(廃棄)する(工程(c))。
次に、該鉛含有汚泥を適量の水に投入し、撹拌しながら、濃硫酸を加え、液性をpH1.3以下に調整する。その後、常温で1時間撹拌し、不溶成分を固液分離してこれを水で洗浄し汚泥(硫酸鉛)を得る(工程(d)、1巡目終了)。
A particularly preferred treatment method of the third aspect of the present invention will be specifically described with reference to FIG.
Here, FIG. 2 is a schematic flowchart showing a preferred example of the processing method of the third aspect of the present invention.
First, an appropriate amount of an aggregating agent and an alkali agent are added to lead-containing wastewater to adjust the liquidity to about pH 7 or more. Then, it stirs at normal temperature for 1 hour, solid-liquid separation lead containing sludge is obtained, and a filtrate is discharged (discarded) (process (c)).
Next, the lead-containing sludge is put into an appropriate amount of water, and while stirring, concentrated sulfuric acid is added to adjust the liquidity to pH 1.3 or less. Then, it stirs at normal temperature for 1 hour, solid-liquid-separates an insoluble component, this is wash | cleaned with water, and sludge (lead sulfate) is obtained (process (d), 1st round completion).
さらに、該ろ液を、別の新たな鉛含有廃水に投入し、アルカリ剤を加えて液性を約pH7以上に調整する。工程(c)と同様にして鉛含有汚泥を得、ろ液を放流(廃棄)する(工程(e))。引き続き、該汚泥を用いて工程(d)を行い、硫酸鉛を得る(2巡目終了)。
さらに上記工程(e)および工程(d)を交互に繰返し行い、処理サイクルを第n巡目まで行う。
Further, the filtrate is put into another new lead-containing wastewater, and an alkali agent is added to adjust the liquid property to about pH 7 or more. The lead-containing sludge is obtained in the same manner as in step (c), and the filtrate is discharged (discarded) (step (e)). Subsequently, step (d) is performed using the sludge to obtain lead sulfate (end of the second round).
Further, the step (e) and the step (d) are alternately repeated, and the processing cycle is performed until the n-th round.
上記工程(d)の分離により得られるろ液は、後述する鉛含有廃水の処理用凝集剤として再利用することができる。
また、上記工程(c)および(e)の固液分離により得られるろ液は、鉛の廃水基準を満たしており、そのまま放流(廃棄)できる。なお、放流に際しては、pH、金属含有量等を測定し、排水基準を満たしていることを確認するのが好ましい。
The filtrate obtained by the separation in the step (d) can be reused as a flocculant for treatment of lead-containing wastewater described later.
Moreover, the filtrate obtained by the solid-liquid separation in the above steps (c) and (e) satisfies the lead wastewater standard and can be discharged (discarded) as it is. In discharging, it is preferable to measure pH, metal content and the like to confirm that the drainage standard is satisfied.
該方法は固液分離を主としているため簡便で経済的な方法であり、大量かつ含有量の低い鉛含有廃水から鉛を高純度で効率よく回収でき、工業的に好適である。
さらに、廃水処理剤として使用する凝集剤の使用量を低減でき鉛含有廃水から得られる汚泥を減容できる。
さらにまた、該方法は、新たな廃棄物を生じることなく、近年の環境対策に沿うものであり、かつ、再資源化による廃棄物減量という社会的動向にも合致する。
特に、該方法は連続処理が可能で自動制御も容易であることから、工業的処理方法として、特に好適である。
This method is simple and economical because it mainly uses solid-liquid separation, and it is industrially suitable because lead can be efficiently recovered with high purity from a large amount and low content of lead-containing wastewater.
Furthermore, the amount of flocculant used as a wastewater treatment agent can be reduced, and sludge obtained from lead-containing wastewater can be reduced.
Furthermore, the method is in line with the recent environmental measures without generating new waste, and also meets the social trend of waste reduction by recycling.
In particular, the method is particularly suitable as an industrial processing method because it can be continuously processed and automatic control is easy.
工程(c)は、上記工程(a)と基本的に同様である。
上記したように工程(a)のろ液中の鉛含有量は上記した排水基準値未満であり放流できる。
Step (c) is basically the same as step (a) above.
As described above, the lead content in the filtrate of the step (a) is less than the above-mentioned drainage standard value and can be discharged.
工程(d)は、上記工程(b)と基本的に同様であるが、用いる鉛含有汚泥が、工程(c)で得られるものである場合(1巡目)と工程(e)得られるものである場合(2巡目以降)がある点が異なる。 Step (d) is basically the same as step (b) above, but the lead-containing sludge used is obtained in step (c) (first round) and step (e). Is different (after the second round).
工程(e)は、上記工程(a)と基本的に同様であるが、上記工程(a)で用いた鉛含有廃水(工程(e)のときは既に処理されている)と別の新たな鉛含有廃水を用いる点、および、工程(d)で得られるろ液またはその濃縮物を凝集剤として用いる点が異なる。
なお、工程(d)の固液分離で得られるろ液中の凝集剤の含有量は、該凝集剤が鉛含有汚泥に付着し、または、ろ液として放流され、その含有量が減少するため、別の新たな鉛含有廃水の処理量に満たない場合は、通常、若干量、上記工程(a)で説明した凝集剤を添加することができる。
The step (e) is basically the same as the step (a), but is different from the lead-containing wastewater used in the step (a) (already treated at the step (e)). The difference is that a lead-containing wastewater is used, and the filtrate obtained by the step (d) or the concentrate thereof is used as a flocculant.
The content of the flocculant in the filtrate obtained by solid-liquid separation in step (d) is because the flocculant adheres to the lead-containing sludge or is discharged as a filtrate, and the content decreases. When the amount of other new lead-containing wastewater is not sufficient, usually, a slight amount of the flocculant described in the step (a) can be added.
該方法では、工程(d)と工程(e)を交互に繰返し行うことにより、連続的に鉛含有廃水の処理ができ、また、自動制御も可能であり工業的に好適である。
そして、該方法により、鉛を処理系内から排出する恐れもない、連続的な処理が可能なクローズドシステムが構築される。
In this method, by repeating step (d) and step (e) alternately, it is possible to treat lead-containing wastewater continuously, and automatic control is also possible, which is industrially suitable.
By this method, a closed system capable of continuous processing is constructed without fear of discharging lead from the processing system.
なお、本発明の第3態様は、上記工程(c)〜(e)を含有する方法であれば、他の処理を含んでもよい。 In addition, if the 3rd aspect of this invention is a method containing the said process (c)-(e), it may also include another process.
なお、本発明の第1〜第3態様の処理方法で用いられる装置は、特に限定されず、一般的な装置を用いることができる。
例えば、pH調整等については、各種反応槽、混合槽、撹拌装置等が挙げられ、固液分離については、重力沈降法、比重分離法等に用いられる各種膜分離装置、遠心分離機等が挙げられる。
In addition, the apparatus used with the processing method of the 1st-3rd aspect of this invention is not specifically limited, A general apparatus can be used.
For example, for pH adjustment and the like, various reaction tanks, mixing tanks, stirring devices and the like can be mentioned, and for solid-liquid separation, various membrane separation devices used for gravity sedimentation method, specific gravity separation method and the like can be mentioned. It is done.
本発明の鉛含有廃水および鉛含有汚泥の処理方法は、鉛含有廃水および鉛含有汚泥を排出する工場等、例えば、鉛化成品工場、鉛精錬所、バッテリー工場、廃バッテリー処理工場等に好適に利用できる。 The method for treating lead-containing wastewater and lead-containing sludge according to the present invention is suitable for a factory that discharges lead-containing wastewater and lead-containing sludge, such as a lead chemical factory, a lead smelter, a battery factory, and a waste battery treatment factory. Available.
[廃水処理用凝集剤]
本発明の第4態様は、上記工程(b)または工程(d)の固液分離により得られるろ液またはその濃縮物を含有する廃水処理用凝集剤である。
該ろ液および濃縮物の形態は、特に限定されず、例えば、液状、乾固状、乾燥粉末状であってもよい。
該ろ液またはその濃縮物の用途は、特に限定されず、工業廃水、特に鉛含有廃水の処理用凝集剤として好適である。
[Flocculant for wastewater treatment]
A fourth aspect of the present invention is a flocculant for wastewater treatment containing a filtrate obtained by solid-liquid separation in the above step (b) or step (d) or a concentrate thereof.
The form of the filtrate and concentrate is not particularly limited, and may be, for example, liquid, dry solid, or dry powder.
The use of the filtrate or the concentrate thereof is not particularly limited, and is suitable as a flocculant for treating industrial wastewater, particularly lead-containing wastewater.
該廃水処理用凝集剤は、安価で工業的に好適に用いることができ、本発明の鉛含有廃水または汚泥の処理方法に用いると、凝集剤の使用量低減と汚泥の減容化が達成でき、新たな廃棄物が生じることなく、連続的な処理が可能となる。 The flocculant for wastewater treatment is inexpensive and can be suitably used industrially, and when used in the method for treating lead-containing wastewater or sludge according to the present invention, the amount of the flocculant used and the volume of sludge can be reduced. Continuous processing is possible without generating new waste.
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
上記した本発明の鉛含有廃水の処理方法を用いて、鉛含有廃水の処理を行った。
本発明の実施例で行った操作工程を図3に示す。
The lead-containing wastewater was treated using the above-described method for treating lead-containing wastewater of the present invention.
The operation process performed in the Example of this invention is shown in FIG.
<実施例1>
混合槽1に、金属鉛を30mg/L含有する鉛含有廃水を投入し、さらに適量の凝集剤(塩化第2鉄150mg/L、硫酸アルミニウム10mg/L)とアルカリ剤として20%カセイソーダ水溶液を加えて液性を約pH8に調整した。その後、常温で約0.5時間撹拌し、シックナー1にて固液分離して鉛含有汚泥I(固形分40g/L)を得た(工程(a))。
次に、該鉛含有汚泥Iを混合槽2に投入し、撹拌しながら、50%硫酸を加え、液性をpH1.0に調整した。その後、常温で1時間撹拌し、不溶成分をシックナー2により固液分離し、遠心脱水機により脱水汚泥状の汚泥(硫酸鉛)I(水分60%)および硫酸溶解ろ液Iを得た(工程(b))。
<Example 1>
Lead-containing wastewater containing 30 mg / L of metallic lead is added to the
Next, the lead-containing sludge I was put into the
硫酸溶解ろ液Iには、硫酸鉄、硫酸アルミニウムを含有するので、廃水処理用凝集剤として回収した。 Since the sulfuric acid solution I contains iron sulfate and aluminum sulfate, it was recovered as a flocculant for wastewater treatment.
なお、別工程として、スラリー状の硫酸鉛Iに水を該スラリーの体積の6倍量加えて、撹拌後、放置し自然沈降させて上澄みを除去した。この沈殿物をろ過すると、汚泥として硫酸鉛含有量が51%の洗浄硫酸鉛I(水分60%)が回収できた。
As a separate step, water was added to slurry-like lead sulfate I in an amount 6 times the volume of the slurry, and after stirring, allowed to stand for natural sedimentation to remove the supernatant. When this precipitate was filtered, washed lead sulfate I (
また、混合槽3に得られた硫酸溶解ろ液Iと水酸化ナトリウムとを投入し、pH8.5に調整した。その後、常温で0.5時間撹拌し、析出した結晶成分をろ過器によりろ過し、ろ液IVと中和沈殿物IVを得た。
Moreover, the sulfuric acid solution filtrate I and sodium hydroxide which were obtained in the
上記廃水処理方法により得られた、鉛含有汚泥I、汚泥(硫酸鉛)I、硫酸溶解ろ液Iおよび洗浄硫酸鉛Iのそれぞれについて、鉛、鉄、およびアルミニウムの含有量(全容量中の含有質量g/Lもしくはmg/L)または含有率(全固形分中の質量%)を測定した。また、ろ液IVについて、鉛、鉄およびアルミニウムの含有量(全容量中の含有質量、mg/L)を測定した。
その結果を第1表に示す。なお、第1表中、「−」は、該当する金属の含有量が検出できなかったことを表す。
For each of the lead-containing sludge I, sludge (lead sulfate) I, sulfuric acid-dissolved filtrate I and washed lead sulfate I obtained by the above wastewater treatment method, the content of lead, iron, and aluminum (content in the total volume) The mass (g / L or mg / L) or the content (% by mass in the total solid content) was measured. Moreover, about filtrate IV, content of lead, iron, and aluminum (content in total capacity, mg / L) was measured.
The results are shown in Table 1. In Table 1, “-” indicates that the content of the corresponding metal could not be detected.
第1表に示すように、鉛含有汚泥Iには大量の鉄およびアルミニウムが含まれる。しかし、本発明の方法により、簡単な工程で、硫酸鉛含有量が高く高純度で効率よく汚泥として硫酸鉛を回収できた(汚泥(硫酸鉛)I)。
また、汚泥(硫酸鉛)I中の鉄およびアルミニウムは、該汚泥(硫酸鉛)I中に残存する水分中に硫酸塩として残存していることから、工程(b)の分離方法を変えることにより、より高純度で効率よく、硫酸鉛を回収できた(洗浄硫酸鉛I)。
また、表1〜4の汚泥(硫酸鉛)、 洗浄硫酸鉛、脱水汚泥(ケーキ)は、乾燥重量%を示しています。他のものはスラリー(湿分)での濃度表示です。鉛含有汚泥Iを脱水した脱水汚泥(ケーキ)IIの鉛濃度は、12%(乾燥ベース)であり、本発明の工程(b)により処理した洗浄硫酸鉛Iの鉛濃度は51%(乾燥ベース)と濃縮され、汚泥の発生量は約1/4に減少できた。
さらに、硫酸溶解ろ液を中和処理することにより、該ろ液IVに含まれる鉛含有量を、水質汚濁防止法第3条第1項および第12条に定められている排水基準値0.1mg/L以下とすることができた。なお、硫酸鉛の溶解度は、常温、中性条件下で、40mg/Lである。
As shown in Table 1, the lead-containing sludge I contains a large amount of iron and aluminum. However, according to the method of the present invention, lead sulfate can be efficiently recovered as sludge having a high lead sulfate content and high purity with a simple process (sludge (lead sulfate) I).
Further, since iron and aluminum in the sludge (lead sulfate) I remain as sulfate in the water remaining in the sludge (lead sulfate) I, the separation method in step (b) is changed. It was possible to recover lead sulfate with higher purity and efficiency (washed lead sulfate I).
In addition, sludge (lead sulfate), washed lead sulfate, and dewatered sludge (cake) in Tables 1 to 4 indicate dry weight%. The other is the concentration display in slurry (moisture). The lead concentration of the dehydrated sludge (cake) II obtained by dehydrating the lead-containing sludge I is 12% (dry basis), and the lead concentration of the washed lead sulfate I treated by the step (b) of the present invention is 51% (dry basis). The amount of sludge generated was reduced to about 1/4.
Further, by neutralizing the sulfuric acid-dissolved filtrate, the lead content contained in the filtrate IV is set to the wastewater
<実施例2>
上記鉛含有汚泥Iをさらに脱水した脱水汚泥IIと適量の水を用いて、工程(b)のpHを1.3に調整して、実施例1と同様に処理を行い、汚泥(硫酸鉛)IIおよび硫酸溶解ろ液II得た。
<Example 2>
Using the dehydrated sludge II obtained by further dehydrating the lead-containing sludge I and an appropriate amount of water, the pH of the step (b) is adjusted to 1.3, and the treatment is performed in the same manner as in Example 1 to obtain sludge (lead sulfate). II and sulfuric acid dissolved filtrate II were obtained.
上記廃水処理方法により得られた、脱水汚泥II、硫酸鉛II、および硫酸溶解ろ液IIのそれぞれについて、鉛、鉄、およびアルミニウムの含有量(全容量中の含有質量g/Lもしくはmg/L)または含有率(全固形分中の質量%)を測定した。
その結果を第2表に示す。
About each of dehydrated sludge II, lead sulfate II, and sulfuric acid dissolution filtrate II obtained by the above wastewater treatment method, the content of lead, iron, and aluminum (content mass g / L or mg / L in the total volume) ) Or content (% by mass in the total solid content).
The results are shown in Table 2.
本発明の工程(b)のpHを1.3に調整しても、本発明の方法により実施例1と同様の効果を奏した。 Even when the pH of step (b) of the present invention was adjusted to 1.3, the same effect as in Example 1 was achieved by the method of the present invention.
<実施例3>
金属鉛を25mg/L含有する鉛含有廃水に、適量の凝集剤(塩化第2鉄、高分子凝集剤(アニオン系アクリルアミド凝集剤)とアルカリ剤を加えて、実施例1の工程(a)と同様にして行い、鉛含有汚泥IIIを得た。
次に、該鉛含有汚泥IIIを適量の水に投入し、撹拌しながら、50%硫酸を加え、液性をpH1.2に調整した。その後、実施例1の工程(b)と同様に行い、ケーキ状の汚泥(硫酸鉛)IIIおよび硫酸溶解ろ液IIIを得た(工程(b))。
<Example 3>
To lead-containing wastewater containing 25 mg / L of metallic lead, an appropriate amount of a flocculant (ferric chloride, a polymer flocculant (anionic acrylamide flocculant)) and an alkali agent are added, and the step (a) of Example 1 is performed. In the same manner, lead-containing sludge III was obtained.
Next, the lead-containing sludge III was put into an appropriate amount of water, and 50% sulfuric acid was added with stirring to adjust the liquidity to pH 1.2. Then, it carried out similarly to the process (b) of Example 1, and obtained the cake-form sludge (lead sulfate) III and the sulfuric acid dissolution filtrate III (process (b)).
上記廃水処理方法により得られた、鉛含有汚泥III、汚泥(硫酸鉛)III、および硫酸溶解ろ液IIIのそれぞれについて、鉛および鉄の含有量(全容量中の含有質量g/Lもしくはmg/L)または含有率(全固形分中の質量%)を測定した。
その結果を第3表に示す。
For each of the lead-containing sludge III, the sludge (lead sulfate) III, and the sulfuric acid-dissolved filtrate III obtained by the above wastewater treatment method, the lead and iron contents (content mass g / L or mg / L in the total volume) L) or content (mass% in the total solid content) was measured.
The results are shown in Table 3.
高分子凝集剤を用いた場合でも、本発明の方法により、実施例1と同様の効果を奏した。 Even when the polymer flocculant was used, the same effect as in Example 1 was achieved by the method of the present invention.
<実施例4>
金属鉛を30mg/L含有する鉛含有廃水Vに、適量の凝集剤(硫酸第2鉄、硫酸アルミニウム)とアルカリ剤として20%カセイソーダ水溶液を加えて液性を約pH8以上に調整した。その後、常温で約0.5時間撹拌し、シックナーにて固液分離して鉛含有汚泥Vを得、ろ液を放流(廃棄)した(工程(c))。なお、放流に際しては、pHを中性に調整し、金属含有量等を測定し排水基準を満たしていることを確認した。
次に、該鉛含有汚泥Vを適量の水に投入し、撹拌しながら、50%硫酸を加え、液性をpH1.0に調整した。その後、常温で1時間撹拌し、不溶成分をシックナーにより固液分離し、乾燥脱水汚泥状の汚泥(硫酸鉛)Vを得た(工程(d)、1巡目終了)。
<Example 4>
An appropriate amount of flocculant (ferric sulfate, aluminum sulfate) and 20% aqueous caustic soda solution as an alkaline agent were added to lead-containing wastewater V containing 30 mg / L of metallic lead to adjust the liquidity to about pH 8 or more. Then, it stirred at normal temperature for about 0.5 hour, solid-liquid-separated with the thickener, the lead containing sludge V was obtained, and the filtrate was discharged | emitted (discarded) (process (c)). During discharge, the pH was adjusted to neutral, the metal content was measured, and it was confirmed that the drainage standards were satisfied.
Next, the lead-containing sludge V was put into an appropriate amount of water, and while stirring, 50% sulfuric acid was added to adjust the liquidity to pH 1.0. Thereafter, the mixture was stirred at room temperature for 1 hour, and the insoluble components were separated into solid and liquid by a thickener to obtain dry dewatered sludge-like sludge (lead sulfate) V (step (d), completion of the first round).
金属鉛を30mg/L含有する別の鉛含有廃水VIに上記で得られたろ液Vと、不足分の凝集剤(硫酸第2鉄、硫酸アルミニウム)とを加え、さらにアルカリ剤を加えて液性を約pH8以上に調整した。その後、常温で約0.5時間撹拌し、シックナーにて固液分離して鉛含有汚泥VIを得、ろ液を放流(廃棄)した(工程(e))。なお、放流に際しては、同様にpHを中性に調整し、金属含有量等を測定し排水基準を満たしていることを確認した。 To another lead-containing wastewater VI containing 30 mg / L of metallic lead, the filtrate V obtained above and a deficient flocculant (ferric sulfate, aluminum sulfate) are added, and an alkali agent is further added to make the solution liquid. Was adjusted to about pH 8 or higher. Then, it stirred at normal temperature for about 0.5 hour, solid-liquid-separated with the thickener, the lead containing sludge VI was obtained, and the filtrate was discharged | emitted (discarded) (process (e)). In addition, at the time of discharge, the pH was similarly adjusted to neutral, and the metal content was measured to confirm that the drainage standards were satisfied.
引き続き、該鉛含有汚泥VIを適量の水に投入し、撹拌しながら、50%硫酸を加え、液性をpH1.0に調整した。その後、常温で1時間撹拌し、不溶成分をシックナーにより固液分離し、乾燥脱水汚泥状の汚泥(硫酸鉛)VIを得た(工程(d)、2巡目終了)。 Subsequently, the lead-containing sludge VI was put into an appropriate amount of water, and while stirring, 50% sulfuric acid was added to adjust the liquidity to pH 1.0. Thereafter, the mixture was stirred at room temperature for 1 hour, and insoluble components were solid-liquid separated by a thickener to obtain dry dewatered sludge-like sludge (lead sulfate) VI (step (d), completion of the second round).
上記方法により得られた、鉛含有汚泥V、VI、硫酸溶解ろ液VおよびVI、ならびに、硫酸鉛Vおよび硫酸鉛VIのそれぞれについて、鉛および鉄の含有量(全容量中の含有質量g/Lもしくはmg/L)または含有率(全固形分中の質量%)を測定した。
その結果を第4表に示す。
For each of lead-containing sludges V and VI, sulfuric acid-dissolved filtrates V and VI, and lead sulfate V and lead sulfate VI obtained by the above method, the content of lead and iron (mass content g / L or mg / L) or content (mass% in total solids) was measured.
The results are shown in Table 4.
つまり、この方法により、簡単な工程で鉛含有量が高く高純度で効率よく鉛を回収できたうえ、さらに、新たな廃棄物を生じることなく、廃水処理剤として使用する凝集剤の使用量を低減でき鉛含有廃水から得られる汚泥を減容できた。
特に、連続的に処理でき、自動制御等も可能であり、工業的処理方法として好適であるクローズドシステムが構築された。
また、工程(d)により得られたろ液を用いた2巡目においても、同様の効果を発揮し、該ろ液は、工業廃水、特に鉛含有廃水の処理用凝集剤として好適であった。
In other words, this method enables efficient recovery of lead with high purity and high purity in a simple process, and further reduces the amount of flocculant used as a wastewater treatment agent without generating new waste. The volume of sludge obtained from lead-containing wastewater can be reduced.
In particular, a closed system that can be continuously processed, can be automatically controlled, and is suitable as an industrial processing method has been constructed.
Moreover, the same effect was demonstrated also in the 2nd round using the filtrate obtained by the process (d), and this filtrate was suitable as a flocculant for a process of industrial wastewater, especially lead-containing wastewater.
本発明の鉛含有廃水および鉛含有汚泥の処理方法により、以下の効果が得られた。
1)鉛、鉄等の水酸化物共沈殿法により得られる汚泥の生成量に比して、上記方法による汚泥の全生成量は少なく汚泥の減容化(具体的には、容積比で1/3〜1/10程度)が達成できる。
2)硫酸鉛を高い含有量で回収できる。処理後の汚泥(硫酸鉛)中の硫酸鉛の含有量は30〜50質量%である。
3)水酸化物共沈殿法により発生する廃棄物の他に、新たな廃棄物は生じない。
4)硫酸溶解ろ液は、硫酸第2鉄の廃水処理剤として再利用できる。
5)本発明の方法は、上記効果を有するため工業的規模に適している。
The following effects were obtained by the method for treating lead-containing wastewater and lead-containing sludge of the present invention.
1) The total amount of sludge produced by the above method is small compared to the amount of sludge produced by the hydroxide coprecipitation method of lead, iron, etc. The volume of sludge is reduced (specifically, the volume ratio is 1 / 3 to 1/10).
2) Lead sulfate can be recovered with a high content. The content of lead sulfate in the treated sludge (lead sulfate) is 30 to 50% by mass.
3) In addition to the waste generated by the hydroxide coprecipitation method, no new waste is generated.
4) The sulfuric acid dissolved filtrate can be reused as a wastewater treatment agent for ferric sulfate.
5) Since the method of the present invention has the above-mentioned effects, it is suitable for an industrial scale.
<鉛含有汚泥、硫酸鉛V、各種ろ液の金属の含有量測定>
各金属の分析方法は、JIS K0102工場廃水試験方法により行った。
<Measurement of metal content in lead-containing sludge, lead sulfate V, and various filtrates>
The analysis method of each metal was performed by the JIS K0102 factory wastewater test method.
<硫酸鉛の純度測定>
上記実施例1で得られた汚泥(硫酸鉛)Iの成分をX線解析(連続スキャン法(2θ/θ法))により分析した結果を図4に示す。
図4から明らかなように、該汚泥(硫酸鉛)は、水酸化アルミニウム、水酸化鉛、硫酸アルミニウムおよび硫酸鉄が検出されず、主構成物質は硫酸鉛であった。
測定条件を以下に示す。
測定範囲(2θ):5〜80deg、管電圧:40kV、
管電流:150mA、線源:Cu、サンプリング幅:0.02deg、
走査速度:4.0deg/min、DS、SS:1.0deg、
RS=0.15mm、カウンタモノクロメータ使用
<Purity measurement of lead sulfate>
FIG. 4 shows the result of analyzing the components of sludge (lead sulfate) I obtained in Example 1 by X-ray analysis (continuous scanning method (2θ / θ method)).
As is clear from FIG. 4, in the sludge (lead sulfate), aluminum hydroxide, lead hydroxide, aluminum sulfate and iron sulfate were not detected, and the main constituent was lead sulfate.
The measurement conditions are shown below.
Measurement range (2θ): 5 to 80 deg, tube voltage: 40 kV,
Tube current: 150 mA, radiation source: Cu, sampling width: 0.02 deg,
Scanning speed: 4.0 deg / min, DS, SS: 1.0 deg,
RS = 0.15mm, using counter monochromator
Claims (2)
該工程(a)の固液分離により得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離する工程(b)とを含み、
前記工程(b)の固液分離により得られるろ液またはその濃縮物を、前記工程(a)の凝集剤として用いる、鉛含有廃水の処理方法。 A step (a) for solid-liquid separation after adding a flocculant and an alkali agent to lead-containing wastewater to adjust to alkalinity;
A step (b) of solid-liquid separation using a precipitate containing lead sulfate as a solid phase by adding sulfuric acid to the lead-containing sludge obtained by the solid-liquid separation in the step (a) to adjust the pH to 1.3 or less; Including
A method for treating lead-containing wastewater, wherein a filtrate obtained by solid-liquid separation in the step (b) or a concentrate thereof is used as a flocculant in the step (a).
鉛含有廃水に、凝集剤およびアルカリ剤を加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(c)と、
該工程(c)の固液分離により得られる鉛含有汚泥に、硫酸を加えpHを1.3以下に調整して硫酸鉛を含む析出物を固相として固液分離し、硫酸鉛を回収する工程(d)と、
該工程(d)の固液分離により得られるろ液またはその濃縮物を、別の鉛含有廃水に、凝集剤として加えさらにアルカリ剤を加えてアルカリ性に調整した後固液分離し、得られるろ液を放流する工程(e)と、
を順に行い、引き続き、工程(d)と工程(e)を交互に繰返し行うことを特徴とする鉛含有廃水のサイクル処理方法。 A method for treating lead-containing wastewater,
A step (c) of adding a flocculant and an alkali agent to lead-containing wastewater to adjust it to alkalinity, followed by solid-liquid separation, and discharging the obtained filtrate;
The lead-containing sludge obtained by the solid-liquid separation in the step (c) is added with sulfuric acid to adjust the pH to 1.3 or less, and the precipitate containing lead sulfate is solid-liquid separated as a solid phase to recover lead sulfate. Step (d);
The filtrate obtained by the solid-liquid separation in the step (d) or the concentrate thereof is added to another lead-containing wastewater as a flocculant, further adjusted to be alkaline by adding an alkali agent, and then subjected to solid-liquid separation to obtain a filtrate. A step (e) of discharging the liquid;
The lead-containing wastewater cycle treatment method is characterized in that the steps (d) and (e) are repeated alternately in order.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005364923A JP4690881B2 (en) | 2005-12-19 | 2005-12-19 | Method for treating lead-containing sludge and method for treating lead-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005364923A JP4690881B2 (en) | 2005-12-19 | 2005-12-19 | Method for treating lead-containing sludge and method for treating lead-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007167709A JP2007167709A (en) | 2007-07-05 |
JP4690881B2 true JP4690881B2 (en) | 2011-06-01 |
Family
ID=38294979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005364923A Active JP4690881B2 (en) | 2005-12-19 | 2005-12-19 | Method for treating lead-containing sludge and method for treating lead-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4690881B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51130064A (en) * | 1975-05-04 | 1976-11-12 | Nippon Denso Co Ltd | Method for treating heavy metal- containing waste water |
JPH04267994A (en) * | 1991-02-25 | 1992-09-24 | Kurita Water Ind Ltd | Metal-containing waste-water method |
JPH05337474A (en) * | 1992-06-08 | 1993-12-21 | Kurita Water Ind Ltd | Treatment of waste water containing heavy metal |
JPH10204552A (en) * | 1997-01-13 | 1998-08-04 | Unitika Ltd | Method for recovering lead in flying ash |
JP2003027153A (en) * | 2001-07-19 | 2003-01-29 | Hitachi Zosen Corp | Method of recovering heavy metal from flying ash |
JP2004148264A (en) * | 2002-10-31 | 2004-05-27 | Dowa Mining Co Ltd | Sludge treatment method |
JP2006122727A (en) * | 2004-10-26 | 2006-05-18 | Nippon Chem Ind Co Ltd | Waste treatment method |
-
2005
- 2005-12-19 JP JP2005364923A patent/JP4690881B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51130064A (en) * | 1975-05-04 | 1976-11-12 | Nippon Denso Co Ltd | Method for treating heavy metal- containing waste water |
JPH04267994A (en) * | 1991-02-25 | 1992-09-24 | Kurita Water Ind Ltd | Metal-containing waste-water method |
JPH05337474A (en) * | 1992-06-08 | 1993-12-21 | Kurita Water Ind Ltd | Treatment of waste water containing heavy metal |
JPH10204552A (en) * | 1997-01-13 | 1998-08-04 | Unitika Ltd | Method for recovering lead in flying ash |
JP2003027153A (en) * | 2001-07-19 | 2003-01-29 | Hitachi Zosen Corp | Method of recovering heavy metal from flying ash |
JP2004148264A (en) * | 2002-10-31 | 2004-05-27 | Dowa Mining Co Ltd | Sludge treatment method |
JP2006122727A (en) * | 2004-10-26 | 2006-05-18 | Nippon Chem Ind Co Ltd | Waste treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP2007167709A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106745076A (en) | A kind of method that Industrial Wastewater Treatment is produced carnallite resource | |
JP2006272168A (en) | Chlorine and heavy metal containing waste treatment method | |
CN101309761A (en) | Method of and apparatus for treating chlorine-containing waste | |
CN112551792A (en) | Fly ash washing wastewater and wet deacidification wastewater co-treatment method | |
CN109987742A (en) | Nickel hydrometallurgy process without drainage of waste water containing heavy metal, oil and high concentration salt-mixture | |
WO2018092396A1 (en) | Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions | |
JP5118572B2 (en) | Sewage treatment method | |
JP6124408B2 (en) | Method for producing Sn-based recycled sludge | |
JP2011011103A (en) | Method and apparatus for removing and recovering thallium from wastewater | |
JP5796703B2 (en) | Calcium fluoride recovery method and recovery apparatus | |
JP4468571B2 (en) | Water purification system and water purification method | |
CN104370389A (en) | Process for removing fluorine in pickling waste liquid in steel and iron industry | |
JP4690881B2 (en) | Method for treating lead-containing sludge and method for treating lead-containing wastewater | |
TWI694057B (en) | Method for manufacturing gypsum and method for manufacturing cement composition | |
JP4756415B2 (en) | Gas processing method | |
JPH0679286A (en) | Treatment of selenium-containing waste water | |
CN104609589A (en) | Solid-liquid separation method of electroplating wastewater | |
CN102345016A (en) | Method for recovering arsenic and heavy metals from contaminated acid generated by metallurgical off-gas | |
CN112062366A (en) | Coal-fired power plant desulfurization wastewater comprehensive treatment system and method | |
JP3225777B2 (en) | Wastewater treatment method | |
JP6723058B2 (en) | Water treatment method and water treatment system | |
JP2010207673A (en) | METHOD OF MANUFACTURING LOW-GRADE Ni RECYCLE SLUDGE | |
JP4617637B2 (en) | Method for neutralizing acidic waste liquid containing metal ions | |
JP6723057B2 (en) | Water treatment method and water treatment system | |
JP3733452B2 (en) | Waste disposal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20081009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110218 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4690881 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |