JP4725913B2 - Snowfall intensity measuring method and snowfall intensity measuring apparatus - Google Patents

Snowfall intensity measuring method and snowfall intensity measuring apparatus Download PDF

Info

Publication number
JP4725913B2
JP4725913B2 JP2006183791A JP2006183791A JP4725913B2 JP 4725913 B2 JP4725913 B2 JP 4725913B2 JP 2006183791 A JP2006183791 A JP 2006183791A JP 2006183791 A JP2006183791 A JP 2006183791A JP 4725913 B2 JP4725913 B2 JP 4725913B2
Authority
JP
Japan
Prior art keywords
detection
light
sensor units
unit
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006183791A
Other languages
Japanese (ja)
Other versions
JP2008014677A (en
Inventor
民之永 石丸
秀樹 羽賀
Original Assignee
新潟電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟電機株式会社 filed Critical 新潟電機株式会社
Priority to JP2006183791A priority Critical patent/JP4725913B2/en
Publication of JP2008014677A publication Critical patent/JP2008014677A/en
Application granted granted Critical
Publication of JP4725913B2 publication Critical patent/JP4725913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は例えば気象観測や融雪装置の自動制御に用いられる降雪強度計測方法及び降雪強度計測装置に関するものである。   The present invention relates to a snowfall strength measuring method and a snowfall strength measuring device used for, for example, weather observation and automatic control of a snowmelt device.

従来、この種の降雪強度計測装置として、検出空間に投光部から測定光を投射すると共に該測定光の雪片からの反射光を受光部で受光する所謂反射型構造のセンサーユニットからの検出パルスの数を計数し、この検出パルスの数に基づいて降雪強度を演算計測しようとする構造のものが知られている。
特公平4−23740号公報
Conventionally, as a snowfall intensity measuring device of this type, a detection pulse from a sensor unit having a so-called reflective structure in which measurement light is projected from a light projecting unit to a detection space and light reflected from a snowflake is received by a light receiving unit. There is known a structure that counts the number of snowfalls and calculates and measures snowfall intensity based on the number of detected pulses.
Japanese Patent Publication No. 4-23740

しかしながら上記従来構造の場合、反射型構造のセンサーであるため、検出領域はセンサーユニットの前方に位置することから、センサー部分の大きさを小さくすることができ、製作コストも低減することができ、かつ、センサー部分の設置も容易に行うことができ、設置の融通性を高めることができるものの、一方において、反射型構造のセンサーの場合、計測すべき雪片の大きさ、雪片の移動速度により検出距離特性が大きく変化し、検出距離特性の変化により検出領域が曖昧となり、検出領域が曖昧となることにより一定領域での雪片検出ができず、一定領域における単位時間当たりの雪片の数を検出することができず、降雪強度の定量化、すなわち、刻々変化する降雪強度を計測することができないことがあるという不都合を有している。   However, in the case of the above conventional structure, since the sensor is a reflective structure, the detection area is located in front of the sensor unit, so the size of the sensor part can be reduced, and the manufacturing cost can be reduced, In addition, the sensor can be easily installed and the installation flexibility can be improved. On the other hand, in the case of a sensor with a reflective structure, it is detected by the size of the snowflake to be measured and the moving speed of the snowflake. Detects the number of snowflakes per unit time in a certain area because the distance characteristic changes greatly, the detection area becomes ambiguous due to the change in the detection distance characteristic, and the detection area becomes ambiguous. Cannot be quantified, that is, it may not be possible to measure the ever-changing snow intensity. That.

本発明はこれらの不都合を解決することを目的とするもので、本発明のうちで、請求項1記載の方法の発明にあっては、検出空間に投光部から投射光を投射すると共に該投射光の雪片からの反射光を受光部で受光する構造のセンサーユニットを複数個備えてなり、上記複数個のセンサーユニットの投光部の光軸を各センサーユニットの検出領域が重複するように交差状に配置すると共に各センサーユニットの検出作動が互いに非干渉な独立した状態でなされるように構成されてなり、該複数個のセンサーユニットの各受光部からの各検出パルスの論理積を演算出力すると共に該論理積演算されたANDパルスの数を計数し、該論理積演算されたANDパルスの数及び上記各センサーユニットの検出領域が重複する重複検出領域の大きさに基づいて降雪強度を計測することを特徴とする降雪強度計測方法にある。   The present invention aims to solve these disadvantages. Among the present inventions, in the method invention according to claim 1, the projection light is projected from the light projecting portion to the detection space, and A plurality of sensor units having a structure in which the reflected light from the snowflake of the projected light is received by the light receiving unit are provided, and the detection areas of the sensor units overlap the optical axes of the light projecting units of the plurality of sensor units. The sensor units are arranged in an intersecting manner, and the detection operation of each sensor unit is performed in an independent state without mutual interference, and the logical product of each detection pulse from each light receiving unit of the plurality of sensor units is calculated. Output and count the number of AND pulses obtained by AND operation, and based on the number of AND pulses obtained by AND operation and the size of the overlap detection area where the detection areas of the sensor units overlap. In snowfall intensity measurement method characterized by measuring the snowfall intensity Te.

又、請求項2記載の装置の発明は、検出空間に投光部から投射光を投射すると共に該投射光の雪片からの反射光を受光部で受光する構造のセンサーユニットを複数個備え、上記複数個のセンサーユニットの投光部の光軸を各センサーユニットの検出領域が重複するように交差状に配置すると共に各センサーユニットの検出作動が互いに非干渉な独立した状態でなされるように構成された検出手段を備えてなり、該複数個のセンサーユニットの各受光部からの各検出パルスの論理積を演算出力する論理積演算手段と、該論理積演算されたANDパルスの数を計数する計数手段と、該論理積演算されたANDパルスの数及び上記各センサーユニットの検出領域が重複する重複検出領域の大きさに基づいて降雪強度を演算計測する演算計測手段とを具備してなることを特徴とする降雪強度計測装置にある。   According to a second aspect of the present invention, there is provided a plurality of sensor units having a structure in which projection light is projected from the light projecting unit to the detection space and reflected light from the snowflake is received by the light receiving unit. The optical axes of the light projecting portions of a plurality of sensor units are arranged in an intersecting manner so that the detection areas of the sensor units overlap with each other, and the detection operations of the sensor units are configured in an independent state without mutual interference. AND means for calculating and outputting the logical product of the detection pulses from the light receiving portions of the plurality of sensor units, and counting the number of AND pulses subjected to the AND operation. Counting means, and calculation measuring means for calculating and measuring snowfall intensity based on the number of AND pulses obtained by the AND operation and the size of the overlapping detection area where the detection areas of the respective sensor units overlap. In snowfall intensity measuring apparatus characterized by comprising in Bei.

又、請求項3記載の装置の発明は、上記各検出手段は、電源回路と、基準となるクロックパルスを発振出力する発振回路と、該基準となるクロックパルスから各種のタイミングパルスを生成するタイミング発生回路と、該タイミングパルスによる投光パターンで上記投光部を駆動する投光駆動回路と、上記受光部からの検出パルスのうちの上記タイミングパルスに同期する検出パルスのみを弁別する信号処理回路と、該同期検出時の検出パルスを上記論理積演算手段に出力する出力回路とからなることを特徴とするものであり、又、請求項4記載の装置の発明は、上記演算計測手段に外気温度を検出する温度センサを備えてなることを特徴とするものであり、又、請求項5記載の装置の発明は、上記複数個のセンサーユニットを内装した検出器体を水平旋回自在に配置し、該検出器体に吹いてくる風が該センサーユニットの投光部の光軸を可及的に横切るように風向きに応じて該検出器体を旋回させる風向舵部材を設けてなることを特徴とするものである。   According to a third aspect of the present invention, each of the detection means includes a power supply circuit, an oscillation circuit for oscillating and outputting a reference clock pulse, and timings for generating various timing pulses from the reference clock pulse. A generation circuit, a light projecting drive circuit for driving the light projecting unit with a light projecting pattern based on the timing pulse, and a signal processing circuit for discriminating only a detection pulse synchronized with the timing pulse among the detection pulses from the light receiving unit And an output circuit that outputs a detection pulse at the time of the synchronization detection to the AND operation means. A temperature sensor for detecting temperature is provided, and the invention according to claim 5 is characterized in that the plurality of sensor units are installed. A wind rudder that turns the detector body in accordance with the direction of the wind so that the body can be swung horizontally and the wind blown to the detector body crosses the optical axis of the light projecting portion of the sensor unit as much as possible. A member is provided.

本発明は上述の如く、請求項1又は2記載の発明にあっては、検出空間に複数個の各センサーユニットの各投光部から投射光を投射すると共に投射光の雪片からの反射光を各受光部で受光することになり、この複数個のセンサーユニットの投光部の光軸を各センサーユニットの検出領域が重複するように交差状に配置され、この各センサーユニットの各受光部からの検出パルスの論理積を論理積演算手段により演算してANDパルスを出力し、この論理積演算されたANDパルスの数を計数手段により計数し、論理積演算されたANDパルスの数及び上記各センサーユニットの検出領域が重複する重複検出領域の大きさ、例えば、重複検出領域の面積に基づいて演算計測手段により降雪強度を演算計測することになり、このため、各センサーユニットの検出領域が重複する重複検出領域を形成することにより検出領域を特定することができ、特定された検出領域たる重複検出領域での雪片のみを検出することができ、降雪強度の定量化計測の容易化及び計測精度を高めることができ、かつ、各センサーユニットの検出作動が互いに非干渉な独立した状態でなされるように構成された検出手段を備えてなるから、各センサーユニット別に各検出パルスを検出することができ、正確な検出パルスを得ることができ、降雪強度の計測精度を高めることができる。   As described above, according to the first or second aspect of the present invention, the projection light is projected from each light projecting portion of each of the plurality of sensor units to the detection space and the reflected light from the snowflake of the projection light is projected. Light is received by each light receiving unit, and the optical axes of the light projecting units of the plurality of sensor units are arranged in an intersecting manner so that the detection areas of each sensor unit overlap, and from each light receiving unit of each sensor unit, The AND of the detected pulses is calculated by the AND operation means and an AND pulse is output. The number of AND pulses obtained by the AND operation is counted by the counting means. Based on the size of the overlapping detection area where the detection areas of the sensor unit overlap, for example, the area of the overlapping detection area, the snowfall intensity is calculated and measured by the calculation measuring means. By forming an overlap detection area that overlaps the detection area of the knit, it is possible to specify the detection area, and it is possible to detect only snowflakes in the overlap detection area that is the specified detection area, and to quantify the snowfall intensity Since each sensor unit is equipped with detection means configured to be able to improve the measurement accuracy and the measurement accuracy, and the detection operation of each sensor unit is performed in an independent state without mutual interference, each detection is performed for each sensor unit. Pulses can be detected, accurate detection pulses can be obtained, and snowfall intensity measurement accuracy can be increased.

又、請求項3記載の発明にあっては、上記各検出手段は、電源回路と、基準となるクロックパルスを発振出力する発振回路と、該基準となるクロックパルスから各種のタイミングパルスを生成するタイミング発生回路と、該タイミングパルスによる投光パターンで上記投光部を駆動する投光駆動回路と、上記受光部からの検出パルスのうちの上記タイミングパルスに同期する検出パルスのみを弁別する信号処理回路と、同期検出時の検出パルスを上記論理積演算手段に出力する出力回路とからなるので、上記クロックパルスの固有の周波数の相違及び又は、各タイミング発生回路による異なる周波数のタイミングパルスの生成によって各センサーユニットの検出作動を互いに非干渉な独立した状態で確実に行うことができ、計測精度の向上を図ることができ、又、請求項4記載の発明にあっては、上記演算計測手段に外気温度を検出する温度センサを備えてなるから、雨雪判別をより正確に行うことができ、又、請求項5記載の発明にあっては、上記複数個のセンサーユニットを内装した検出器体を水平旋回自在に配置し、検出器体に吹いてくる風がセンサーユニットの投光部の光軸を可及的に横切るように風向きに応じて検出器体を旋回させる風向舵部材を設けてなるから、仮に同じ速度で移動する雪片でも風向きによって異なる角度で検出領域を通過すると通過時間が違ってくることになり、ANDパルスが発生しないことがあるが、風向舵部材により検出器体は吹いてくる風の向きに応じて旋回し、投光部の光軸を可及的に横切るように旋回するので、計測精度を高めることができる。降雪強度の計測精度を向上することができる。   In the invention according to claim 3, each of the detecting means generates a power supply circuit, an oscillation circuit for oscillating and outputting a reference clock pulse, and various timing pulses from the reference clock pulse. Signal processing for discriminating only the detection pulse synchronized with the timing pulse among the detection pulses from the timing generation circuit, the light projecting drive circuit that drives the light projecting unit with the light projection pattern by the timing pulse, and the light receiving unit Circuit, and an output circuit that outputs a detection pulse at the time of synchronization detection to the AND operation means. Therefore, by generating a timing pulse having a different frequency by the timing pulse generation circuit or by generating a timing pulse having a different frequency by each timing generation circuit. The detection operation of each sensor unit can be performed reliably in a non-interfering and independent state, improving measurement accuracy. In the invention according to claim 4, since the calculation and measurement means is provided with a temperature sensor for detecting the outside air temperature, it is possible to perform rain / snow discrimination more accurately, In a fifth aspect of the present invention, the detector body including the plurality of sensor units is disposed so as to be horizontally rotatable, and the wind blown to the detector body changes the optical axis of the light projecting portion of the sensor unit. Since the wind direction steering member that turns the detector body according to the wind direction is provided so as to cross as much as possible, even if the snowflake moving at the same speed passes through the detection area at different angles depending on the wind direction, the transit time will be different As a result, the AND pulse may not be generated, but the detector body is swung according to the direction of the blowing wind by the wind direction rudder member, and is swung so as to cross the optical axis of the light projecting unit as much as possible. So to improve the measurement accuracy It can be. Measurement accuracy of snowfall intensity can be improved.

図1乃至図6は本発明の実施の形態例を示し、A・Bは複数個、この場合、二個のセンサーユニットからなり、この各センサーユニットA・Bは、検出空間Kに投光部1から投射光Rを投射すると共に該投射光Rの雪片Dからの反射光Rを受光部2で受光する構造となっている。   FIGS. 1 to 6 show an embodiment of the present invention. A / B includes a plurality of sensor units, in this case, two sensor units. The projection light R is projected from 1 and the reflected light R from the snowflake D of the projection light R is received by the light receiving unit 2.

この場合、図1、図2、図6において、地上に立設される支柱Gの上端部に検出器体Kの取付筒体K1を取付け、検出器体Kに各センサーユニットA・Bの投光部1の光軸を各センサーユニットA・Bの検出領域が重複するように交差状に配置し、この交差状配置により各センサーユニットA・Bの検出領域が重複する重複検出領域Wを形成するようにしている。 In this case, in FIGS. 1, 2, 6, the upper end of the tower G to be erected on the ground mounting the mounting cylinder K 1 of the detector body K, the detector body K of each sensor unit A · B The optical axis of the light projecting unit 1 is arranged in an intersection so that the detection areas of the sensor units A and B overlap each other, and the overlapping detection area W in which the detection areas of the sensor units A and B overlap by this intersection arrangement. Try to form.

この投光部1には、発光ダイオード(LED)やレーザーダイオード(LD)などの発光素子1aが内蔵され、受光部2にはフォトトランジスタ(PTr)やフォトダイオード(PD)などの受光素子2aが内蔵されている。   The light projecting unit 1 includes a light emitting element 1a such as a light emitting diode (LED) or a laser diode (LD), and the light receiving unit 2 includes a light receiving element 2a such as a phototransistor (PTr) or a photodiode (PD). Built in.

この場合、上記二個のセンサーユニットA・Bの投光部1・1の光軸を各センサーユニットA・Bの検出領域が重複するように交差状に配置されている。   In this case, the optical axes of the light projecting units 1 and 1 of the two sensor units A and B are arranged in an intersecting manner so that the detection areas of the sensor units A and B overlap.

3・3は検出手段であり、上記各センサーユニットA・Bの検出作動が互いに非干渉な独立した状態でなされるように構成されている。   Reference numerals 3 and 3 denote detection means, which are configured such that the detection operations of the sensor units A and B are performed in a non-interfering and independent state.

4は論理積演算手段であって、図3、図4、図5の如く、上記二個のセンサーユニットA・Bの各受光部2・2からの検出パルスの論理積を演算してANDパルスを出力する回路となっている。   Reference numeral 4 denotes a logical product calculation means, which calculates the logical product of the detection pulses from the light receiving units 2 and 2 of the two sensor units A and B as shown in FIGS. Is a circuit that outputs.

5は計数手段であって、上記論理積演算されたANDパルスの数を計数する回路となっている。   Reference numeral 5 denotes a counting means, which is a circuit for counting the number of AND pulses subjected to the AND operation.

6は演算計測手段であって、上記論理積演算されたANDパルスの数及び上記各センサーユニットA・Bの検出領域が重複する重複検出領域Wの大きさに基づいて降雪強度を演算計測する回路となっている。   6 is an arithmetic measurement means, which is a circuit for calculating and measuring snowfall intensity based on the number of AND pulses obtained by the AND operation and the size of the overlapping detection area W where the detection areas of the sensor units A and B overlap. It has become.

例えば、ANDパルスの数=N[個]、計測時間=t[分]とすると、
1時間当たりの降雪強度=Rは(但し、計測時間tで検出したANDパルスが1時間続いたものとする。)、
R=60・k・n/(S・t)
R=降水量に換算した降雪強度[mm/h]
k=雪片の質量パラメータ≒雪片の密度[mm/puls](1雪片当たりの降水量換算量)
S=雪片流線進入方向からみた重複検出領域Wの投影面積[cm2
で求められることになる。
For example, assuming that the number of AND pulses = N [pieces] and measurement time = t [minutes],
Snowfall intensity per hour = R (assuming that the AND pulse detected at the measurement time t continues for one hour)
R = 60 · k · n / (S · t)
R = Snowfall intensity converted to precipitation [mm / h]
k = mass parameter of snowflakes ≒ snowflake density [mm / puls] (equivalent amount of precipitation per snowflake)
S = Projected area [cm 2 ] of the overlap detection area W as seen from the direction of the snowflake flow
Will be required.

尚、この場合、上記演算計測手段6に外気温度を検出する例えばサーミスター温度計などの温度センサ7を備えている。すなわち、例えば、設定温度を0.3℃以下は雪、以上は雨として雨雪判別を設定したとすると、設定温度以上の場合には雨として出力せず、設定温度以下の場合には雪として降雪強度を演算計測するように構成している。   In this case, the arithmetic and measuring means 6 is provided with a temperature sensor 7 such as a thermistor thermometer for detecting the outside air temperature. That is, for example, if the set temperature is set to 0.3 ° C or less as snow, and the above is set as rain, the rain / snow discrimination is set. It is configured to calculate and measure snowfall intensity.

この場合、図2、図3の如く、上記各検出手段3は、電源回路3aと、基準となるクロックパルスを発振出力する発振回路3bと、基準のクロックパルスから各種のタイミングパルスを生成するタイミング発生回路3cと、タイミングパルスによる投光パターンで上記投光部を駆動する投光駆動回路3dと、上記受光部2からの外乱光を除去する外乱光除去回路3eと、上記受光部2からの検出パルスのうちの上記タイミングパルスに同期する検出パルスのみを弁別する信号処理回路3fと、同期検出時の検出パルスを論理積演算手段4に出力する出力回路3gとからなる。   In this case, as shown in FIGS. 2 and 3, each of the detection means 3 includes a power supply circuit 3a, an oscillation circuit 3b that oscillates and outputs a reference clock pulse, and timings for generating various timing pulses from the reference clock pulse. A generation circuit 3c, a light projecting drive circuit 3d for driving the light projecting unit with a light projecting pattern based on timing pulses, a disturbance light removing circuit 3e for removing disturbing light from the light receiving unit 2, and a light from the light receiving unit 2 It comprises a signal processing circuit 3f that discriminates only detection pulses that are synchronized with the timing pulse among the detection pulses, and an output circuit 3g that outputs a detection pulse at the time of synchronization detection to the AND operation means 4.

すなわち、図3、図4、図5において、センサーユニットA・Bの発振回路3b・3bは、内蔵コンデンサーを定電流で充放電することにより、基準となるクロックパルスを固有の周波数(fa)・周波数(fb)をもって発振出力し、この発振出力はタイミング発生回路3cに入力され、投光部駆動用パルス、デジタル信号処理用の各種のタイミングパルスを生成し、このタイミング発生回路により生成された投光部駆動用パルスにより投光駆動回路3dは投光部1のLEDを所定のデューティ比で投光駆動し、しかして、この投光駆動回路3dにより投光部1のLEDは所定の投光パターンで投射光を点滅投光し、その投射光の雪片Dからの反射光は受光部2に受光され、反射光の受光により受光部2のオンチップ型のフォトダイオードは光電流を発生し、この光電流は外乱光除去回路3eのプリアンプ回路により電圧に変換され、かつ、プリアンプ回路の交流増幅回路により直流及び低周波外乱光に対するダイナミックレンジが拡大されると共に信号検出感度が高められ、さらに、C結合によって低周波外乱光が除去され、同時にプリアンプ部の直流オフセットを除去し、またさらに、バッファーアンプ回路によりコンパレーターレベルまで増幅し、基準電圧発生回路でコンパレータレベル信号を出力し、コンパレータ回路のヒステリシス機能により入力光の微少変動によるチャタリングが防止され、そして、信号処理回路3fはゲート回路とデジタル積分回路とで構成され、このゲート回路は上記受光部2からの検出パルスのうちのタイミング発生回路3cにより生成されたタイミングパルスに同期する検出パルスのみを弁別し、非同期外乱光による誤動作を防止し、同期外乱光についてはデジタル積分回路により除去し、出力回路3gは同期検出時の検出パルスを論理積演算手段4へ出力することになる。   That is, in FIG. 3, FIG. 4, and FIG. 5, the oscillation circuits 3b and 3b of the sensor units A and B charge and discharge the built-in capacitors with a constant current, so that the reference clock pulse has a specific frequency (fa). The oscillation output is output at a frequency (fb), and this oscillation output is input to the timing generation circuit 3c to generate a light projecting unit driving pulse and various timing pulses for digital signal processing. The light projecting drive circuit 3d performs light projection driving of the LED of the light projecting unit 1 with a predetermined duty ratio by the light unit driving pulse, and the light of the light projecting unit 1 is predetermined light projected by the light projecting driving circuit 3d. The projected light is flashed and projected in a pattern, and the reflected light from the snowflake D of the projected light is received by the light receiving unit 2, and the on-chip photodiode of the light receiving unit 2 is received by receiving the reflected light. A photocurrent is generated, this photocurrent is converted into a voltage by the preamplifier circuit of the disturbance light removal circuit 3e, and the dynamic range for the DC and low frequency disturbance light is expanded by the AC amplifier circuit of the preamplifier circuit and the signal detection sensitivity In addition, low-frequency disturbance light is removed by C coupling, DC offset of the preamplifier part is removed at the same time, and further, it is amplified to the comparator level by the buffer amplifier circuit, and the comparator level signal is output by the reference voltage generation circuit. The hysteresis function of the comparator circuit prevents chattering due to slight fluctuations in the input light, and the signal processing circuit 3f is composed of a gate circuit and a digital integration circuit. This gate circuit is a detection pulse from the light receiving unit 2. Generated by the timing generation circuit 3c. Only the detection pulse synchronized with the timing pulse is discriminated, malfunction caused by asynchronous disturbance light is prevented, the synchronous disturbance light is removed by the digital integration circuit, and the output circuit 3g outputs the detection pulse at the time of synchronization detection to the AND operation means 4. Will be output.

しかして、このような検出回路3・3の基準となるクロックパルスの固有の周波数(fa)・周波数(fb)が相違すること、及び、又は、各タイミング発生回路3c・3cにより生成される異なる周波数のタイミングパルスによって、各センサーユニットA・Bの検出作動が互いに非干渉な独立した状態でなされるように構成されている。   Thus, the inherent frequency (fa) and frequency (fb) of the clock pulse serving as a reference for the detection circuits 3 and 3 are different, or are different from each other generated by the timing generation circuits 3c and 3c. The detection operation of each of the sensor units A and B is configured to be performed in an independent state without mutual interference by the frequency timing pulse.

又、この場合、図6において、上記検出器体Kを軸受部K2により水平旋回自在に配置し、検出器体Kに吹いてくる風がセンサーユニットA・Bの投光部の光軸を可及的に横切るように風向きFに応じて検出器体Kを旋回させる風向舵部材Mを設けている。 Further, in this case, in FIG. 6, the detector body K is arranged freely horizontal turn by a bearing section K 2, the optical axis of the light projecting portion of the wind blows on the detector body K is the sensor unit A · B A wind steering member M that turns the detector body K according to the wind direction F is provided so as to cross as much as possible.

この実施の形態例は上記構成であるから、検出空間に複数個、この場合、二個の各センサーユニットA・Bの各投光部1・1から投射光Rを投射すると共に投射光Rの雪片Dからの反射光Rを各受光部2・2で受光することになり、この二個のセンサーユニットA・Bの投光部1・1の光軸を各センサーユニットA・Bの検出領域が重複するように交差状に配置され、この二個のセンサーユニットA・Bの各受光部2・2からの各検出パルスの論理積を論理積演算手段4により演算してANDパルスを出力し、この論理積演算されたANDパルスの数を計数手段5により計数し、論理積演算されたANDパルスの数及び上記各センサーユニットA・Bの検出領域が重複する重複検出領域Wの大きさ、例えば、重複検出領域Wの面積に基づいて演算計測手段6により降雪強度を演算計測することになり、このため、二個のセンサーユニットA・Bの検出領域が重複する重複検出領域Wを形成することにより検出領域を特定することができ、特定された検出領域たる重複検出領域Wでの雪片Dのみを検出することができ、降雪強度の定量化計測の容易化及び計測精度を高めることができ、かつ、各センサーユニットA・Bの検出作動が互いに非干渉な独立した状態でなされるように構成された検出手段3・3を備えてなるから、各センサーユニットA・B別に各検出パルスを検出することができ、正確な検出パルスを得ることができ、降雪強度の計測精度を高めることができる。   Since this embodiment is configured as described above, the projection light R is projected from each of the light projecting units 1 and 1 of each of the sensor units A and B in the detection space, and in this case, the projection light R The reflected light R from the snowflake D is received by the light receiving units 2 and 2, and the optical axes of the light projecting units 1 and 1 of the two sensor units A and B are detected by the detection regions of the sensor units A and B. Are arranged so as to overlap each other, and the logical product of the detection pulses from the light receiving units 2 and 2 of the two sensor units A and B is calculated by the logical product calculation means 4 to output an AND pulse. The number of AND pulses obtained by the logical product operation is counted by the counting means 5, and the number of AND pulses obtained by the logical product operation and the size of the overlapping detection region W where the detection regions of the sensor units A and B overlap, For example, based on the area of the overlap detection region W The snowfall intensity is calculated and measured by the arithmetic measurement means 6, and therefore, the detection area can be specified by forming the overlapping detection area W where the detection areas of the two sensor units A and B overlap. It is possible to detect only the snowflake D in the overlapping detection region W that is the specified detection region, to facilitate the quantification measurement of the snowfall intensity and to improve the measurement accuracy, and to detect the sensor units A and B. Since the detection means 3 and 3 are configured so that the operation is performed in an independent state without mutual interference, each detection pulse can be detected separately for each sensor unit A and B, and an accurate detection pulse can be obtained. Can be obtained, and the measurement accuracy of the snowfall intensity can be increased.

尚、雨滴のような表面が滑らかなものに対しては透過又は全反射し、雪片は乱反射する構造のため、雨滴のときには受光部2に戻る頻度は極めて少なく、このような雪片と雨滴との反射構造の違いによって、降雨を降雪と誤って検出することは少なく、又、上記重複検出領域Wの外にある雪片Dも偶々同時期に検出することもあるがその数は極めて少ないので、降雪強度の計測精度を低下させることはないと考えられる。   It should be noted that a smooth surface such as raindrops is transmitted or totally reflected, and the snowflakes are irregularly reflected. Therefore, the frequency of returning to the light receiving unit 2 is extremely low in the case of raindrops. Due to the difference in reflection structure, it is unlikely that rain will be erroneously detected as snow, and snowflakes D outside the overlap detection area W may be detected accidentally at the same time, but the number is extremely small. It is considered that the strength measurement accuracy is not lowered.

この場合、上記各検出手段3は、電源回路3aと、基準となるクロックパルスを発振出力する発振回路3bと、該基準となるクロックパルスから各種のタイミングパルスを生成するタイミング発生回路3cと、該タイミングパルスによる投光パターンで上記投光部を駆動する投光駆動回路3dと、上記受光部2からの検出パルスのうちの上記タイミングパルスに同期する検出パルスのみを弁別する信号処理回路3fと、同期検出時の検出パルスを上記論理積演算手段4に出力する出力回路3gとからなるので、上記クロックパルスの固有の周波数(fa)・周波数(fb)の相違及び又は、各タイミング発生回路による異なる周波数のタイミングパルスの生成によって各センサーユニットA・Bの検出作動を互いに非干渉な独立した状態で確実に行うことができ、計測精度の向上を図ることができ、又、この場合、上記演算計測手段6に外気温度を検出する温度センサ7を備えてなるから、雨雪判別をより正確に行うことができ、又、この場合、上記二個のセンサーユニットA・Bを内装した検出器体Kを水平旋回自在に配置し、検出器体Kに吹いてくる風がセンサーユニットA・Bの投光部2・2の光軸を可及的に横切るように風向きに応じて検出器体Kを旋回させる風向舵部材Mを設けてなるから、仮に同じ速度で移動する雪片Dでも風向きによって異なる角度で検出領域を通過すると通過時間が違ってくることになり、ANDパルスが発生しないことがあるが、風向舵部材Mにより検出器体Kは吹いてくる風の向きFに応じて旋回し、投光部2・2の光軸を可及的に横切るように旋回するので、計測精度を高めることができる。   In this case, each detection means 3 includes a power supply circuit 3a, an oscillation circuit 3b that oscillates and outputs a reference clock pulse, a timing generation circuit 3c that generates various timing pulses from the reference clock pulse, A light projecting drive circuit 3d for driving the light projecting unit with a light projecting pattern by a timing pulse, and a signal processing circuit 3f for discriminating only a detection pulse synchronized with the timing pulse among the detection pulses from the light receiving unit 2, Since it comprises an output circuit 3g that outputs a detection pulse at the time of synchronization detection to the AND operation means 4, the difference between the inherent frequency (fa) and frequency (fb) of the clock pulse or the difference depending on each timing generation circuit The detection operation of each sensor unit A and B is confirmed in a non-interfering and independent state by generating frequency timing pulses. In this case, the calculation / measurement means 6 is provided with the temperature sensor 7 for detecting the outside air temperature, so that rain / snow discrimination can be performed more accurately. In this case, the detector body K including the two sensor units A and B is disposed so as to be horizontally rotatable, and the wind blown to the detector body K is projected by the sensor units A and B. Since the wind steering member M for turning the detector body K according to the wind direction is provided so as to cross the optical axis of the parts 2 and 2 as much as possible, even the snowflake D moving at the same speed is assumed to have different angles depending on the wind direction. When passing through the detection area, the transit time will be different, and an AND pulse may not be generated. However, the detector body K is swung according to the direction F of the blowing wind by the wind direction steering member M, and is projected. Cross the optical axis of parts 2 and 2 as much as possible Since pivots, it is possible to increase the measurement accuracy.

尚、本発明は上記実施の形態例に限られるものではなく、センサーユニットA・B、投光部1、受光部2、検出手段3、論理積演算回路4、計数手段5、演算計測手段6の構造等は適宜変更して設計されものである。   The present invention is not limited to the above-described embodiment, but includes the sensor units A and B, the light projecting unit 1, the light receiving unit 2, the detection unit 3, the logical product calculation circuit 4, the counting unit 5, and the calculation measurement unit 6. The structure and the like are designed with appropriate changes.

以上、所期の目的を充分達成することができる。   As described above, the intended purpose can be sufficiently achieved.

本発明の実施の形態例の検出状態の説明図である。It is explanatory drawing of the detection state of the embodiment of this invention. 本発明の実施の形態例の構成系統ブロック図である。It is a system configuration block diagram of an embodiment of the present invention. 本発明の実施の形態例の検出手段の構成系統ブロック図である。It is a systematic block diagram of the detection means of the embodiment of the present invention. 本発明の実施の形態例の説明図である。It is explanatory drawing of the example of embodiment of this invention. 本発明の実施の形態例の説明図である。It is explanatory drawing of the example of embodiment of this invention. 本発明の実施の形態例の斜視図である。It is a perspective view of the example of an embodiment of the invention.

符号の説明Explanation of symbols

A センサーユニット
B センサーユニット
D 雪片
K 検出器体
W 重複検出領域
M 風向舵部材
F 風向
G 支柱
1 投光部
2 受光部
3 検出手段
3a 電源回路
3b 発振回路
3c タイミング発生回路
3d 投光駆動回路
3e 外乱光除去回路
3f 信号処理回路
3g 出力回路
4 論理積演算手段
5 計数手段
6 演算計測手段
7 温度センサ
A sensor unit B sensor unit D snowflake K detector body W overlap detection area M wind steering member F wind direction G support 1 light projecting unit 2 light receiving unit 3 detection means 3a power supply circuit 3b oscillation circuit 3c timing generation circuit 3d light projecting drive circuit 3e Disturbance light removal circuit 3f Signal processing circuit 3g Output circuit 4 AND operation means 5 Counting means 6 Arithmetic measurement means 7 Temperature sensor

Claims (5)

検出空間に投光部から投射光を投射すると共に該投射光の雪片からの反射光を受光部で受光する構造のセンサーユニットを複数個備えてなり、上記複数個のセンサーユニットの投光部の光軸を各センサーユニットの検出領域が重複するように交差状に配置すると共に各センサーユニットの検出作動が互いに非干渉な独立した状態でなされるように構成されてなり、該複数個のセンサーユニットの各受光部からの各検出パルスの論理積を演算出力すると共に該論理積演算されたANDパルスの数を計数し、該論理積演算されたANDパルスの数及び上記各センサーユニットの検出領域が重複する重複検出領域の大きさに基づいて降雪強度を計測することを特徴とする降雪強度計測方法。   A plurality of sensor units having a structure in which projection light is projected from the light projecting unit to the detection space and reflected light from the snowflake is received by the light receiving unit, and the light projecting units of the plurality of sensor units are provided. The plurality of sensor units are configured such that the optical axes are arranged in an intersecting manner so that the detection areas of the respective sensor units overlap, and the detection operations of the respective sensor units are performed in an independent state without mutual interference. And outputs the logical product of each detection pulse from each light receiving unit and counts the number of AND pulses obtained by the logical product operation, and the number of AND pulses obtained by the logical product operation and the detection area of each sensor unit are calculated. A snowfall intensity measuring method, wherein snowfall intensity is measured based on the size of overlapping overlap detection areas. 検出空間に投光部から投射光を投射すると共に該投射光の雪片からの反射光を受光部で受光する構造のセンサーユニットを複数個備え、上記複数個のセンサーユニットの投光部の光軸を各センサーユニットの検出領域が重複するように交差状に配置すると共に各センサーユニットの検出作動が互いに非干渉な独立した状態でなされるように構成された検出手段を備えてなり、該複数個のセンサーユニットの各受光部からの各検出パルスの論理積を演算出力する論理積演算手段と、該論理積演算されたANDパルスの数を計数する計数手段と、該論理積演算されたANDパルスの数及び上記各センサーユニットの検出領域が重複する重複検出領域の大きさに基づいて降雪強度を演算計測する演算計測手段とを具備してなることを特徴とする降雪強度計測装置。   A plurality of sensor units having a structure in which projection light is projected from the light projecting unit to the detection space and reflected light from the snowflakes is received by the light receiving unit, and the optical axes of the light projecting units of the plurality of sensor units; Are arranged in a crossing manner so that the detection areas of the sensor units overlap with each other, and detection means configured so that the detection operations of the sensor units are performed in a non-interfering and independent state are provided. AND unit for calculating and outputting the logical product of each detection pulse from each light receiving unit of the sensor unit, a counting unit for counting the number of AND pulses subjected to the AND operation, and the AND pulse subjected to the AND operation And a snowfall measuring means for calculating and measuring snowfall intensity based on the number and the size of the overlapping detection area where the detection areas of the respective sensor units overlap. Degree measuring device. 上記各検出手段は、電源回路と、基準となるクロックパルスを発振出力する発振回路と、該基準となるクロックパルスから各種のタイミングパルスを生成するタイミング発生回路と、該タイミングパルスによる投光パターンで上記投光部を駆動する投光駆動回路と、上記受光部からの検出パルスのうちの上記タイミングパルスに同期する検出パルスのみを弁別する信号処理回路と、該同期検出時の検出パルスを上記論理積演算手段に出力する出力回路とからなることを特徴とする請求項2記載の降雪強度計測装置。   Each of the detection means includes a power supply circuit, an oscillation circuit that oscillates and outputs a reference clock pulse, a timing generation circuit that generates various timing pulses from the reference clock pulse, and a light projection pattern based on the timing pulse. A light projecting drive circuit for driving the light projecting unit; a signal processing circuit for discriminating only a detection pulse synchronized with the timing pulse among the detection pulses from the light receiving unit; and 3. The snowfall intensity measuring apparatus according to claim 2, further comprising an output circuit that outputs the product to the product calculating means. 上記演算計測手段に外気温度を検出する温度センサを備えてなることを特徴とする請求項2又は3記載の降雪強度計測装置。   The snowfall intensity measuring device according to claim 2 or 3, wherein the arithmetic and measuring means is provided with a temperature sensor for detecting an outside air temperature. 上記複数個のセンサーユニットを内装した検出器体を水平旋回自在に配置し、該検出器体に吹いてくる風が該センサーユニットの投光部の光軸を可及的に横切るように風向きに応じて該検出器体を旋回させる風向舵部材を設けてなることを特徴とする請求項2〜4のいずれか1項に記載の降雪強度計測装置。
The detector body having the plurality of sensor units is arranged in a horizontally swingable manner so that the wind blown to the detector body is directed in the direction of the wind so as to cross the optical axis of the light projecting portion of the sensor unit as much as possible. 5. A snowfall intensity measuring device according to claim 2, further comprising a wind rudder member that turns the detector body accordingly.
JP2006183791A 2006-07-03 2006-07-03 Snowfall intensity measuring method and snowfall intensity measuring apparatus Expired - Fee Related JP4725913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006183791A JP4725913B2 (en) 2006-07-03 2006-07-03 Snowfall intensity measuring method and snowfall intensity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183791A JP4725913B2 (en) 2006-07-03 2006-07-03 Snowfall intensity measuring method and snowfall intensity measuring apparatus

Publications (2)

Publication Number Publication Date
JP2008014677A JP2008014677A (en) 2008-01-24
JP4725913B2 true JP4725913B2 (en) 2011-07-13

Family

ID=39071844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183791A Expired - Fee Related JP4725913B2 (en) 2006-07-03 2006-07-03 Snowfall intensity measuring method and snowfall intensity measuring apparatus

Country Status (1)

Country Link
JP (1) JP4725913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567704B (en) * 2021-09-23 2021-12-07 风云博维(深圳)科技有限公司 Meteorological monitoring facilities

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451576A (en) * 1977-09-30 1979-04-23 Oki Electric Ind Co Ltd Concentration measurement method
JP3713879B2 (en) * 1997-04-09 2005-11-09 富士電機システムズ株式会社 Oil film detector
JP2001166065A (en) * 1999-12-13 2001-06-22 Meisei Electric Co Ltd Current weather meter and judging method for current weather

Also Published As

Publication number Publication date
JP2008014677A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US11650291B2 (en) LiDAR sensor
EP1560041B1 (en) Processing apparatus for pulsed signal and processing method for pulsed signal and program therefor
US8134692B2 (en) Fog detector and method of placing detector in vehicle
US9958546B2 (en) Laser rangefinder and method of measuring distance and direction
KR20140070595A (en) Improved laser rangefinder sensor
JP5520907B2 (en) Rainfall measuring system using optical rain gauge and optical rain gauge
JP6497071B2 (en) Laser distance measuring device, dirt detection method, and program
WO2010001299A2 (en) Self-mixing reflective sensor
CN101633474A (en) Safety device of automatic ladder
JP4725913B2 (en) Snowfall intensity measuring method and snowfall intensity measuring apparatus
WO2013094062A1 (en) Optical wave distance measurement device
KR101005051B1 (en) Laser sensor
US20080143999A1 (en) Range finder and range finding method
JP2006258579A (en) Light wave type water level measuring apparatus
JP2017224879A (en) Circuit device, distance measuring device, movable body device, and distance measuring method
JP2010151788A (en) Laser radar device
JPH11232587A (en) Detecting device, vehicle measuring instrument, axle detecting device, and pass charge calculating device
CN202814396U (en) Uniaxial tilt-angle electronic sensor
JPH10105869A (en) Vehicle type discrimination device
KR101893501B1 (en) Integrated weather detector
JP2000339586A (en) Axle detector
JP3924363B2 (en) Dimensional measuring device
WO2020090291A1 (en) Sensor device and detection method
JPH08292260A (en) Photoelectric sensor having self-diagnostic function
RU2281349C2 (en) Method for measuring melt level at growing crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4725913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees