JP4727419B2 - Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor - Google Patents

Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor Download PDF

Info

Publication number
JP4727419B2
JP4727419B2 JP2005506055A JP2005506055A JP4727419B2 JP 4727419 B2 JP4727419 B2 JP 4727419B2 JP 2005506055 A JP2005506055 A JP 2005506055A JP 2005506055 A JP2005506055 A JP 2005506055A JP 4727419 B2 JP4727419 B2 JP 4727419B2
Authority
JP
Japan
Prior art keywords
raw material
discharge
discharge electrode
capillary
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005506055A
Other languages
Japanese (ja)
Other versions
JPWO2004099070A1 (en
Inventor
三夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JISOUKEN CO., LTD.
Original Assignee
JISOUKEN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JISOUKEN CO., LTD. filed Critical JISOUKEN CO., LTD.
Priority to JP2005506055A priority Critical patent/JP4727419B2/en
Publication of JPWO2004099070A1 publication Critical patent/JPWO2004099070A1/en
Application granted granted Critical
Publication of JP4727419B2 publication Critical patent/JP4727419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/486Arrangements to provide capillary discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0813Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing four electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0832Details relating to the shape of the electrodes essentially toroidal
    • B01J2219/0833Details relating to the shape of the electrodes essentially toroidal forming part of a full circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0843Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0845Details relating to the type of discharge
    • B01J2219/0849Corona pulse discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素の生成装置に関する。  The present invention relates to a hydrogen generator.

水素は、重要な工業用ガスであり、従来、アンモニア、メタノールの合成、水素化脱硫、水素化分解、油脂などの水素化、溶接、半導体製造等に広く用いられている。そして最近では、燃料電池における反応物質や、自動車、航空機、発電、厨房用の燃料等の新しい利用分野が注目されている。
上記水素の生成方法として、アルコールや炭化水素と、水蒸気とを反応させる方法(スチームリフォーミング)が従来知られている。スチームリフォーミングは、水蒸気改質とも呼ばれ、具体的には(1)〜(3)などの化学反応式で表される。
CHOH+HO→3H+CO (1)
OH+3HO→6H+2CO (2)
CH+HO→3H+CO (3)
このスチームリフォーミングは、従来、アルミナを担体として白金等の貴金属触媒を用い、250〜400℃、1〜50気圧程度の高温高圧条件下で行われていた。しかしながら、この方法は、高価な触媒が必要であり、また高温高圧で反応を行うため、高温高圧に耐えうる堅牢な反応装置を用いる必要があった。また、種々の副反応が生じ、生じた副生成物によって反応管が閉塞したり触媒が劣化したりする問題もあった。
そのような状況の中、従来法よりも低温、常圧で実施することができ、高価な触媒を用いなくても実施することができ、転化率が高く、雑多な副反応がほとんど起きない新規なスチームリフォーミング方法及び装置が開発され、特開2001−335302号公報において開示されている。この装置は、反応器と、その反応器に収容された一対の電極と、電極に電圧を印加する直流電源とを備え、前記反応器内へ導入した気体状の鎖式炭化水素と水蒸気とを含む混合ガス中で、直流パルス放電を行って鎖式炭化水素と水蒸気を反応させ、水素を生成させるものである。
上記の装置は、非常に低コストで、かつ小型、可搬の反応器により実施可能であるため、例えば、自動車等に搭載して、燃料電池への水素供給に利用することが期待される。そのためには、水素の生成効率をさらに向上させることが望まれていた。
これに対し、本出願人は、特願2002−227865号において、新方式の水素の生成装置を提案している。この出願に係る発明は、炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料を供給するための毛管を有する放電極を備え、この放電極によりパルス放電を行い、毛管により供給される原料の反応を誘起して水素を生成させることを特徴としている。すなわち、原料を供給するための毛管を放電極に有しているため、原料を必要な量に応じて速やかにパルス放電が行われる領域へ供給でき、その結果、水素を効率的に製造することができる。この発明については、上記種々の利点の一方で、放電をより安定かつ均一に発生させることが望まれていた。
そこで本発明は、上記従来の状況に鑑み、パルス放電を安定かつ均一に発生させることができ、結果として水素をより高い効率で生成できる、新規な生成装置及びその装置に用いる放電極を提供することを目的とする。
Hydrogen is an important industrial gas and has been widely used for ammonia, methanol synthesis, hydrodesulfurization, hydrocracking, oil and fat hydrogenation, welding, semiconductor manufacturing, and the like. Recently, attention has been focused on new application fields such as reactants in fuel cells and fuels for automobiles, aircraft, power generation, kitchens, and the like.
As a method of generating hydrogen, a method of reacting alcohol or hydrocarbon with water vapor (steam reforming) is conventionally known. Steam reforming is also called steam reforming, and is specifically expressed by chemical reaction formulas such as (1) to (3).
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
C 2 H 5 OH + 3H 2 O → 6H 2 + 2CO 2 (2)
CH 4 + H 2 O → 3H 2 + CO (3)
This steam reforming has been conventionally performed under high temperature and high pressure conditions of about 1 to 50 atmospheres at 250 to 400 ° C. using a noble metal catalyst such as platinum with alumina as a carrier. However, this method requires an expensive catalyst, and since the reaction is carried out at a high temperature and a high pressure, it is necessary to use a robust reactor that can withstand the high temperature and pressure. In addition, various side reactions occur, and there are also problems that the reaction by-products are clogged and the catalyst is deteriorated.
Under such circumstances, it can be carried out at a lower temperature and atmospheric pressure than conventional methods, can be carried out without using an expensive catalyst, has a high conversion rate, and does not cause miscellaneous side reactions. A steam reforming method and apparatus have been developed and disclosed in Japanese Patent Laid-Open No. 2001-335302. This apparatus comprises a reactor, a pair of electrodes accommodated in the reactor, and a direct current power source for applying a voltage to the electrodes, and a gaseous chain hydrocarbon introduced into the reactor and water vapor. In this mixed gas, direct-current pulse discharge is performed to react chain hydrocarbons with water vapor to generate hydrogen.
Since the above apparatus can be implemented with a very low cost, small and portable reactor, it is expected to be mounted on, for example, an automobile and used to supply hydrogen to a fuel cell. For this purpose, it has been desired to further improve the efficiency of hydrogen generation.
On the other hand, the present applicant has proposed a new type of hydrogen generator in Japanese Patent Application No. 2002-227865. The invention according to this application includes a discharge electrode having a capillary for supplying a raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water, and performs pulse discharge with the discharge electrode, It is characterized in that hydrogen is generated by inducing a reaction of the raw material supplied by. That is, since the discharge electrode has a capillary for supplying the raw material, the raw material can be quickly supplied to the region where pulse discharge is performed according to the required amount, and as a result, hydrogen is efficiently produced. Can do. With respect to the present invention, it has been desired to generate discharge more stably and uniformly while having the various advantages described above.
Therefore, in view of the above-described conventional situation, the present invention provides a novel generation device that can generate pulse discharge stably and uniformly, and as a result, can generate hydrogen with higher efficiency, and a discharge electrode used in the device. For the purpose.

上記課題を解決するため、本発明は、炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料を供給するための毛管が、パイプ状の導電体の内部に形成された放電極を備え、前記放電極によりパルス放電を行い、前記毛管により供給される原料の反応を誘起して水素を生成させる水素の生成装置を提供する。  In order to solve the above-mentioned problems, the present invention is such that a capillary for supplying a raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water is formed inside a pipe-shaped conductor. Provided is a hydrogen generation device that includes a discharge electrode, performs pulse discharge with the discharge electrode, and induces a reaction of a raw material supplied by the capillary to generate hydrogen.

図1は、実施の形態(1)における生成装置を示す図である。
図2は、実施の形態(1)における放電極の部分拡大図である。
図3は、実施の形態(2)における放電極の部分拡大図である。
図4は、実施の形態(3)における放電極の部分拡大図である。
FIG. 1 is a diagram showing a generation device in the embodiment (1).
FIG. 2 is a partially enlarged view of the discharge electrode in the embodiment (1).
FIG. 3 is a partially enlarged view of the discharge electrode in the embodiment (2).
FIG. 4 is a partially enlarged view of the discharge electrode in the embodiment (3).

本発明の水素の生成装置は、炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料を供給するための毛管が、パイプ状の導電体の内部に形成された放電極を備え、前記放電極によりパルス放電を行い、前記毛管により供給される原料の反応を誘起して水素を生成させる装置としたことを特徴とする。
上記構成によれば、炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料が、パイプ状導電体の内部に形成された毛管を通して移動し、パルス放電を受けて反応し、目的の水素を生成する。生成した水素は通常、排出口等を経て系外に排出される。ここでパイプ状の導電体とは、各種の金属、炭素等で構成された被覆体をいい、比較的剛性を有する管状のものや、フィルムを筒状に巻いたもの等を含む。また、パイプの側面は一般には閉じているが、必要に応じて一部開いた構造でも良い。そして、毛管とは、パイプ内部に沿って形成された通路もしくは空隙をいい、原料は、前記通路・空隙内を、毛管現象による吸引力や、ポンプ等の手段によってパルス放電が行われる領域へ移動する。そして、放電極は、外周がパイプ状の導電体で保持されるために、形態が保たれて安定した放電が得られる。また、原料が放電極の側面から漏れ出ることなく、確実かつ効率的にパルス放電が行われる領域へ原料が供給される。なお、ここでいう炭化水素には、脂肪族炭化水素、芳香族炭化水素を含む。さらに、有機含酸素化合物とは、分子中に酸素原子を含む有機化合物をいい、アルコール、エーテル、アルデヒド、ケトン、エステル等が含まれる。
また、本発明は、有機含酸素化合物から選ばれる一以上の物質を含む原料を供給するための毛管が、パイプ状の導電体の内部に形成された放電極を備え、前記放電極によりパルス放電を行い、前記毛管により供給される原料の反応を誘起して水素を生成させる水素の生成装置である。
上記構成によれば、毛管を通じて移動した有機含酸素化合物が、パルス放電を受けることにより、主に分解反応を起こして水素を生成する。
また、本発明は、上記の水素の生成装置において、パイプ状の導電体の内部に、複数の導電性繊維が束にして設けられ、前記導電性繊維間に毛管が形成されていることを特徴とする。
上記構成によれば、導電性繊維の束が、その外側のパイプ状の導電体とともに、パルス放電の際の放電極として機能する。また、原料が、導電性繊維と他の導電性繊維との間の空隙(毛管)を通って移動する。導電性繊維としては、ステンレスなどの金属繊維等が用いられ、耐腐食性を有するものが好ましい。
また、本発明は、上記の水素の生成装置において、導電性繊維が、炭素繊維であることを特徴とする。
上記構成によれば、導電性繊維として、特に炭素繊維が選択される。炭素繊維は、良導体であり耐腐食性を有するので、本発明の反応系に適している。なお、ここでいう炭素繊維には、PAN系、レーヨン系、ピッチ系のいずれをも含み、さらに、炭素繊維を高温(1500〜3000℃)で処理したいわゆる黒鉛繊維や、賦活化処理を行った活性炭素繊維を含む概念である。
また、本発明は、上記の水素の生成装置において、パルス放電が行われる放電極間に、誘電体を設けたことを特徴とする。
上記構成によれば、誘電体を介してパルス放電が行われるため、いわゆる無声放電の作用により、誘電体を設けた面内で均一かつ安定なパルス放電が発生する。
また、本発明は、上記の水素の生成装置において、誘電体が、パイプ状の導電体の端面に沿って設けられたリング状の誘電体であることを特徴とする。
上記構成によれば、パイプ状の導電体の端面全体において均一かつ安定なパルス放電が発生し、その放電する領域へ原料が効率的に供給される。
また、本発明は、上記の水素の生成装置において、誘電体は、SiO、CeO、LaO、Sm、SiN、BN、ダイヤモンドから選ばれる一の物質から構成されることを特徴とする。
上記構成によれば、誘電体を構成する具体的な物質が特定される。
さらに、本発明は、上記の水素の生成装置において、さらに、放電極を収容する反応器と、前記放電極に電圧を印加する電源とを備えたことを特徴とする。
上記構成によれば、電源を用いて電圧を印加することでパルス放電を起こし、反応器内で水素を生成させる。
さらに、本発明は、上述のような特徴を有する種々の生成装置に用いられる、各種の放電極を提供するものである。
以下、実施の形態に基づき、本発明を詳細に説明する。
まず、本発明の実施の形態(1)を図1及び図2に示す。図1の生成装置1は、反応器10を備え、その反応器10内には一対の放電極11、12が対向して設けられている。放電極11と放電極12の間はパルス放電が行われる放電領域13となる。なお、放電極11と放電極12の間の距離は、任意に調節可能となっている。
そして、一方の放電極11は、原料Aを供給するための毛管が、パイプ状の導電体の内部に形成されることによって概略構成されている。ここで毛管とは、パイプ内部に沿って形成された通路もしくは空隙をいい、原料Aがその毛管内を移動できるようになっている。毛管の形状は、管状や網の目状等、適宜形状とすることができる。
上記毛管の具体例について図2に示す。図2では、パイプ状の導電体110の内部111に、炭素繊維112などの良導体を複数本束ねたものを設けることで放電極11を構成している。そして、それぞれの炭素繊維112の間が、原料Aが通過する毛管113として機能している。
パイプ状の導電体110としては、導電性が高い材料であれば適宜選択して用いることができる。また、水等に対する耐食性を有することが好ましい。具体的な材質としては、SUS、ニッケル、銅、アルミニウム、鉄等の金属材料、炭素などの材料を挙げることができ、その中でもSUS、炭素等は腐食し難いのでより好ましい。なお、パイプ状の導電体110の形状は、図2のような円柱形状に限らず、四角柱状、多角柱状等の種々の形状にすることができる。また、パイプ状の導電体110の厚さ(外径と内径との差)は、適宜設定することができる。
炭素繊維112の束は、図2に示すように、パイプ状の導電体110の内部へ若干引っ込んだ位置に設けられるか、あるいはパイプ状の導電体110の端面114の位置に揃えて設けられることが好ましい。
また、図2では便宜上、炭素繊維112がある程度の太さを有し、数十本程度の束であるように模式的に示しているが、一般には炭素繊維112の太さはマイクロメートルオーダー(具体的には、1μm〜1mm程度)であり、本数も放電極11の太さに応じて多数(例えば、数万本以上)である。しかし、生成装置1の規模や原料Aの種類等によっては、より太く、少ない本数の炭素繊維を用いることも可能であり、上記の数値範囲に限定されるものではない。
上記炭素繊維112としては、従来知られた種々の炭素繊維を用いることができる。具体的には、ポリアクリロニトリル(PAN)を原料とする炭素繊維、石油、石油タール、液化石炭等を原料とするピッチ系炭素繊維、レーヨン系炭素繊維等が挙げられる。例えば、PAN系炭素繊維は、特殊アクリル繊維(プレカーサー)を空気中で熱処理し、得られた耐炎繊維を不活性ガス中で1000〜1800℃で焼成することにより得ることができる。また、この炭素繊維を、さらに高温の2000〜3000℃で焼成した黒鉛繊維や、賦活ガス(水蒸気、炭酸ガス、窒素ガスなどの混合ガス)中で賦活化処理した活性炭素繊維等も適用可能である。炭素繊維は、化学的に安定であるため、本発明で使用する水などにより腐食しないという利点がある。
また、炭素繊維112の端面115は、エッジ状に形成することが好ましい。このようにすると、パルス放電を行った際に、エッジの先端部に電流が集中するので放電が起こり易くなり、結果として水素の生成効率が向上する。なお、炭素繊維112が十分に細い(マイクロメートルオーダー)場合には、特に端面115を加工せずともそれ自体がエッジ状となる。また、炭素繊維112がミリメートル程度の太さを有する場合には、端面115がエッジ状になるように切断・切削等の手段により適宜加工しても良い。
他方の放電極12としては、円柱状の電極棒等の、一般的なものを用いることができる。放電極12の材質としては、SUS、ニッケル、銅、アルミニウム、鉄、炭素などの一般的な材料を用いることができるが、その中でもSUS、炭素等の腐食し難いものがより好ましい。また、放電極12の形は、上記の円柱状に限られず、例えば針状、平板状等の種々の形状にすることができるし、また、上述の放電極11の形態と同じように、パイプ状の導電体110及び炭素繊維112等から構成しても良い。なお、放電極12の、放電領域13に臨む端面は、一方の放電極11の端面114、115と平行にすることが好ましい。
図1において、反応器10は、石英その他のガラス、セラミック、合成樹脂などから構成されている。反応器10の外へ延びる放電極11には、負高電庄を印加するための直流電源14が接続され、直流電源14と放電極11の間にはデジタルオシロスコープ15が接続されている。一方、反応器10には三方口16が接続され、三方口16の一方の口へは反応器10から外へ延びる放電極12が貫通してアースされている。また、三方口16の他方の口は、パルス放電によって生成した水素H2を排出するための排出口17となっている。さらに、放電極11には、原料Aを放電極11の毛管113中へ導入するための導入路18が接続されている。
以上の生成装置1を使用する際には、概略次のように行われる。まず、導入路18を介して、炭化水素、有機含酸素化合物から選ばれる一種以上の物質と水とを含む原料Aを、放電極11中に供給する。供給された原料Aは、放電極11の内部111に形成された毛管113を通じて移動し、最終的には、例えば、放電極11の端面115から外側へ浸み出す等して、放電領域13(あるいはその近傍)へ達する。
続いて、直流電源14により放電極11に負電圧を印加すると、放電極11、12間、すなわち、パイプ状の導電体110と放電極12との間、もしくは炭素繊維112と放電極12との間でパルス放電が起きて反応が誘起され、水素Hが生成する。生成した水素Hは排出口17から排出され、種々の用途に供される。なお、毛管111を移動してパルス放電により反応する原料Aは、液体の状態であっても良いし、気体の状態であっても良い。原料Aが液体である場合、パルス放電により発生するわずかなジュール熱で原料Aは気化し、その気化した原料Aが反応する場合もある。
また、このとき、放電極11は、外周がパイプ状の導電体110で保持されているために、放電極11全体としての形態が保たれ、安定した放電を得ることができる。また、炭素繊維112の先端が微視的に不揃いである場合に、仮にパイプ状の導電体110がないと、放電が局部的に起こり水素の生成効率が低下する可能性があるが、パイプ状の導電体110を設けることによって、主にそのパイプ状の導電体110の端面114内で均一なパルス放電を発生させ、結果として反応を効率的に進行させることができる。さらに、原料Aが放電極11の側面から漏れ出ることなく、確実かつ効率的に放電領域13へ原料Aを供給することができる。
毛管113を通じて原料Aを移動させる手段としては、種々の物理的な現象を利用したり、強制的な送出手段を用いることができ、特に限定されるものではない。具体的には、好適な例として、上記毛管113の内径を適切に設定することにより、原料Aを毛管現象を利用して自然に放電領域13の方向へ吸引することができる。吸引された原料Aが反応により失われると、それを補うために新たな原料Aが吸引される。これにより、例えばポンプ等の送出手段を用いることなく自然に原料Aを放電領域13へ供給できるため生成効率の観点から好ましい。なお、毛管113の内径の適正値は、毛管113の長さ、原料Aの密度、原料Aの表面張力、原料Aの放電極表面に対する接触角などを総合的に考慮して求めることができる。例えば、直径7μmの炭素繊維を10万本束ねたもの(形成される毛管の内径は数μm)の場合、エタノールと水との容積等量比の原料を、1分間当たり約30ml吸引可能であることを知見している。
また、上記の毛管現象を利用する方法によらず、例えば、導入路18に通常のポンプ等を接続する等して、毛管113内へ原料Aを強制的に供給することもできる。また、ポンプ等と、上述の毛管現象を利用する方法を適宜組み合わせても良い。
さらに、原料Aは、パルス放電に伴って移動させることもできる。すなわち、原料Aは、パルス放電時の高電圧によってイオン化されるが、これを利用して、イオン化した原料Aを、パルス放電の起こる毎に他方の放電極12の方向へ電気泳動等の現象を利用して移動させることが可能である。この場合についても、上記の毛管現象と同様に、ポンプ等の送出手段が不要であるので効率的かつ低コストに水素を生成することができる。また、原料Aの供給がパルス放電時の電圧に対応して行われるため、水素生成の応答性が向上する。
次に、原料Aについて述べる。まず、反応させる炭化水素としては、特に限定されず、種々の炭化水素の中から適宜選択することができる。例として、直鎖状、分岐状、あるいは環状のアルカン、アルケン、アルキン等の脂肪族炭化水素や、種々の芳香族炭化水素、あるいはそれらの二種以上の混合物が挙げられ、さらに具体的には、天然ガス、石油ナフサ、ガソリン、灯軽油等や、それらの混合物をそのまま用いることもできる。また、バイオマスから得られる炭化水素も適用可能である。この例として、食品工場から排出される廃棄物、生ごみ、糞尿、草・剪定枝、木質バイオマス等を発酵あるいは熱分解して得られるメタンを挙げることができる。
有機含酸素化合物は、分子中に酸素原子を含む有機化合物であり、上記炭化水素と同様に、種々の物質の中から適宜選択することができる。例として、メタノール、エタノール、プロパノール、ブタノール等のアルコール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、メチルターシャルブチルエーテル等のエーテル、アセトアルデヒド、ホルムアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチル、ギ酸エチル、炭酸ジメチル等のエステル等、あるいはそれらの二種以上の混合物を挙げることができる。なお、有機含酸素化合物は、バイオマス由来のものを用いても良い。例として、雑草等のセルロースを、微生物・酵素を用いてブドウ糖に加水分解し、生産したアルコールが挙げられる。また、本発明は、上述の炭化水素と、有機含酸素化合物とを適宜併用して用いることもできる。
また水は、HOを過剰に含む液体もしくは水蒸気の意味であり、一般的な水であれば適用可能である。その他、蒸留水、イオン交換水等や、いわゆる「お湯」も、当然に本発明の水の概念に包含される。
そして本発明の装置は、上記炭化水素、有機含酸素化合物から選ばれる一種以上の物質と水とを含む原料Aを放電領域13あるいはその近傍に供給した上で、パルス放電を行うことを特徴とする。ここでパルス放電とは、放電極間にパルス電流を流すことであり、例えば1μs以下という微小時間内での電子照射を繰り返すため、気相の温度が上昇せず、非常に低温で反応させることができる。なお、パルス放電は、通常は一定間隔で行うが、断続的であっても良い。
パルス放電により、例えば原料Aとしてメタンと水蒸気との混合ガスを用いた場合には、次式(4)のごとく反応が進行し目的の水素が生成する。また、原料Aとして、エタノールと水との混合液を用いた場合には、次式(5)のように進行して水素を生成する。その際にアセチレン等の副生成物を生じない。
CH+HO→3H+CO (4)
OH+HO→4H+2CO (5)
また、本発明は、原料Aとして、有機含酸素化合物を単独で用いることもできる。すなわち、メタノール、エタノール等に代表されるアルコールなどの有機含酸素化合物は、必ずしも水と併用する必要はなく、それ単独で用いることができる。その場合には、例えば(化6)に示すように有機含酸素化合物自身の分解反応が起こって水素を生成する。
CHOH→2H+CO (6)
上記の種々の反応は、放電電流、すなわち電子線が放電極から照射されることによりラジカルを生じ、このラジカルが反応を引き起こすものと考えられる。したがって、放電電流を大きくするほど、また、放電極間距離を大きくするほど、電子線と衝突する分子の数が増えるので、反応速度が大きくなり、また、単位時間内での転化率が高くなる傾向がある。
放電を行うにあたっては、パルス電源を用いることもできるが、放電極間に一定の電圧をかけ、自励的にパルス放電を行わせる直流自励パルス放電が好適に採用される。この場合、1秒間当たりのパルス放電の回数(以下、「パルス発生頻度」ということがある)は、5回〜1000回程度が適当であり、特に50〜100回程度が好ましい。パルス発生頻度は、一定電圧の下では電流が高くなるほど多くなり、また、放電極間距離が長くなるほど少なくなる。したがって、好ましい電圧、電流及び放電極間距離は、上記のパルス発生頻度が達成されるように電圧、電流及び放電極間距離を調節することによって自ずから設定される。例として、内径5mm程度の小型の反応器を用いる場合には、印加電圧は1kV〜10kV程度、電流は1〜20mA程度、放電極間距離は2mm〜10mm程度とすることが好ましい。もちろん、印加電圧、電流、及び放電極間距離は上記の範囲に限定されるものではなく、より製造能力の高い大型の反応装置を用いる場合には、放電極間距離を長くし、上記パルス発生頻度を達成するためにその分、印加電圧及び電流を大きくすることによって実施することができる。
反応させる原料Aは、液体・気体のいずれの状態でも良い。特に、気体状態の原料Aを反応させる場合、その反応温度は特に限定されないが、できるだけ低温で行う方がエネルギーコストが安いため好ましい。例えば、メタノール、エタノール、プロパノール等と水蒸気とを原料とする場合には、反応温度は、80℃〜150℃程度(常圧条件下)とすることが好ましい。ここで、上記範囲の低温側が100℃より低温であるのは、アルコールと水とが共沸現象によって気化する場合があるためである。なお、水蒸気は、濃縮される傾向があるため、炭化水素又は有機含酸素化合物の沸点が水よりも低い場合には、原料Aを予め反応温度よりも高い温度で前加熱した後、反応領域13に供給することが好ましい。
気体状態の原料Aを供給する場合における反応器10内の全圧は、特に限定されず、例えば0.1気圧〜10気圧程度で行うことができる。ただし、反応は常圧で十分に進行し、その際には堅牢な反応装置を必要としないので、常圧で行うことが産業上特に好ましいといえる。また、炭化水素又は有機含酸素化合物と水との混合比率は、化学量論量で良いが、所望により、一方の物質を化学量論量の1/2〜2倍程度もしくはそれ以上に増減させることも可能である。
原料Aは、反応器10内へ連続的に供給できるように構成すると効率が良く産業的に優れている。連続式で行う場合、原料Aの供給速度は、排出口17から排出される水素Hを分析して、原料Aの転化率が一定値以上、例えば60%以上となるような値に適宜設定することが好ましい。例えば、内径5mmの反応器を用い、放電極間距離を1mm〜10mm程度、印加電圧を1〜5kV程度に設定し、原料Aとしてアルコールと水蒸気とを含む混合ガスを用いる場合の供給流量は、10〜1000ml/分程度、就中50〜100ml/分程度が適当である。なお、図1のような連続式ではなく、回分式で行うことも可能である。
さらに、図1の生成装置1では、放電極11に接続する電源として直流電源14を用いているが、この他にも、パルス放電が可能な電源であれば適用可能であり、例えば、交流電源にダイオードブリッジ回路、負荷等を適宜組み合わせた電源や、その電源に直流分の電圧を重畳させた電源等を適宜採用することができる。また、放電極に印加する電圧は上記のように一極性が好ましいが、これに限ることなく、交流電圧を印加することも可能である。
また、反応器10に収容する放電極は、一対に限らず、必要に応じて複数の放電極を用いることもできる。
さらに、本発明の生成装置1は、目的の水素とともに、一酸化炭素を副生する。そこで、生成した水素及び一酸化炭素を、別途、さらに水蒸気と反応させることにより、最終的に水素ガスと二酸化炭素とを製造することも可能である。この反応は水性ガスシフト反応として知られている。水性ガスシフト反応自体はこの分野において周知であり、低温、常圧で進行するという利点がある。この水性ガスシフト反応を本発明の生成装置1に組み込む場合には、例えば、酸化亜鉛一酸化銅系固体触媒などの水性ガスシフト反応用の触媒を、図1の反応器10の排出口17側に充填することにより、パルス放電で生成した一酸化炭素をさらに水蒸気と反応させて水素及び二酸化炭素とし、これによって水素の製造効率を大幅に高めることができる。
そして、放電極11には、図2に示すように、触媒20を付着させることができる。触媒20としては、パルス放電による水素の生成反応の効率を向上させ、あるいはC2化合物等の副生成物を低減できるものであれば適用可能である。例として、アルミナを担体とするパラジウムもしくは白金触媒、ニッケル触媒、リンドラー触媒等が挙げられる。これらの触媒は、特にアセチレン等のC2化合物の生成を抑制することができる。なお、触媒20は、パルス放電を受けることにより活性化し、通常よりも触媒能が高まることを知見している。
特に、本発明の反応系における触媒20として、ルテニウム、ルテニウムと他の触媒との多元触媒、フラーレン、又はルテニウムを担持させたフラーレンを用いると、水素の生成効率が最も高まることがわかった。フラーレンとしては、従来知られる種々のフラーレンが適用可能であり、例えば、C60、C70、C76、C80、C82、C84、C86、C88、C90、C92、C94、C96、C120、C240、C560等、もしくはそれらの混合物を挙げることができる。その中でも、C240が最も高い効果が得られることを知見している。これは、C240の水素吸蔵能が高いためと考えられる。また、C60を内包したC240(以下C60@C240のように書く)、C240@C560、C80@C240@C560のような複数層の殻を有するフラーレンも好適に用いられる。フラーレンにルテニウムを担持させる方法としては、特に限定されず、例えば、フラーレンに対してルテニウムをめっき、蒸着、スパッタリングする等して担持させる方法や、フラーレンをレーザー蒸発法により作製する際に、ルテニウムを同時に蒸発させて担持させる方法等を適宜採用することができる。なお、フラーレンに担持させたルテニウムは非常に微粒子であり、活性化した状態にある。ルテニウム粒子が細かくなる理由は定かではないが、フラーレンによってルテニウム粒子同士の接触、粒成長が阻害されるためではないかと考えられる。
触媒20を放電極11に付着させる方法としては、放電極11の炭素繊維112等の表面に触媒20を蒸着、スパッタリング、めっきする等の方法を適宜採用することができる。また、予め束ねる前の炭素繊維112の表面に蒸着等によって触媒20を付着させてから、それらを束ねてパイプ状の導電体110の内部111に設けることにより放電極11を作製しても良い。
もっとも、本発明に係る装置は、触媒を用いなくても水素を生成できるので、触媒を一切用いずに実施しても無論構わない。本発明の生成装置は、触媒を使って高温、高圧でリフォーミングする従来の方法に比べて、はるかに低温、低圧で実施でき、また低コストであることを特徴とする。
次に、本発明の実施の形態(2)について説明する。
図3は、放電極11の部分拡大図である。この実施の形態(2)では、パルス放電が行われる放電極間に、誘電体を設けたことを特徴としている。具体的には、パイプ状の導電体110の端面114に沿って、リング状の誘電体23を設けている。このようにすると、いわゆる無声放電の作用によって、リング状の誘電体23の端面230全体で均一なパルス放電を発生させることができる。したがって、水素生成の反応効率を向上させることができる。なお、リング状の誘電体23の厚さは、放電極間の距離や電圧などを考慮して適宜設定することができる。また、誘電体23の形状は、リング状に限定されず、放電極間に位置することを条件として種々の形状とすることができるが、原料Aの放電領域13への移動を阻害しないようにする。また、誘電体23は、放電極11ではなく、他方の放電極12に接して設けても良い。
上記の誘電体23としては、結晶性が高く、非導電性の物質であれば適用可能である。具体的には、石英(SiO)、CeO、LaO、Sm、SiN、BN、ダイヤモンド等を挙げることができるが、これらに限定されるものではない。
続いて、本発明の実施の形態(3)について説明する。
図4は、放電極11の部分拡大図である。この実施の形態(3)では、折り曲げられた炭素繊維112の束を、図4に示すように、パイプ状の導電体110の内部111に設けたことを特徴としている。具体的には、炭素繊維112が二つに折り曲げられ、折返し部116が導電体110の端面114側に位置するように設けられている。
このようにすると、炭素繊維112を折り曲げるのみで、端面115を折返し部116として保持することが可能となる。これにより、導電体110の内部111に、炭素繊維112を端面115が揃った状態で容易に設けることが可能となる。特に、炭素繊維112が細い(マイクロメートルオーダー)場合においても、炭素繊維112の端面115を容易に揃えることが可能となる。そして、炭素繊維112の端面115が揃った状態であるため、安定したパルス放電を発生させることが可能となる。
この他、上記実施の形態(1)〜(3)で示した水素の生成装置においては、毛管113を通じて放電極11の外側へ至った原料Aを溜めおくための貯留部を設けることができる。貯留部は、例えば、金属、セラミック、樹脂等の粉末を、炭素繊維112の表面に付着させる方法等によって構成することができる。このようにすると、束にした毛管113から外側へ浸みだしてきた原料Aが、上記粉末の間隙に表面張力によって保持されることによって溜められる。したがって、パルス放電によって反応できる原料Aの量が増えて水素の生成効率を向上させることができる。また、原料Aを、放電領域の近傍に常に存在させることができるので、パルス放電に対する水素生成の応答性も向上させることができる。
貯留部については、上記の粉末を付着させる方法の他にも、種々の構成を採用することができる。例えば、炭素繊維112の表面をサンドブラスト等により粗面化処理する方法や、反応器10の容積を放電領域13の近傍で拡張させ(反応器10の外径を放電領域13の近傍で大きくし)、その拡張部分に、毛管113から供給される原料Aを滞留させておいて、反応に供する原料Aの量を多くする方法等を挙げることができる。
また、上記実施の形態(1)〜(3)で示した水素の生成装置においては、毛管113内を移動中の原料Aを加熱して気化させるための加熱部を設けることもできる。加熱部により気化した原料Aは、放電極11の外へ蒸発して、放電領域13に到達し、パルス放電によって反応して水素を生成することになる。加熱部の具体的な構成は、例えば、放電極11自体に電流を流し、発生するジュール熱を利用して加熱したり、ニクロム線等の一般的なヒータを放電極11の周囲に配置したり、ニクロム線等を炭素繊維112間に埋め込んで、毛管113を移動する原料Aを直接的に加熱する手段等を適宜用いることができる。
さらに、上記実施形態(1)〜(3)では、放電極11を、パイプ状の導電体110と、複数の炭素繊維112の束とから構成した場合について述べたが、この他にも、原料Aが移動可能であるような毛管を形成した構造であれば特に限定されることなく用いることができる。
例えば、上記炭素繊維にかえて、複数の導電性繊維を用い、それらを束にしたものを、パイプ状の導電体の内部に設けることによって放電極11を構成することができる。この場合、導電性繊維と他の導電性繊維との間が、原料が供給される毛管として機能することになる。導電性繊維としては、耐腐食性を有するものが好ましく用いられる。具体的には、ステンレス等の金属繊維などが好適に用いられる。
また、上記炭素繊維にかえて、複数の非導電性繊維を用いることもできる。この場合においても、非導電性繊維と他の非導電性繊維との間が、原料が供給される毛管として機能することになる。そして、非導電性繊維は電極としては作用せず、パルス放電はパイプ状の導電体110と放電極11との間に発生する。非導電性繊維としては、耐腐食性を有するものが好ましく用いられる。具体的には、シリコン、ガラス、SiO等の繊維などが好適に用いられる。
さらに、上記実施形態(1)〜(3)において、繊維の束の中心部に芯材を設けることも可能である。このようにすると、繊維の束の形状が芯材により支えられる。また、パイプ状の導電体110だけでなく芯材の部位においても放電が安定に行われる。なお、芯材の材質としては、特に限定されず、SUS、アルミニウム、銅等の各種金属や、炭素等を適宜用いることができる。また、芯材を繊維の束に対して複数備えることも可能である。
また、放電極11の別の例としては、通常の炭素や金属からなる材料に対し、ボール盤やレーザ等を用いて切削加工することにより毛管を形成し、この毛管を形成した材料の外周をパイプ状の導電体で覆ったもの、あるいは炭素繊維の織布等に、フェノール樹脂などの熱硬化性合成樹脂や石油ピッチなどのバインダーを含浸させたものを、複数枚積層して、加圧・加熱してバインダーを硬化させ、さらに不活性雰囲気中で高温焼成してバインダーを炭素化して製造した多孔質な材料、あるいは生コークス等の焼結性を有する黒鉛前駆体の微粒子を加圧成形しつつ高温で焼成した多孔質な材料などを作製し、これら多孔質材料の外周を、パイプ状の導電体で覆ったもの等を例示することができる。
以上のような本発明の生成装置により製造した水素は、例えば、アンモニア、メタノールの合成、水素化脱硫、水素化分解、油脂などの水素化、溶接、半導体製造等に有効に利用することができる。また、タービン燃料としての利用を考慮すると、アルコール等をそのまま燃焼する場合に比べて、水素へ転化させたものを燃焼させた方が発熱量が大きいという利点がある。さらに、小型・可搬の装置とすることができるので、自動車等へ搭載する燃料電池へ水素を供給するための装置として適している。
以下、本発明を実施例に基づきさらに具体的に説明するが、これらに限定されるものではない。
The hydrogen generator of the present invention is a discharge electrode in which a capillary for supplying a raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water is formed inside a pipe-shaped conductor. The apparatus is characterized in that a pulse discharge is performed by the discharge electrode to induce a reaction of the raw material supplied by the capillary to generate hydrogen.
According to the above configuration, the raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water moves through the capillaries formed inside the pipe-shaped conductor and reacts by receiving pulse discharge. To produce the desired hydrogen. The generated hydrogen is usually discharged out of the system through a discharge port or the like. Here, the pipe-shaped conductor refers to a covering made of various metals, carbon, and the like, and includes a tube having a relatively high rigidity, a tube wound with a film, and the like. In addition, the side surface of the pipe is generally closed, but a partially open structure may be used as necessary. The capillary means a passage or gap formed along the inside of the pipe, and the raw material moves through the passage and gap to a region where pulse discharge is performed by means of a suction force by a capillary phenomenon or a pump. To do. And since the outer periphery is hold | maintained with a pipe-shaped conductor, the discharge electrode is maintained in shape and stable discharge is obtained. Further, the raw material is supplied to a region where pulse discharge is reliably and efficiently performed without leaking from the side surface of the discharge electrode. In addition, the hydrocarbon here includes an aliphatic hydrocarbon and an aromatic hydrocarbon. Furthermore, the organic oxygen-containing compound means an organic compound containing an oxygen atom in the molecule, and includes alcohol, ether, aldehyde, ketone, ester and the like.
According to the present invention, a capillary for supplying a raw material containing one or more substances selected from organic oxygen-containing compounds includes a discharge electrode formed inside a pipe-shaped conductor, and pulse discharge is performed by the discharge electrode. And a hydrogen generating device that generates hydrogen by inducing a reaction of the raw material supplied by the capillary.
According to the above configuration, the organic oxygenated compound that has moved through the capillary tube undergoes a pulse discharge, thereby causing a decomposition reaction mainly to generate hydrogen.
Further, the present invention is characterized in that in the above hydrogen generator, a plurality of conductive fibers are provided in a bundle in a pipe-shaped conductor, and a capillary is formed between the conductive fibers. And
According to the said structure, the bundle | flux of electroconductive fiber functions as a discharge electrode in the case of pulse discharge with the pipe-shaped conductor of the outer side. Moreover, a raw material moves through the space | gap (capillary) between a conductive fiber and another conductive fiber. As the conductive fibers, metal fibers such as stainless steel are used, and those having corrosion resistance are preferable.
The present invention is also characterized in that, in the hydrogen generator, the conductive fiber is a carbon fiber.
According to the above configuration, carbon fiber is particularly selected as the conductive fiber. Since carbon fiber is a good conductor and has corrosion resistance, it is suitable for the reaction system of the present invention. The carbon fiber referred to here includes any of PAN-based, rayon-based, and pitch-based, and further, a so-called graphite fiber obtained by treating the carbon fiber at a high temperature (1500 to 3000 ° C.) or activation treatment was performed. It is a concept that includes activated carbon fibers.
Further, the present invention is characterized in that in the above hydrogen generator, a dielectric is provided between the discharge electrodes where pulse discharge is performed.
According to the above configuration, since pulse discharge is performed through the dielectric, a so-called silent discharge generates uniform and stable pulse discharge in the plane provided with the dielectric.
Further, the present invention is characterized in that, in the above hydrogen generator, the dielectric is a ring-shaped dielectric provided along an end surface of the pipe-shaped conductor.
According to the above configuration, a uniform and stable pulse discharge is generated over the entire end face of the pipe-shaped conductor, and the raw material is efficiently supplied to the discharge region.
Further, the present invention provides the above hydrogen generator, wherein the dielectric is SiO. 2 , CeO 2 , LaO 3 , Sm 2 O 3 , SiN, BN, and diamond.
According to the said structure, the specific substance which comprises a dielectric material is specified.
Furthermore, the present invention is characterized in that the hydrogen generation apparatus described above further comprises a reactor that houses a discharge electrode, and a power source that applies a voltage to the discharge electrode.
According to the above configuration, pulse discharge is generated by applying a voltage using a power source, and hydrogen is generated in the reactor.
Furthermore, this invention provides the various discharge electrodes used for the various production | generation apparatuses which have the above characteristics.
Hereinafter, the present invention will be described in detail based on embodiments.
First, an embodiment (1) of the present invention is shown in FIGS. 1 includes a reactor 10, and a pair of discharge electrodes 11 and 12 are provided in the reactor 10 so as to face each other. Between the discharge electrode 11 and the discharge electrode 12 is a discharge region 13 where pulse discharge is performed. The distance between the discharge electrode 11 and the discharge electrode 12 can be arbitrarily adjusted.
One discharge electrode 11 is schematically configured by forming a capillary for supplying the raw material A inside a pipe-shaped conductor. Here, the capillary means a passage or a gap formed along the inside of the pipe, and the raw material A can move in the capillary. The shape of the capillary can be appropriately set to a shape such as a tubular shape or a mesh shape.
A specific example of the capillary is shown in FIG. In FIG. 2, the discharge electrode 11 is configured by providing a plurality of good conductors such as carbon fibers 112 in an inside 111 of a pipe-shaped conductor 110. And between each carbon fiber 112 is functioning as the capillary 113 through which the raw material A passes.
As the pipe-shaped conductor 110, any material having high conductivity can be selected and used as appropriate. Moreover, it is preferable to have corrosion resistance with respect to water. Specific examples of the material include metal materials such as SUS, nickel, copper, aluminum, and iron, and materials such as carbon. Among them, SUS, carbon, and the like are more preferable because they hardly corrode. Note that the shape of the pipe-shaped conductor 110 is not limited to the cylindrical shape as shown in FIG. 2, and can be various shapes such as a quadrangular prism shape and a polygonal prism shape. The thickness of the pipe-shaped conductor 110 (difference between the outer diameter and the inner diameter) can be set as appropriate.
As shown in FIG. 2, the bundle of carbon fibers 112 is provided at a position slightly retracted into the pipe-shaped conductor 110 or is aligned with the position of the end surface 114 of the pipe-shaped conductor 110. Is preferred.
Further, in FIG. 2, for convenience, the carbon fibers 112 are schematically shown as having a certain thickness and a bundle of about several tens, but generally the thickness of the carbon fibers 112 is on the order of micrometers ( Specifically, the number is about 1 μm to 1 mm, and the number is also large (for example, tens of thousands or more) according to the thickness of the discharge electrode 11. However, depending on the scale of the production apparatus 1 and the type of the raw material A, it is possible to use a thicker and smaller number of carbon fibers, which is not limited to the above numerical range.
As the carbon fiber 112, conventionally known various carbon fibers can be used. Specific examples include carbon fibers made from polyacrylonitrile (PAN), pitch-based carbon fibers made from petroleum, petroleum tar, liquefied coal, etc., and rayon-based carbon fibers. For example, the PAN-based carbon fiber can be obtained by heat-treating a special acrylic fiber (precursor) in air and firing the obtained flame-resistant fiber at 1000 to 1800 ° C. in an inert gas. Further, graphite fibers obtained by firing this carbon fiber at a higher temperature of 2000 to 3000 ° C., activated carbon fibers activated in an activation gas (mixed gas such as water vapor, carbon dioxide gas, nitrogen gas) can be applied. is there. Since carbon fiber is chemically stable, there is an advantage that it is not corroded by water or the like used in the present invention.
Further, the end face 115 of the carbon fiber 112 is preferably formed in an edge shape. In this way, when pulse discharge is performed, current is concentrated at the tip of the edge, so that discharge is likely to occur, and as a result, hydrogen generation efficiency is improved. In addition, when the carbon fiber 112 is sufficiently thin (on the order of micrometers), the end face 115 itself becomes an edge shape without being processed. Further, when the carbon fiber 112 has a thickness of about millimeters, it may be appropriately processed by means such as cutting and cutting so that the end face 115 has an edge shape.
As the other discharge electrode 12, a general one such as a cylindrical electrode rod can be used. As the material of the discharge electrode 12, general materials such as SUS, nickel, copper, aluminum, iron, and carbon can be used. Among them, materials that are difficult to corrode such as SUS and carbon are more preferable. Further, the shape of the discharge electrode 12 is not limited to the above-described columnar shape, and may be various shapes such as a needle shape and a flat plate shape. Also, in the same manner as the discharge electrode 11 described above, You may comprise from the shape-like conductor 110, carbon fiber 112 grade | etc.,. The end face of the discharge electrode 12 facing the discharge region 13 is preferably parallel to the end faces 114 and 115 of one discharge electrode 11.
In FIG. 1, a reactor 10 is made of quartz, other glass, ceramic, synthetic resin, or the like. A direct current power source 14 for applying a negative high voltage is connected to the discharge electrode 11 extending outside the reactor 10, and a digital oscilloscope 15 is connected between the direct current power source 14 and the discharge electrode 11. On the other hand, a three-way port 16 is connected to the reactor 10, and a discharge electrode 12 extending outward from the reactor 10 passes through one of the three-way ports 16 and is grounded. The other port of the three-way port 16 is a discharge port 17 for discharging hydrogen H2 generated by pulse discharge. Further, the discharge electrode 11 is connected to an introduction path 18 for introducing the raw material A into the capillary 113 of the discharge electrode 11.
When using the above production | generation apparatus 1, it is performed as follows roughly. First, a raw material A containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water is supplied into the discharge electrode 11 through the introduction path 18. The supplied raw material A moves through the capillary 113 formed in the inside 111 of the discharge electrode 11, and finally leaches out from the end face 115 of the discharge electrode 11, for example, to discharge the region 13 ( Or its vicinity).
Subsequently, when a negative voltage is applied to the discharge electrode 11 by the DC power supply 14, between the discharge electrodes 11 and 12, that is, between the pipe-shaped conductor 110 and the discharge electrode 12, or between the carbon fiber 112 and the discharge electrode 12. A pulse discharge occurs between them to induce a reaction, and hydrogen H 2 Produces. Generated hydrogen H 2 Is discharged from the outlet 17 for various uses. The raw material A that moves through the capillary 111 and reacts by pulse discharge may be in a liquid state or in a gaseous state. When the raw material A is a liquid, the raw material A is vaporized by slight Joule heat generated by pulse discharge, and the vaporized raw material A may react.
Further, at this time, since the outer periphery of the discharge electrode 11 is held by the pipe-shaped conductor 110, the form of the discharge electrode 11 as a whole is maintained, and stable discharge can be obtained. Further, if the tips of the carbon fibers 112 are microscopically irregular, if there is no pipe-shaped conductor 110, there is a possibility that discharge occurs locally and the hydrogen generation efficiency decreases, By providing the conductor 110, a uniform pulse discharge can be generated mainly in the end face 114 of the pipe-shaped conductor 110, and as a result, the reaction can proceed efficiently. Furthermore, the raw material A can be reliably and efficiently supplied to the discharge region 13 without leaking from the side surface of the discharge electrode 11.
As means for moving the raw material A through the capillary tube 113, various physical phenomena can be used, or forced delivery means can be used, and it is not particularly limited. Specifically, as a suitable example, by appropriately setting the inner diameter of the capillary 113, the raw material A can be naturally sucked in the direction of the discharge region 13 by utilizing the capillary phenomenon. When the sucked raw material A is lost due to the reaction, new raw material A is sucked to make up for it. Thereby, since the raw material A can be naturally supplied to the discharge area | region 13 without using sending means, such as a pump, for example, it is preferable from a viewpoint of production | generation efficiency. The appropriate value of the inner diameter of the capillary tube 113 can be obtained by comprehensively considering the length of the capillary tube 113, the density of the raw material A, the surface tension of the raw material A, the contact angle of the raw material A with respect to the discharge electrode surface, and the like. For example, in the case of 100,000 bundles of carbon fibers having a diameter of 7 μm (the inner diameter of the formed capillary is several μm), it is possible to suck about 30 ml of raw material having a volume equivalent ratio of ethanol and water per minute. I know that.
In addition, the material A can be forcibly supplied into the capillary 113 by, for example, connecting a normal pump or the like to the introduction path 18 regardless of the method using the capillary phenomenon. Moreover, you may combine suitably the method using a pump etc. and the above-mentioned capillary phenomenon.
Furthermore, the raw material A can be moved along with the pulse discharge. That is, the raw material A is ionized by a high voltage at the time of pulse discharge. By using this, the ionized raw material A is subjected to a phenomenon such as electrophoresis in the direction of the other discharge electrode 12 every time the pulse discharge occurs. It can be moved using. Also in this case, similarly to the above-described capillary phenomenon, since no delivery means such as a pump is required, hydrogen can be generated efficiently and at low cost. Moreover, since the supply of the raw material A is performed corresponding to the voltage at the time of pulse discharge, the responsiveness of hydrogen generation is improved.
Next, the raw material A will be described. First, the hydrocarbon to be reacted is not particularly limited, and can be appropriately selected from various hydrocarbons. Examples include aliphatic hydrocarbons such as linear, branched, or cyclic alkanes, alkenes, alkynes, various aromatic hydrocarbons, or a mixture of two or more thereof. Natural gas, petroleum naphtha, gasoline, kerosene, etc., and mixtures thereof can be used as they are. Moreover, the hydrocarbon obtained from biomass is also applicable. Examples of this include methane obtained by fermentation or thermal decomposition of waste, garbage, manure, grass / pruned branches, woody biomass, etc. discharged from food factories.
The organic oxygen-containing compound is an organic compound containing an oxygen atom in the molecule, and can be appropriately selected from various substances in the same manner as the hydrocarbon. Examples include alcohols such as methanol, ethanol, propanol and butanol, ethers such as dimethyl ether, diethyl ether, methyl ethyl ether and methyl tertiary butyl ether, aldehydes such as acetaldehyde and formaldehyde, ketones such as acetone and methyl ethyl ketone, ethyl acetate and ethyl formate. And esters such as dimethyl carbonate, or a mixture of two or more thereof. The organic oxygen-containing compound may be derived from biomass. Examples include alcohol produced by hydrolyzing cellulose such as weeds to glucose using microorganisms / enzymes. In the present invention, the above-mentioned hydrocarbon and an organic oxygen-containing compound can be used in combination as appropriate.
The water is H 2 It means a liquid containing excessive O or water vapor, and can be applied to general water. In addition, distilled water, ion-exchanged water, and so-called “hot water” are naturally included in the concept of water of the present invention.
The apparatus of the present invention is characterized in that a pulse discharge is performed after supplying a raw material A containing one or more substances selected from the hydrocarbons and organic oxygen-containing compounds and water to the discharge region 13 or the vicinity thereof. To do. Here, the pulse discharge is a flow of a pulse current between the discharge electrodes. For example, since the electron irradiation is repeated within a minute time of 1 μs or less, the gas phase temperature does not rise and the reaction is performed at a very low temperature. Can do. The pulse discharge is usually performed at regular intervals, but may be intermittent.
For example, when a mixed gas of methane and water vapor is used as the raw material A by pulse discharge, the reaction proceeds as shown in the following formula (4) to generate target hydrogen. Further, when a mixed liquid of ethanol and water is used as the raw material A, it proceeds as shown in the following formula (5) to generate hydrogen. At that time, no by-product such as acetylene is produced.
CH 4 + H 2 O → 3H 2 + CO (4)
C 2 H 5 OH + H 2 O → 4H 2 + 2CO (5)
In the present invention, an organic oxygen-containing compound can be used alone as the raw material A. That is, an organic oxygen-containing compound such as an alcohol typified by methanol or ethanol is not necessarily used in combination with water, and can be used alone. In that case, for example, as shown in (Chemical Formula 6), a decomposition reaction of the organic oxygen-containing compound itself occurs to generate hydrogen.
CH 3 OH → 2H 2 + CO (6)
It is considered that the above various reactions generate radicals when a discharge current, that is, an electron beam is irradiated from the discharge electrode, and these radicals cause reactions. Therefore, as the discharge current is increased and the distance between the discharge electrodes is increased, the number of molecules colliding with the electron beam is increased, so that the reaction rate is increased and the conversion rate within a unit time is increased. Tend.
In performing the discharge, a pulse power source can be used. However, a direct current self-excited pulse discharge in which a constant voltage is applied between the discharge electrodes and the self-excited pulse discharge is performed is preferably employed. In this case, the number of pulse discharges per second (hereinafter sometimes referred to as “pulse generation frequency”) is suitably about 5 to 1000 times, and particularly preferably about 50 to 100 times. The pulse generation frequency increases as the current increases under a constant voltage, and decreases as the distance between the discharge electrodes increases. Therefore, preferable voltage, current, and discharge electrode distance are set by adjusting the voltage, current, and discharge electrode distance so that the above-described pulse generation frequency is achieved. For example, when a small reactor having an inner diameter of about 5 mm is used, it is preferable that the applied voltage is about 1 kV to 10 kV, the current is about 1 to 20 mA, and the distance between the discharge electrodes is about 2 mm to 10 mm. Of course, the applied voltage, current, and discharge electrode distance are not limited to the above ranges, and when using a large reactor having a higher production capacity, the discharge electrode distance is increased to generate the pulse. In order to achieve the frequency, the applied voltage and current can be increased accordingly.
The raw material A to be reacted may be in a liquid or gas state. In particular, when reacting the raw material A in a gaseous state, the reaction temperature is not particularly limited, but it is preferable to perform the reaction at as low a temperature as possible because energy costs are low. For example, when methanol, ethanol, propanol or the like and water vapor are used as raw materials, the reaction temperature is preferably about 80 ° C. to 150 ° C. (under normal pressure conditions). Here, the reason why the low temperature side of the above range is lower than 100 ° C. is that alcohol and water may be vaporized by an azeotropic phenomenon. Since water vapor tends to be concentrated, when the boiling point of the hydrocarbon or organic oxygen-containing compound is lower than that of water, the raw material A is preheated at a temperature higher than the reaction temperature in advance, and then the reaction zone 13 It is preferable to supply to.
The total pressure in the reactor 10 when supplying the raw material A in a gaseous state is not particularly limited, and can be performed, for example, at about 0.1 to 10 atm. However, since the reaction proceeds sufficiently at normal pressure and a robust reaction apparatus is not required at that time, it can be said that it is particularly preferable in the industry to carry out at normal pressure. The mixing ratio of the hydrocarbon or organic oxygen-containing compound and water may be a stoichiometric amount, but if desired, one substance is increased or decreased to about 1/2 to 2 times the stoichiometric amount or more. It is also possible.
When the raw material A is configured so as to be continuously supplied into the reactor 10, it is efficient and industrially excellent. In the case of continuous operation, the feed rate of the raw material A is hydrogen H discharged from the discharge port 17. 2 Is preferably set to a value such that the conversion rate of the raw material A is a certain value or more, for example, 60% or more. For example, when using a reactor having an inner diameter of 5 mm, a distance between the discharge electrodes is set to about 1 mm to 10 mm, an applied voltage is set to about 1 to 5 kV, and a mixed gas containing alcohol and water vapor is used as the raw material A, About 10 to 1000 ml / min, especially 50 to 100 ml / min is suitable. In addition, it is also possible to carry out by a batch type instead of the continuous type as shown in FIG.
Furthermore, in the generating apparatus 1 of FIG. 1, the DC power source 14 is used as the power source connected to the discharge electrode 11, but any other power source capable of pulse discharge is applicable. For example, the AC power source In addition, a power source in which a diode bridge circuit, a load, and the like are appropriately combined, or a power source in which a direct current voltage is superimposed on the power source can be appropriately employed. Further, the voltage applied to the discharge electrode is preferably unipolar as described above, but is not limited thereto, and an alternating voltage can be applied.
Moreover, the discharge electrodes accommodated in the reactor 10 are not limited to a pair, and a plurality of discharge electrodes may be used as necessary.
Furthermore, the production | generation apparatus 1 of this invention produces | generates by-product carbon monoxide with the target hydrogen. Therefore, it is possible to finally produce hydrogen gas and carbon dioxide by separately reacting the produced hydrogen and carbon monoxide with water vapor. This reaction is known as the water gas shift reaction. The water gas shift reaction itself is well known in this field and has the advantage of proceeding at a low temperature and normal pressure. When this water gas shift reaction is incorporated in the production apparatus 1 of the present invention, for example, a catalyst for a water gas shift reaction such as a zinc oxide copper monoxide-based solid catalyst is charged on the outlet 17 side of the reactor 10 in FIG. By doing so, the carbon monoxide produced | generated by pulse discharge is further made to react with water vapor | steam, and it can be set as hydrogen and a carbon dioxide, and, thereby, the production efficiency of hydrogen can be improved significantly.
Then, the catalyst 20 can be attached to the discharge electrode 11 as shown in FIG. The catalyst 20 is applicable as long as it can improve the efficiency of the hydrogen generation reaction by pulse discharge or reduce the by-products such as C2 compounds. Examples include palladium or platinum catalysts using alumina as a support, nickel catalysts, Lindlar catalysts, and the like. These catalysts can particularly suppress the production of C2 compounds such as acetylene. In addition, the catalyst 20 is activated by receiving pulse discharge, and it has been found that the catalytic ability is higher than usual.
In particular, it was found that when the catalyst 20 in the reaction system of the present invention is ruthenium, a multi-component catalyst of ruthenium and another catalyst, fullerene, or fullerene carrying ruthenium, the hydrogen generation efficiency is maximized. As the fullerene, various conventionally known fullerenes can be applied. 60 , C 70 , C 76 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90 , C 92 , C 94 , C 96 , C 120 , C 240 , C 560 Or a mixture thereof. Among them, C 240 Is known to have the highest effect. This is C 240 This is thought to be due to the high hydrogen storage capacity. C 60 C containing 240 (Hereinafter C 60 @C 240 ), C 240 @C 560 , C 80 @C 240 @C 560 A fullerene having a shell having a plurality of layers is also preferably used. The method of supporting ruthenium on fullerene is not particularly limited. For example, ruthenium is supported by plating, vapor deposition, sputtering, etc. on fullerene, or when ruthenium is prepared by laser evaporation. A method of evaporating and supporting at the same time can be appropriately employed. Note that ruthenium supported on fullerene is very fine particles and is in an activated state. The reason why the ruthenium particles become fine is not clear, but it is considered that the contact between the ruthenium particles and the grain growth are inhibited by the fullerene.
As a method for attaching the catalyst 20 to the discharge electrode 11, a method such as vapor deposition, sputtering, or plating of the catalyst 20 on the surface of the carbon fiber 112 or the like of the discharge electrode 11 can be appropriately employed. Alternatively, the discharge electrode 11 may be manufactured by attaching the catalyst 20 to the surface of the carbon fiber 112 before being bundled in advance by vapor deposition or the like, and then bundling them to be provided inside the pipe-shaped conductor 110.
However, since the apparatus according to the present invention can generate hydrogen without using a catalyst, it may be carried out without using any catalyst. The production apparatus of the present invention is characterized in that it can be carried out at a much lower temperature and lower pressure and is lower in cost than the conventional method of reforming at a high temperature and high pressure using a catalyst.
Next, an embodiment (2) of the present invention will be described.
FIG. 3 is a partially enlarged view of the discharge electrode 11. This embodiment (2) is characterized in that a dielectric is provided between the discharge electrodes where pulse discharge is performed. Specifically, a ring-shaped dielectric 23 is provided along the end surface 114 of the pipe-shaped conductor 110. In this way, a uniform pulse discharge can be generated over the entire end face 230 of the ring-shaped dielectric 23 by the action of so-called silent discharge. Therefore, the reaction efficiency of hydrogen generation can be improved. Note that the thickness of the ring-shaped dielectric 23 can be appropriately set in consideration of the distance between the discharge electrodes, the voltage, and the like. Further, the shape of the dielectric 23 is not limited to the ring shape, and may be various shapes provided that it is located between the discharge electrodes, but does not hinder the movement of the raw material A to the discharge region 13. To do. The dielectric 23 may be provided in contact with the other discharge electrode 12 instead of the discharge electrode 11.
As the dielectric 23, any material that has high crystallinity and is non-conductive can be used. Specifically, quartz (SiO 2 ), CeO 2 , LaO 3 , Sm 2 O 3 , SiN, BN, diamond and the like, but are not limited thereto.
Next, an embodiment (3) of the present invention will be described.
FIG. 4 is a partially enlarged view of the discharge electrode 11. This embodiment (3) is characterized in that a bundle of bent carbon fibers 112 is provided in an interior 111 of a pipe-shaped conductor 110 as shown in FIG. Specifically, the carbon fiber 112 is bent in two, and the folded portion 116 is provided so as to be positioned on the end surface 114 side of the conductor 110.
If it does in this way, it will become possible to hold end face 115 as folding part 116 only by bending carbon fiber 112. Thereby, the carbon fiber 112 can be easily provided in the inside 111 of the conductor 110 with the end faces 115 aligned. In particular, even when the carbon fibers 112 are thin (on the order of micrometers), the end faces 115 of the carbon fibers 112 can be easily aligned. In addition, since the end faces 115 of the carbon fibers 112 are in a uniform state, it is possible to generate a stable pulse discharge.
In addition, in the hydrogen generator shown in the above embodiments (1) to (3), a storage unit for storing the raw material A reaching the outside of the discharge electrode 11 through the capillary tube 113 can be provided. The storage part can be configured by, for example, a method of attaching a powder of metal, ceramic, resin, or the like to the surface of the carbon fiber 112. In this way, the raw material A that has oozed out of the bundle of capillaries 113 is stored by being held in the gap between the powders by surface tension. Accordingly, the amount of the raw material A that can be reacted by the pulse discharge increases, and the hydrogen generation efficiency can be improved. Moreover, since the raw material A can always be present in the vicinity of the discharge region, the responsiveness of hydrogen generation to pulse discharge can be improved.
About a storage part, various structures are employable besides the method of attaching the above-mentioned powder. For example, the surface of the carbon fiber 112 is roughened by sandblasting or the like, or the volume of the reactor 10 is expanded near the discharge region 13 (the outer diameter of the reactor 10 is increased near the discharge region 13). A method of increasing the amount of the raw material A to be used for the reaction by retaining the raw material A supplied from the capillary tube 113 in the expanded portion can be exemplified.
In the hydrogen generator shown in the above embodiments (1) to (3), a heating unit for heating and vaporizing the raw material A moving in the capillary 113 can be provided. The raw material A vaporized by the heating part evaporates out of the discharge electrode 11, reaches the discharge region 13, and reacts by pulse discharge to generate hydrogen. The specific configuration of the heating unit includes, for example, supplying current to the discharge electrode 11 itself and heating it using Joule heat generated, or arranging a general heater such as nichrome wire around the discharge electrode 11. A means for directly heating the raw material A moving the capillary 113 by embedding a nichrome wire or the like between the carbon fibers 112 can be appropriately used.
Further, in the above-described embodiments (1) to (3), the discharge electrode 11 is described as being composed of a pipe-shaped conductor 110 and a bundle of a plurality of carbon fibers 112. Any structure may be used as long as it is a structure in which A is movable so that A can move.
For example, the discharge electrode 11 can be configured by using a plurality of conductive fibers instead of the carbon fiber and providing a bundle of them in a pipe-shaped conductor. In this case, the space between the conductive fibers and the other conductive fibers functions as a capillary to which the raw material is supplied. As the conductive fibers, those having corrosion resistance are preferably used. Specifically, metal fibers such as stainless steel are preferably used.
A plurality of non-conductive fibers can be used instead of the carbon fibers. Even in this case, the space between the non-conductive fibers and the other non-conductive fibers functions as a capillary to which the raw material is supplied. The nonconductive fiber does not act as an electrode, and pulse discharge is generated between the pipe-shaped conductor 110 and the discharge electrode 11. As the non-conductive fiber, those having corrosion resistance are preferably used. Specifically, silicon, glass, SiO 2 Etc. are preferably used.
Furthermore, in the said embodiment (1)-(3), it is also possible to provide a core material in the center part of the bundle of fibers. In this way, the shape of the fiber bundle is supported by the core material. In addition, the discharge is stably performed not only in the pipe-shaped conductor 110 but also in the core portion. In addition, it does not specifically limit as a material of a core material, Various metals, such as SUS, aluminum, copper, carbon, etc. can be used suitably. It is also possible to provide a plurality of core materials for a bundle of fibers.
As another example of the discharge electrode 11, a capillary is formed by cutting a normal carbon or metal material using a drilling machine, a laser, or the like, and the outer periphery of the material forming the capillary is piped. Pressurize and heat by laminating multiple sheets covered with a conductive material or carbon fiber woven fabric impregnated with a thermosetting synthetic resin such as phenol resin or a binder such as petroleum pitch. The porous material produced by curing the binder and then baking at high temperature in an inert atmosphere to carbonize the binder, or the fine particles of graphite precursor having sinterability such as raw coke, while pressure forming Examples include a porous material fired at a high temperature and the outer periphery of the porous material covered with a pipe-shaped conductor.
The hydrogen produced by the production apparatus of the present invention as described above can be effectively used for ammonia, methanol synthesis, hydrodesulfurization, hydrocracking, oil and fat hydrogenation, welding, semiconductor production, and the like. . In consideration of utilization as a turbine fuel, there is an advantage that the amount of heat generated is larger when the alcohol or the like is combusted as it is than when the alcohol is combusted as it is. Furthermore, since it can be a small and portable device, it is suitable as a device for supplying hydrogen to a fuel cell mounted on an automobile or the like.
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, it is not limited to these.

生成装置として図1に示す装置を作製した。反応器としては外径10mm、内径9mm、長さ200mmの石英管を用い、対向させる一対の放電極のうち一方は、SUS306からなるパイプの内部に、直径7μmの炭素繊維を84,000本束ねたもの(東邦レーヨン(株)製のベスファイトHTA−12K(商品名)を7本束ねたもの)を挿入して構成した。炭素繊維の束の部分の直径は約3mmである。また、他方の放電極にはSUS306からなるロッド状の放電極を用いた。
続いて、水とエタノールの混合液(体積比1:1)を導入路から放電極中へ毛管現象を利用して供給するとともに、放電極間に一定電圧を印加して直流パルス放電を行った。放電の条件は、パルス発生頻度が1秒間に50回、電圧5kV、電流が最大で10mAである。また、反応器内の温度を原料が蒸発可能な100℃に維持した。
そして排出口から排出される1分間当たりの生成ガス量をガスクロマトグラフィで測定した。その結果、目的の水素が高収率で得られることがわかった。また、パルス放電の状態は非常に安定していた。
The apparatus shown in FIG. 1 was produced as a generating apparatus. A quartz tube having an outer diameter of 10 mm, an inner diameter of 9 mm, and a length of 200 mm was used as the reactor, and one of the opposed discharge electrodes was bundled with 84,000 carbon fibers having a diameter of 7 μm inside a pipe made of SUS306. It was constructed by inserting a bowl (7 bundles of Besfight HTA-12K (trade name) manufactured by Toho Rayon Co., Ltd.). The diameter of the carbon fiber bundle portion is about 3 mm. Moreover, the rod-shaped discharge electrode which consists of SUS306 was used for the other discharge electrode.
Subsequently, a mixture of water and ethanol (volume ratio of 1: 1) was supplied from the introduction path into the discharge electrode by utilizing capillary action, and a constant voltage was applied between the discharge electrodes to perform direct current pulse discharge. . The discharge conditions are that the frequency of pulse generation is 50 times per second, the voltage is 5 kV, and the current is 10 mA at maximum. Moreover, the temperature in the reactor was maintained at 100 ° C. at which the raw material can be evaporated.
The amount of gas produced per minute discharged from the outlet was measured by gas chromatography. As a result, it was found that the target hydrogen was obtained in a high yield. Moreover, the state of pulse discharge was very stable.

以上、本発明の生成装置は、原料を供給するための毛管を、パイプ状の導電体の内部に形成した放電極を備えているため、放電極の形態が保持されて安定にパルス放電を行うことができ、毛管を通って供給される原料の反応を誘起して、目的の水素を効率的に生成することができる。
また、放電極間に石英等の誘電体を設けることにより、その誘電体を介してパルス放電を均一かつ安定に行うことができる。
本発明の生成装置は、低圧、低温で、かつ低コストで実施可能であり、また副生成物を生じないという特長を生かして、例えば、燃料電池へ供給する水素の生成装置等として好適に利用することができる。
As described above, since the generation apparatus of the present invention includes the discharge electrode in which the capillary for supplying the raw material is formed inside the pipe-shaped conductor, the discharge electrode form is maintained and stable pulse discharge is performed. The target hydrogen supplied through the capillary can be induced to efficiently generate the target hydrogen.
Further, by providing a dielectric such as quartz between the discharge electrodes, pulse discharge can be performed uniformly and stably via the dielectric.
The production apparatus of the present invention can be suitably used as, for example, a production apparatus for hydrogen to be supplied to a fuel cell, taking advantage of the fact that it can be implemented at low pressure, low temperature, and at low cost, and does not produce by-products. can do.

Claims (10)

炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料を供給するための毛管が、パイプ状の導電体の内部に形成された放電極を備え、
前記パイプ状の導電体の内部に複数の導電性繊維が束にして設けられ、前記導電性繊維間に前記毛管が形成され、
前記放電極によりパルス放電を行い、前記毛管により供給される原料の反応を誘起して水素を生成させる水素の生成装置。
A capillary for supplying a raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water comprises a discharge electrode formed inside a pipe-shaped conductor,
A plurality of conductive fibers are provided in a bundle inside the pipe-shaped conductor, and the capillary is formed between the conductive fibers,
A hydrogen generator that generates hydrogen by performing a pulse discharge with the discharge electrode and inducing a reaction of a raw material supplied by the capillary.
有機含酸素化合物から選ばれる一以上の物質を含む原料を供給するための毛管が、パイプ状の導電体の内部に形成された放電極を備え、
前記パイプ状の導電体の内部に複数の導電性繊維が束にして設けられ、前記導電性繊維間に前記毛管が形成され、
前記放電極によりパルス放電を行い、前記毛管により供給される原料の反応を誘起して水素を生成させる水素の生成装置。
A capillary for supplying a raw material containing one or more substances selected from organic oxygenated compounds comprises a discharge electrode formed inside a pipe-shaped conductor,
A plurality of conductive fibers are provided in a bundle inside the pipe-shaped conductor, and the capillary is formed between the conductive fibers,
A hydrogen generator that generates hydrogen by performing a pulse discharge with the discharge electrode and inducing a reaction of a raw material supplied by the capillary.
請求項1又は2に記載の水素の生成装置において、導電性繊維が、炭素繊維であることを特徴とする水素の生成装置。 3. The hydrogen generator according to claim 1 , wherein the conductive fiber is a carbon fiber. 請求項1から3のいずれか1項に記載の水素の生成装置において、パルス放電が行われる放電極間に、誘電体を設けたことを特徴とする水素の生成装置。The hydrogen generator according to any one of claims 1 to 3, wherein a dielectric is provided between discharge electrodes where pulse discharge is performed. 請求項4に記載の水素の生成装置において、誘電体が、パイプ状の導電体の端面に沿って設けられたリング状の誘電体であることを特徴とする水素の生成装置。5. The hydrogen generator according to claim 4, wherein the dielectric is a ring-shaped dielectric provided along an end face of the pipe-shaped conductor. 請求項4又は5に記載の水素の生成装置において、誘電体は、SiO、CeO、LaO、Sm、SiN、BN、ダイヤモンドから選ばれる一の物質から構成されることを特徴とする水素の生成装置。6. The hydrogen generator according to claim 4 , wherein the dielectric is made of one material selected from SiO 2 , CeO 2 , LaO 3 , Sm 2 O 3 , SiN, BN, and diamond. A hydrogen generator. 請求項1から6のいずれか1項に記載の水素の生成装置において、さらに、放電極を収容する反応器と、前記放電極に電圧を印加する電源とを備えたことを特徴とする水素の生成装置。The hydrogen generator according to any one of claims 1 to 6 , further comprising a reactor that houses a discharge electrode, and a power source that applies a voltage to the discharge electrode. Generator. 炭化水素、有機含酸素化合物から選ばれる一以上の物質と水とを含む原料中で、パルス放電を行い、前記原料の反応を誘起して水素を生成させる装置に用いられ、前記原料を供給可能な毛管が、パイプ状の導電体の内部に形成され、前記パイプ状の導電体の内部に複数の導電性繊維が束にして設けられ、前記導電性繊維間に前記毛管が形成されてなる放電極。Used in a device that generates hydrogen by inducing a reaction of the raw material in a raw material containing one or more substances selected from hydrocarbons and organic oxygen-containing compounds and water, and can supply the raw material A capillary tube is formed inside the pipe-shaped conductor, a plurality of conductive fibers are bundled inside the pipe-shaped conductor, and the capillary is formed between the conductive fibers. electrode. 有機含酸素化合物から選ばれる一以上の物質を含む原料中で、パルス放電を行い、前記原料の反応を誘起して水素を生成させる装置に用いられ、前記原料を供給可能な毛管が、パイプ状の導電体の内部に形成され、前記パイプ状の導電体の内部に複数の導電性繊維が束にして設けられ、前記導電性繊維間に前記毛管が形成されてなる放電極。In a raw material containing one or more substances selected from organic oxygenated compounds, a pulse discharge is used in an apparatus for generating hydrogen by inducing a reaction of the raw material. A discharge electrode in which a plurality of conductive fibers are provided in a bundle inside the pipe-shaped conductor, and the capillary is formed between the conductive fibers . 請求項8又は9に記載の放電極において、前記導電性繊維が、炭素繊維であることを特徴とする放電極。 10. The discharge electrode according to claim 8 , wherein the conductive fiber is a carbon fiber.
JP2005506055A 2003-05-08 2004-05-10 Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor Expired - Fee Related JP4727419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506055A JP4727419B2 (en) 2003-05-08 2004-05-10 Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003130728 2003-05-08
JP2003130728 2003-05-08
JP2005506055A JP4727419B2 (en) 2003-05-08 2004-05-10 Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor
PCT/JP2004/006579 WO2004099070A1 (en) 2003-05-08 2004-05-10 System for producing hydrogen using hydrocarbon, organic compound containing oxygen as material, and discharge electrode for use therein

Publications (2)

Publication Number Publication Date
JPWO2004099070A1 JPWO2004099070A1 (en) 2006-07-13
JP4727419B2 true JP4727419B2 (en) 2011-07-20

Family

ID=33432114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506055A Expired - Fee Related JP4727419B2 (en) 2003-05-08 2004-05-10 Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor

Country Status (2)

Country Link
JP (1) JP4727419B2 (en)
WO (1) WO2004099070A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288506B2 (en) * 2014-04-24 2018-03-07 Jfeエンジニアリング株式会社 Method and apparatus for producing hydrogen / carbon material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11552A (en) * 1996-08-14 1999-01-06 Fujitsu Ltd Gas reactor
JP2001002404A (en) * 1999-06-18 2001-01-09 Meidensha Corp Ozone generating device
JP2001259409A (en) * 2000-03-16 2001-09-25 Seiko Epson Corp Electric discharge device
JP2001335302A (en) * 2000-05-24 2001-12-04 Yasushi Sekine Steam reforming method for chain hydrocarbon and device for it
JP3476811B1 (en) * 2002-03-27 2003-12-10 株式会社事業創造研究所 Hydrogen generator using hydrocarbons and organic oxygenates as raw materials, and discharge electrodes used therefor
JP2004018345A (en) * 2002-06-19 2004-01-22 Jigyo Sozo Kenkyusho:Kk Apparatus for producing hydrogen using hydrocarbon or oxygen-containing compound as raw material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11552A (en) * 1996-08-14 1999-01-06 Fujitsu Ltd Gas reactor
JP2001002404A (en) * 1999-06-18 2001-01-09 Meidensha Corp Ozone generating device
JP2001259409A (en) * 2000-03-16 2001-09-25 Seiko Epson Corp Electric discharge device
JP2001335302A (en) * 2000-05-24 2001-12-04 Yasushi Sekine Steam reforming method for chain hydrocarbon and device for it
JP3476811B1 (en) * 2002-03-27 2003-12-10 株式会社事業創造研究所 Hydrogen generator using hydrocarbons and organic oxygenates as raw materials, and discharge electrodes used therefor
JP2004018345A (en) * 2002-06-19 2004-01-22 Jigyo Sozo Kenkyusho:Kk Apparatus for producing hydrogen using hydrocarbon or oxygen-containing compound as raw material

Also Published As

Publication number Publication date
WO2004099070A1 (en) 2004-11-18
JPWO2004099070A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Xia et al. Combined steam and CO2 reforming of CH4 for syngas production in a gliding arc discharge plasma
Liu et al. Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma
Lu et al. Dry reforming of CH4CO2 in AC rotating gliding arc discharge: Effect of electrode structure and gas parameters
Moshrefi et al. Methane conversion to hydrogen and carbon black by DC-spark discharge
JPWO2009057473A1 (en) Plasma reactor
JP4068972B2 (en) Method and apparatus for liquid phase reforming of hydrocarbons and oxygenated compounds
EP3269845A1 (en) Materials and design for an electrocatalytic device and method which produces carbon nanotubes and hydrocarbon transportation fuels
US20220134298A1 (en) Electrically heated reforming reactor for reforming of methane and other hydrocarbons
Liu et al. Removal of tar derived from biomass gasification via synergy of non-thermal plasma and catalysis
Hoang et al. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor
Hu et al. Conversion of methane to C2 hydrocarbons and hydrogen using a gliding arc reactor
Ulejczyk et al. Hydrogen production from ethanol using a special multi-segment plasma-catalytic reactor
Khoshtinat et al. A review of methanol production from methane oxidation via non-thermal plasma reactor
JP3476811B1 (en) Hydrogen generator using hydrocarbons and organic oxygenates as raw materials, and discharge electrodes used therefor
Xiang et al. Carbon dioxide reforming of methane to synthesis gas by an atmospheric pressure plasma jet
JP4727419B2 (en) Hydrogen generator using hydrocarbon, organic oxygen-containing compound as raw material, and discharge electrode used therefor
KR100561166B1 (en) The apparatus and method for preparing synthesis gas by using barrier discharge reaction
JP4213409B2 (en) Hydrogen generator using hydrocarbons and oxygenated compounds as raw materials
KR101032273B1 (en) Reforming system and method for producing hydrogen using the same
Wang et al. Plasma Catalysis for Hydrogen Production: A Bright Future for Decarbonization
JP2004026650A (en) Apparatus for forming hydrogen using hydrocarbon and organic oxygen-containing compound as raw material, and discharge electrode used for the same
JP2005519729A (en) Chemical processing by non-thermal discharge plasma
Yu et al. Hydrodeoxygenation of o-Cresol Over Mo2C Modified by O2 Plasma
Mok et al. „Nonthermal Plasma-enhanced Catalytic Methanation of CO over Ru/TiO2/Al2O3 “
Wang et al. H 2 production by ethanol decomposition with a gliding arc discharge plasma reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees