JP4727400B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP4727400B2
JP4727400B2 JP2005346109A JP2005346109A JP4727400B2 JP 4727400 B2 JP4727400 B2 JP 4727400B2 JP 2005346109 A JP2005346109 A JP 2005346109A JP 2005346109 A JP2005346109 A JP 2005346109A JP 4727400 B2 JP4727400 B2 JP 4727400B2
Authority
JP
Japan
Prior art keywords
orifice
passage
expansion valve
bottomed hole
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005346109A
Other languages
Japanese (ja)
Other versions
JP2007147241A5 (en
JP2007147241A (en
Inventor
和人 小林
敏道 呉羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2005346109A priority Critical patent/JP4727400B2/en
Publication of JP2007147241A publication Critical patent/JP2007147241A/en
Publication of JP2007147241A5 publication Critical patent/JP2007147241A5/ja
Application granted granted Critical
Publication of JP4727400B2 publication Critical patent/JP4727400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

この発明は、空調装置の蒸発器(エバポレータ)に供給される冷媒の流量制御に用いられる膨張弁に関する。   The present invention relates to an expansion valve used for controlling the flow rate of refrigerant supplied to an evaporator of an air conditioner.

従来、ルームエアコンやカーエアコンのような空気調和装置や冷凍装置に用いられる冷凍サイクルにおいては、負荷の大きさに応じて変化する蒸発器(エバポレータ)の出口側の冷媒圧力に基づいて、蒸発器への流量が制御されている。この種の膨張弁においては、膨張弁を構成する部品の精度のバラツキが存在することに起因して、部品の組み立て後に弁体を閉弁方向に付勢するばね力を設定することで流量制御の調整を行う形式の膨張弁と、ばねの調整を行うねじを設けることなく、部品の精度のバラツキを極力排除して部品の組み付け時に所期の精度を確保する形式の膨張弁とが、それぞれ提案されている。   Conventionally, in a refrigeration cycle used in an air conditioner or refrigeration apparatus such as a room air conditioner or a car air conditioner, the evaporator is based on the refrigerant pressure on the outlet side of the evaporator (evaporator) that changes according to the load. The flow rate to is controlled. In this type of expansion valve, flow control is achieved by setting a spring force that urges the valve body in the valve closing direction after the parts are assembled due to the variation in accuracy of the parts that make up the expansion valve. There are two types of expansion valves: an expansion valve that adjusts the position of the valve, and an expansion valve that maintains the expected accuracy when assembling the components by eliminating the variation in the accuracy of the components as much as possible without providing screws for adjusting the springs. Proposed.

後者の膨張弁として、本出願人は、特願2004−207257号を提案している。   As the latter expansion valve, the present applicant has proposed Japanese Patent Application No. 2004-207257.

この形式の膨張弁のブロック状弁本体には、上端開口の有底穴が形成され、膨張弁の機能部品(作動棒、オリフィス、弁体、付勢ばね等)は開口端側より有底穴に投入されて組付けられる。   The block-shaped valve body of this type of expansion valve has a bottomed hole with an upper end opening, and the functional parts of the expansion valve (operating rod, orifice, valve body, biasing spring, etc.) have a bottomed hole from the opening end side. To be assembled.

オリフィスは、作動棒と摺動自在に案内するガイド部材と一体化されて、有底穴の内壁
面に圧入により保持されており、この圧入保持を確実なものとするために、上記願発明では、ガイド部材の上端部側で有底穴にカシメ加工を施す構造が採用されていた。
Orifice is integrated with the actuating bar and slidably guided guide member is held by press-fitting the inner wall surface of the bottomed holes, in order to press-fitting holding made reliable, the prior invention However, the structure which caulks a bottomed hole by the upper end part side of the guide member was employ | adopted.

しかし、この構造によると、ガイド部材が段付き形状となることに加えて、カシメ代が必要となることもあって、ガイド部材が大径となり、これが設計上又は組立工程において障害となり、膨張弁の更なるスリム化、コストダウンが困難なものとなっていた。   However, according to this structure, in addition to the guide member having a stepped shape, a caulking allowance is required, and the guide member has a large diameter, which becomes an obstacle in the design or assembly process, and the expansion valve Further slimming and cost reduction were difficult.

この発明の目的は、弁本体内におけるオリフィスの位置決めを簡単に且つ確実に行うことができるようにし、組付け性に優れた膨張弁を低コストで提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an expansion valve that can be easily and reliably positioned in a valve body and is excellent in assembling performance at low cost.

上記の課題を解決するため、この発明による膨張弁は、コンデンサで凝縮した高圧冷媒を弁室内に導入する第1通路、前記弁室からエバポレータへ向かう冷媒が通過する第2通路及び前記エバポレータからコンプレッサへ向かう冷媒が通過する第3通路を有するブロック状の弁本体と、前記弁室内に導入される前記高圧冷媒を減圧するオリフィスと、該オリフィスに対向して配置された弁体と、該弁体を前記オリフィスに向けて付勢するばねと、前記弁体を前記オリフィスから離間する方向に移動させる作動棒と、前記エバポレータ出口側の冷媒の温度及び圧力に基づいて前記作動棒を駆動するパワーエレメントとを備えた膨張弁であって、前記弁室を有底穴により形成するとともに該有底穴と前記第2の通路との間に薄肉の壁部を形成し、前記オリフィスが前記有底穴内に圧入された状態で前記第2の通路の出口側から前記壁部をポンチ加工することにより形成される凸部を前記オリフィスに形成された凹部に係合させて前記オリフィスを前記有底穴内に固定することを特徴としている。 In order to solve the above-described problems, an expansion valve according to the present invention includes a first passage for introducing high-pressure refrigerant condensed by a condenser into a valve chamber, a second passage through which refrigerant from the valve chamber toward the evaporator passes, and a compressor from the evaporator. A block-shaped valve main body having a third passage through which the refrigerant toward the passage passes, an orifice for depressurizing the high-pressure refrigerant introduced into the valve chamber, a valve body disposed opposite to the orifice, and the valve body A spring that biases the orifice toward the orifice, an operating rod that moves the valve body in a direction away from the orifice, and a power element that drives the operating rod based on the temperature and pressure of the refrigerant on the evaporator outlet side And forming the valve chamber with a bottomed hole and forming a thin wall between the bottomed hole and the second passage, In the state in which the orifice is press-fitted into the bottomed hole, the convex portion formed by punching the wall portion from the outlet side of the second passage is engaged with the concave portion formed in the orifice. An orifice is fixed in the bottomed hole .

この膨張弁によれば、弁本体に形成された有底穴内に、オリフィス、弁体及びばねが配置されており、パワーエレメントが作動棒を介して弁体をオリフィスに対して開閉させることにより、オリフィスに形成されている流体通路を通る流量が制御される。オリフィスは有底穴内において圧入保持されており、更に抜け防止を補強するため、この圧入された状態で、オリフィスに形成されている凹部に、有底穴と第2の通路との間に形成されている薄肉の壁部を第2の通路の出口側からポンチ加工することにより弁本体に形成される凸部を係合させてオリフィスを有底穴内に固定している。オリフィスは、有底穴内において凹部と凸部の係合によって弁作動軸方向への抜け防止が補強されるので、オリフィスを有底穴内に組み付けた状態で位置決めが確実になり、弁体をオリフィスに向かって付勢するばねのばね力は所期の大きさに設定される。 According to this expansion valve, an orifice, a valve body, and a spring are disposed in a bottomed hole formed in the valve body, and the power element opens and closes the valve body with respect to the orifice via the operating rod. The flow rate through the fluid passage formed in the orifice is controlled. The orifice is press-fitted and retained in the bottomed hole, and in order to reinforce the prevention of slipping , the orifice is formed in the recess formed in the orifice between the bottomed hole and the second passage. The thin wall portion is punched from the outlet side of the second passage to engage the convex portion formed on the valve body to fix the orifice in the bottomed hole . Since the orifice is reinforced in the bottomed hole by the engagement of the concave and convex portions, the prevention of slipping in the valve operating axis direction is reinforced, so positioning is ensured with the orifice assembled in the bottomed hole, and the valve body is used as the orifice. The spring force of the spring that is biased toward the spring is set to a desired magnitude.

この膨張弁において、前記凹部は、前記オリフィスの外周に形成された凹溝とすることができる。凹溝が凸部と係合するので、オリフィスは弁動作方向のいずれの方向にも抜け防止が補強される。係合用の凹溝は切削加工等によって容易に且つ安価に形成されるので、コストの上昇を可及的に抑えることができる。オリフィスの外周に形成した溝と凸部とを係合させることにより、有底穴内においてオリフィスの位置決めが確実になる。   In this expansion valve, the concave portion may be a concave groove formed on the outer periphery of the orifice. Since the concave groove engages with the convex portion, the orifice is reinforced to prevent the orifice from coming off in any direction of the valve operation. Since the engaging concave groove is easily and inexpensively formed by cutting or the like, an increase in cost can be suppressed as much as possible. By engaging the groove formed on the outer periphery of the orifice with the convex portion, the positioning of the orifice is ensured in the bottomed hole.

この膨張弁において、前記凹部は、前記オリフィスの外周に形成された段差部とすることができる。段差部は、弁本体側に形成される凸部との間で、オリフィスを付勢するばねの力の方向に対して対抗する方向に係合するように形成される。係合用の段差部は、切削加工等によって容易に且つ安価に形成されるので、コストの上昇を可及的に抑えることができる。オリフィスの外周に形成した段差部と凸部とを係合させることにより、有底穴内においてオリフィスの抜け防止が補強され位置決めが確実になる。   In this expansion valve, the concave portion may be a step portion formed on the outer periphery of the orifice. The step portion is formed to engage with the convex portion formed on the valve body side in a direction opposite to the direction of the force of the spring that biases the orifice. Since the engaging stepped portion is easily and inexpensively formed by cutting or the like, an increase in cost can be suppressed as much as possible. By engaging the step portion and the convex portion formed on the outer periphery of the orifice, the prevention of the orifice from coming off is reinforced in the bottomed hole, and the positioning is ensured.

上記の膨張弁において、前記凸部は、冷媒が通過する通路と前記有底穴を隔絶する壁肉の一部をポンチ加工することによって形成することができる。冷媒が通過する通路と弁有底穴とを隔絶する壁部は、加工容易な程度にまで薄肉にすることができるので、ポンチ加工によって壁肉の一部を打ち出して変形させることで、係合用の凸部を容易に形成することができる。また、そのような壁肉のポンチ加工の際に、冷媒が通過する通路を利用して加工工具を当該加工箇所に進めることができる。   In the above-described expansion valve, the convex portion can be formed by punching a part of the wall that separates the passage through which the refrigerant passes and the bottomed hole. The wall that separates the passage through which the refrigerant passes and the valved bottom hole can be made thin enough to be easily machined. Can be easily formed. Moreover, when punching such a wall, the machining tool can be advanced to the machining location using a passage through which the refrigerant passes.

上記の膨張弁において、前記有底穴内には、前記作動棒の作動を案内するガイド部材が前記オリフィスと一体構成又は別体構成として配置されている。ガイド部材をオリフィスと一体構成する場合には、部品点数を削減し、組み付け工数も少なくすることができる。   In the expansion valve, a guide member for guiding the operation of the operating rod is disposed in the bottomed hole as an integral structure or a separate structure with the orifice. When the guide member is integrated with the orifice, the number of parts can be reduced and the number of assembly steps can be reduced.

この発明による膨張弁は、上記のように、弁本体に形成された有底穴内に、オリフィス、弁体及びばねが配置されており、パワーエレメントが作動棒を介して弁体をオリフィスに対して開閉させることにより、オリフィスに形成されている流体通路を通る流量が制御される。オリフィスが有底穴内において圧入保持されている状態で、有底穴と第2の通路との間に形成されている薄肉の壁部を第2の通路の出口側からポンチ加工することで、弁本体に形成される凸部がオリフィスに形成されている凹部に係合することにより、有底穴内に圧入されているオリフィスの抜け防止を補強し弁作動軸方向の位置決めを確実にすることができる。有底穴内においてオリフィスが組み付けられるときに、弁体をオリフィスに向かって付勢するばねのばね力はオリフィスの位置によって所期の大きさに設定される。したがって、通過する冷媒の流量の制御を決定付けるばねの力を設定するため、弁本体内におけるオリフィスの位置決めを簡単に且つ確実に行うことができる膨張弁を提供することができる。 In the expansion valve according to the present invention, as described above, the orifice, the valve body, and the spring are arranged in the bottomed hole formed in the valve body, and the power element moves the valve body to the orifice via the operating rod. By opening and closing, the flow rate through the fluid passage formed in the orifice is controlled. By punching the thin wall portion formed between the bottomed hole and the second passage from the outlet side of the second passage while the orifice is press-fitted and held in the bottomed hole, By engaging the convex portion formed in the main body with the concave portion formed in the orifice, it is possible to reinforce prevention of the orifice that is press-fitted into the bottomed hole and to ensure positioning in the valve operating axis direction. . When the orifice is assembled in the bottomed hole, the spring force of the spring that urges the valve body toward the orifice is set to an intended magnitude depending on the position of the orifice. Therefore, since the spring force that determines the control of the flow rate of the refrigerant passing therethrough is set, it is possible to provide an expansion valve capable of easily and reliably positioning the orifice in the valve body.

以下、添付した図面に基づいて、この発明による膨張弁の実施例を説明する。図1はこの発明による膨張弁の一実施例の縦断面図、図2は図1に示す膨張弁の右側面図、図3は図1に示す膨張弁の左側面図である。   Hereinafter, embodiments of an expansion valve according to the present invention will be described with reference to the accompanying drawings. 1 is a longitudinal sectional view of an embodiment of the expansion valve according to the present invention, FIG. 2 is a right side view of the expansion valve shown in FIG. 1, and FIG. 3 is a left side view of the expansion valve shown in FIG.

図1〜図3に示す膨張弁1は、配管11で順次接続されているコンプレッサ4で圧縮されてコンデンサ5で凝縮され、更にレシーバ6で回収された高圧の冷媒を蒸発器8へ送る第1通路20及び第2通路24が弁本体2の下部に形成されており、弁本体2の上部に蒸発器(エバポレータ)8からの蒸発した低圧の冷媒がコンプレッサ4へ送られる第3通路26が形成されている。第1通路20と第2通路24との間にこれら通路20,24を連通する有底穴36が形成されており、有底穴36内には、冷媒流量を制御するため、ボール状の弁体30、弁体30を閉鎖方向に付勢するばね34、及びオリフィス40を備えた弁が配設されている。更にまた、弁体30をばね34の付勢力に抗してオリフィス40から離れる開弁方向に作動させるため、弁本体2を上下に貫き且つオリフィス40を貫通する作動棒60と、作動棒60を作動させるパワーエレメント70が備わっている。ばね34によってオリフィス40の方向に付勢されている弁体30は、作動棒60の作動によって開閉作動される。パワーエレメント70は、蒸発器8の出力側の作動流体の圧力に応じて作動棒60を作動させることで、膨張弁1は負荷の大きさに応じて開閉制御される。   The expansion valve 1 shown in FIG. 1 to FIG. 3 is a first one that sends the high-pressure refrigerant compressed by the compressor 4 sequentially connected by the pipe 11, condensed by the condenser 5, and further recovered by the receiver 6 to the evaporator 8. A passage 20 and a second passage 24 are formed in the lower portion of the valve body 2, and a third passage 26 is formed in the upper portion of the valve body 2 to which the low-pressure refrigerant evaporated from the evaporator (evaporator) 8 is sent to the compressor 4. Has been. A bottomed hole 36 for communicating these passages 20, 24 is formed between the first passage 20 and the second passage 24, and a ball-shaped valve is provided in the bottomed hole 36 for controlling the refrigerant flow rate. A valve including a body 30, a spring 34 for urging the valve body 30 in the closing direction, and an orifice 40 is disposed. Furthermore, in order to operate the valve body 30 in the valve opening direction away from the orifice 40 against the urging force of the spring 34, an operation rod 60 that penetrates the valve body 2 up and down and penetrates the orifice 40, and an operation rod 60 are provided. A power element 70 to be activated is provided. The valve body 30 biased in the direction of the orifice 40 by the spring 34 is opened and closed by the operation of the operating rod 60. The power element 70 operates the operating rod 60 according to the pressure of the working fluid on the output side of the evaporator 8, so that the expansion valve 1 is controlled to open and close according to the magnitude of the load.

有底穴36の底方の空間は、弁体30を支持する支持部材32とばね34を収容する弁室22となっており、オリフィス40の通路に接続している。有底穴36の上方の空間は、作動棒60を案内するガイド部材35が配置されており、具体的には有底穴36内に圧入されて、作動棒60の上下方向の動きを案内している。この実施例では、ガイド部材35はオリフィス40とは別部品として構成されている。ガイド部材35とオリフィス40との間に形成される有底穴36の中間の領域は、有底穴36の全幅がオリフィス40の通路を第2通路24に接続する通路38となっている。   A space at the bottom of the bottomed hole 36 serves as a valve chamber 22 that houses a support member 32 that supports the valve body 30 and a spring 34, and is connected to the passage of the orifice 40. In the space above the bottomed hole 36, a guide member 35 for guiding the operating rod 60 is disposed. Specifically, the guide member 35 is press-fitted into the bottomed hole 36 to guide the vertical movement of the operating rod 60. ing. In this embodiment, the guide member 35 is configured as a separate part from the orifice 40. In the middle region of the bottomed hole 36 formed between the guide member 35 and the orifice 40, the entire width of the bottomed hole 36 is a passage 38 that connects the passage of the orifice 40 to the second passage 24.

有底穴36は、弁本体2を貫通することで形成されてはいない。即ち、膨張弁1は、弁本体2に貫通孔が形成される形式の膨張弁のように、貫通孔にねじ調整可能なプラグをねじ込むことで、ばねの圧縮力を調整可能とした形式のものではない。   The bottomed hole 36 is not formed by penetrating the valve body 2. That is, the expansion valve 1 is a type in which the compression force of the spring can be adjusted by screwing a screw-adjustable plug into the through-hole, such as an expansion valve of a type in which a through-hole is formed in the valve body 2. is not.

オリフィス40は、外周に凹部としての凹溝50が形成されている。この例では、凹溝50は環状溝に形成されている。オリフィス40を有底穴36に押し込んでいって所定の深さに圧入させたとき、有底穴36を形成している壁部51のうち凹溝50に対応した部分がポンチ加工によって有底穴36の内側に打ち出されて、変形された凸部52は凹溝50に入り込んでかしめとなる。   The orifice 40 has a groove 50 as a recess formed on the outer periphery. In this example, the concave groove 50 is formed in an annular groove. When the orifice 40 is pushed into the bottomed hole 36 and is press-fitted to a predetermined depth, a portion corresponding to the concave groove 50 in the wall 51 forming the bottomed hole 36 is punched to form a bottomed hole. The convex portion 52 that has been struck and deformed inside 36 enters the concave groove 50 and becomes caulked.

凸部52と凹部50との係合によって、オリフィス40は有底穴36内において上下方向、即ち、作動棒60の作動方向のいずれの方向にも抜け防止が補強され、有底穴36内での位置決めが確実になる。第1通路20及び第2通路24内を流れる冷媒の圧力は高圧であるが、そうした圧力がオリフィス40に作用しても、オリフィス40の有底穴36からの抜け防止が得られる。壁部51は、第2通路24と有底穴36との間を隔絶する壁部であり、設計によってポンチ加工が可能な程度にまで薄肉に形成することができる。ポンチ加工は第2通路24を利用して行うことができる。即ち、ポンチ等の工具を第2通路24の開口側から挿入して、壁部51を加工することができる。   Due to the engagement between the convex portion 52 and the concave portion 50, the orifice 40 is reinforced in the bottomed hole 36 in the vertical direction, that is, in any direction of the operating direction of the operating rod 60. The positioning of the is ensured. Although the pressure of the refrigerant flowing in the first passage 20 and the second passage 24 is high, even if such pressure acts on the orifice 40, it is possible to prevent the orifice 40 from coming out from the bottomed hole 36. The wall 51 is a wall that separates the second passage 24 and the bottomed hole 36, and can be formed thin enough to be punched by design. The punching can be performed using the second passage 24. That is, the wall 51 can be processed by inserting a tool such as a punch from the opening side of the second passage 24.

膨張弁1では下側に開いてねじ止めされるような孔が形成されていないので、膨張弁1の組立に際して、ばね34、支持部材32及び弁体30は、この順で上側から有底穴36内に落とし込む構成となっている。これらの部品の加工精度は、予め高めておくことで、バラツキが所定の範囲内に収まるように定められる。オリフィス40の有底穴36内での位置決めを行うことで、ばね34の荷重を含めて自動的に所期の組付け精度が得られる。   Since the expansion valve 1 is not formed with a hole that opens downward and is screwed, when assembling the expansion valve 1, the spring 34, the support member 32, and the valve body 30 are bottomed holes from the upper side in this order. It is configured to drop into 36. The machining accuracy of these parts is determined in advance so that the variation is within a predetermined range. By positioning the orifice 40 in the bottomed hole 36, the desired assembly accuracy including the load of the spring 34 is automatically obtained.

図4はこの発明による膨張弁の別の実施例を示す縦断面図である。側面図は、図2及び図3と同様であるので、図示を省略する。図4に示す膨張弁1aでは、オリフィス40とガイド部材35が一体となった一体部品41として構成されている。第1実施例における通路38に相当する部分は、一体部品41に径方向に貫通して形成される孔通路44として形成されている。この実施例の場合、孔通路44が第2通路24と整列するように、一体部品41の有底穴36内での向きに注意する必要がある。   FIG. 4 is a longitudinal sectional view showing another embodiment of the expansion valve according to the present invention. Since the side view is the same as FIGS. 2 and 3, the illustration is omitted. The expansion valve 1a shown in FIG. 4 is configured as an integral part 41 in which the orifice 40 and the guide member 35 are integrated. A portion corresponding to the passage 38 in the first embodiment is formed as a hole passage 44 formed through the integral part 41 in the radial direction. In this embodiment, it is necessary to pay attention to the orientation of the integral part 41 in the bottomed hole 36 so that the hole passage 44 is aligned with the second passage 24.

図5には、この発明による膨張弁の他の実施例が部分図とし示されている。この例では、凹部は、オリフィス45の外周に形成された段差部55で形成された凹部である。有底穴36の壁部の変形による係合は、実施例1と同様である。ポンチによって打ち出された凸部52が段差部55に係合する。段差部55は、オリフィス45の下側が大径部56となり、上側が小径部57となる構造であり、オリフィス45が弁体30を介して付勢される方向(図で上方向)のばね力に対して、凸部52との係合で対抗できるように形成されている。   FIG. 5 shows a partial view of another embodiment of the expansion valve according to the present invention. In this example, the concave portion is a concave portion formed by a stepped portion 55 formed on the outer periphery of the orifice 45. The engagement by the deformation of the wall portion of the bottomed hole 36 is the same as in the first embodiment. The convex part 52 struck by the punch engages with the step part 55. The step portion 55 has a structure in which the lower side of the orifice 45 becomes the large diameter portion 56 and the upper side becomes the small diameter portion 57, and the spring force in the direction in which the orifice 45 is urged through the valve body 30 (upward in the drawing). On the other hand, it is formed so that it can be countered by engagement with the convex portion 52.

本発明による膨張弁では、オリフィス40,45の有底穴36における確実な位置決めを、オリフィスに形成した凹部と、ポンチ加工のような簡単な有底穴36の壁面変形によって形成される凸部との係合によって簡単に得ることができる。また、オリフィスを位置決めしたそのときのばねの設定強さ等についても、自動的に簡単に得られるので、膨張弁を更に低コストで製作することができる。   In the expansion valve according to the present invention, reliable positioning of the orifices 40 and 45 in the bottomed hole 36 is performed by a concave portion formed in the orifice, and a convex portion formed by simple wall surface deformation of the bottomed hole 36 such as punching. It can be easily obtained by engagement. Further, since the setting strength of the spring at the time of positioning the orifice can be obtained automatically and easily, the expansion valve can be manufactured at a lower cost.

この発明による膨張弁の一実施例の縦断面図である。It is a longitudinal cross-sectional view of one Example of the expansion valve by this invention. 図1に示す膨張弁の右側面図である。It is a right view of the expansion valve shown in FIG. 図1に示す膨張弁の左側面図である。It is a left view of the expansion valve shown in FIG. この発明による膨張弁の別の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another Example of the expansion valve by this invention. この発明による膨張弁の他の実施例を示す部分図である。It is a fragmentary figure which shows the other Example of the expansion valve by this invention.

符号の説明Explanation of symbols

1,1a 膨張弁 2 弁本体
4 コンプレッサ 5 コンデンサ
6 レシーバ 8 蒸発
11 配管
20 第1通路 24 第2通路
26 第3通路 30 弁体
32 支持部材 34 ばね
35 ガイド部材 36 有底穴
38 通路 40 オリフィス
41 一体部品 44 孔通路
45 オリフィス
50 凹部 51 壁部
52 凸部 55 段差部
56 大径部 57 小径部
60 作動棒 61 下端部
62 肩部
70 パワーエレメント
1, 1a Expansion valve 2 Valve body 4 Compressor 5 Condenser 6 Receiver 8 Evaporation 11 Pipe 20 First passage 24 Second passage 26 Third passage 30 Valve body 32 Support member 34 Spring 35 Guide member 36 Bottomed hole 38 Passage 40 Orifice 41 Integral part 44 Hole passage 45 Orifice 50 Concave part 51 Wall part 52 Convex part 55 Step part 56 Large diameter part 57 Small diameter part 60 Actuator 61 Lower end part 62 Shoulder part 70 Power element

Claims (5)

コンデンサで凝縮した高圧冷媒を弁室内に導入する第1通路、前記弁室からエバポレータへ向かう冷媒が通過する第2通路及び前記エバポレータからコンプレッサへ向かう冷媒が通過する第3通路を有するブロック状の弁本体と、前記弁室内に導入される前記高圧冷媒を減圧するオリフィスと、該オリフィスに対向して配置された弁体と、該弁体を前記オリフィスに向けて付勢するばねと、前記弁体を前記オリフィスから離間する方向に移動させる作動棒と、前記エバポレータ出口側の冷媒の温度及び圧力に基づいて前記作動棒を駆動するパワーエレメントとを備えた膨張弁であって、
前記弁室を有底穴により形成するとともに該有底穴と前記第2の通路との間に薄肉の壁部を形成し、前記オリフィスが前記有底穴内に圧入された状態で前記第2の通路の出口側から前記壁部をポンチ加工することにより形成される凸部を前記オリフィスに形成された凹部に係合させて前記オリフィスを前記有底穴内に固定することを特徴とする膨張弁。
A block-shaped valve having a first passage for introducing high-pressure refrigerant condensed by a condenser into the valve chamber, a second passage through which the refrigerant from the valve chamber to the evaporator passes, and a third passage through which the refrigerant from the evaporator to the compressor passes. A main body, an orifice that depressurizes the high-pressure refrigerant introduced into the valve chamber, a valve body disposed opposite the orifice, a spring that biases the valve body toward the orifice, and the valve body An expansion valve comprising: an operating rod that moves the operating rod away from the orifice; and a power element that drives the operating rod based on the temperature and pressure of the refrigerant on the evaporator outlet side,
The valve chamber is formed by a bottomed hole and a thin wall portion is formed between the bottomed hole and the second passage, and the orifice is press-fitted into the bottomed hole. An expansion valve characterized in that a convex portion formed by punching the wall portion from an outlet side of a passage is engaged with a concave portion formed in the orifice to fix the orifice in the bottomed hole .
前記凹部は、前記オリフィスの外周に形成された凹溝であることを特徴とする請求項1に記載の膨張弁。   The expansion valve according to claim 1, wherein the concave portion is a concave groove formed on an outer periphery of the orifice. 前記凹部は、前記オリフィスの外周に形成された段差部であることを特徴とする請求項1に記載の膨張弁。   The expansion valve according to claim 1, wherein the concave portion is a stepped portion formed on an outer periphery of the orifice. 前記有底穴内に前記作動棒を案内するガイド部材が設けられていることを特徴とする請求項1記載の膨張弁。 The expansion valve according to claim 1 , wherein a guide member for guiding the operating rod is provided in the bottomed hole . 前記ガイド部材が前記オリフィスと一体的に形成されていることを特徴とする請求項4記載の膨張弁。 The expansion valve according to claim 4, wherein the guide member is formed integrally with the orifice .
JP2005346109A 2005-11-30 2005-11-30 Expansion valve Active JP4727400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346109A JP4727400B2 (en) 2005-11-30 2005-11-30 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346109A JP4727400B2 (en) 2005-11-30 2005-11-30 Expansion valve

Publications (3)

Publication Number Publication Date
JP2007147241A JP2007147241A (en) 2007-06-14
JP2007147241A5 JP2007147241A5 (en) 2008-12-18
JP4727400B2 true JP4727400B2 (en) 2011-07-20

Family

ID=38208839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346109A Active JP4727400B2 (en) 2005-11-30 2005-11-30 Expansion valve

Country Status (1)

Country Link
JP (1) JP4727400B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171995U (en) * 1988-05-24 1989-12-06
JP2004053181A (en) * 2002-07-23 2004-02-19 Fuji Koki Corp Expansion valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171995A (en) * 1987-12-28 1989-07-06 Hiroshi Kawaguchi Compass used also for measure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171995U (en) * 1988-05-24 1989-12-06
JP2004053181A (en) * 2002-07-23 2004-02-19 Fuji Koki Corp Expansion valve

Also Published As

Publication number Publication date
JP2007147241A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4706372B2 (en) Thermal expansion valve
JP6142181B2 (en) Expansion valve and anti-vibration spring
JP4504243B2 (en) Control valve for variable displacement compressor
JP5906371B2 (en) Expansion valve and anti-vibration spring
JP6053543B2 (en) Thermal expansion valve
JP2017025975A (en) Pressure operation valve and refrigeration cycle
JP2008138812A (en) Differential pressure valve
JP2006291933A (en) Control valve for variable displacement compressor
JP6143500B2 (en) Thermal expansion valve
JP6040374B2 (en) Compound valve
JP6007369B2 (en) Control valve
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP6402314B2 (en) Expansion valve
KR101054056B1 (en) Expansion valve
JP4727400B2 (en) Expansion valve
KR20050054842A (en) Expansion valve
JP4721881B2 (en) Thermal expansion valve
JP6194452B2 (en) Expansion valve
JP6340742B2 (en) solenoid valve
JP2007178066A (en) Expansion valve
JP2005331166A (en) Expansion valve
JP2007263530A (en) Expansion valve
JP2014066376A (en) Control valve
JP2013185753A (en) Expansion valve
JP2015132302A (en) control valve and seat member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250