JP4724690B2 - Light guide plate and flat illumination device - Google Patents

Light guide plate and flat illumination device Download PDF

Info

Publication number
JP4724690B2
JP4724690B2 JP2007147013A JP2007147013A JP4724690B2 JP 4724690 B2 JP4724690 B2 JP 4724690B2 JP 2007147013 A JP2007147013 A JP 2007147013A JP 2007147013 A JP2007147013 A JP 2007147013A JP 4724690 B2 JP4724690 B2 JP 4724690B2
Authority
JP
Japan
Prior art keywords
light
guide plate
light source
light guide
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007147013A
Other languages
Japanese (ja)
Other versions
JP2007234617A (en
Inventor
カリル カランタル
Original Assignee
ライツ・アドバンスト・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライツ・アドバンスト・テクノロジー株式会社 filed Critical ライツ・アドバンスト・テクノロジー株式会社
Priority to JP2007147013A priority Critical patent/JP4724690B2/en
Publication of JP2007234617A publication Critical patent/JP2007234617A/en
Application granted granted Critical
Publication of JP4724690B2 publication Critical patent/JP4724690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、液晶表示装置等に用いられる導光板および平面照明装置に関し、どの様な光源に対しても、その光源の輝度分布または光エネルギ分布に対応した位置に連続や連続的に光源からの光線束に対応した傾斜面を有する光学素子を光源からの距離に比例して関数的に増加する密度分布を有する様にし、指向性のある点光源の様な少ない光源でも明るく、また線状等の形状を持つ指向性分布のある光源でも明るい出射光が得られる導光板および平面照明装置に関する。   The present invention relates to a light guide plate and a flat illumination device used for a liquid crystal display device or the like. For any light source, the light source is continuously or continuously located at a position corresponding to the luminance distribution or light energy distribution of the light source. An optical element having an inclined surface corresponding to the light bundle has a density distribution that increases functionally in proportion to the distance from the light source, so that even a small light source such as a directional point light source is bright, linear, etc. The present invention relates to a light guide plate and a flat illumination device that can obtain bright emitted light even with a light source having a directivity distribution and having a shape of.

従来の導光板および平面照明装置は、導光板の裏面部に散乱を利用する方法を用いるものである。この方法では、酸化チタン等の白色材料を混入させたインクを用いて円形状や矩形状を光源から離れるほど多くのドット印刷を行い、光源から離れるほど散乱光を得るようにして導光板からの出射光の均一性を得ようとしている。
さらに、射出成形法を用いるもので、導光板の表面部や裏面部に散乱を利用し、ランダムに微細な凸凹形状を成形するものが知られている。
Conventional light guide plates and flat illumination devices use a method that uses scattering on the back surface of the light guide plate. In this method, a dot or a rectangular shape is printed with an ink mixed with a white material such as titanium oxide as the distance from the light source increases, and scattered light is obtained as the distance from the light source increases. We are trying to obtain the uniformity of the emitted light.
Further, an injection molding method is used, in which scattering is used for the front surface portion and the back surface portion of the light guide plate, and a minute uneven shape is randomly formed.

また同様に、射出成形法を用いた導光板および平面照明装置として、導光板の表面部や裏面部に屈折や反射を利用する方法を用いたものが知られている。この方法では、凸形状や凹形状を単に光源から離れるほど多く分布(グラデーション)する様に成形し、光源から離れるほど屈折や反射等の確率を高くし、導光板からの出射光を均一にしている。   Similarly, as a light guide plate and a flat illumination device using an injection molding method, one using a method utilizing refraction or reflection on the front surface portion or the back surface portion of the light guide plate is known. In this method, the convex shape and the concave shape are simply formed so as to be distributed (gradation) more away from the light source, and the probability of refraction and reflection increases as the distance from the light source increases, and the light emitted from the light guide plate is made uniform. Yes.

さらに、射出成形法を用いた導光板および平面照明装置として、導光板の表面部や裏面部に屈折や反射を利用する方法を用いるものも知られている。この方法では、光源と平行にプリズム形状を成形し、光源からの光線をプリズムの辺で屈折させたり反射させて出射面に偏向させたり出射面から出射している。
また同様に、光源と平行にプリズム形状を導光板の表面部や裏面部に設ける方法が知られている。この方法では、光源から離れるほどプリズムの高さや深さを高くまたは深く設けて、光源から離れるほど光源からの光線を多く受けて、反射光や屈性光を多く利用して、光源からの距離に関係なく出射光を均一化させている。
Further, as a light guide plate and a flat illumination device using an injection molding method, one using a method using refraction or reflection on the front surface portion or the back surface portion of the light guide plate is also known. In this method, a prism shape is formed in parallel with the light source, and light rays from the light source are refracted or reflected by the sides of the prism to be deflected to the emission surface or emitted from the emission surface.
Similarly, a method is known in which a prism shape is provided in parallel with the light source on the front surface portion and the back surface portion of the light guide plate. In this method, the height or depth of the prism is set higher or deeper as the distance from the light source increases, the more light rays from the light source are received as the distance from the light source increases, and the reflected light or refractive light is used more. The emitted light is made uniform.

従来の導光板および平面照明装置は、導光板の裏面部に散乱を利用する方法を用いるもので、酸化チタン等の白色材料を混入させたインクを用いて円形状や矩形状を光源から離れるほど多くのドット印刷を行い、光源から離れるほど散乱光を得るようにして導光板からの出射光の均一性を得ようとしていたが、白色材料やインク等によって光を吸収してしまうとともに光が散乱してしまい出射面のみに光線が到達せず、絶対出射光量が低いため輝度に課題がある。   Conventional light guide plates and flat illumination devices use a method of utilizing scattering on the back surface of the light guide plate, and the more the circular or rectangular shape is separated from the light source by using ink mixed with a white material such as titanium oxide. Many dots were printed, and scattered light was obtained as the distance from the light source was increased to obtain uniformity of light emitted from the light guide plate. However, the light was absorbed by the white material or ink, and the light was scattered. As a result, the light beam does not reach only the exit surface, and there is a problem in luminance because the absolute amount of emitted light is low.

また、射出成形によって導光板の表面部や裏面部にランダムに微細な凸凹形状を成形し、光源からの光線を散乱する方法では光の吸収による損失はないが、上記の印刷法と同様に光が散乱してしまい出射面のみに光線が到達せず、出射光の輝度が低いとともに凸凹形状の分布がランダムなため輝度斑等に課題がある。   In addition, there is no loss due to light absorption in the method in which fine irregularities are randomly formed on the front and back surfaces of the light guide plate by injection molding, and the light from the light source is scattered. Are scattered, the light beam does not reach only the exit surface, the brightness of the exit light is low, and the uneven distribution is random, causing problems with brightness spots and the like.

また同様に凸形状や凹形状を単に光源から離れるほど多く分布(グラデーション)する場合には、インク等の印刷や微細な凸凹形状のランダム成形等と比べると改善されているが、単に光源から離れるほど屈折や反射等の確率を高くさせているだけで、光線の指向性(輝度分布)や光源の形状等に対応されていないため光源の持つ光量と指向性やエネルギを十分引き出して利用されていない課題がある。   Similarly, when the distribution of the convex shape or concave shape increases as the distance from the light source is increased (gradation), it is improved compared to printing of ink or the like, or random shaping of fine uneven shapes, but it is merely away from the light source. The probability of refraction and reflection is only increased, and it does not correspond to the directivity (luminance distribution) of the light beam or the shape of the light source. There are no challenges.

さらに、導光板の表面部や裏面部に光源と平行にプリズム形状を成形し、光源からの光線をプリズムの辺で屈折させたり反射させて出射面に偏向させたり出射面から出射する方法は、プリズムの稜長に対して全て同条件である場合(単純理想状態の場合)には成立するが、実際には光源の指向性(輝度分布)や光源の形状等に対応されていないため光源の持つ光量と指向性やエネルギを十分引き出して利用されていない課題がある。   Furthermore, a method of forming a prism shape in parallel with the light source on the front surface portion and the back surface portion of the light guide plate, refracting or reflecting light rays from the light source on the sides of the prism and deflecting to the output surface, or emitting from the output surface, This is true if all of the prism ridge lengths have the same condition (in the case of a simple ideal state), but in reality, the light source directivity (luminance distribution) and the shape of the light source are not supported. There is a problem that the amount of light, directivity, and energy are not fully utilized.

また同様に、導光板の表面部や裏面部に光源と平行にプリズム形状を設け、光源から離れるほどプリズムの高さや深さを高くまたは深く設けて、光源から離れるほど光源からの光線を多く受けて、反射光や屈折光を多く利用して、光源からの距離に関係なく出射光を均一化させる方法では、光源から離れる位置での方法としては良いが、プリズム自身が実際には光源の指向性(輝度分布)や光源の形状等に対応されていないため光源の持つ光量と指向性やエネルギを十分引き出して利用されていない課題がある。   Similarly, a prism shape is provided on the front and back surfaces of the light guide plate in parallel with the light source, and the height and depth of the prism are set higher or deeper as the distance from the light source increases, and more light from the light source is received as the distance from the light source increases. Thus, a method that uses a lot of reflected light and refracted light to make the emitted light uniform regardless of the distance from the light source is good as a method away from the light source, but the prism itself is actually pointing the light source. However, there is a problem that the light amount, directivity, and energy of the light source are not sufficiently used because they are not compatible with the characteristics (luminance distribution) and the shape of the light source.

何れにせよ、これら従来の方法では、光源の光量の指向性やエネルギ分布および光源の形状等に対応されていなく、これら従来の方法では限界であった。   In any case, these conventional methods do not correspond to the directivity of the light amount of the light source, the energy distribution, the shape of the light source, and the like, and these conventional methods are limited.

本発明は、上記のような課題を解決するためなされたもので、従来と比較して、常に光源からの光量の指向性やエネルギ分布に対応した位置に光源からの光線束に対応した連続に傾斜面を有する光学素子を設けることによって、常に光源からの輝度やエネルギが等しい位置に連続に同等な光学素子の傾斜面によって全反射や屈折等を行い出射面側に同等な輝度やエネルギを出射することができるとともに光源からの輝度やエネルギの減衰に伴って光学素子密度分布を光源からの距離に比例して増加するようにして導光板のあらゆる位置でも出射光量と出射角度との積が等しく出射することができる導光板と平面照明装置を提供することにある。   The present invention has been made in order to solve the above-described problems. Compared to the conventional technique, the present invention always continuously corresponds to the light flux from the light source at a position corresponding to the directivity and energy distribution of the light amount from the light source. By providing an optical element having an inclined surface, the same luminance and energy are always emitted from the light source to the output surface side by performing total reflection and refraction by the inclined surface of the equivalent optical element continuously at the position where the luminance and energy from the light source are equal. The optical element density distribution is increased in proportion to the distance from the light source as the luminance and energy from the light source are attenuated, so that the product of the emitted light amount and the outgoing angle is equal at any position of the light guide plate. An object of the present invention is to provide a light guide plate and a flat illumination device that can emit light.

また、常に光源からの光量の指向性やエネルギ分布に対応した位置に光源からの光線束に対応した傾斜面を有する光学素子を連続的に設けることによって、常に光源からの光量の指向性やエネルギが等しい位置に連続的に同等な光学素子の傾斜面によって全反射や屈折等を行い出射面側に同等な輝度やエネルギを出射することができるとともに光源からの輝度やエネルギの減衰に伴って光学素子密度分布を光源からの距離に比例して増加するようにして導光板のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができる導光板と平面照明装置を提供することにある。   In addition, by continuously providing an optical element having an inclined surface corresponding to the light flux from the light source at a position corresponding to the directivity of the light amount from the light source and the energy distribution, the directivity and energy of the light amount from the light source are always provided. It is possible to emit the same brightness and energy to the exit surface side by performing the total reflection and refraction by the inclined surface of the equivalent optical element continuously at the same position, and the optical with the attenuation of the brightness and energy from the light source Provided is a light guide plate and a flat illumination device capable of increasing the element density distribution in proportion to the distance from the light source so that the product of the amount of light emitted at any position of the light guide plate and the solid angle can be emitted equally. There is.

本発明の請求項1に係る導光板は、指向性を有した複数の光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に設けた導光板において、入射部は曲線状であって、表面部または裏面部には光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有する光学素子を、光源に対向するほど入射部から離れるように曲線的に設け、さらに光源からの距離方向に対し該光学素子は光源からの距離に比例して関数的に増加する密度分布を有することを特徴とする。 The light guide plate according to claim 1 of the present invention includes an incident portion that guides light from a plurality of light sources having directivity, a surface portion that emits the light, and a back surface portion that is located on the opposite side of the surface portion. In the light guide plate having the side part connecting the surface part and the back part and provided inside the side part surrounded by the side part, the incident part is curved, and the front part or the back part has an optical element having an inclined surface corresponding to the light beam from the continuous or continuous light source at a position corresponding to the luminance distribution or light energy distribution of the light source, the curve to set away from the incident portion as opposed to the light source further optical element with respect to a distance direction from the light source is characterized by having a density distribution in proportion to the distance from the light source increases functionally.

請求項1に係る導光板は、指向性を有した複数の光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に設けた導光板において、入射部は曲線状であって、表面部または裏面部には光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有する光学素子を、光源に対向するほど入射部から離れるように曲線的に設け、さらに光源からの距離方向に対し該光学素子は光源からの距離に比例して関数的に増加する密度分布を有するので、常に光源からの輝度やエネルギが等しい位置に連続性な光学素子の傾斜面によって全反射や屈折等を行い、出射面側に連続性に同等な輝度やエネルギを出射することができる。しかも、光源からの輝度やエネルギの減衰に伴って光学素子密度分布を光源からの距離に比例して増加するようにして導光板のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができる。また、連続的であるが光学素子の長さや隣り合う光学素子の間隔をコントロールすることにより、光学素子からの出射する所の光量とその立体角との積が等しいが、光学素子を欠損させた所には光学素子の有る所より低い光エネルギを得ることができる。 The light guide plate according to claim 1 includes an incident portion that guides light from a plurality of light sources having directivity, a surface portion that emits the light, a back surface portion that is located on the opposite side of the surface portion, and these surfaces. In the light guide plate provided in the inside having the incident part surrounded by the side part, the incident part is curved, and the luminance of the light source is on the front part or the rear part. distribution or an optical element having an inclined surface corresponding to the light beam from the continuous or continuous light source at a position corresponding to the optical energy distribution, only curvedly set away from the incident portion as opposed to the light source, further light source The optical element has a density distribution that increases functionally in proportion to the distance from the light source with respect to the distance direction from the light source. Reflected and refracted continuously on the exit surface side It can emit the same brightness and energy. Moreover, the product of the amount of light emitted at every position of the light guide plate and the solid angle is equally emitted so that the optical element density distribution increases in proportion to the distance from the light source as the luminance and energy from the light source decrease. can do. In addition, by controlling the length of the optical element and the interval between adjacent optical elements, the product of the amount of light emitted from the optical element and the solid angle is equal, but the optical element is lost. It is possible to obtain light energy lower than that of the optical element.

さらに、請求項2に係る導光板は、光学素子の断面が三角形状、台形形状、円弧形状であるとともに連続または連続的であることを特徴とする。   Furthermore, the light guide plate according to claim 2 is characterized in that the cross section of the optical element is triangular, trapezoidal, or arcuate and continuous or continuous.

請求項3に係る導光板は、光学素子の断面が三角形状、台形形状、円弧形状であるとともに連続または連続的であるので、導光板の入射部から導光板内に進入した光線が三角形状、台形形状および円弧形状の傾斜面が光源からの光線束に対応した位置に存在することができる。そして、これらが連続の場合にはどの位置でも同等な輝度やエネルギを出射することができ、連続的であってもどの位置でも同等な輝度やエネルギを連続的に出射することができる。   In the light guide plate according to claim 3, since the cross section of the optical element is triangular, trapezoidal, arc-shaped and continuous or continuous, the light rays entering the light guide plate from the incident portion of the light guide plate are triangular, The trapezoidal and arcuate inclined surfaces can exist at positions corresponding to the light flux from the light source. If these are continuous, the same luminance and energy can be emitted at any position, and the same luminance and energy can be emitted continuously at any position.

また、請求項3に係る導光板は、光学素子を光源から遠ざかるほど光学素子の高さを高くまたは/および部分的に高低をつけることを特徴とする。   The light guide plate according to claim 3 is characterized in that the height of the optical element is increased or / and partially raised or lowered as the optical element is moved away from the light source.

請求項3に係る導光板は、光学素子を光源から遠ざかるほど光学素子の高さを高くまたは/および部分的に高低をつけるので、光源から遠い光学素子においても光源から光線を受けて全反射をすることができたり、部分的に高低をつけることによって導光板からの出射量や出射角度を変化させることができる。   In the light guide plate according to the third aspect, the height of the optical element is increased or / and partially raised / lowered as the optical element is moved away from the light source, so that even the optical element far from the light source receives light rays from the light source and performs total reflection. The amount of light emitted from the light guide plate and the angle of light emission can be changed by partially raising or lowering the height.

さらに、請求項4に係る導光板は、傾斜面を表面部および裏面部と成す角度がπ/2−2・臨界角から臨界角の範囲であることを特徴とする。   Furthermore, the light guide plate according to claim 4 is characterized in that an angle between the inclined surface and the front surface portion and the back surface portion is in a range from π / 2-2 · critical angle to critical angle.

請求項4に係る導光板は、傾斜面を表面部および裏面部と成す角度がπ/2−2・臨界角から臨界角の範囲であるので、導光板内に導かれる光線の最大入射角度から臨界角を破る最小角度までの範囲を用いることにより、全反射光が全て臨界角を破ることができる。   In the light guide plate according to claim 4, since the angle between the inclined surface and the front surface portion and the back surface portion is in the range of π / 2-2 · critical angle to critical angle, from the maximum incident angle of the light beam guided into the light guide plate By using the range up to the minimum angle that breaks the critical angle, all the reflected light can break the critical angle.

また、請求項5に係る導光板は、傾斜面を光源からの距離に比例して表面部および裏面部と成す角度が臨界角に近づくことを特徴とする。   Further, the light guide plate according to claim 5 is characterized in that an angle formed between the front surface portion and the back surface portion of the inclined surface in proportion to the distance from the light source approaches a critical angle.

請求項5に係る導光板は、傾斜面を光源からの距離に比例して表面部および裏面部と成す角度が臨界角に近づくので、光源からの輝度やエネルギの減衰に伴っても、光源からの距離に比例して全反射した反射光が小さな出射角で出射する。このため、導光板の出射面のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができる。   In the light guide plate according to the fifth aspect, the angle formed between the front surface portion and the back surface portion in proportion to the distance from the light source is close to the critical angle. The reflected light that is totally reflected in proportion to the distance is emitted at a small emission angle. For this reason, the product of the light quantity emitted and the solid angle can be emitted equally at any position on the emission surface of the light guide plate.

さらに、請求項6に係る導光板は、傾斜面を傾斜面の中央部を中心にして内側または外側に円弧を、あるいは傾斜面の部分的に内側と外側とに円弧を成していることを特徴とする。   Further, the light guide plate according to claim 6 is configured such that the inclined surface has an arc inside or outside with the central portion of the inclined surface as a center, or a circular arc partially inside and outside the inclined surface. Features.

請求項6に係る導光板は、傾斜面を傾斜面の中央部を中心にして内側または外側に円弧を、あるいは傾斜面の部分的に内側と外側とに円弧を成しているので、同じ大きさの導光板内での出射位置を傾斜面の内側を円弧にした場合には光源側に近づけることができる。また、光源が近い場合には全反射した光が平行光になり、光源が遠い場合には全反射した光が集光することができる。
また、同じ大きさの導光板内での出射位置を傾斜面の外側を円弧にした場合には光源側から遠ざけることができる。また、光源が近い場合には全反射した光が平行光になり、光源が遠い場合には全反射した光を拡散することができる。
さらに、一つの傾斜面に部分的に内側および外側に円弧にすることにより一つの斜面で集光や拡散等の異なる作用を得ることができる。
In the light guide plate according to the sixth aspect of the present invention, the inclined surface has a circular arc inside or outside with respect to the central portion of the inclined surface, or partly inside and outside the inclined surface. In the case where the emission position in the light guide plate is an arc on the inside of the inclined surface, it can be brought closer to the light source side. Further, when the light source is near, the totally reflected light becomes parallel light, and when the light source is far, the totally reflected light can be condensed.
Further, when the emission position in the light guide plate having the same size is formed as an arc on the outer side of the inclined surface, it can be moved away from the light source side. Further, when the light source is near, the totally reflected light becomes parallel light, and when the light source is far, the totally reflected light can be diffused.
Further, different actions such as condensing and diffusing can be obtained on one inclined surface by forming a circular arc partially inside and outside on one inclined surface.

また、請求項7に係る平面照明装置は、指向性を有した複数の光源と、光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に曲線状に設け、光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有し、光源に対向するほど入射部から離れるように曲線的に設けられ、さらに光源からの距離方向に対し、光源からの距離に比例して関数的に増加する密度分布に施すとともに傾斜面の傾きを変化できる光学素子を表面部または裏面部に有する導光板と、導光板からの出射光の微細な輝度斑を補正する補正シートと、導光板の入射部および出射面以外を覆い導光板からの漏れ光を再び導光板内に反射する反射体とを具備することを特徴とする。 The planar illumination device according to claim 7 is located on the opposite side of the surface portion, a plurality of directional light sources, an incident portion that guides light from the light source, a surface portion that emits the light. It has a back surface part and a side surface part that connects the front surface part and the back surface part, is provided in a curved shape inside the incident part surrounded by the side surface part, and is continuous at a position corresponding to the luminance distribution or light energy distribution of the light source or have a continuously inclined surface corresponding to the light beam from the light source, the light source curvedly disposed away from the incident portion as opposed to the further relative distance direction from the light source, in proportion to the distance from the light source A light guide plate having an optical element that can be applied to a functionally increasing density distribution and can change the inclination of the inclined surface on the front surface portion or the back surface portion, and a correction sheet that corrects fine luminance unevenness of light emitted from the light guide plate, Covers the light guide plate except the entrance and exit surfaces Characterized by comprising a reflector for reflecting the leaked light again light guide plate from the light plate.

請求項7に係る平面照明装置は、指向性を有した複数の光源と、光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に曲線状に設け、光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有し、光源に対向するほど入射部から離れるように曲線的に設けられ、さらに光源からの距離方向に対し、光源からの距離に比例して関数的に増加する密度分布に施すとともに傾斜面の傾きを変化できる光学素子を表面部または裏面部に有する導光板と、導光板からの出射光の微細な輝度斑を補正する補正シートと、導光板の入射部および出射面以外を覆い導光板からの漏れ光を再び導光板内に反射する反射体とを具備するので、常に光源からの輝度やエネルギが等しい位置に連続または連続的な光学素子の傾斜面によって全反射や屈折等を行い、出射面側に連続または連続的に同等な輝度やエネルギを出射することができる。しかも、光源からの輝度やエネルギの減衰に伴って光学素子の密度分布を光源からの距離に比例して関数的に増加するようにして導光板のあらゆる位置でも出射する光量とその立体角との積が等しく出射したり、傾斜面の角度の設定によって出射面からの出射角度を自由にコントロールすることができる。 The flat illumination device according to claim 7 includes a plurality of light sources having directivity, an incident portion that guides light from the light source, a front surface portion that emits the light, and a back surface portion that is located on the opposite side of the front surface portion. And a side surface portion connecting the front surface portion and the back surface portion, and the incident portion is provided in a curved shape inside the side surface portion, and is continuous or continuous at a position corresponding to the luminance distribution or light energy distribution of the light source. to have a sloped surface corresponding to the light beam from the light source, curvilinearly disposed away from the incident portion as opposed to the light source, further with respect to the distance direction from the light source, in proportion to the distance from the light source A light guide plate having an optical element on the front surface or back surface that can be applied to a functionally increasing density distribution and can change the inclination of the inclined surface; a correction sheet that corrects fine luminance spots of light emitted from the light guide plate; A light guide plate that covers the light plate except the entrance and exit surfaces And a reflector that reflects the leaked light again into the light guide plate, so that total reflection or refraction is always performed by the inclined surface of the optical element continuously or continuously at a position where the luminance and energy from the light source are equal, Equivalent brightness and energy can be emitted continuously or continuously to the emission surface side. In addition, the density distribution of the optical element increases functionally in proportion to the distance from the light source as the brightness and energy from the light source decay, and the amount of light emitted from any position of the light guide plate and its solid angle It is possible to emit the same product or to freely control the exit angle from the exit surface by setting the angle of the inclined surface.

以上のように、請求項1に係る導光板は、指向性を有した複数の光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に設けた導光板において、入射部は曲線状であって、表面部または裏面部には光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有する光学素子を、光源に対向するほど入射部から離れるように曲線的に設け、さらに光源からの距離方向に対し該光学素子は光源からの距離に比例して関数的に増加する密度分布を有するので、常に光源からの輝度やエネルギが等しい位置に連続性な光学素子の傾斜面によって全反射や屈折等を行い、出射面側に連続性に同等な輝度やエネルギを出射することができる。しかも、光源からの輝度やエネルギの減衰に伴って光学素子密度分布を光源からの距離に比例して関数的に増加するようにして導光板のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができるので、均一な輝度や視野角の出射光を得ることができる。
また、連続的であるが光学素子の長さや隣り合う光学素子の間隔をコントロールすることにより、光学素子からの出射する所の光量とその立体角との積が等しいが、光学素子を欠損させた所には光学素子の有る所より低い光エネルギを得ることができ、導光板に希望する輝度分布を表現することができる。
As described above, the light guide plate according to claim 1 includes an incident portion that guides light from a plurality of directional light sources, a front surface portion that emits the light, and a rear surface that is located on the opposite side of the front surface portion. And a light guide plate provided in the interior of the light receiving plate surrounded by the side surface portion, the incident portion is curved, and the surface portion or the back surface portion. The optical element having an inclined surface corresponding to the light flux from the light source continuously or continuously at a position corresponding to the luminance distribution or light energy distribution of the light source is curved so as to be away from the incident portion as it faces the light source. setting only, further since relative distance direction from the light source optical element has a density distribution in proportion to the distance from the light source increases functionally, always luminance and energy are equal position from the light source continuity optics Performs total reflection and refraction by the inclined surface of Can be morphism surface emitting equivalent brightness and energy continuity. Moreover, the product of the amount of light emitted from any position of the light guide plate and its solid angle so that the optical element density distribution increases functionally in proportion to the distance from the light source as the luminance and energy from the light source decay. Can be emitted equally, so that emitted light with uniform brightness and viewing angle can be obtained.
In addition, by controlling the length of the optical element and the interval between adjacent optical elements, the product of the amount of light emitted from the optical element and the solid angle is equal, but the optical element is lost. Thus, it is possible to obtain lower light energy than the place where the optical element is present, and to express a desired luminance distribution on the light guide plate.

さらに、請求項2に係る導光板は、光学素子の断面が三角形状、台形形状、円弧形状であるとともに連続または連続的であるので、導光板の入射部から導光板内に進入した光線が三角形状、台形形状および円弧形状の傾斜面が光源からの光線束に対応した位置に存在することができる。そして、これらが連続の場合にはどの位置でも同等な輝度やエネルギを出射することができ、連続的であっても、あらゆる位置で同等な輝度やエネルギを連続的に出射することができる。   Furthermore, the light guide plate according to claim 2 is such that the cross section of the optical element has a triangular shape, a trapezoidal shape, and an arc shape, and is continuous or continuous. Therefore, light rays that have entered the light guide plate from the incident portion of the light guide plate are triangular. An inclined surface having a shape, a trapezoidal shape, and an arc shape can exist at a position corresponding to the light flux from the light source. And when these are continuous, the same brightness | luminance and energy can be radiate | emitted at any position, and even if it is continuous, the same brightness | luminance and energy can be radiate | emitted continuously at every position.

また、請求項3に係る導光板は、光学素子を光源から遠ざかるほど光学素子の高さを高くまたは/および部分的に高低をつけるので、光源から遠い光学素子においても光源から光線を受けて全反射をすることができる。このため、光源から遠い位置でも出射光を多く出射して光源の遠近に関係無く均一な導光板からの出射輝度を得る事ができたり、部分的に高低をつけることによって導光板の任意の位置からの出射量を多くしたり少なくしたり、導光板の任意の位置からの出射角度を変化することができる。その結果、必要とする導光板の任意の位置での輝度のコントロールや視野角のコントロールをすることができる。   Further, the light guide plate according to claim 3 increases the height of the optical element or / and partially raises or lowers the height of the optical element as the optical element is moved away from the light source. Can be reflected. For this reason, it is possible to obtain a large amount of emitted light even at a position far from the light source to obtain a uniform emission brightness from the light guide plate regardless of the distance of the light source, or to set the height of the light guide plate at any position. The amount of light emitted from can be increased or decreased, and the angle of light emitted from an arbitrary position of the light guide plate can be changed. As a result, it is possible to control the luminance and the viewing angle at any desired position of the light guide plate.

さらに、請求項4に係る導光板は、傾斜面を表面部および裏面部と成す角度がπ/2−2・臨界角から臨界角の範囲であるので、導光板内に導かれる光線の最大入射角度から臨界角を破る最小角度までの範囲を用いるので、全反射光が全て臨界角を破ることができる。これにより、導光板の出射面からの出射角度範囲が大きく取れるため、必要とする出射角を自由に選択することができて目的に合わせることができる。   Furthermore, in the light guide plate according to claim 4, since the angle between the inclined surface and the front surface portion and the back surface portion is in the range of π / 2-2 · critical angle to critical angle, the maximum incidence of the light beam guided into the light guide plate Since the range from the angle to the minimum angle that breaks the critical angle is used, all the reflected light can break the critical angle. Thereby, since the emission angle range from the emission surface of the light guide plate can be made large, the required emission angle can be freely selected and can be adapted to the purpose.

また、請求項5に係る導光板は、傾斜面を光源からの距離に比例して表面部および裏面部と成す角度が臨界角に近づくので、光源からの輝度やエネルギの減衰に伴っても、光源からの距離に比例して全反射した反射光が小さな出射角で出射する。このため、導光板の出射面のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができ、均一な出射量および均一な視野角を得ることができる。   Further, in the light guide plate according to claim 5, since the angle formed between the front surface portion and the back surface portion in proportion to the distance from the light source approaches the critical angle, even with the attenuation of luminance and energy from the light source, The reflected light totally reflected in proportion to the distance from the light source is emitted at a small emission angle. For this reason, the product of the quantity of light emitted and the solid angle thereof can be emitted equally at any position on the emission surface of the light guide plate, and a uniform emission amount and a uniform viewing angle can be obtained.

さらに、請求項6に係る導光板は、傾斜面を傾斜面の中央部を中心にして内側または外側に円弧を、あるいは傾斜面の部分的に内側と外側とに円弧を成しているので、同じ大きさの導光板内での出射位置を傾斜面の内側を円弧にした場合には光源側に近づけることができる。また、光源が近い場合には全反射した光が平行光になり、光源が遠い場合には全反射した光が集光することができる。さらに、同じ大きさの導光板内での出射位置を傾斜面の外側を円弧にした場合には光源側から遠ざけることができる。また、光源が近い場合には全反射した光が平行光になり、光源が遠い場合には全反射した光が拡散することができ、これら内側と外側に円弧を一つの傾斜面で部分的に二つの異なる円弧によって、集光や拡散等の作用および効果を一つの傾斜面で得ることができる。これにより、導光板の大きさや必要な出射光量や視野角等を自由にコントロールすることができる。   Furthermore, since the light guide plate according to claim 6 forms an arc on the inner side or the outer side with the inclined surface as the center of the central portion of the inclined surface, or partially on the inner side and the outer side of the inclined surface, When the emission position in the light guide plate of the same size is formed as an arc inside the inclined surface, it can be brought closer to the light source side. Further, when the light source is near, the totally reflected light becomes parallel light, and when the light source is far, the totally reflected light can be condensed. Furthermore, when the exit position in the light guide plate of the same size is formed as an arc outside the inclined surface, it can be moved away from the light source side. In addition, when the light source is close, the totally reflected light becomes parallel light, and when the light source is far, the totally reflected light can be diffused. By two different arcs, it is possible to obtain actions and effects such as condensing and diffusing on one inclined surface. Thereby, the size of the light guide plate, the necessary amount of emitted light, the viewing angle, and the like can be freely controlled.

また、請求項7に係る平面照明装置は、指向性を有した複数の光源と、光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら表面部と裏面部とを接続する側面部とを有し、入射部を側面部で囲んだ内部に曲線状に設け、光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有し、光源に対向するほど入射部から離れるように曲線的に設けられ、さらに光源からの距離方向に対し、光源からの距離に比例して関数的に増加する密度分布に施すとともに傾斜面の傾きを変化できる光学素子を表面部または裏面部に有する導光板と、導光板からの出射光の微細な輝度斑を補正する補正シートと、導光板の入射部および出射面以外を覆い導光板からの漏れ光を再び導光板内に反射する反射体とを具備するので、常に光源からの輝度やエネルギが等しい位置に連続または連続的な光学素子の傾斜面によって全反射や屈折等を行い、出射面側に連続または連続的に同等な輝度やエネルギを出射することができる。しかも、光源からの輝度やエネルギの減衰に伴って光学素子の密度分布を光源からの距離に比例して関数的に増加するようにして導光板のあらゆる位置でも出射する光量とその立体角との積が等しく出射したり、傾斜面の角度の設定によって出射面からの出射角度を自由にコントロールすることができる。その結果、平面照明装置の必要目的によって、輝度重視や視野角重視あるいは均一性を重視するなど自由度の広い設計および平面照明装置を可能とすることができる。 The planar illumination device according to claim 7 is located on the opposite side of the surface portion, a plurality of directional light sources, an incident portion that guides light from the light source, a surface portion that emits the light. It has a back surface part and a side surface part that connects the front surface part and the back surface part, is provided in a curved shape inside the incident part surrounded by the side surface part, and is continuous at a position corresponding to the luminance distribution or light energy distribution of the light source or have a continuously inclined surface corresponding to the light beam from the light source, the light source curvedly disposed away from the incident portion as opposed to the further relative distance direction from the light source, in proportion to the distance from the light source A light guide plate having an optical element that can be applied to a functionally increasing density distribution and can change the inclination of the inclined surface on the front surface portion or the back surface portion, and a correction sheet that corrects fine luminance unevenness of light emitted from the light guide plate, Covers the light guide plate except the entrance and exit surfaces Since it has a reflector that reflects the light leaked from the light plate again into the light guide plate, it always performs total reflection and refraction on the inclined surface of the optical element continuously or continuously at the same brightness and energy from the light source. The same brightness and energy can be emitted continuously or continuously to the emission surface side. In addition, the density distribution of the optical element increases functionally in proportion to the distance from the light source as the brightness and energy from the light source decay, and the amount of light emitted from any position of the light guide plate and its solid angle It is possible to emit the same product or to freely control the exit angle from the exit surface by setting the angle of the inclined surface. As a result, according to the required purpose of the flat illumination device, it is possible to realize a design with a high degree of freedom and a flat illumination device such as emphasizing luminance, viewing angle, or uniformity.

以下、本発明の実施の形態を添付図面に基づいて説明する。
なお、本発明は、光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に光源からの光線束に対応した傾斜面を有する光学素子を表面部や裏面部に光源からの距離に比例して関数的に増加する密度分布を有する様にした導光板と指向性や指向性分布を有する光源を備えた平面照明装置を提供するものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, an optical element having an inclined surface corresponding to a light flux from a light source is continuously or continuously provided at a position corresponding to the luminance distribution or light energy distribution of the light source at a distance from the light source on the front surface portion or the back surface portion. The present invention provides a flat illumination device including a light guide plate having a density distribution that increases in proportion to a function and a light source having directivity and directivity distribution.

図1および図2は本発明に係る導光板の略図、図3は本発明に係る導光板の光線の略軌跡図である。
平面照明装置は、図1や図2に示す導光板2、光源4、不図示のリフレクタ、不図示の補正フィルムおよび不図示の反射ケースから概略構成される。
1 and 2 are schematic views of a light guide plate according to the present invention, and FIG. 3 is a schematic locus diagram of light rays of the light guide plate according to the present invention.
The flat illumination device is generally composed of a light guide plate 2, a light source 4, a reflector (not shown), a correction film (not shown), and a reflection case (not shown) shown in FIGS.

導光板2は、屈折率が1.4〜1.7程度の透明なアクリル樹脂(PMMA)やポリカーボネート(PC)等で形成される。この導光板2は、側面部11と、光の出射目的である表面部8と、その反対側に位置する裏面部9および光源4からの光を導く入射部5とからなる。   The light guide plate 2 is formed of a transparent acrylic resin (PMMA) or polycarbonate (PC) having a refractive index of about 1.4 to 1.7. The light guide plate 2 includes a side surface portion 11, a front surface portion 8 for light emission, and a back surface portion 9 located on the opposite side and an incident portion 5 that guides light from the light source 4.

導光板2は、図1および図2に示す様に、光源4の輝度分布または光エネルギ分布に対応した位置に連続に光学素子20を表面部8または裏面部9に施す構成とすることができる。
尚、ここでは、図示しずらいために、光学素子20を連続的に設けた図は省略してある。
As shown in FIGS. 1 and 2, the light guide plate 2 can be configured to continuously apply the optical element 20 to the front surface portion 8 or the back surface portion 9 at a position corresponding to the luminance distribution or light energy distribution of the light source 4. .
Here, in order to make it difficult to illustrate, the illustration in which the optical element 20 is continuously provided is omitted.

ここで、光学素子20の長さを、短くして傾斜面での全反射量を少なくしたり、長くして傾斜面での全反射量を多くする。これにより、光学素子20からの全反射量をコントロールすることができる。
また、隣り合う光学素子20の間隔を長くしたり、間隔を短くする。これにより、光学素子20からの出射する所の光量とその立体角との積が等しいが、光学素子20を欠損させた所(間隔)には光学素子20の有る所より低い光エネルギを得る。これにより、導光板2に希望する輝度分布を表現することができる。
Here, the length of the optical element 20 is shortened to reduce the total reflection amount on the inclined surface, or the length is increased to increase the total reflection amount on the inclined surface. Thereby, the total reflection amount from the optical element 20 can be controlled.
Further, the interval between adjacent optical elements 20 is increased or decreased. As a result, the product of the amount of light emitted from the optical element 20 and the solid angle thereof are equal, but light energy lower than that of the optical element 20 is obtained where the optical element 20 is missing (interval). Thereby, a desired luminance distribution can be expressed in the light guide plate 2.

さらに、導光板2は、光源4から離れるほど光源4からの輝度やエネルギが減衰する。このため、入射部5から離れるほど光学素子20を多くなる様する。そして、表面部8または裏面部9に施した光学素子20を光源4からの距離に比例して指数関数的に増加する密度分布を有する様にする。これにより、入射部5の近傍の光学素子20の単位面積と強い光強度との積と、入射部5から離れた端部6,6b近傍の光学素子20の単位面積と弱い光強度との積とが等しくなる。   Furthermore, the brightness and energy from the light source 4 attenuate as the light guide plate 2 moves away from the light source 4. For this reason, the optical element 20 is increased as the distance from the incident portion 5 increases. The optical element 20 applied to the front surface portion 8 or the back surface portion 9 has a density distribution that increases exponentially in proportion to the distance from the light source 4. Thereby, the product of the unit area of the optical element 20 in the vicinity of the incident part 5 and the strong light intensity, and the product of the unit area of the optical element 20 in the vicinity of the end portions 6 and 6b far from the incident part 5 and the weak light intensity. And become equal.

また、導光板2は、光学素子20を光源4からの光線束に対応した傾斜面を有する様に断面が三角形状や台形形状および円弧形状にして、光源4からの光線を損失無く効率良く傾斜面で全反射させる。   The light guide plate 2 has a triangular, trapezoidal, and arcuate cross section so that the optical element 20 has an inclined surface corresponding to the light flux from the light source 4, and efficiently inclines the light from the light source 4 without loss. Make a total reflection on the surface.

さらに、導光板2は、図示しないが光学素子20を光源4から遠ざかるほど光学素子20の高さを高くする。これにより、傾斜面部の高さを高くすることができ、傾斜面部の面積を大きくすることができる。その結果、光源4から遠い光学素子20においても光源4からの光線を多く受けることができる。そして、受けた光線を傾斜面で全反射をして出射面方向に光線を偏向させて、光源4から遠い位置でも出射光を多く出射することができ、光源4の遠近に関係無く均一な導光板2からの出射輝度を得ることができる。   Further, although not shown, the light guide plate 2 increases the height of the optical element 20 as the optical element 20 is moved away from the light source 4. Thereby, the height of an inclined surface part can be made high, and the area of an inclined surface part can be enlarged. As a result, the optical element 20 far from the light source 4 can receive a large amount of light from the light source 4. The received light is totally reflected on the inclined surface and deflected in the direction of the exit surface, so that a large amount of the exit light can be emitted even at a position far from the light source 4, and the light can be uniformly guided regardless of the distance of the light source 4. The emission brightness from the optical plate 2 can be obtained.

また、導光板2は、図示しないが光学素子20を部分的に高低をつけることにより、傾斜面部の高さを高くまたは低くすることができる。これにより、傾斜面部の面積を大きくまたは小さくすることができる。その結果、導光板2の任意の位置からの出射量を多くしたり少なくすることができたり、導光板の任意の位置からの出射角度を変化することができる。これにより、必要とする導光板2の任意位置の輝度のコントロールや視野角のコントロールをすることができる。   Although not shown, the light guide plate 2 can raise or lower the height of the inclined surface portion by partially raising or lowering the optical element 20. Thereby, the area of an inclined surface part can be enlarged or reduced. As a result, the amount of light emitted from an arbitrary position of the light guide plate 2 can be increased or decreased, and the angle of emission from an arbitrary position of the light guide plate can be changed. As a result, it is possible to control the luminance at a desired position of the light guide plate 2 and the viewing angle.

なお、光学素子20を部分的に高低をつけることにより、例えば断面積が三角形状の光学素子20である場合には、一つの連続する三角形の稜の高さを連続的に変化させることができ、出射光の変化を連続性の有るものにできる。   It should be noted that by partially changing the height of the optical element 20, for example, when the cross-sectional area is a triangular optical element 20, the height of one continuous triangular ridge can be continuously changed. The change of the emitted light can be made continuous.

また、光学素子20の傾斜面を表面部8や裏面部9と成す角度がπ/2−2・臨界角γから臨界角γの範囲としている。すなわち、傾斜面を光源4からの距離に比例して光源4から離れるほど表面部8および裏面部9と成す角度が臨界角γに近づく様にする。
ここで、光源4からの光を入射部5から導光板2の内部に導いた時、例えば導光板2の材料がポリカーボネート(PC)樹脂の場合、ポリカーボネート樹脂の屈折率n=1.59であるので、空気層から導光板2内に入って導光板2内に存在する光線L0は、0≦|α|≦sin-1(1/n)の式により(但し、式中のnは空気層とし、屈折率n=1)略屈折角α=±38.9713°の範囲内にある。
In addition, the angle between the inclined surface of the optical element 20 and the front surface portion 8 and the back surface portion 9 is in the range of π / 2-2 · critical angle γ to critical angle γ. That is, the angle formed between the front surface portion 8 and the back surface portion 9 is made closer to the critical angle γ as the inclined surface is separated from the light source 4 in proportion to the distance from the light source 4.
Here, when the light from the light source 4 is guided from the incident portion 5 to the inside of the light guide plate 2, for example, when the material of the light guide plate 2 is polycarbonate (PC) resin, the refractive index of the polycarbonate resin is n = 1.59. Therefore, the light ray L0 that enters the light guide plate 2 from the air layer and exists in the light guide plate 2 is expressed by the equation 0 ≦ | α | ≦ sin −1 (1 / n) (where n is an air layer) And refractive index n = 1) substantially in the range of refraction angle α = ± 38.997 °.

また、屈折角α=±38.9713°の範囲内で導光板2内に入射した光は、導光板2と空気層(屈折率n=1)との境界面では、sinγ=(1/n)の式により臨界角を表わすことができる。例えば一般の導光板2に使用されている樹脂材料であるポリカーボネート樹脂の屈折率はn=1.59程度であるので、臨界角γはγ=38.97°程度になる。また、アクリル樹脂(PMMA)材料を用いた導光板の場合には、アクリル樹脂の屈折率nがn=1.49程度であり、屈折角αはα=±42.38°程度となるので、臨界角γもγ=42.38°程度となる。   Further, the light incident on the light guide plate 2 within the range of the refraction angle α = ± 38.997 ° is sin γ = (1 / n at the boundary surface between the light guide plate 2 and the air layer (refractive index n = 1). ) Can be used to express the critical angle. For example, since the refractive index of polycarbonate resin which is a resin material used for the general light guide plate 2 is about n = 1.59, the critical angle γ is about γ = 38.97 °. In the case of a light guide plate using an acrylic resin (PMMA) material, the refractive index n of the acrylic resin is about n = 1.49, and the refraction angle α is about α = ± 42.38 °. The critical angle γ is also about γ = 42.38 °.

例えばアクリル樹脂から成る導光板2の屈折率nはn=1.49程度であり、図3の例において、導光板2に入った光線の屈折角αがα=42.38°ほどになる。従って、導光板2の裏面部9に設けた光学素子20は、裏面部9と成す角度θが(π/2−2・42.38°より)5.24°から42.38°の範囲の内、入射部5の近傍に最小値である角度θ1=5.24°の傾斜面21が設けられ、入射部5から離れた位置に最大値である角度θ2=42.38°の傾斜面22が設けられる。   For example, the refractive index n of the light guide plate 2 made of acrylic resin is about n = 1.49, and in the example of FIG. 3, the refraction angle α of the light beam entering the light guide plate 2 is about α = 42.38 °. Accordingly, the optical element 20 provided on the back surface portion 9 of the light guide plate 2 has an angle θ formed with the back surface portion 9 (from π / 2-2 · 42.38 °) in the range of 5.24 ° to 42.38 °. Among them, an inclined surface 21 having an angle θ1 = 5.24 ° which is the minimum value is provided in the vicinity of the incident portion 5, and an inclined surface 22 having an angle θ2 = 42.38 ° which is the maximum value is provided at a position away from the incident portion 5. Is provided.

上記構成の導光板2内に導かれる光線の中で入射部5の近傍に多い入射角β=42°程度の光線L1は光学素子20の傾斜面21(傾斜度θ1=5.24°)で全反射する。この全反射した光線L11は導光板2の表面部8方向に進み、ここで(入射角36°程度)光線L11は臨界角γを破り表面部8の外に(出射角61°程度)出射光L12として出射する。   Among the light beams guided into the light guide plate 2 having the above-described configuration, the light beam L1 having an incident angle β of approximately 42 ° that is close to the incident portion 5 is the inclined surface 21 of the optical element 20 (the inclination θ1 = 5.24 °). Total reflection. The totally reflected light beam L11 travels in the direction of the surface portion 8 of the light guide plate 2. Here, the light beam L11 breaks the critical angle γ (outgoing angle of about 61 °) and exits from the surface portion 8 (outgoing angle of about 61 °). The light is emitted as L12.

このように、導光板2の中に進入した光線の中で屈折角の小さい光線は導光板2の延長方向(入射部5の反対方向)に進んだ光線以外の入射角の大きい光線として入射部の近傍にも多く存在する。そのため、入射部近傍の位置に設ける光学素子20の傾斜面21は、裏面部9と成す角が90°から臨界角γを2倍した値を減じた程度にして、入射角の大きい光線でも傾斜面21で全反射をして、表面部8方向に進み導光板2の臨界角γを破り、表面部8から出射することができる。   As described above, the light beam having a small refraction angle among the light beams that have entered the light guide plate 2 is a light beam having a large incident angle other than the light beam that travels in the extending direction of the light guide plate 2 (the direction opposite to the light incident portion 5). There are many in the vicinity of. Therefore, the inclined surface 21 of the optical element 20 provided in the vicinity of the incident portion is inclined even by a light beam having a large incident angle so that the angle formed with the rear surface portion 9 is reduced by 90.degree. The light is totally reflected at the surface 21, proceeds in the direction of the surface portion 8, breaks the critical angle γ of the light guide plate 2, and can be emitted from the surface portion 8.

また、導光板2内に導かれる光線の中で入射部5から離れる方向に多く進む光線の入射角β=2°程度の光線L2は光学素子20の傾斜面22(傾斜度θ1=42.38°)で全反射する。この全反射した光線L21は導光板2の表面部8方向に進み、ここで(入射角1.5°程度)光線L21は臨界角γを破り表面部8の外に(出射角2.24°程度)出射光L22として出射する。   Further, among the light beams guided into the light guide plate 2, the light beam L2 having an incident angle β = 2 °, which travels in a direction away from the incident portion 5, is inclined by the inclined surface 22 of the optical element 20 (inclination θ1 = 42.38). Total reflection at °). The totally reflected light beam L21 travels in the direction of the surface portion 8 of the light guide plate 2, where the light beam L21 breaks the critical angle γ (outgoing angle 2.24 °) outside the surface portion 8 (about 1.5 °). About) The light is emitted as outgoing light L22.

このように、導光板2の中に進入した光線の中で屈折角の小さい光線は導光板2の入射部5の反対方向(延長方向)に進み、入射部5付近に設けた光学素子20に衝突する確率が少ない。このため、入射部5から離れた位置に設ける光学素子20の傾斜面22は、裏面部9と成す角が臨界角γに等しい程度にして、入射角の小さい光線でも傾斜面22で全反射をして、表面部8方向に進み導光板2の臨界角γを破り、表面部8から出射することができる。   In this way, light rays having a small refraction angle among the light rays that have entered the light guide plate 2 travel in the opposite direction (extension direction) to the incident portion 5 of the light guide plate 2, and enter the optical element 20 provided in the vicinity of the incident portion 5. There is little probability of collision. For this reason, the inclined surface 22 of the optical element 20 provided at a position distant from the incident portion 5 is set so that the angle formed with the rear surface portion 9 is equal to the critical angle γ, and even the light having a small incident angle is totally reflected by the inclined surface 22. Then, it can proceed in the direction of the surface portion 8, break the critical angle γ of the light guide plate 2, and emit from the surface portion 8.

ゆえに、上記の様に両極端な場合についての説明でも解るように、本例の導光板では、入射部5からの光線に対して、入射部5から離れるに従って光学素子20の傾斜面の傾斜角が徐々に傾斜面21から傾斜面22に成る様に、光源4からの距離に比例して裏面部9と成す角度が臨界角γに近づく様にした。その結果、光源4からの輝度やエネルギの減衰に伴っても光源4からの距離に対応した光学素子20によって導光板2の出射面のあらゆる位置でも出射する光量とその立体角との積が等しく出射することができる。
また、ここでは凹形状の光学素子20を例にとって説明したが、凸形状の場合には、凹形状の傾斜面21や傾斜面22の対向側の位置になる傾斜面が光源側に対向するので、上記の説明と同様の作用および効果を得ることができる。
Therefore, as can be understood from the explanation of the two extreme cases as described above, in the light guide plate of this example, the inclination angle of the inclined surface of the optical element 20 increases as the distance from the incident portion 5 increases with respect to the light beam from the incident portion 5. The angle formed with the back surface portion 9 is made closer to the critical angle γ in proportion to the distance from the light source 4 so that the inclined surface 21 gradually becomes the inclined surface 22. As a result, the product of the amount of light emitted from any position on the exit surface of the light guide plate 2 by the optical element 20 corresponding to the distance from the light source 4 and the solid angle is equal even with the luminance and energy attenuation from the light source 4. Can be emitted.
Although the concave optical element 20 has been described here as an example, in the case of a convex shape, the inclined surface 21 located on the opposite side of the inclined surface 21 or the inclined surface 22 faces the light source side. The same operations and effects as described above can be obtained.

なお、ここでは裏面部9に傾斜面を設けた光学素子20について説明したが、前に説明したように、入射部から入射した光線は、例えばアクリル樹脂の場合に屈折角αはα=±42.38°、ポリカーボネート樹脂の場合には屈折角αはα=±38.9713°と表面部8方向と裏面部9方向に進むので、表面部8に光学素子20を設けて上記の説明と同じ構成にした時には、フロントライトに用いる様な導光板2を得ることができる。また、一度表面部で全反射させた光線を再度裏面部9で全反射する様に光学素子20の傾斜面の角度を選択することによって自由に出射光をコントロールすることができる。   Here, the optical element 20 having the inclined surface provided on the back surface portion 9 has been described. However, as described above, the light incident from the incident portion is, for example, acrylic resin, the refraction angle α is α = ± 42. In the case of polycarbonate resin, the angle of refraction α is α = ± 38.997 °, which proceeds in the direction of the front surface portion 8 and the rear surface portion 9, so that the optical element 20 is provided on the front surface portion 8 and is the same as described above. When configured, the light guide plate 2 used for the front light can be obtained. Further, the emitted light can be freely controlled by selecting the angle of the inclined surface of the optical element 20 so that the light beam once totally reflected by the front surface portion is again totally reflected by the back surface portion 9 again.

さらに、光学素子20の傾斜面21や傾斜面22の中央部を中心にして内側または外側に円弧にすることにより、同じ大きさの導光板2内での出射位置を傾斜面21や傾斜面22の内側を円弧にした場合には光源側に近づけることができ、傾斜面21や傾斜面22の外側を円弧にした場合には光源側から遠ざけることができる。   Further, by forming an arc inward or outward with the central portion of the inclined surface 21 or the inclined surface 22 of the optical element 20 as the center, the emission position within the light guide plate 2 of the same size is set to the inclined surface 21 or the inclined surface 22. When the inner side of the surface is an arc, it can be brought closer to the light source side, and when the outer side of the inclined surface 21 or the inclined surface 22 is an arc, it can be moved away from the light source side.

また、傾斜面21や傾斜面22の外側を円弧にした場合に、光源4が近い時には全反射した光が平行光になり、光源4が遠い場合には全反射した光を拡散することができる。
さらに、傾斜面21や傾斜面22の内側を円弧にした場合に、光源4が近い時には全反射した光が平行光になり、光源4が遠い場合には全反射した光を集光することができる。
Further, when the outside of the inclined surface 21 or the inclined surface 22 is an arc, the totally reflected light becomes parallel light when the light source 4 is near, and the totally reflected light can be diffused when the light source 4 is far. .
Further, when the inside of the inclined surface 21 or the inclined surface 22 is an arc, the totally reflected light becomes parallel light when the light source 4 is near, and the totally reflected light is condensed when the light source 4 is far. it can.

また、光学素子20の傾斜面21や傾斜面22に内側と外側との異なる二つの円弧を一つの傾斜面に設けて、例えば傾斜面21や傾斜面22の表面部8や裏面部9に近い所に内側方向の円弧と、表面部8や裏面部9から遠い所に外側方向の円弧にすることにより、一つの傾斜面で部分的に二つの異なる集光と拡散との作用を得ることができる。   Also, two inclined arcs 21 and 22 on the optical element 20 are provided on one inclined surface, for example, close to the surface portion 8 and the back surface portion 9 of the inclined surface 21 or the inclined surface 22. By forming an arc in the inner direction at the location and an arc in the outer direction at a location far from the front surface portion 8 and the back surface portion 9, it is possible to obtain two different light collection and diffusion effects on one inclined surface. it can.

ここで、詳しく説明する光学素子20は、図1に示す様に、光源4が半導体発光素子(LED)等の点光源の場合には、光源4が半導体発光素子であるために半導体発光素子の中心が特に輝度が高く、中心以外は減衰しているので、これらに対応した分布となっている。すなわち、導光板2の中央に円形状(や多角形状)の入射部5を設け、輝度分布の強い方向を導光板2の4つの端部6方向とし、輝度の低い部分が入射部5に近づき、輝度等が等しい位置が完全に連続した周となり、導光板2の外周方向に近づくにつれてピッチおよび分布が細かくなるように光学素子20が設けてある。   Here, as shown in FIG. 1, the optical element 20 to be described in detail shows that when the light source 4 is a point light source such as a semiconductor light emitting element (LED), the light source 4 is a semiconductor light emitting element. Since the center has particularly high luminance and the center other than the center is attenuated, the distribution corresponds to these. That is, a circular (or polygonal) incident portion 5 is provided at the center of the light guide plate 2, the direction with a strong luminance distribution is set to the four end portions 6 of the light guide plate 2, and a portion with low luminance approaches the incident portion 5. The optical elements 20 are provided so that the positions where the luminance and the like are equal become a completely continuous circumference, and the pitch and distribution become finer as it approaches the outer circumferential direction of the light guide plate 2.

同様に、光学素子20は、図2に示す様に、光源4が半導体発光素子(LED)等の点光源の場合には、光源4が半導体発光素子であるために半導体発光素子の中心が特に輝度が高く、中心以外は減衰しているので、これらに対応した分布となっている。すなわち、導光板2の中央下方向に略楕円形状の入射部5を設け、輝度分布の強い方向を導光板2の2つの上方端部6方向および1つの中心下部とし、輝度の低い部分が入射部5に近づき、輝度等が等しい位置が完全に連続した周となり、および下方向両端部6b方向および導光板2の外周方向に近づくにつれてピッチおよび分布が細かくなるように光学素子20が設けてある。   Similarly, as shown in FIG. 2, when the light source 4 is a point light source such as a semiconductor light emitting element (LED), the optical element 20 has a center of the semiconductor light emitting element because the light source 4 is a semiconductor light emitting element. Since the brightness is high and the areas other than the center are attenuated, the distribution corresponds to these. That is, a substantially elliptical incident portion 5 is provided in the lower center of the light guide plate 2, the direction with a strong luminance distribution is set to the two upper end portions 6 of the light guide plate 2 and one central lower portion, and a portion with low luminance is incident. The optical element 20 is provided so as to approach the portion 5 and have a position where equal brightness and the like are completely continuous, and the pitch and distribution become finer as it approaches the lower end 6b direction and the outer peripheral direction of the light guide plate 2. .

また、光学素子20は、三角形状や台形形状および円弧形状の断面を有し、例えば5μm〜100μm程度の底辺幅を有した導光板2の端で終わる連続な凹形状または凸形状を成して構成することができる。
同様に、光学素子20は、三角形状や台形形状および円弧形状の断面を有し、例えば5μm〜100μm程度の底辺幅を有した凹形状または凸形状を成し、導光板2の表面部8や裏面部9上に光源4の輝度や光エネルギ分布に対応した位置に連続的に設ける構成とすることができる。
The optical element 20 has a triangular, trapezoidal, or arcuate cross section, and has a continuous concave shape or convex shape that ends at the end of the light guide plate 2 having a base width of, for example, about 5 μm to 100 μm. Can be configured.
Similarly, the optical element 20 has a triangular shape, a trapezoidal shape, and an arc-shaped cross section, for example, has a concave shape or a convex shape with a base width of about 5 μm to 100 μm, and the surface portion 8 of the light guide plate 2 or the like. On the back surface part 9, it can be set as the structure continuously provided in the position corresponding to the brightness | luminance and light energy distribution of the light source 4. FIG.

この様に、連続または連続的な光学素子20を導光板2の表面部8や裏面部9に設けることによって、光学素子20の傾斜面によって光源4から導光板2内に進入した光線を全反射し、どの位置でも同等な光量の指向性やエネルギを連続または連続的に出射することができる。
また、目的とする輝度バランス等によって連続的な光学素子20の隣り合う間隔をコントロールしても良い。
In this way, by providing the continuous or continuous optical element 20 on the front surface portion 8 or the back surface portion 9 of the light guide plate 2, the light beam that has entered the light guide plate 2 from the light source 4 by the inclined surface of the optical element 20 is totally reflected. However, directivity and energy with the same amount of light can be emitted continuously or continuously at any position.
Further, the adjacent interval between the continuous optical elements 20 may be controlled according to a target luminance balance or the like.

例えば光源4は、半導体発光素子であって、LEDやレーザ等からなり、単色光やRGB(赤色、緑色、青色)からなる白色や蛍光材料を用いて波長変換することによって白色光にしたものも用いられる。
また、複数の入射部5を持つ場合には各入射部に異なる発光色の光源4を用いて導光板2全体から白色の光を出射しても良い。
For example, the light source 4 is a semiconductor light-emitting element, which is composed of an LED, a laser, or the like, and is white light that is converted to white light by using monochromatic light or white (RGB, red, green, blue) or fluorescent material, and converted to white light. Used.
Further, in the case of having a plurality of incident portions 5, white light may be emitted from the entire light guide plate 2 using light sources 4 of different emission colors for each incident portion.

不図示のリフレクタは、白色の絶縁性材料やアルミニウム等の金属を蒸着したシート状または金属等からなり、導光板2の入射部5および光源4を囲するようにし、光源4からの光を反射し、反射光を導光板2の入射部5に再び入射させる。   The reflector (not shown) is made of a sheet or metal on which a white insulating material or a metal such as aluminum is vapor-deposited, surrounds the incident portion 5 of the light guide plate 2 and the light source 4, and reflects light from the light source 4. Then, the reflected light is incident again on the incident portion 5 of the light guide plate 2.

不図示の補正シートは、透過性のある樹脂等からなり、表面に光を偏向するための凹凸が設けてある。この補正シートは、導光板2からの出射光を補正するため、強い輝度の出射光を拡散したり、輝度が弱い出射光を集光したり、また全体を拡散させたり、部分的に拡散と集光とを行ったり、目的に合わせて補正すべき拡散シート、集光シート、散乱シート、拡散集光シート等を選択し、加工してある面を上方に向けた順方向使用や逆方向使用等にして使用する。
尚、光学素子20の分布や形状等によって、指向性の有る出射光を必要とする時には、本補正シートを用いないでも良い。
A correction sheet (not shown) is made of a permeable resin or the like, and has an uneven surface for deflecting light on the surface. This correction sheet corrects the emitted light from the light guide plate 2, so that the emitted light with high luminance is diffused, the emitted light with low luminance is condensed, or the whole is diffused or partially diffused. Select the diffusion sheet, condensing sheet, scattering sheet, diffusing condensing sheet, etc. to be condensed or corrected according to the purpose, and use the forward direction or reverse direction with the processed surface facing upward Use in the same way.
Note that this correction sheet may not be used when outgoing light having directivity is required depending on the distribution and shape of the optical element 20.

不図示の反射体は、熱可塑性樹脂に例えば酸化チタンのような白色材料を混入したシートや熱可塑性樹脂のシートにアルミニウム等の金属蒸着を施したり、金属箔を積層した物やシート状金属からなる。この反射体は、入射部5と表面部8以外の部分を覆い光源4からの光が導光板2によって表面部8に出射した以外の光を反射または乱反射し、再び導光板2に入射させて光源4からの光を全て表面部8から出射するようにする。   The reflector (not shown) is made of a sheet in which a white material such as titanium oxide is mixed in a thermoplastic resin or a metal sheet such as aluminum on a sheet of a thermoplastic resin, a metal foil laminated, or a sheet-like metal. Become. The reflector covers portions other than the incident portion 5 and the surface portion 8, reflects or irregularly reflects light other than light emitted from the light source 4 to the surface portion 8 by the light guide plate 2, and makes it incident on the light guide plate 2 again. All the light from the light source 4 is emitted from the surface portion 8.

本発明に係る導光板の略図Schematic of light guide plate according to the present invention 本発明に係る導光板の略図Schematic of light guide plate according to the present invention 本発明に係る導光板の光線の略軌跡図Schematic locus diagram of light rays of a light guide plate according to the present invention

符号の説明Explanation of symbols

2…導光板、4…光源、5…入射部、6,6b…端部、8…表面部、9…裏面部、20…光学素子、21,22…傾斜面、β…入射角、α…屈折角、γ…臨界角、n…屈折率、θ…表面部および裏面部と傾斜面とが成す角度、L1,L11,L12,L2,L21,L22…光線。   DESCRIPTION OF SYMBOLS 2 ... Light-guide plate, 4 ... Light source, 5 ... Incident part, 6, 6b ... End part, 8 ... Front surface part, 9 ... Back surface part, 20 ... Optical element, 21, 22 ... Inclined surface, (beta) ... Incident angle, (alpha) ... Refraction angle, γ ... critical angle, n ... refractive index, θ ... angle formed by the front and back surfaces and the inclined surface, L1, L11, L12, L2, L21, L22 ... light rays.

Claims (7)

指向性を有した複数の光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら前記表面部と前記裏面部とを接続する側面部とを有し、前記入射部を前記側面部で囲んだ内部に設けた導光板において、前記入射部は曲線状であって、前記表面部または前記裏面部には前記光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に前記光源からの光線束に対応した傾斜面を有する光学素子を、前記光源に対向するほど前記入射部から離れるように曲線的に設け、さらに前記光源からの距離方向に対し該光学素子は前記光源からの距離に比例して関数的に増加する密度分布を有することを特徴とする導光板。 An incident part that guides light from a plurality of light sources having directivity, a surface part that emits the light, a back part that is located on the opposite side of the surface part, and the surface part and the back part are connected to each other. A light guide plate provided in an interior surrounded by the side surface portion, wherein the incident portion is curved, and the luminance distribution of the light source is provided on the front surface portion or the back surface portion. or an optical element having an inclined surface corresponding to the light beam from the continuous or continuous light source at a position corresponding to the optical energy distribution, curvilinearly set away from the incident portion as opposed to the light source, Furthermore, the optical element has a density distribution that increases functionally in proportion to the distance from the light source in the distance direction from the light source. 前記光学素子は、断面が三角形状、台形形状、円弧形状であるとともに連続または連続的であることを特徴とする請求項1記載の導光板。 The light guide plate according to claim 1, wherein the optical element has a triangular shape, a trapezoidal shape, or an arc shape in cross section and is continuous or continuous. 前記光学素子は、前記光源から遠ざかるほど前記光学素子の高さを高くまたは/および部分的に高低をつけることを特徴とする請求項1記載の導光板。 2. The light guide plate according to claim 1, wherein the optical element increases or decreases a height of the optical element as the distance from the light source increases. 3. 前記傾斜面は、前記表面部および前記裏面部と成す角度がπ/2−2・臨界角から臨界角の範囲であることを特徴とする請求項1記載の導光板。 The light guide plate according to claim 1, wherein an angle formed between the inclined surface and the front surface portion and the back surface portion is in a range of π / 2-2 · critical angle to critical angle. 前記傾斜面は、前記光源からの距離に比例して前記表面部および前記裏面部と成す角度が臨界角に近づくことを特徴とする請求項1記載の導光板。 The light guide plate according to claim 1, wherein an angle formed between the inclined surface and the front surface portion and the back surface portion approaches a critical angle in proportion to a distance from the light source. 前記傾斜面は、前記傾斜面の中央部を中心にして内側または外側に円弧を、あるいは前記傾斜面の部分的に内側と外側とに円弧を成していることを特徴とする請求項1記載の導光板。 2. The inclined surface is characterized in that an arc is formed inside or outside with respect to a central portion of the inclined surface, or an arc is partially formed inside and outside the inclined surface. Light guide plate. 指向性を有した複数の光源と、前記光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部と、これら前記表面部と前記裏面部とを接続する側面部とを有し、前記入射部を前記側面部で囲んだ内部に曲線状に設け、前記光源の輝度分布または光エネルギ分布に対応した位置に連続または連続的に前記光源からの光線束に対応した傾斜面を有し、前記光源に対向するほど前記入射部から離れるように曲線的に設けられ、さらに前記光源からの距離方向に対し、前記光源からの距離に比例して関数的に増加する密度分布に施すとともに前記傾斜面の傾きを変化できる光学素子を表面部または裏面部に有する導光板と、前記導光板からの出射光の微細な輝度斑を補正する補正シートと、前記導光板の前記入射部および出射面以外を覆い前記導光板からの漏れ光を再び前記導光板内に反射する反射体とを具備することを特徴とする平面照明装置。 A plurality of light sources having directivity, an incident portion that guides light from the light source, a surface portion that emits the light, a back surface portion that is located on the opposite side of the surface portion, and the surface portion and the back surface And a light source that is continuously or continuously provided at a position corresponding to the luminance distribution or light energy distribution of the light source. have a sloped surface corresponding to the light beam from the light source curvedly formed so as as to face away from the entrance portion with respect to further distance direction from the light source, in proportion to the distance from the light source A light guide plate having an optical element that can be applied to a density distribution that increases functionally and can change the inclination of the inclined surface on the front surface portion or the back surface portion, and a correction sheet that corrects fine luminance spots of light emitted from the light guide plate And the incidence of the light guide plate And planar illumination device characterized by comprising a reflector for reflecting again the light guide plate leak light from covering the non-emitting surface the light guide plate.
JP2007147013A 2007-06-01 2007-06-01 Light guide plate and flat illumination device Expired - Fee Related JP4724690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147013A JP4724690B2 (en) 2007-06-01 2007-06-01 Light guide plate and flat illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147013A JP4724690B2 (en) 2007-06-01 2007-06-01 Light guide plate and flat illumination device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002031039A Division JP2003232933A (en) 2002-02-07 2002-02-07 Light guide plate and plane illuminaire

Publications (2)

Publication Number Publication Date
JP2007234617A JP2007234617A (en) 2007-09-13
JP4724690B2 true JP4724690B2 (en) 2011-07-13

Family

ID=38554946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147013A Expired - Fee Related JP4724690B2 (en) 2007-06-01 2007-06-01 Light guide plate and flat illumination device

Country Status (1)

Country Link
JP (1) JP4724690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123309A (en) 2008-11-18 2010-06-03 Nittoh Kogaku Kk Optical element and light emitting device
JP5103552B1 (en) * 2012-03-05 2012-12-19 株式会社発研セイコー Lighting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437090U (en) * 1977-08-19 1979-03-10
JPH0355405U (en) * 1989-10-02 1991-05-28
JPH03189679A (en) * 1989-12-20 1991-08-19 Shin Etsu Polymer Co Ltd Surface light source device
JPH04124201U (en) * 1991-04-25 1992-11-12 株式会社ヨンマルゴ Thin indoor lighting for vehicles
JPH1082915A (en) * 1996-09-06 1998-03-31 Omron Corp Surface light source device and liquid crystal display device
JPH1152370A (en) * 1997-07-31 1999-02-26 Hitachi Ltd Liquid crystal display device
JPH11260131A (en) * 1998-03-15 1999-09-24 Omron Corp Surface light source device
JPH11271768A (en) * 1998-03-23 1999-10-08 Sekisui Chem Co Ltd Light guide plate and surface light source device
JP2000184137A (en) * 1998-12-16 2000-06-30 Citizen Electronics Co Ltd Surface light source device
JP2001229703A (en) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd Illumination device
JP2001281458A (en) * 2000-03-31 2001-10-10 Enplas Corp Light guide plate, surface light source device and liquid crystal display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437090A (en) * 1977-07-13 1979-03-19 Grace W R & Co Catalyst manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437090U (en) * 1977-08-19 1979-03-10
JPH0355405U (en) * 1989-10-02 1991-05-28
JPH03189679A (en) * 1989-12-20 1991-08-19 Shin Etsu Polymer Co Ltd Surface light source device
JPH04124201U (en) * 1991-04-25 1992-11-12 株式会社ヨンマルゴ Thin indoor lighting for vehicles
JPH1082915A (en) * 1996-09-06 1998-03-31 Omron Corp Surface light source device and liquid crystal display device
JPH1152370A (en) * 1997-07-31 1999-02-26 Hitachi Ltd Liquid crystal display device
JPH11260131A (en) * 1998-03-15 1999-09-24 Omron Corp Surface light source device
JPH11271768A (en) * 1998-03-23 1999-10-08 Sekisui Chem Co Ltd Light guide plate and surface light source device
JP2000184137A (en) * 1998-12-16 2000-06-30 Citizen Electronics Co Ltd Surface light source device
JP2001229703A (en) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd Illumination device
JP2001281458A (en) * 2000-03-31 2001-10-10 Enplas Corp Light guide plate, surface light source device and liquid crystal display

Also Published As

Publication number Publication date
JP2007234617A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4385031B2 (en) Light guide plate and flat illumination device
JP4182076B2 (en) Light guide plate and flat illumination device
KR101264323B1 (en) Plane light emitting back light unit and lamp using point light source
WO2009125618A1 (en) Light emitting device
JP4588729B2 (en) Flat lighting device
JP2006004877A (en) Light guide plate, and flat illumination device
US10338302B2 (en) Light source device
JP3955505B2 (en) Light guide plate
JP2001035230A (en) Flat lighting system
KR20100051298A (en) Light guiding plate, backlight assembly and display apparatus having the same
JP4138276B2 (en) Light guide plate and flat illumination device
JP4181792B2 (en) Light guide plate and flat illumination device
JP4584116B2 (en) Point source backlight
JP4724690B2 (en) Light guide plate and flat illumination device
JP4324133B2 (en) Light guide plate and flat illumination device
JP4436845B2 (en) Light guide plate
JP4648358B2 (en) Light guide plate and flat illumination device
JP2008123725A (en) Lighting apparatus
JP2005302659A (en) Illumination equipment and display apparatus provided with the same
JP4138787B2 (en) Light guide plate, flat illumination device, and liquid crystal display device
JP4260512B2 (en) Flat lighting device
JP2003232933A (en) Light guide plate and plane illuminaire
JP2007026878A (en) Light guide plate and flat lighting device
JP3927490B2 (en) Flat lighting device
JP4413668B2 (en) Light guide plate, light source device and flat light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees