JP4721881B2 - Thermal expansion valve - Google Patents

Thermal expansion valve Download PDF

Info

Publication number
JP4721881B2
JP4721881B2 JP2005341032A JP2005341032A JP4721881B2 JP 4721881 B2 JP4721881 B2 JP 4721881B2 JP 2005341032 A JP2005341032 A JP 2005341032A JP 2005341032 A JP2005341032 A JP 2005341032A JP 4721881 B2 JP4721881 B2 JP 4721881B2
Authority
JP
Japan
Prior art keywords
orifice
valve
valve body
expansion valve
operating rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005341032A
Other languages
Japanese (ja)
Other versions
JP2007147147A5 (en
JP2007147147A (en
Inventor
和人 小林
和彦 渡辺
毅 児山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2005341032A priority Critical patent/JP4721881B2/en
Priority to CN2006101445493A priority patent/CN1971109B/en
Publication of JP2007147147A publication Critical patent/JP2007147147A/en
Publication of JP2007147147A5 publication Critical patent/JP2007147147A5/ja
Application granted granted Critical
Publication of JP4721881B2 publication Critical patent/JP4721881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Description

この発明は、空調装置の蒸発器(エバポレータ)に供給される冷媒の流量制御に用いられる温度式膨張弁に関する。 The present invention relates to a temperature type expansion valve used for controlling the flow rate of refrigerant supplied to an evaporator of an air conditioner.

従来、ルームエアコンやカーエアコンのような空気調和装置や冷凍装置に用いられる冷凍サイクルにおいては、負荷の大きさに応じて変化する蒸発器(エバポレータ)の出口側の冷媒圧力に基づいて、蒸発器の流量が制御されている。この種の膨張弁においては、膨張弁を構成する部品の精度のバラツキが存在することに起因して、部品の組み立て後に弁体を閉弁方向に付勢するばね力を調整ねじのねじ動作によって調整・設定することで流量制御の調整を行う調整式の膨張弁と、ばねの調整を行うねじを設けることなく、部品の精度のバラツキを極力排除して部品の組み付け時に所期の精度を確保する膨張弁とが、それぞれ提案されている。
特開2005−249273号公報
Conventionally, in a refrigeration cycle used in an air conditioner or refrigeration apparatus such as a room air conditioner or a car air conditioner, the evaporator is based on the refrigerant pressure on the outlet side of the evaporator (evaporator) that changes according to the load. The flow rate is controlled. In this type of expansion valve, due to the variation in accuracy of the components that make up the expansion valve, the spring force that urges the valve body in the valve closing direction after assembly of the components is adjusted by the screw operation of the adjusting screw. Adjustable and adjustable flow rate control by adjusting and setting, and without adjusting screws to adjust the springs, eliminating variations in component accuracy as much as possible to ensure the desired accuracy when assembling components An expansion valve is proposed.
JP 2005-249273 A

図4は、従来技術に係る膨張弁の縦断面図である。全体を符号200で示す膨張弁のハウジングを構成する弁本体210の下部側には、空調装置の圧縮機側から送られてくる高圧の冷媒を受け入れる第1の通路220が形成される。   FIG. 4 is a longitudinal sectional view of an expansion valve according to the prior art. A first passage 220 for receiving a high-pressure refrigerant sent from the compressor side of the air conditioner is formed on the lower side of the valve main body 210 that constitutes the housing of the expansion valve, indicated as a whole by reference numeral 200.

第1の通路220は、有底の穴であって、その底部近傍は弁室222が形成される。弁室222は、弁本体210内に第1の通路220と垂直に形成された絞り通路を形成する穴216に圧入される弁座部材211を介して第1の通路220と平行に弁本体210内に形成された第2の通路226に連通し、第2の通路226は蒸発器側へ冷媒を送出する。弁本体210の上部側には、第2の通路226に平行して設けられる第3の通路228が形成される。第3の通路228は、弁本体210を貫通し、蒸発器側から圧縮機側へ戻る冷媒が通過する。   The first passage 220 is a hole with a bottom, and a valve chamber 222 is formed in the vicinity of the bottom. The valve chamber 222 is parallel to the first passage 220 through a valve seat member 211 that is press-fitted into a hole 216 that forms a throttle passage formed perpendicularly to the first passage 220 in the valve body 210. The second passage 226 communicates with the second passage 226 formed therein, and sends the refrigerant to the evaporator side. A third passage 228 provided in parallel with the second passage 226 is formed on the upper side of the valve body 210. The third passage 228 passes through the valve main body 210 and passes through the refrigerant returning from the evaporator side to the compressor side.

弁室222内には、球形の弁体230が第1の通路220の上流側から絞り通路に対向配設され、弁体230は作動棒232の下端と溶接により固着されている。作動棒232は、弁本体210の縦穴214内を摺動し、作動棒232に設けられるシール部材234が第2の通路226と第3の通路228の間のシールを形成する。作動棒232は、弁本210の穴212を貫通し、その上端236はストッパ部材240に当接される。 A spherical valve body 230 is disposed in the valve chamber 222 so as to face the throttle passage from the upstream side of the first passage 220, and the valve body 230 is fixed to the lower end of the operating rod 232 by welding. The operating rod 232 slides in the vertical hole 214 of the valve body 210, and a seal member 234 provided on the operating rod 232 forms a seal between the second passage 226 and the third passage 228. Actuation rod 232 extends through a hole 212 of the valve the body 210, the upper end 236 is brought into contact with the stopper member 240.

全体を符号260で示すパワーエレメントは、上蓋263と下蓋263’とからなるキャン体262を有し、キャン体262は下蓋263’のねじ部264により本体210の上端に螺合されると共にストッパ部材240はその周辺部が下蓋263’により支持される。キャン体262には、ダイアフラム266が設けられ、その周辺部は上蓋263と下蓋263’とによって挟み込まれており、溶接により共に固着され、上部圧力室268と下部圧力室269が形成される。上部圧力室268内には作動流体例えば冷媒が充填され栓体270により封止される。   A power element generally indicated by reference numeral 260 has a can body 262 composed of an upper lid 263 and a lower lid 263 ′, and the can body 262 is screwed onto the upper end of the main body 210 by a screw portion 264 of the lower lid 263 ′. The periphery of the stopper member 240 is supported by the lower lid 263 ′. The can body 262 is provided with a diaphragm 266, and its peripheral portion is sandwiched between an upper lid 263 and a lower lid 263 ′, and is fixed together by welding to form an upper pressure chamber 268 and a lower pressure chamber 269. The upper pressure chamber 268 is filled with a working fluid such as a refrigerant and sealed with a plug 270.

ストッパ部材240の上面はダイアフラム266に当接し、ストッパ部材240の下面に当接する作動棒232の上端236の段部と穴212を形成する弁本体210の突起部213との間には、コイルスプリング242が配設され、そのばね力は作動棒230を介してストッパ部材240を上部圧力室268側に向けて付勢する。ストッパ部材240の下面は凹部241が形成され、凹部241の底面と作動棒232の上端236が当接する。   The upper surface of the stopper member 240 is in contact with the diaphragm 266, and a coil spring is provided between the step portion of the upper end 236 of the operating rod 232 that contacts the lower surface of the stopper member 240 and the protrusion 213 of the valve body 210 that forms the hole 212. 242 is provided, and the spring force urges the stopper member 240 toward the upper pressure chamber 268 via the operating rod 230. A concave portion 241 is formed on the lower surface of the stopper member 240, and the bottom surface of the concave portion 241 comes into contact with the upper end 236 of the operating rod 232.

第3の通路228を通過する蒸発器側から圧縮機側へ戻る冷媒は、弁本体210の穴212を通ってストッパ部材240の下面に圧力を伝達する。作動棒232は、感温部材として機能して、第3の通路228を通過する冷媒の温度をストッパ部材240、ダイアフラム266を介して上部圧力室268内の作動流体に伝達する。上部圧力室268内の圧力とストッパ部材240の下面に作用する圧力とつり合う位置に作動棒232は変位して弁体230により絞り通路の開口面積を調整して、第1の通路220を通過し、第2勇路226から蒸発器側へ送り出される冷媒の流量を制御する。 Refrigerant returning to the compressor side from the steam Hatsuki side passing through the third passageway 228, transmits the pressure to the lower surface of the stopper member 240 through the hole 212 of the valve body 210. The operating rod 232 functions as a temperature sensing member, and transmits the temperature of the refrigerant passing through the third passage 228 to the working fluid in the upper pressure chamber 268 via the stopper member 240 and the diaphragm 266. The operating rod 232 is displaced to a position where the pressure in the upper pressure chamber 268 and the pressure acting on the lower surface of the stopper member 240 are balanced, and the opening area of the throttle passage is adjusted by the valve body 230 and passes through the first passage 220. The flow rate of the refrigerant sent out from the second Yuro 226 to the evaporator side is controlled.

このように、無調整式の膨張弁においては、調整用のねじが不要になるので、部品点数が少なくなるとともに組み付け工程も簡素化され、コストダウンに大きく寄与できる。しかしながら、当該膨張弁においては更なるコストダウンが求められており、部品点数等を更に削減して、構造を簡単にする点でなお一層の改善が求められている。   As described above, in the non-adjustable expansion valve, the adjustment screw is not necessary, so that the number of parts is reduced and the assembly process is simplified, which can greatly contribute to cost reduction. However, the expansion valve is required to further reduce the cost, and further improvement is required in terms of further reducing the number of components and simplifying the structure.

そこで、膨張弁の弁機構において、流量を制御するニードルとオリフィスとの配置に工夫を凝らして、部品点数を更に削減する点で解決すべき課題がある。   Therefore, in the valve mechanism of the expansion valve, there is a problem to be solved in that the number of parts is further reduced by devising the arrangement of the needle and the orifice for controlling the flow rate.

この発明の目的は、従来の温度式膨張弁に用いられていたオリフィスの開閉用の弁体としてのボールとその押えとしての支持部材とを不要として、部品点数が少なく、構造簡単であり且つ組立工数も少なく、製造コストを低減可能な温度式膨張弁を提供することある。 An object of the present invention is that a ball as a valve body for opening and closing an orifice and a supporting member as a presser used in a conventional temperature type expansion valve are not required, the number of parts is small, the structure is simple, and the assembly is performed. An object of the present invention is to provide a temperature expansion valve that can be manufactured in a small number of steps and can reduce the manufacturing cost.

上記の課題を解決するため、この発明による温度式膨張弁は、コンデンサで凝縮した高圧冷媒が導入される弁室を有する弁本体と、前記弁室内に設けられたオリフィスと、前記オリフィスに対向配置された弁体と、前記オリフィスと前記弁体との間を通過する冷媒の流量を変化させる作動棒と、エバポレータ出口側の冷媒の温度及び圧力に基づいて前記作動棒を駆動するパワーエレメントとを備えた温度式膨張弁であって、前記弁室を有底穴により形成し、前記弁体の先端部をニードル状に形成するとともに前記弁体を前記有底穴内に固定し、前記オリフィスを前記弁体の先端部に対して接離自在に設け、前記作動棒により前記オリフィスを移動させるようにしたことを特徴としている。 In order to solve the above problems, a temperature type expansion valve according to the present invention includes a valve body having a valve chamber into which a high-pressure refrigerant condensed by a condenser is introduced, an orifice provided in the valve chamber , and an opposed arrangement to the orifice. A valve element, an operating rod for changing the flow rate of the refrigerant passing between the orifice and the valve body, and a power element for driving the operating rod based on the temperature and pressure of the refrigerant on the evaporator outlet side. A temperature-type expansion valve provided, wherein the valve chamber is formed by a bottomed hole, the tip of the valve body is formed in a needle shape, the valve body is fixed in the bottomed hole, and the orifice is It is characterized in that it is provided so as to be able to contact with and separate from the tip of the valve body, and the orifice is moved by the operating rod .

この温度式膨張弁によれば、弁作動時に作動棒を操作すると、作動棒はその先端側でオリフィスを押してオリフィスを弁室内で移動させ、有底穴に固定されている弁体の先端部との間の距離を変更する。これによりとオリフィスとの間の流路面積が変更されて、膨張弁を通過する作動流体の流量を変更することができる。 According to this temperature type expansion valve, when the operating rod is operated when the valve is operated, the operating rod pushes the orifice on the tip side to move the orifice in the valve chamber, and the tip of the valve body fixed to the bottomed hole Change the distance between the parts . Thereby, the flow passage area between the valve body and the orifice is changed, and the flow rate of the working fluid passing through the expansion valve can be changed.

上記温度式膨張弁において、前記弁体には、前記作動棒を案内するガイド孔を形成することができる。有底穴に取り付けられている弁体に貫通孔を形成するなどして、作動棒が移動するときの案内となるガイド孔を形成することができ、この案内によって、長尺作動棒の作動を安定させることができる。 In the thermal expansion valve, before Kibentai, it is possible to form a guide hole for guiding the actuating rod. And the like to form an attached have the Rubentai through holes in the bottomed hole, the actuating bar can form a guide to become guide hole when moving, by the guide, the operation of the operation rod of the long Can be stabilized.

上記温度式膨張弁において、前記弁体は、前記有底穴内に圧入されるか又は前記有底穴の壁部をポンチ加工することにより前記有底穴に固定することができる。弁体の有底穴への取付けを圧入やポンチ加工又は圧入とポンチ加工両方を行うことにより、弁体の取り付けを安価な工程で行うことができる。 In the above-described temperature type expansion valve, the valve body can be fixed to the bottomed hole by being press-fitted into the bottomed hole or punching a wall portion of the bottomed hole . By attaching the valve body to the bottomed hole by press-fitting, punching, or both press-fitting and punching, the valve body can be attached by an inexpensive process.

上記温度式膨張弁において、前記オリフィスは、有底筒状に形成されるとともに前記有底穴に摺動可能に嵌装され、前記作動棒の一端が前記オリフィスに挿入されるとともに前記オリフィスの内底面に当接しており、且つ前記オリフィス内に冷媒を導入する通過孔が前記オリフィスに形成されている構成とすることができる。更に、上記温度式膨張弁において、前記オリフィスの外周部に前記有底穴の内周面に摺接するOリングが嵌着されている構成とすることができる。 In the temperature type expansion valve, the orifice is formed in a bottomed cylindrical shape and is slidably fitted in the bottomed hole, and one end of the operating rod is inserted into the orifice and the inside of the orifice It can be set as the structure by which the through-hole which contact | abuts to the bottom face and introduces a refrigerant | coolant in the said orifice is formed in the said orifice . Further, in the temperature type expansion valve, an O-ring that is in sliding contact with the inner peripheral surface of the bottomed hole may be fitted to the outer peripheral portion of the orifice .

この発明は、上記のように構成されているので、従来、必要であったオリフィスを開閉する弁体としてのボールと、当該ボールを支持する支持部材とを不要とすることができ、部品点数と組立工数の削減と製造コストに低下とに寄与することができる。また、従来のものはボールがばねで付勢されていることによって、振動の原因となるが、この発明によれば、弁体を固定としオリフィスを可動とすることにより、振動しやすい部材が存在せず、異音の発生防止の効果もある。 The present invention, which is configured as described above, conventionally, it is possible to the ball as a valve body for opening and closing the orifice was necessary, and a support member for supporting the balls unnecessary, and the number of parts This can contribute to a reduction in assembly man-hours and a reduction in manufacturing costs. In addition, the conventional one causes vibration due to the ball being urged by a spring. However, according to the present invention, there is a member that easily vibrates by fixing the valve body and moving the orifice. Without any abnormal noise.

以下、添付した図面に基づいてこの発明による膨張弁の実施例を説明する。図1はこの発明による膨張弁の一例を示す縦断面図、図2は図1に示す膨張弁の要部拡大図である。本実施例における膨張弁の基本的な構成は、図4に基づいて説明した従来の膨張弁と変わるところはないので、詳細については再度の説明を省略する。   Hereinafter, embodiments of the expansion valve according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing an example of an expansion valve according to the present invention, and FIG. 2 is an enlarged view of a main part of the expansion valve shown in FIG. The basic configuration of the expansion valve in the present embodiment is not different from the conventional expansion valve described with reference to FIG.

図1に示す膨張弁1は、基本的に、弁本体2の下部にコンデンサ5で凝縮されレシーバ6で回収された高圧の冷媒を配管11を通じて蒸発器8へ送る第1通路20及び第2通路24が形成されており、弁本体2の上部に蒸発器8からの蒸発した低圧の冷媒がコンプレッサ4へ送る第3通路26が形成されており、第1通路20と第2通路24との間にこれら通路20,24を連通する有底穴36が形成されている。有底穴36内には、冷媒流量を制御するため、ニードル弁30、オリフィス40、及びオリフィス40をニードル弁30に対して閉鎖方向に付勢するばね34を備えた弁機構が配設されている。更にまた、オリフィス40をばね34の付勢力に抗してニードル弁30から離れる開弁方向に作動させるため、弁本体2を上下に貫いて配置されている作動棒60と、作動棒60を作動させるパワーエレメント70とを備えている。   The expansion valve 1 shown in FIG. 1 basically includes a first passage 20 and a second passage that send high-pressure refrigerant condensed by a condenser 5 and recovered by a receiver 6 to the evaporator 8 through a pipe 11 at a lower portion of a valve body 2. 24 is formed, and a third passage 26 through which the low-pressure refrigerant evaporated from the evaporator 8 is sent to the compressor 4 is formed in the upper portion of the valve body 2, and between the first passage 20 and the second passage 24. A bottomed hole 36 is formed through the passages 20 and 24. In the bottomed hole 36, a valve mechanism including a needle valve 30, an orifice 40, and a spring 34 that biases the orifice 40 in the closing direction with respect to the needle valve 30 is disposed in order to control the refrigerant flow rate. Yes. Furthermore, in order to operate the orifice 40 in the valve opening direction away from the needle valve 30 against the urging force of the spring 34, the operating rod 60 disposed through the valve body 2 vertically and the operating rod 60 are operated. The power element 70 is provided.

膨張弁1においては、オリフィス40は、弁本体2内に形成された有底穴36に移動自在に設けられている。オリフィス40は、図2に要部を拡大して示すように、有底穴36に摺動可能に嵌装される筒部41と、筒部41と接続しており流体の通過を許容する複数の通過孔45が形成されている底部42とから成り、全体としてカップ状に形成されている。筒部41においては、一端(図で上方端)でニードル弁30の円錐状の先端部が嵌入可能である。底部42においては、作動棒60の先端部61が当接可能になっている。   In the expansion valve 1, the orifice 40 is movably provided in a bottomed hole 36 formed in the valve body 2. As shown in an enlarged view of the main part in FIG. 2, the orifice 40 has a cylindrical part 41 slidably fitted in the bottomed hole 36, and a plurality of orifices 40 that are connected to the cylindrical part 41 and allow passage of fluid. And a bottom portion 42 in which a passage hole 45 is formed, and is formed in a cup shape as a whole. In the cylinder part 41, the conical tip part of the needle valve 30 can be fitted at one end (the upper end in the figure). In the bottom part 42, the front-end | tip part 61 of the action | operation rod 60 can contact | abut.

ニードル弁30には、図で上下方向に貫通孔を形成するなどして、作動棒60を案内するガイド孔31が形成されている。長尺な作動棒60はその移動時にガイド孔31によって案内されるので、作動棒60作動を安定させることができる。ニードル弁30は、有底穴36に対して圧入されて固定的に取り付けられている。ニードル弁30の円錐状の先端部32が嵌入する程度に応じて流れる冷媒の流量を可変としている。   In the needle valve 30, a guide hole 31 for guiding the operating rod 60 is formed by forming a through hole in the vertical direction in the figure. Since the long operating rod 60 is guided by the guide hole 31 during the movement, the operation of the operating rod 60 can be stabilized. The needle valve 30 is press-fitted into the bottomed hole 36 and fixedly attached. The flow rate of the refrigerant flowing according to the degree to which the conical tip portion 32 of the needle valve 30 is fitted is variable.

オリフィス40と有底穴36との間を液密にするため、オリフィス40の外周に形成された環状溝43内にOリング44が嵌め込まれている。Oリング44は、有底穴36に対して摺接することにより、オリフィス40の振動抑制にも寄与している。底部42においては、流体の通過を許容する複数の通過孔45が2〜複数個の適当な数だけ形成されており、中央部分46には貫通孔45が形成されておらず、作動棒60の先端部61が当接可能となっている。作動棒60は先端部61でオリフィス40をばね34の付勢力に抗して押し下げると、オリフィス40はニードル弁30から離れる開弁方向に移動する。作動棒60を引き上げる方向に動作させると、オリフィス40はばね34の付勢力によって有底穴36内をニードル弁30に接近する閉弁方向に移動する。このように、作動棒60を操作することで、有底穴36に取り付けられているニードル弁30とオリフィス40との間の距離が変更でき、ニードル弁30とオリフィス40との間の流路面積が変更されて、膨張弁1を通過する作動流体の流量を変更することができる。   In order to make the space between the orifice 40 and the bottomed hole 36 liquid-tight, an O-ring 44 is fitted in an annular groove 43 formed on the outer periphery of the orifice 40. The O-ring 44 contributes to suppression of the vibration of the orifice 40 by making sliding contact with the bottomed hole 36. In the bottom portion 42, a plurality of two or more appropriate numbers of passage holes 45 that allow the passage of fluid are formed, and the through hole 45 is not formed in the central portion 46. The tip portion 61 can come into contact. When the operating rod 60 pushes down the orifice 40 against the urging force of the spring 34 at the distal end portion 61, the orifice 40 moves in the valve opening direction away from the needle valve 30. When the operating rod 60 is moved in the direction of pulling up, the orifice 40 is moved in the closed direction toward the needle valve 30 in the bottomed hole 36 by the biasing force of the spring 34. In this way, by operating the operating rod 60, the distance between the needle valve 30 attached to the bottomed hole 36 and the orifice 40 can be changed, and the flow path area between the needle valve 30 and the orifice 40 can be changed. Is changed, and the flow rate of the working fluid passing through the expansion valve 1 can be changed.

図1に示す実施例によれば、オリフィス40との流路面積を変更するためのボールやその押えとしての支持部材が不必要となっており、部品点数を低下させることができる。また、オリフィス40はばね34で付勢されているが、有底穴36に対してはOリングで摺動しているので、オリフィス40の振動が抑制される。また、その他にも、振動する要素が存在しないので、異音が発生せず、作動中の騒音レベルを低下させることができる。   According to the embodiment shown in FIG. 1, a ball for changing the flow path area with the orifice 40 and a supporting member as a presser thereof are unnecessary, and the number of parts can be reduced. Although the orifice 40 is biased by the spring 34, the orifice 40 is slid with respect to the bottomed hole 36 by the O-ring, so that the vibration of the orifice 40 is suppressed. In addition, since there is no vibrating element, no abnormal noise is generated, and the noise level during operation can be reduced.

図3は、この発明による膨張弁の別の実施例をその要部について示す断面図である。図1に示す実施例に用いられている部材及び部位と同等のものには、同じ符号を付すことで、再度の説明を省略する。図3に示す実施例では、ニードル弁38は、有底穴36内に圧入されるとともに、有底穴36の壁部37をポンチ加工することにより、かしめ39にて取り付けられている。ニードル弁38の有底穴36への取付けを圧入とポンチ加工とで行うことにより、ニードル弁38の取り付けは安価でありながら確実となり、ニードル弁38の有底穴36からの抜け止めを果たす。   FIG. 3 is a cross-sectional view showing an essential part of another embodiment of the expansion valve according to the present invention. Components equivalent to those used in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In the embodiment shown in FIG. 3, the needle valve 38 is press-fitted into the bottomed hole 36 and is attached by caulking 39 by punching the wall portion 37 of the bottomed hole 36. By attaching the needle valve 38 to the bottomed hole 36 by press-fitting and punching, the needle valve 38 is securely attached at a low cost, and prevents the needle valve 38 from coming out of the bottomed hole 36.

作動棒60の振動を抑えるため、有底穴36に防振ばね62を設けることができる。しかしながら、オリフィス40の振動が非常に小さく抑えられているので、防振ばね62を取り除くことも可能である。作動棒60の先端部61は他の部分と比較して径を絞って形成されており、オリフィス40の底部42に形成される通過孔45との干渉を排除することができる。   In order to suppress the vibration of the operating rod 60, a vibration-proof spring 62 can be provided in the bottomed hole 36. However, since the vibration of the orifice 40 is suppressed to be very small, the anti-vibration spring 62 can be removed. The distal end portion 61 of the operating rod 60 is formed with a reduced diameter as compared with other portions, and interference with the passage hole 45 formed in the bottom portion 42 of the orifice 40 can be eliminated.

この発明による膨張弁の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the expansion valve by this invention. 図1に示す膨張弁の要部拡大図である。It is a principal part enlarged view of the expansion valve shown in FIG. この発明による膨張弁の別の実施例をその要部について示す断面図である。It is sectional drawing which shows another Example of the expansion valve by this invention about the principal part. 従来の無調整式膨張弁の一例を示す図である。It is a figure which shows an example of the conventional non-adjustable expansion valve.

符号の説明Explanation of symbols

1 膨張弁 2 弁本体
4 コンプレッサ 5 コンデンサ
6 レシーバ
8 蒸発器(エバポレータ) 11 配管
20 第1通路 24 第2通路
26 第3通路
30 ニードル弁 31 ガイド孔
32 先端部
34 ばね 36 有底穴
37 壁部 38 ニードル弁
39 かしめ
40 オリフィス 41 筒部
42 底部 43 環状溝
44 Oリング 45 通過孔
46 中央部分
60 作動棒 61 先端部
62 防振ばね
70 パワーエレメント
DESCRIPTION OF SYMBOLS 1 Expansion valve 2 Valve body 4 Compressor 5 Condenser 6 Receiver 8 Evaporator (Evaporator) 11 Piping 20 1st passage 24 2nd passage 26 3rd passage 30 Needle valve 31 Guide hole 32 Tip part 34 Spring 36 Bottomed hole 37 Wall part 38 Needle valve 39 Caulking 40 Orifice 41 Cylindrical portion 42 Bottom portion 43 Annular groove 44 O-ring 45 Passing hole 46 Central portion 60 Actuating rod 61 Tip
62 Anti-vibration spring 70 Power element

Claims (5)

コンデンサで凝縮した高圧冷媒が導入される弁室を有する弁本体と、前記弁室内に設けられたオリフィスと、前記オリフィスに対向配置された弁体と、前記オリフィスと前記弁体との間を通過する冷媒の流量を変化させる作動棒と、エバポレータ出口側の冷媒の温度及び圧力に基づいて前記作動棒を駆動するパワーエレメントとを備えた温度式膨張弁であって、
前記弁室を有底穴により形成し、
前記弁体の先端部をニードル状に形成するとともに前記弁体を前記有底穴内に固定し、
前記オリフィスを前記弁体の先端部に対して接離自在に設け、
前記作動棒により前記オリフィスを移動させるようにしたことを特徴とする温度式膨張弁。
A valve body having a valve chamber into which high-pressure refrigerant condensed by a condenser is introduced; an orifice provided in the valve chamber; a valve body disposed opposite to the orifice; and passing between the orifice and the valve body A temperature-type expansion valve comprising an operating rod that changes the flow rate of the refrigerant to be driven, and a power element that drives the operating rod based on the temperature and pressure of the refrigerant on the evaporator outlet side,
Forming the valve chamber with a bottomed hole;
Forming the tip of the valve body in a needle shape and fixing the valve body in the bottomed hole;
The orifice is provided so as to be able to contact with and separate from the tip of the valve body,
A temperature type expansion valve characterized in that the orifice is moved by the operating rod .
前記弁体には、前記作動棒を案内するガイド孔が形成されていることを特徴とする請求項1に記載の温度式膨張弁。 The temperature type expansion valve according to claim 1, wherein a guide hole for guiding the operating rod is formed in the valve body . 前記弁体は、前記有底内に圧入されるか又は前記有底穴の壁部をポンチ加工することにより前記有底穴に固定されていることを特徴とする請求項1又は2に記載の温度式膨張弁。 The said valve body is fixed to the said bottomed hole by press-fitting in the said bottomed or punching the wall part of the said bottomed hole, The said bottomed hole is characterized by the above-mentioned. Temperature expansion valve. 前記オリフィスは、有底筒状に形成されるとともに前記有底穴に摺動可能に嵌装され、前記作動棒の一端が前記オリフィスに挿入されるとともに前記オリフィスの内底面に当接しており、且つ前記オリフィス内に冷媒を導入する通過孔が前記オリフィスに形成されていることを特徴とする請求項1〜3のいずれか一項に記載の温度式膨張弁。 The orifice is formed in a bottomed cylindrical shape and is slidably fitted in the bottomed hole, and one end of the operating rod is inserted into the orifice and is in contact with the inner bottom surface of the orifice, The temperature type expansion valve according to any one of claims 1 to 3, wherein a passage hole for introducing a refrigerant into the orifice is formed in the orifice . 前記オリフィスの外周部に前記有底穴の内周面に摺接するOリングが嵌着されていることを特徴とする請求項1〜4のいずれか一項に記載の温度式膨張弁。The temperature type expansion valve according to any one of claims 1 to 4, wherein an O-ring that is slidably in contact with an inner peripheral surface of the bottomed hole is fitted to an outer peripheral portion of the orifice.
JP2005341032A 2005-11-25 2005-11-25 Thermal expansion valve Active JP4721881B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005341032A JP4721881B2 (en) 2005-11-25 2005-11-25 Thermal expansion valve
CN2006101445493A CN1971109B (en) 2005-11-25 2006-10-27 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341032A JP4721881B2 (en) 2005-11-25 2005-11-25 Thermal expansion valve

Publications (3)

Publication Number Publication Date
JP2007147147A JP2007147147A (en) 2007-06-14
JP2007147147A5 JP2007147147A5 (en) 2008-12-25
JP4721881B2 true JP4721881B2 (en) 2011-07-13

Family

ID=38112046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341032A Active JP4721881B2 (en) 2005-11-25 2005-11-25 Thermal expansion valve

Country Status (2)

Country Link
JP (1) JP4721881B2 (en)
CN (1) CN1971109B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368008A (en) * 2011-07-17 2012-03-07 太平洋电子(昆山)有限公司 Expansion valve
CN108253157B (en) * 2016-12-29 2020-05-22 比亚迪股份有限公司 Expansion switch valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205927A (en) * 1997-01-17 1998-08-04 Denso Corp Electric motor-operated expansion valve
JP2001263866A (en) * 2000-03-21 2001-09-26 Zexel Valeo Climate Control Corp High pressure control valve for supercritical vapor compression refrigerating cycle system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2173318Y (en) * 1993-09-21 1994-08-03 机械电子工业部西安重型机械研究所 Moving valve sleeve slide valve type valve for stopping flow
JPH08145507A (en) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd Refrigerant flow control valve and refrigerating equipment using refrigerant flow control valve
JP3941602B2 (en) * 2002-02-07 2007-07-04 株式会社デンソー Ejector type decompression device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205927A (en) * 1997-01-17 1998-08-04 Denso Corp Electric motor-operated expansion valve
JP2001263866A (en) * 2000-03-21 2001-09-26 Zexel Valeo Climate Control Corp High pressure control valve for supercritical vapor compression refrigerating cycle system

Also Published As

Publication number Publication date
CN1971109B (en) 2010-08-18
CN1971109A (en) 2007-05-30
JP2007147147A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4331571B2 (en) Expansion valve
JP5991802B2 (en) Valve device
JP2011043102A (en) Control valve for variable displacement compressor
JP5933210B2 (en) Valve device
JP2008138812A (en) Differential pressure valve
JPWO2016199610A1 (en) Pressure reducing valve
JP6356644B2 (en) Throttle device and refrigeration cycle
JP3949417B2 (en) Expansion valve
JP6007369B2 (en) Control valve
JP4721881B2 (en) Thermal expansion valve
CN107636406B (en) Throttle device and refrigeration cycle
KR20050054842A (en) Expansion valve
JP4069548B2 (en) Control valve
KR101054056B1 (en) Expansion valve
KR19990082706A (en) Expansion valve
JPH08152232A (en) Expansion valve
JP6040374B2 (en) Compound valve
JP4545031B2 (en) Control valve, variable capacity compressor and refrigeration cycle apparatus
JP6064185B2 (en) Control valve for variable capacity compressor
JP5369259B2 (en) Expansion valve
JP2006322689A (en) Thermal expansion valve
JP4335713B2 (en) Thermal expansion valve
JP2013029241A (en) Expansion valve
JP6064124B2 (en) Control valve for variable capacity compressor
JPH08136088A (en) Expansion valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250