JP4138276B2 - Light guide plate and flat illumination device - Google Patents

Light guide plate and flat illumination device Download PDF

Info

Publication number
JP4138276B2
JP4138276B2 JP2001221659A JP2001221659A JP4138276B2 JP 4138276 B2 JP4138276 B2 JP 4138276B2 JP 2001221659 A JP2001221659 A JP 2001221659A JP 2001221659 A JP2001221659 A JP 2001221659A JP 4138276 B2 JP4138276 B2 JP 4138276B2
Authority
JP
Japan
Prior art keywords
light
surface portion
incident
guide plate
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001221659A
Other languages
Japanese (ja)
Other versions
JP2003035824A (en
Inventor
カリル カランタル
Original Assignee
日本ライツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライツ株式会社 filed Critical 日本ライツ株式会社
Priority to JP2001221659A priority Critical patent/JP4138276B2/en
Publication of JP2003035824A publication Critical patent/JP2003035824A/en
Application granted granted Critical
Publication of JP4138276B2 publication Critical patent/JP4138276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a necessary angle of field and to obtain uniform and light luminance. SOLUTION: A light guide plate 2 has an arcuately cut incidence part 8 in a corner 7 and a reverse-surface part 5 is provided with a projected or recessed ridge 9 which totally reflects the light from a light source 3 almost to a surface part 4 concentrically with the cut arcuate shape of the incidence part 8 and has a tilted surface 9a in the direction of the incidence part 8. The arcuate (radial) light from the light source 3 is guided in the light guide plate 2 from the incidence part 8 conforming with the arcuate shape and in similar fashion the incident light which travels arcuately is totally reflected almost to the surface part 4 by the tilted surface 9a tilting in the direction of the incident part 8, of the projected or recessed ridge 9 provided in the reverse- surface part 5 and concentrically with the accurate shape and emitted from the surface part 4; and a fine optical control element 13 which is provided at the surface part 4 and refracts the projection light, a polarizing sheet 11 in a prism shape of 60 to 80 deg. in vertical angle which is provided radially at a position corresponding to the ridge 9, etc., are used.

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置等に用いる導光板および平面照明装置に関するものであり、導光板の少なくとも1つの隅を円弧状に欠切した入射部を有し、この欠切した円弧形状と同心に光源からの光を略表面部方向に全反射する入射部方向に傾斜面を持つ凸状や凹状の稜を裏面部に設け、輝度の高い出射光が得られ、さらに偏光シートや拡散シートを用いることで出射光をコントロールして目的とする視野角が得られ、明るく均一な光を得ることを目的とする導光板および平面照明装置に関する。
【0002】
【従来の技術】
従来の導光板および平面照明装置は、液晶表示装置の大きさに無関係に輝度を上げるために、単に表面部や裏面部に設けた溝や凸や凹の形状のドット等の数量を入射端面部から反入射端面部方向に進むに従い増加させて、表面部からの出射光を均一にする様にする方法が知られている。
【0003】
また、従来の光源がLED等の点光源を用いた平面照明装置では、導光板の側面にLEDを複数並べ、これらLEDに対向する位置の導光板の側面部にプリズム等の凸や凹の形状を設け、導光板の隅部分的まで光線が達するようにしている。
【0004】
【発明が解決しようとする課題】
従来の導光板および平面照明装置は、液晶表示装置の大きさに無関係に輝度を上げるために、単に表面部や裏面部に設けた溝や凸や凹の形状のドット等の数量を入射端面部から反入射端面部方向に進むに従い増加させて、表面部からの出射光を均一にする様にする方法なので、輝度的には溝や凸形状および凹形状を入射端面部から反入射端面部方向に進むに従い増加させることによって、導光板に対して輝度量を得ることはできる。しかし、側面側方向等に光のコーンの広がりを得ることができない課題がある。
【0005】
また、従来の光源がLED等の点光源を用いた平面照明装置では、導光板の側面にLEDを複数並べ、これらLEDに対向する位置の導光板の側面部にプリズム等の凸や凹の形状を設ける方法なので、プリズムによって全体としては両側面方向に光が進む。しかし、光源が点光源であるため、個々の光源からの左右方向に進む光線が左右方向で重なり合ってしまう部分が存在してしまい、全体として部分的な明暗が発生してしまう課題がある。
【0006】
この発明は、このような課題を解決するためなされたもので、その目的は導光板の隅に円弧状に欠切した入射部を有し、裏面部に入射部の欠切した円弧形状と同心に光源からの光を略表面部方向に全反射する入射部方向に傾斜面を持つ凸状や凹状の稜を設け、光源からの円弧状(放射状)に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状(放射状)に進んだ入射光を裏面部に入射部方向に持つ傾斜面を入射部の円弧形状と同心位置に凸状や凹状の稜を設けて略表面部方向に全反射させて表面部から出射し、この出射光を表面部に設けた光を屈折させる微細な光制御素子や導光板に設けた稜に対応した位置に放射状に設けた頂角が60〜80度のプリズム形状をなした偏光シート等を用いることによって、必要視野角を維持し、均一で明るい輝度を得ることができる導光板および平面照明装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため請求項1に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う偏光シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したことを特徴とする。
【0008】
請求項1に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う偏光シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。
【0009】
また、請求項2に係る導光板は、傾斜面を裏面部の仮想水平面と成す角度が0.01度〜10度の範囲であることを特徴とする。
【0010】
請求項2に係る導光板は、傾斜面を裏面部の仮想水平面と成す角度が0.01度〜10度の範囲であるので、導光板内に存在する光線の大部分を仮想水平面と成す小さい角度の傾斜面により表面部方向に全反射することができる。
【0011】
さらに、請求項3に係る導光板は、傾斜面を曲線または円弧状であることを特徴とする。
【0012】
請求項3に係る導光板は、傾斜面を曲線または円弧状であるので、曲線または円弧状が内側にへこんだ稜の面に場合には、光を拡散し、また、曲線または円弧状が外側に膨らんだ稜の面の場合には、曲率と一致する場所では光を集光し、それ以上遠ざかると光を拡散するように出射光の出射角等可変することができる。
【0013】
また、請求項4に係る導光板は、稜を連続または非連続に欠切した円弧形状と同心に設けることを特徴とする。
【0014】
請求項4に係る導光板は、稜を連続または非連続に欠切した円弧形状と同心に設けるので、表面部や裏面部から出射光を稜に沿って全域に出射することができるばかりでなく、目的とする位置に部分的に出射することもできる。
【0015】
さらに、請求項5に係る導光板は、稜を頂角が80度〜179度の範囲であることを特徴とする。
【0016】
請求項5に係る導光板は、稜を頂角が80度〜179度の範囲であるので、導光板に於ける稜の角度変化に伴い稜の相互間の間隔を調整することができるとともに光源から離れるにしたがって稜の相互間のピッチを短く設定することもでき、さらに凸状または凹状の稜の高さまたは深さを設定することができる。
【0017】
また、請求項6に係る導光板は、稜を頂角が平坦に欠切したことを特徴とする。
【0018】
請求項6に係る導光板は、稜を頂角が平坦に欠切したので、例えば表面部のみに平坦に欠切させた稜を設け、裏面部の近傍に反射体を備えた場合には、表面部で全反射した光が裏面部方向に進み、裏面部から外部に出射した光線が反射体で反射して再度導光板に入射した光線は、表面部の稜の斜面では反射や屈折を行うが、本請求項に於ける平坦部では略ストレートに表面部から出射することができる。
【0019】
さらに、請求項7に係る平面照明装置は、円弧状または放射状に出射する光源と、当該光源からの光を出射する表面部または裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部から入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を設け、光源からの光を傾斜面によって略表面部方向に全反射する導光板と、表面部を覆う偏光シートとを具備することを特徴とする。
【0020】
請求項7に係る平面照明装置は、円弧状または放射状に出射する光源と、当該光源からの光を出射する表面部または裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部から入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を設け、光源からの光を傾斜面によって略表面部方向に全反射する導光板と、表面部を覆う偏光シートとを具備するので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。
【0021】
また、請求項2に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有するとともに表面部に光を屈折させる微細な光制御素子を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したことを特徴とする。
【0022】
請求項2に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有するとともに表面部に光を屈折させる微細な光制御素子を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部方向に進んだ光線を表面部に設けた微細な光制御素子により表面部より出射し、この光線を拡散シートによって、拡散した光を出射することができる。
【0023】
さらにまた、請求項3に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜連続または非連続に複数を設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートまたは偏光シートと、
表面部および入射部以外の部分を覆う反射シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したことを特徴とする。
【0024】
請求項3に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜連続または非連続に複数を設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートまたは偏光シートと、
表面部および入射部以外の部分を覆う反射シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射したり、裏面部より少量の光やエネルギの低い光等を反射シートにより、隅無く再度導光板に戻して、表面部方向に進んだ光線を表面部に設けた微細な光制御素子により表面部より出射し、この光線を拡散シートによって、拡散した光を出射させたり、または表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。
【0025】
またさらに、請求項4に係る平面照明装置は、偏光シートを導光板に放射状に設けた稜に対応した位置に頂角が60度〜80度のプリズム形状をすることを特徴とする。
【0026】
請求項4に係る平面照明装置は、偏光シートを導光板に放射状に設けた稜に対応した位置に頂角が60度〜80度のプリズム形状をするので、導光板から導光板に沿ったように出射した光線を略垂直な上方に偏光することができるとともに目的に合わせて稜の相互間のピッチや稜の高さまたは深さを設定することができる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づき説明する。
なお、本発明は、円弧状に欠切した入射部を導光板の隅に設けるとともに裏面部に入射部の欠切した円弧形状と同心位置に入射部方向に傾斜面を持つ凸状や凹状の稜を設け、光源からの円弧状(放射状)に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状(放射状)に進んだ入射光を傾斜面で全反射して略表面部から出射し、この出射光を表面部に設けた微細な光制御素子で屈折させたり、導光板の上部に備えた頂角が60〜80度のプリズム形状をなすとともに導光板に設けた稜と同様な放射状の偏光シート等を用いることによって、必要視野角を維持しながら均一で明るい輝度を得ることができる導光板および平面照明装置を提供することにある。
【0028】
図1は本発明に係る平面照明装置の概略構成を示す分解斜視図、図2は本発明に係る導光板の裏面部に設けた稜の平面図、図3は図2の導光板の入射部と入射部から同心の稜の法線と直角方向7とを結ぶ線2cの導光板の部分断面図、図4は図3において導光板の表面部に光制御素子を設けた部分断面図、図5(a),(b)、図6および図7は本発明に係る導光板に設けられる稜の他の構成例を示す部分拡大図、図8は本発明に係る平面照明装置の光偏光シートの平面図、図9は図8の光偏光シートの部分断面図、図10は本発明に係る平面照明装置の光線の軌跡を示す図である。
【0029】
図1の平面照明装置1は、導光板2、光源3、拡散シートまたは光偏光シート11、反射体15を備えて概略構成される。
【0030】
光源3は、半導体発光素子であって、例えばLEDやレーザ等からなる。この光源3としては、単色光やRGB(赤色、緑色、青色)からなる白色や蛍光材料を用いて波長変換することによって白色光にしたものも用いられる。
【0031】
なお、本例では、導光板2の二つの側面部6が交差する隅7の一つに設けられる構成について説明するが、例えば対象位置の端部に複数の入射部8を持つ場合には、各入射部8に異なる発光色の光源3を用いて導光板2全体から白色の光を出射しても良い。
【0032】
反射体15は、熱可塑性樹脂に例えば酸化チタンのような白色材料を混入したシートや熱可塑性樹脂のシートにアルミニウム等の金属蒸着を施したり、金属箔を積層した物やシート状金属からなる。この反射体15は、入射部8と表面部4以外の部分を覆い、光源3からの光が導光板2によって表面部4に出射した以外の光を反射または乱反射し、再び導光板2に入射させて光源3からの光を全て表面部4から出射するようにする。
【0033】
導光板2は、屈折率が1.4〜1.7程度の透明なアクリル樹脂(PMMA)やポリカーボネート(PC)等で形成される。導光板2は、側面部6と、光の出射目的である表面部4と、その反対側に位置する裏面部5および光源3からの光を導く入射部8とを有する。
【0034】
表面部4は、最終的な平面照明装置1の必要とする目的である視野角や輝度等の選択により鏡面とするか、または表面に光制御素子13が設けられる。
【0035】
図4に示すように、光制御素子13は、微細(例えば5μm〜100μm程度)な円弧形状、楕円、多角柱および多角錐等からなる凹形状または凸形状を成している。この光制御素子13は、裏面部5から表面部4に向かう光線を屈折させる。また、光制御素子13が特に微細な場合には、この光制御素子13内で全反射等を行い、全体としては散乱光のような振る舞いをする。
【0036】
また、光制御素子13は、目的とする角度や輝度分布をコントロールするためにグラデーションを施してもよい。これにより、裏面部4からの色々の角度での視野角を持った光線を導光板2から出射する光に対して最適な視野角の分布や輝度の分布をコントロールすることができる。
【0037】
入射部8は、導光板2の二つの側面部6が交差する隅7のうちの少なくとも1つを点光源3の放射光と同等な円弧状に欠切して形成される。図1の例では、導光板2の手前側の隅が円弧状に欠切されて入射部8が形成されている。
【0039】
裏面部5には、導光板2の一端部(一隅部)に設けた入射部8の欠切した円弧形状と同心に入射部8方向に傾斜面9aを持つ稜9が設けてられている。
【0040】
更に説明すると、裏面部5には、図2や図3に示すように、入射部8である裏面部5の一端部位置と同心に凸状の稜9cや凹状の稜9dを有している。そして、一端部位置である入射部8を中心に同心を描くように凸状の稜9c(奇数)および凹状の稜9d(偶数)とが連続に形成され、複数の凸状の稜ライン9cnおよび複数の凹状の稜ライン9dnを形成している。
【0041】
なお、図示しないが、裏面部5には、飛び飛びに凸状の稜9cを設け、二つの凸状の稜9cとの間を平面としてもよい。また、裏面部5に飛び飛びに凹状の稜9dを設けたり、凸状の稜9cや凹状の稜9dとの間を平面にすることも可能である。
【0042】
図3に示すように、凸状の稜9cや凹状の稜9dは、傾斜面9aや傾斜面9bを備えている。特に、傾斜面9aは、常に光源3からの光が表面部4方向に全反射するように入射部8方向(図3の入射部8に対して右上がり方向)に傾きを持っている。
【0043】
以上の構成により、光源3から入射して稜9cおよび稜9dに達した光線は、放射出射光の光源3から同距離にあるので、これらに対する任意の距離に於いて光エネルギが等しく出射される。
【0044】
図3は図2に於ける入射部8と同心の稜9の法線と直角方向の隅7とを結ぶ線2cの断面の一部を示している。この図3に示すように、入射部8から放射状に裏面部5に設けた凸状の稜9cおよび凹状の稜9dは三角形状をしている。本例では、凸状の稜9cの角度θ1を80度〜179度の範囲、凹状の稜9dの角度θ2を80度〜179度の範囲としている。また、裏面部5の仮想水平面51と成す角度θ3を0.01度〜10度の範囲としている。
【0045】
なお、図3の例では、凸状の稜9cおよび凹状の稜9dの傾斜面9aと傾斜面9bとが等しい形状としたが、本発明の目的とするように光源3からの光が表面部4方向に全反射するように常に傾斜面9aが入射部8方向に傾きを持てば良い。従って、二等辺三角形でなくても良く、例えば傾斜面9aのみを持ち、傾斜面9bを垂直にした直角三角形の形状でも良い。
【0046】
以上のように各角度θ1,θ2およびθ3を設定することにより、図3に示すように、導光板2の一端部位置の入射部8から導光板2に光線が入射されると、導光板2内に存在する光は、導光板2に使用する材料によって屈折角が所定の範囲内になる。例えば導光板2の材料をポリカーボネート(PC)樹脂とした場合、ポリカーボネート樹脂の屈折率n=1.59であるので、空気層から導光板2に光線L0が入射されると、導光板2内に存在する光は、0≦|α|≦sin-1(1/n)(但し、nは空気層とし屈折率n=1)の式より、略屈折角α=±38.9713°の範囲内にある。
【0047】
また、屈折角α=±38.9713°の範囲内で導光板2内に入射した光は、導光板2と空気層(屈折率n=1)との境界面では、sinγ=(1/n)の式により臨界角を表わすことができる。例えば一般の導光板2に使用されている樹脂材料であるポリカーボネート樹脂の屈折率はn=1.59程度であるので、臨界角γはγ=38.97°程度になる。なお、導光板2の材料としてアクリル樹脂(PMMA)材を用いた場合には、アクリル樹脂の屈折率nがn=1.49程度であり、屈折角αはα=42.38°程度となるので、臨界角γもγ=42.38°程度となる。
【0048】
よって、表面部4が鏡面の場合、図3に示すように、最大屈折角αで表面部5や裏面部6方向に進んだ光線L1の中で表面部4方向に進んだ光線L1は、臨界角γより大きいので、表面部4で光線L11として全反射する。この光線L11は、裏面部5方向に向かい、仮想水平面51と角度θ3でなす傾斜面9bに到達する。そして、ここでも傾斜面9bの垂線と成す角(入射角)が臨界角γよりも大きいため、光線L11が傾斜面9bで光線L12として全反射する。そして、光線L12は、入射部8の反対側方向に進む。なお、ここでは図示しないが、光線L12は、入射部8の反対側の側面部6の近傍に設けた反射体等により再度導光板2内に戻される。
【0049】
また、図示はしないが、最大屈折角αで表面部5や裏面部6方向に進んだ光線L1が直接および表面部4で全反射し、この光線が仮想水平面51と角度θ3でなす傾斜面9aに向かった場合には、傾斜面9aの垂線と成す角(入射角)が臨界角γよりも小さくなる。このため、上記表面部4で全反射した光線は、臨界角γを破り、屈折して裏面部5から出射する。このときの出射光は、エネルギが小さく直接的に導光板2の輝度に対する影響は少ないが、本例では全ての光を利用するため、図1に示す反射体15により再度導光板2に戻して最終的には表面部4から出射させている。
【0050】
さらに、屈折角αがやや小さい場合、図3に示すように、傾斜面9aに到達した光線L2は、傾斜面9aの垂線と成す角(入射角)が臨界角γよりも大きい。このため、光線L2が傾斜面9aで光線L21として全反射する。この全反射した光線L21は表面部4方向に進む。そして、表面部4に達した光線L21は、垂線と成す角(入射角)が臨界角γよりも小さいので、臨界角γを破り、屈折して表面部4より光線L22として出射される。この光線L22は、表面部4からある程度の角度で表面部4に沿ったように出射する。
【0051】
また、図3に示すように、例えば光線L3のような屈折角αが小さな光線の場合には、傾斜面9aの垂線と成す角(入射角)が臨界角γよりも大きい。このため、光線L3が傾斜面9aで光線L31として全反射する。この全反射した光線L31は、表面部4に達するが、表面部4の垂線と成す角(入射角)が臨界角γよりも大きいので、光線L30として再度裏面部5方向に進む。
【0052】
以上の説明は導光板2の表面部4が鏡面の場合である。これに対し、図4に示すように、表面部4に光制御素子13が設けられている場合には、光線L3のような屈折角αが小さな光線でも、傾斜面9aで全反射をした光線L31は表面部4に達する。しかし、表面部4に設けた光制御素子13によって、この光制御素子13に進んだ光線L31での光制御素子13の法線と直角に成す角(入射角)が臨界角γより小さい。このため、光線L31は臨界角γを破り、屈折して光線L30’として表面部4からある程度の角度で出射する。なお、光制御素子13が無い時は全反射する。
【0053】
また、同様に、図3で表面部4に沿ったように出射した光線L22(図4中の破線)も表面部4に達した光線L21は、表面部4に設けた光制御素子13によって、この光制御素子13に進んだ光線L30での光制御素子13の法線と直角に成す角(入射角)が臨界角γより小さい。このため、L21は臨界角γを破り、屈折して光線L22’として表面部4から光制御素子13が無い時(L22)よりも表面部4と成す角度が大きな角度で出射する。
【0054】
このように、本例では、入射部8から放射状に表面部5に設けた凸状の稜9cおよび凹状の稜9dの法線と直角方向の断面の三角形状の角度範囲に於いて、表面部4から出射する光線の大部分は、裏面部5に設けた凸状の稜9cの傾斜面9bで全反射した光線となる。
【0055】
なお、導光板2の中に存在する(略屈折角α=±38.9713°の範囲内)光線のうち、屈折角αが小さいほど光のエネルギが大きく、このエネルギが大きい光線は直接出射する光線でなく、一度凸状の稜9cの傾斜面9aで全反射した光線が主なものである。すなわち、表面部4から出射する光線の大部分は、裏面部5に設けた凸状の稜9cの傾斜面9aで全反射した光のエネルギが大きな光線である。
【0056】
また、これら出射光は、表面部4側に傾いたように出射する。従って、図示しないフィルム状の拡散シートや図1に於けるフィルム状の光偏光シート11および反射体15等を用いず、例えば導光板2を上下逆に用いて表面部4から下方向に出射させることにより、反射型液晶パネルに光を投射し、反射型液晶パネルからの反射光を導光板2を透過させるようなフロントライトに用いることができる。
【0057】
さらに、光源3から離れるにしたがって凸状の稜9cや凹状の稜9d等の相互間のピッチを変化させたり、凸状の稜9cの稜の高さや凹状の稜9dの深さを設定することによって、傾斜面9aに達する光線量を変化させることで出射光量を変えることができる。
【0058】
また、図5(a)に示すように、導光板2の裏面部5に凸状の稜9cや凹状の稜9dを連続に形成した場合、光源3から入射して稜9cおよび稜9dに達した光線は放射出射光の光源3から同距離にあり、これらに対応する任意の距離の稜全ての光エネルギが等しく出射される。
【0059】
さらに、図5(b)に示すように、導光板2の裏面部5に凸状の稜9cや凹状の稜9dを非連続に形成した場合、凸状の稜9cや凹状の稜9dの間に平坦な鏡面90を有し、光源3から入射し稜9cおよび稜9dに達した光線は放射出射光の光源3から同距離にあるが、これらに対応する任意の距離にある稜のみ光エネルギが等しく出射される。これにより、表面部5からの出射光を目的とする位置に部分的に出射することができる。
【0060】
また、図6に示すように、導光板2の裏面部5に形成される稜は、三角形状の稜部を平坦に欠切した平坦部91および平坦部92を設けたものであってもよい。さらに、図示しないが、例えば表面部4の稜9cや稜9dに平坦に欠切させた平坦部91や平坦部92を設け、裏面部5の近傍に反射体を備えた構成とすることができる。この場合には、表面部4で全反射した光が直接裏面部5方向に進んだ光を裏面部5から外部に出射する。そして、この出射した光線が反射体15で反射し、再度導光板2に入射した光線は、表面部4の稜9cや稜9dの傾斜面9aや傾斜面9bでは反射や屈折を行うが、平坦部91や平坦部92では概略ストレートに表面部4から出射することができる。
【0061】
さらに、図7に示すように、導光板2の裏面部5の三角形状の稜の隣り合った傾斜面9aや傾斜面9bを曲線または円弧状にしてもよい。図7では、曲線または円弧状が内側にへこんだ稜の傾斜面9aおよび傾斜面9bを示している。これにより、導光板2内に存在した光は、このへこんだ凹状の稜の傾斜面9bに達すると、この傾斜面9bの法線に対して出射角が直線の稜よりも大きくなり、外側寄りに拡散した状態となる。
【0062】
また、図示しないが、曲線または円弧状が外側に膨らんだ稜の面の場合、導光板2内に存在した光は、この膨らんだ凸状の稜の傾斜面9aや傾斜面9bに達すると、この面の法線に対して出射角が直線の稜よりも小さくなり、内側寄り状態となり、曲率と一致する場所では光を集光し、それ以上遠ざかると光を拡散する。そして、導光板2の三角形状の稜の隣り合った傾斜面9aや傾斜面9bを曲線または円弧状にした場合には、出射光の出射角等を可変することができる。
【0063】
なお、ここでの凸状の稜9cおよび凹状の稜9dの傾斜面9aや傾斜面9bが等しい形状としたが、本発明の目的とする表面部4に出射するため、光源3からの光を表面部4方向に全反射する入射部8方向に傾斜面9aを有すれば良い。従って、二等辺三角形でなくとも良く、例えば傾斜面9aのみを持ち、傾斜面9bを垂直にした直角三角形の形状でも良い。
【0064】
さらに、導光板2の上部にフィルム状の拡散シートを用いれば、導光板2の表面部4から任意の方向や特定の方向に出射した光線を拡散することができる。その際、平面照明装置1からの出射光としては、広い視野角を得ることができるとともに本発明の導光板2により高輝度の出射光を得ることができる。
【0065】
ところで、導光板2の上部に配設される部材としては、拡散シートの他、図8および図9に示す光偏光シート11を用いることができる。
【0066】
光偏光シート11は、アクリル樹脂(PMMA)やポリカーボネート(PC)等の透明樹脂からフィルム状に成形される。光偏光シート11は、導光板2に対応させた形状を有し、図9に示すように、断面が三角形状をし、凸状の稜10aや凹状の稜10bからなる。光偏光シート11は、導光板2と同様に、導光板2の使用法により、図示しないが飛び飛びに凸状の稜10aを設けたり、飛び飛びに凹状の稜10bを設けたり、凸状の稜10aや凹状の稜10bとの間を平面にすることも可能である。
【0067】
また、光偏光シート11は、図9に示すように、凸状の稜10aの角度θ5や凹状の稜10bの角度θ6を60度〜80度の範囲としている。また、光偏光シート11は、表面部12と平行な仮想水平面11aと成す角度θ7を20度〜60度の範囲としている。
【0068】
さらに、光偏光シート11は、導光板2と対応させるために、光源3が導光板2の入射部8から放射状に片面に、ここでは表面部12の裏側に設けた凸状の稜10aおよび凹状の稜10bを導光板2の入射部8と同等の11bと同心の稜の法線と直角方向の11dとを結ぶ線11cbに図9の断面の三角形状を設ける。
【0069】
また、光偏光シート11は、導光板2と同様に凸状の稜10aがライン10a1および凹状の稜10bがライン10b1のように放射状に設けられ、凸状の稜10aをライン10a1,10a2(奇数)とし、凹状の稜10bをライン10b1,10b2(偶数)として、凸状および凹状の稜が交互または連続に(ライン10anや10bn)形成されている。
【0070】
なお、ここでの凸状稜10aおよび凹状稜10bの辺12aと辺12bとが等しい形状としたが、導光板2の表面部4からの出射光に合わせた形状とすればよく、二等辺三角形でなくても良い。
【0071】
図10は本発明に係る平面照明装置1の導光板2と光偏光シート11の一部拡大側面図である。図10における平面照明装置1は、光偏光シート11を導光板2の上部に備えている。光偏光シート11は、凸状稜10aが導光板2に設けた凸状の稜9cに対向するように導光板2の表面部4側に向けて配置される。そして、導光板2の一端部である隅7に形成された入射部8に対面して光源3が配置される。
【0072】
ここでは、導光板2や光偏光シート11についての説明は先に説明したことと重複するので、その説明については省略し、光の軌跡等の説明を行う。
【0073】
図10において、傾斜面9aに到達した光線L2は、傾斜面9aの垂線と成す角(入射角)が臨界角γよりも大きい。このため、光線L2は、傾斜面9aで光線L21として全反射する。この全反射した光線L21は表面部4方向に進む。表面部4に達した光線L21は、垂線と成す角(入射角)が臨界角γよりも小さいので、臨界角γを破り、屈折して光線L22として導光板2の表面部4から出射する。この光線L22は、光偏光シート11の凸状の稜10aの辺12bに到達する。そして、ここでも導光板2と光偏光シート11との材質が同じ(ポリカーボネート(PC))であり、空気層から空気よりも屈折率の大きい光偏光シート11の辺12bに対する光線L22は、辺12bで屈折して光偏光シート11内に光線L23となって進む。
【0074】
さらに、光線L23は、光偏光シート11内の辺12aに到達し、ここでの入射角が臨界角γ=38.97°よりも大きい。このため、光線L23は、辺12aで光線L24として全反射する。この全反射した光線L24は、光偏光シート11の表面部12方向に進む。
【0075】
そして、光線L24は、光偏光シート11の表面部12での入射角が臨界角γ=38.97°よりも小さいので、表面部12から略垂直に光線L25を出射する。
【0076】
このように、光偏光シート11は、導光板2からの低く導光板2に沿ったような光線を、全反射を利用して光偏光シート11に対して略垂直方向に光を出射することができる。
【0077】
また、例えば光線L3の場合には、傾斜面9aの垂線と成す角(入射角)が臨界角γよりも大きい。このため、光線L3は、傾斜面9aで光線L31として全反射する。この全反射した光線L31は、表面部4に設けた光制御素子13に達し、光制御素子13の法線と直角に成す角(入射角)が臨界角γより小さい。このため、光線L31は、臨界角γを破り、屈折して光線L30’として出射される。そして、光線L30’は、光偏光シート11内に光線L32となって進む。
【0078】
さらに、光線L32は、光偏光シート11内の辺12aに到達する。ここでの光線L32の入射角は、臨界角γ=38.97°よりも大きい。このため、光線L32は、辺12aで光線L33として全反射する。この全反射した光線L33は、光偏光シート11の表面部12方向に進む。
【0079】
光線L33は、光偏光シート11の表面部12での入射角が臨界角γ=38.97°よりも小さい。このため、光線L33は、表面部12から略垂直に光線L34として出射する。
【0080】
ところで、図10の構成において、光偏光シート11の上部に拡散シートを用いるようにしてもよい。この場合、光偏光シート11からの高輝度の光線が拡散シートにより拡散される。これにより、導光板2の表面部4から任意の方向や特定の方向に出射した光線を拡散し、平面照明装置1からの出射光としては、高輝度で視野角の広い出射光を得ることができる。
【0081】
以上説明したように、本発明の平面照明装置1によれば、導光板2の裏面部5に光源3の放射光に略等しい円弧形状に欠切した入射部8を設けるとともに常に光源3からの光を表面部4方向に全反射させる入射部8方向に傾斜面9aを持つ稜9cまたは稜9dを入射部8と同心に設け、表面部4に設けた微細な光制御素子や光偏光シートによって輝度の高い光線を出射させることができる。さらに、拡散シートにより出射光を拡散して視野の広い出射光を平面照明装置1から出射することができる。
【0082】
また、本発明の導光板2および拡散シートや光偏光シート11等を備えた平面照明装置1は、少ない点光源3でも、光源3の位置する所から導光板2の表面部4に放射状に稜をもたせ、どこでも一定の光エネルギを与え、導光板2内に入射した光線の中でも光のエネルギの大きな光線を導光板2から任意の角度で出射することができる。そして、この光線を光偏光シート11で略垂直方向に偏光したり、拡散シートで拡散することにより、平面照明装置1として、視野角の広い高輝度の出射光を得ることができる。
【0083】
このように、本発明の導光板および平面照明装置は、導光板の隅に円弧状に欠切した入射部を設けるとともに裏面部に入射部の欠切した円弧形状と同心位置に入射部方向に傾斜面を持つ凸状や凹状の稜を設け、光源からの円弧状(放射状)に出射した光を円弧状に一致した円弧形状の入射部から導光板内に取り込み、同様に円弧状(放射状)に進んだ入射光を傾斜面で全反射して略表面部から出射し、この出射光を表面部に設けた微細な光制御素子で屈折させたり、導光板の上部に備えた頂角が60〜80度のプリズム形状をなすとともに導光板に設けた稜と同様な放射状の偏光シート等を用いることにより、必要視野角を維持しながら均一で明るい輝度を得ることができる。
【0084】
【発明の効果】
以上のように、請求項1に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う偏光シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。これにより、液晶表示装置等に用いた場合には明るく斑が無く適度の視野角を得ることができる。
【0085】
また、請求項2に係る導光板は、傾斜面を裏面部の仮想水平面と成す角度が0.01度〜10度の範囲であるので、導光板内に存在する光線の大部分を仮想水平面と成す小さい角度の傾斜面により表面部方向に全反射することができる。これにより、光源からのエネルギの高い光線を表面部に進ませ、表面部に設けた微細な光制御素子や表面部近傍に備えた光偏光シート等により出射することができる。
【0086】
さらに、請求項3に係る導光板は、傾斜面を曲線または円弧状であるので、曲線または円弧状が内側にへこんだ稜の面に場合には、光を拡散し、また、曲線または円弧状が外側に膨らんだ稜の面の場合には、曲率と一致する場所では光を集光し、それ以上遠ざかると光を拡散するように出射光の出射角等可変することができ、目的に合った設計をすることができる。
【0087】
また、請求項4に係る導光板は、稜を連続または非連続に欠切した円弧形状と同心に設けるので、表面部や裏面部から出射光を稜に沿って全域に出射することができるばかりでなく、目的とする位置に部分的に出射することもできる。これにより、視野角のコントロールや輝度のコントロール等を行うことができる。
【0088】
さらに、請求項5に係る導光板は、稜を頂角が80度〜179度の範囲であるので、導光板に於ける稜の角度変化に伴い稜の相互間の間隔を調整することができるとともに光源から離れるにしたがって稜の相互間のピッチを短く設定することもできる。さらに、凸状または凹状の稜の高さまたは深さを設定することができるので、光源から離れるほど稜の相互間のピッチを短くしたり、凸状の稜の高さを高く、または凹状の稜の深さを深くすることによって、光源からの光強度の減衰分を出射量でコントロールすることにより均一な出射光を得ることができる。
【0089】
また、請求項6に係る導光板は、稜を頂角が平坦に欠切したので、例えば表面部のみに平坦に欠切させた稜を設け、裏面部の近傍に反射体を備えた場合には、表面部で全反射した光が裏面部方向に進み、裏面部から外部に出射した光線が反射体で反射して再度導光板に入射した光線は、表面部の稜の斜面では反射や屈折を行うが、本請求項に於ける平坦部では略ストレートに表面部から出射することができる。これにより、例えばフロントライトの様な使用法に於いて直進光を導光板の上部から観測することができる。
【0090】
さらに、請求項7に係る平面照明装置は、円弧状または放射状に出射する光源と、当該光源からの光を出射する表面部または裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部から入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を設け、光源からの光を傾斜面によって略表面部方向に全反射する導光板と、表面部を覆う偏光シートとを具備するので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。これにより、液晶表示装置等に用いた場合には明るく斑が無く適度の視野角を得ることができる。
【0091】
また、請求項2に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有するとともに表面部に光を屈折させる微細な光制御素子を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射して表面部方向に進んだ光線を表面部に設けた微細な光制御素子により表面部より出射し、この光線を拡散シートによって、拡散した光を出射することができる。これにより、導光板の大きさに左右されずに明るく光源の輝度に対応した輝度分布を得ることができ、且つ視野角の広い出射光を得ることができる。
【0092】
さらに、請求項3に係る平面照明装置は、円弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、表面部の反対側に位置する裏面部と、これら表面部と裏面部とに直角に交わる側面部と、この二つの側面部が交差する隅の少なくとも1つを光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、裏面部に入射部の欠切した円弧形状と同心に円弧状または放射状に広がりを持って入射部方向に傾斜面を持つ凸状または/および凹状の稜連続または非連続に複数を設け、光源からの円弧状または放射状の光を傾斜面によって略表面部方向に全反射する導光板と、
表面部を覆う拡散シートまたは偏光シートと、
表面部および入射部以外の部分を覆う反射シートとを具備し、
光源の互いに隣合う2つの側面が交差する端部位置と導光板の円弧状に欠切した入射部とが対向する位置で入射部の欠切部分内に光源を配置したので、光源からの円弧状に出射した光を円弧状に一致した入射部から導光板内に取り込み、同様に円弧状に伝播した入射光を裏面部に設けた円弧形状と同心な凸状や凹状の稜の入射部方向に持つ傾斜面によって、同心領域のどこでも均一に全反射したり、裏面部より少量の光やエネルギの低い光等を反射シートにより、隅無く再度導光板に戻して、表面部方向に進んだ光線を表面部に設けた微細な光制御素子により表面部より出射し、この光線を拡散シートによって、拡散した光を出射させたり、または表面部から導光板に沿ったように出射した光線を表面部から最短距離で完全に光偏光シートの凸状や凹状の稜に導き、光偏光シートによって略垂直方向に偏光して平面照明装置から出射することができる。これにより、導光板の大きさに左右されずに明るく光源の輝度に対応した輝度分布を得ることができ、且つ視野角の広い出射光を得ることができる。
【0093】
また、請求項4に係る平面照明装置は、偏光シートを導光板に放射状に設けた稜に対応した位置に頂角が60度〜80度のプリズム形状をするので、導光板から導光板に沿ったように出射した光線を略垂直な上方に偏光することができるとともに目的に合わせて稜の相互間のピッチや稜の高さまたは深さを設定することができる。そして、本平面照明装置に対して略垂直な光を出射し、導光板からの出射光を取り込む光量をコントロールすることにより、出射光分布を均一にすることができる。
【図面の簡単な説明】
【図1】本発明に係る平面照明装置の略斜視構成図
【図2】本発明に係る導光板の裏面部に設けた稜の平面図
【図3】図2の導光板の部分断面図
【図4】図3における導光板の表面部に光制御素子を設けた導光板の部分断面図
【図5】(a),(b)本発明に係る導光板に設けられる稜の他の構成例を示す部分拡大図
【図6】本発明に係る導光板に設けられる稜の他の構成例を示す部分拡大図
【図7】本発明に係る導光板に設けられる稜の他の構成例を示す部分拡大図
【図8】本発明に係る平面照明装置の光偏光シートの平面図
【図9】図8の光偏光シートの部分断面図
【図10】本発明に係る平面照明装置の導光板と光偏光シートの一部拡大側面図であり、光線の軌跡を示す図
【符号の説明】
1…平面照明装置、2…導光板、2c,11c…線、3…光源、4,12…表面部、5…裏面部、6…側面部、7…隅、8…入射部、9…稜、9a,9b…傾斜面、9c…凸稜、9d…凹稜、9cn…凸稜ライン、9dn…凹稜ライン、15…反射体、13…微細光制御素子、11…光偏光シート、n…屈折率、51,61,10a,10a1,10a2,10an…凸状稜、52,62,10b,10b1,10b2,10bn…凹状稜、51…仮想水平線、11d…光源と同心の法線の垂直方向の点、91,92…平坦部、9a1,9b1…曲面稜、12a,12b…辺、α…屈折角、θ1,θ5…凸状稜の角度、θ2,θ6…凹状稜の角度、θ3,θ7…仮想水平線と成す角度、γ…臨界角、L0,L1,L2,L21,L3,L22,L22’,L31,L30’,L12,L30,L11,L32,L33,L34,L23,L24,L25…光線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light guide plate and a flat illumination device used for a liquid crystal display device or the like, and has an incident portion in which at least one corner of the light guide plate is cut out in an arc shape, and is concentric with the cut out arc shape. A convex or concave ridge with an inclined surface in the direction of the incident portion that totally reflects light from the light source substantially in the direction of the front surface portion is provided on the back surface portion to obtain a high-luminance outgoing light, and a polarizing sheet or a diffusion sheet is used. The present invention relates to a light guide plate and a flat illumination device that are intended to obtain light and uniform light by controlling emitted light to obtain a desired viewing angle.
[0002]
[Prior art]
Conventional light guide plates and flat lighting devices simply increase the number of grooves, convex or concave dots, etc. provided on the front and back surfaces to increase the luminance regardless of the size of the liquid crystal display device. A method is known in which the light emitted from the surface portion is made uniform by increasing in the direction toward the non-incident end face portion.
[0003]
Further, in a conventional flat illumination device using a point light source such as an LED, a plurality of LEDs are arranged on the side surface of the light guide plate, and a convex or concave shape such as a prism is formed on the side surface portion of the light guide plate at a position facing these LEDs. The light beam reaches the corner part of the light guide plate.
[0004]
[Problems to be solved by the invention]
Conventional light guide plates and flat lighting devices simply increase the number of grooves, convex or concave dots, etc. provided on the front and back surfaces to increase the luminance regardless of the size of the liquid crystal display device. Since the light emitted from the surface is made uniform as it goes from the incident end surface toward the non-incident end surface, the groove, convex shape, and concave shape from the incident end surface toward the anti-incident end surface The luminance amount can be obtained with respect to the light guide plate by increasing it as proceeding to. However, there is a problem that the spread of the cone of light cannot be obtained in the side surface direction or the like.
[0005]
Further, in a conventional flat illumination device using a point light source such as an LED, a plurality of LEDs are arranged on the side surface of the light guide plate, and a convex or concave shape such as a prism is formed on the side surface portion of the light guide plate at a position facing these LEDs. The light travels in the direction of both sides as a whole by the prism. However, since the light source is a point light source, there is a portion where light beams traveling in the left-right direction from the individual light sources overlap in the left-right direction, and there is a problem that partial brightness occurs as a whole.
[0006]
The present invention has been made to solve such a problem, and the object thereof is to have an incident part cut out in an arc shape at the corner of the light guide plate, and to be concentric with the arc shape in which the incident part is cut out on the back surface part. A convex or concave ridge with an inclined surface in the direction of the incident part that totally reflects light from the light source substantially in the direction of the surface part is provided, and the light emitted in a circular arc shape (radial) from the light source coincides with the circular arc shape. A convex or concave ridge is provided concentrically with the arc shape of the incident portion on the back surface of the incident light that enters the light guide plate from the same portion and has an incident light that advances in a circular arc shape (radially) in the direction of the incident portion. The light is emitted from the surface part after being totally reflected in the direction of the surface part, and the emitted light is radially provided at positions corresponding to the ridges provided on the light control plate or the light guide plate that refracts the light provided on the surface part. By using a polarizing sheet having a prism shape with an angle of 60 to 80 degrees, Maintaining the corners, it is to provide a light guide plate and a plane illumination device capable of obtaining a uniform and bright luminance.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, a flat illumination device according to claim 1 is provided. ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. To correspond to light, a convex or / and concave ridge having an arcuate or radial extension concentrically with the arc shape with the incident portion cut off on the back surface and having an inclined surface in the direction of the incident portion is continuous or non-contiguous. A plurality of light guide plates that are continuously provided, and that totally reflects the arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A polarizing sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. It is characterized by that.
[0008]
The flat illumination device according to claim 1 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. To correspond to light, a convex or / and concave ridge having an arcuate or radial extension concentrically with the arc shape with the incident portion cut off on the back surface and having an inclined surface in the direction of the incident portion is continuous or non-contiguous. A plurality of light guide plates that are continuously provided, and that totally reflects the arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A polarizing sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. Due to the inclined surface of the concave ridge in the direction of the incident part, the light beam emitted from the surface part along the light guide plate is totally totally reflected anywhere in the concentric region, and is completely projected at the shortest distance from the surface part. Can be guided to a ridge having a shape or a concave shape, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device.
[0009]
The light guide plate according to claim 2 is characterized in that an angle between the inclined surface and the virtual horizontal surface of the back surface portion is in the range of 0.01 degrees to 10 degrees.
[0010]
Since the angle which makes an inclined surface and the virtual horizontal surface of a back surface part is the range which is 0.01 degree-10 degree | times, the light guide plate which concerns on Claim 2 is small which comprises most virtual rays which exist in a light guide plate with a virtual horizontal surface. Total reflection in the direction of the surface portion can be achieved by the inclined surface of the angle.
[0011]
Furthermore, the light guide plate according to claim 3 is characterized in that the inclined surface is curved or arcuate.
[0012]
The light guide plate according to claim 3 has a curved surface or an arc shape on the inclined surface, and therefore diffuses light when the curved surface or the arc shape is indented on the inside, or the curved surface or the arc shape is on the outside. In the case of a ridge surface that swells, light can be collected at a location that matches the curvature, and the outgoing angle of the outgoing light can be varied to diffuse the light further away.
[0013]
The light guide plate according to a fourth aspect is characterized in that the light guide plate is provided concentrically with an arc shape in which a ridge is continuously or discontinuously cut.
[0014]
Since the light guide plate according to claim 4 is provided concentrically with the circular arc shape in which the ridges are cut continuously or discontinuously, not only can the emitted light be emitted from the front surface portion and the back surface portion along the ridge to the entire area. In addition, it can be partially emitted to a target position.
[0015]
Furthermore, the light guide plate according to claim 5 is characterized in that the apex angle of the ridge is in the range of 80 degrees to 179 degrees.
[0016]
In the light guide plate according to claim 5, since the apex angle of the ridge is in the range of 80 degrees to 179 degrees, the distance between the ridges can be adjusted with the change in the angle of the ridge in the light guide plate, and the light source The pitch between the ridges can be set shorter as the distance from the object increases, and the height or depth of the convex or concave ridge can be set.
[0017]
Further, the light guide plate according to claim 6 is characterized in that the ridge is notched so that the apex angle is flat.
[0018]
In the light guide plate according to claim 6, since the apex of the ridge is cut out flat, for example, a ridge cut out flat only on the front surface portion is provided, and when a reflector is provided in the vicinity of the back surface portion, The light totally reflected at the front surface proceeds in the direction of the back surface, and the light beam emitted from the back surface portion to the outside is reflected by the reflector and reenters the light guide plate, and is reflected or refracted on the slope of the ridge of the surface portion. However, in the flat part in this claim, it can radiate | emit from a surface part substantially straight.
[0019]
Furthermore, the flat illumination device according to claim 7 includes a light source that emits in an arc shape or a radial shape, a front surface portion or a back surface portion that emits light from the light source, and a side surface portion that intersects the front surface portion and the back surface portion at a right angle. And at least one of the corners where the two side surfaces intersect has an incident portion cut out in an arc shape that matches the light emitted in an arc shape or a radial shape. In order to correspond to the light that enters from the incident part and travels while spreading radially, Arc or radial concentric with the arc shape with the incident part cut off on the back With expanse A convex or / and concave ridge with an inclined surface in the direction of the incident part The light from the light source is totally reflected by the inclined surface toward the surface portion. A light guide plate and a polarizing sheet covering the surface portion are provided.
[0020]
The flat illumination device according to claim 7 is a light source that emits in an arc shape or a radial shape, a front surface portion or a back surface portion that emits light from the light source, and a side surface portion that intersects the front surface portion and the back surface portion at a right angle, At least one of the corners where the two side surfaces intersect has an incident portion cut out in an arc shape that matches the light emitted in an arc shape or a radial shape. In order to correspond to the light that enters from the incident part and travels while spreading radially, Arc or radial concentric with the arc shape with the incident part cut off on the back With expanse A convex or / and concave ridge with an inclined surface in the direction of the incident part The light from the light source is totally reflected by the inclined surface toward the surface portion. Since the light guide plate and the polarizing sheet covering the surface portion are provided, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly the incident light propagated in the circular arc shape is received. Convex and concave ridges concentric with the circular arc shape provided on the back surface, and the light rays emitted from the surface portion along the light guide plate are totally reflected anywhere in the concentric region by the inclined surface. The light polarizing sheet can be completely guided to the convex or concave ridge of the light polarizing sheet at the shortest distance from the surface portion, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device.
[0021]
A flat illumination device according to claim 2 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in a circular arc shape or a radial shape, and has a fine light control element that refracts light on the surface portion. Inclined in the direction of the incident part with an arc or radial extension concentrically with the arc shape with the incident part cut off on the back surface so as to correspond to the light that travels while spreading in an arc or radial direction. A plurality of convex or / and concave ridges having a surface continuously or discontinuously, and a light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. It is characterized by that.
[0022]
The flat illumination device according to claim 2 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in a circular arc shape or a radial shape, and has a fine light control element that refracts light on the surface portion. Inclined in the direction of the incident part with an arc or radial extension concentrically with the arc shape with the incident part cut off on the back surface so as to correspond to the light that travels while spreading in an arc or radial direction. A plurality of convex or / and concave ridges having a surface continuously or discontinuously, and a light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. A light beam that has been totally reflected anywhere in the concentric region and proceeded in the direction of the surface portion by the inclined surface in the direction of the incident portion of the concave ridge is emitted from the surface portion by a fine light control element provided on the surface portion. The diffused light can be emitted by the diffusion sheet.
[0023]
Furthermore, a flat illumination device according to claim 3 is provided. ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. Convex or / and concave ridges that are concentric with the arc shape with the incident part cut off on the back side and concentric with the light, and that have an inclined surface in the direction of the incident part. A light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet or a polarizing sheet covering the surface,
A reflection sheet covering a portion other than the surface portion and the incident portion;
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. It is characterized by that.
[0024]
The flat illumination device according to claim 3 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. Convex or / and concave ridges that are concentric with the arc shape with the incident part cut off on the back side and concentric with the light, and that have an inclined surface in the direction of the incident part. A light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet or a polarizing sheet covering the surface,
A reflection sheet covering a portion other than the surface portion and the incident portion;
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion that coincides with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. By the inclined surface having the concave ridge in the incident part direction, it is totally totally reflected anywhere in the concentric region, or a small amount of light or light with lower energy than the back part is returned to the light guide plate again without a corner by the reflection sheet, A light beam traveling in the direction of the surface portion is emitted from the surface portion by a fine light control element provided on the surface portion, and this light beam is emitted from the surface portion by the diffusion sheet or from the surface portion along the light guide plate. The light beam emitted from the surface can be completely guided to the convex or concave ridge of the light polarizing sheet at the shortest distance from the surface portion, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device.
[0025]
Still further, the flat illumination device according to claim 4 has a prism shape with an apex angle of 60 degrees to 80 degrees at a position corresponding to a ridge provided with the polarizing sheet radially on the light guide plate. Yes It is characterized by doing.
[0026]
According to a fourth aspect of the present invention, there is provided a planar illumination device having a prism shape with an apex angle of 60 degrees to 80 degrees at a position corresponding to a ridge provided with a polarizing sheet radially on a light guide plate. Yes Therefore, the light beam emitted from the light guide plate along the light guide plate can be polarized vertically upward, and the pitch between the ridges and the height or depth of the ridges can be set according to the purpose. Can do.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The present invention provides a convex or concave shape in which an incident portion cut in an arc shape is provided at the corner of the light guide plate and an inclined surface in the direction of the incident portion is concentric with the arc shape in which the incident portion is cut off on the back surface portion. A ridge is provided, and light emitted in a circular arc shape (radial) from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape. Similarly, the incident light that has progressed in the circular arc shape (radial) is totally reflected on the inclined surface. The light is emitted from the substantially surface portion, and the emitted light is refracted by a fine light control element provided on the surface portion, or a prism shape with an apex angle of 60 to 80 degrees provided on the upper portion of the light guide plate is formed. An object of the present invention is to provide a light guide plate and a flat illumination device capable of obtaining uniform and bright luminance while maintaining a necessary viewing angle by using a radial polarizing sheet or the like similar to the provided ridge.
[0028]
FIG. 1 is an exploded perspective view showing a schematic configuration of a flat illumination device according to the present invention, FIG. 2 is a plan view of a ridge provided on the back surface portion of the light guide plate according to the present invention, and FIG. 3 is an incident portion of the light guide plate in FIG. FIG. 4 is a partial cross-sectional view of the light guide plate taken along line 2c connecting the normal line of the concentric ridge from the incident portion and the perpendicular direction 7, and FIG. 4 is a partial cross-sectional view of FIG. 5 (a), (b), FIG. 6 and FIG. 7 are partial enlarged views showing other examples of the ridges provided on the light guide plate according to the present invention, and FIG. 8 is a light polarizing sheet of the flat illumination device according to the present invention. FIG. 9 is a partial cross-sectional view of the light polarizing sheet of FIG. 8, and FIG. 10 is a view showing the locus of light rays of the flat illumination device according to the present invention.
[0029]
The flat illumination device 1 of FIG. 1 includes a light guide plate 2, a light source 3, a diffusion sheet or light polarizing sheet 11, and a reflector 15.
[0030]
The light source 3 is a semiconductor light emitting element, and is composed of, for example, an LED or a laser. As the light source 3, a monochromatic light, a white color composed of RGB (red, green, blue), or a white color light converted by wavelength conversion using a fluorescent material is also used.
[0031]
In addition, in this example, although the structure provided in one of the corners 7 where the two side surface parts 6 of the light guide plate 2 intersect with each other, for example, when having a plurality of incident parts 8 at the end of the target position, White light may be emitted from the entire light guide plate 2 by using light sources 3 of different emission colors for each incident portion 8.
[0032]
The reflector 15 is made of a sheet obtained by depositing metal such as aluminum on a sheet in which a white material such as titanium oxide is mixed in a thermoplastic resin or a sheet of a thermoplastic resin, or by laminating metal foil. The reflector 15 covers portions other than the incident portion 8 and the surface portion 4, reflects or irregularly reflects light other than light emitted from the light source 3 to the surface portion 4 by the light guide plate 2, and enters the light guide plate 2 again. Thus, all the light from the light source 3 is emitted from the surface portion 4.
[0033]
The light guide plate 2 is formed of a transparent acrylic resin (PMMA) or polycarbonate (PC) having a refractive index of about 1.4 to 1.7. The light guide plate 2 includes a side surface portion 6, a front surface portion 4 for light emission, and a back surface portion 5 located on the opposite side and an incident portion 8 that guides light from the light source 3.
[0034]
The surface portion 4 is made into a mirror surface by selecting a viewing angle, luminance, or the like, which is a purpose required of the final flat illumination device 1, or a light control element 13 is provided on the surface.
[0035]
As shown in FIG. 4, the light control element 13 has a concave shape or a convex shape including a fine arc shape (for example, about 5 μm to 100 μm), an ellipse, a polygonal column, a polygonal pyramid, and the like. The light control element 13 refracts light rays from the back surface portion 5 toward the front surface portion 4. In addition, when the light control element 13 is particularly fine, total reflection or the like is performed in the light control element 13 and the whole behaves like scattered light.
[0036]
Further, the light control element 13 may perform gradation in order to control a target angle and luminance distribution. As a result, it is possible to control the distribution of the viewing angle and the luminance distribution that are optimal for the light emitted from the light guide plate 2 by the light beams having various viewing angles from the back surface portion 4.
[0037]
The incident portion 8 is formed by cutting out at least one of the corners 7 where the two side surface portions 6 of the light guide plate 2 intersect in an arc shape equivalent to the emitted light of the point light source 3. In the example of FIG. 1, the incident portion 8 is formed by cutting away the front corner of the light guide plate 2 in an arc shape.
[0039]
The back surface portion 5 is provided with a ridge 9 having an inclined surface 9a in the direction of the incident portion 8 concentrically with the arc shape of the incident portion 8 provided at one end portion (one corner portion) of the light guide plate 2.
[0040]
More specifically, the back surface portion 5 has a convex ridge 9c and a concave ridge 9d concentric with one end position of the back surface portion 5 as the incident portion 8, as shown in FIGS. . A convex ridge 9c (odd number) and a concave ridge 9d (even number) are continuously formed so as to be concentric about the incident part 8 as one end position, and a plurality of convex ridge lines 9cn and A plurality of concave ridge lines 9dn are formed.
[0041]
In addition, although not shown in figure, the back surface part 5 is good also as providing the convex ridge 9c in a jump, and making between the two convex ridges 9c into a plane. Further, it is also possible to provide a concave ridge 9d so as to jump on the back surface portion 5, or to make a plane between the convex ridge 9c and the concave ridge 9d.
[0042]
As shown in FIG. 3, the convex ridge 9c and the concave ridge 9d include an inclined surface 9a and an inclined surface 9b. In particular, the inclined surface 9a is inclined in the direction of the incident portion 8 (in the upward direction with respect to the incident portion 8 in FIG. 3) so that the light from the light source 3 is always totally reflected in the direction of the surface portion 4.
[0043]
With the above configuration, the light rays that have entered from the light source 3 and reached the ridges 9c and 9d are at the same distance from the light source 3 of the emitted light, so that the light energy is emitted equally at any distance with respect to them. .
[0044]
FIG. 3 shows a part of a cross section of a line 2c that connects a normal line of the ridge 9 concentric with the incident portion 8 and the corner 7 in the perpendicular direction in FIG. As shown in FIG. 3, convex ridges 9c and concave ridges 9d provided on the back surface portion 5 radially from the incident portion 8 have a triangular shape. In this example, the angle θ1 of the convex ridge 9c is in the range of 80 to 179 degrees, and the angle θ2 of the concave ridge 9d is in the range of 80 to 179 degrees. Moreover, the angle θ3 formed with the virtual horizontal surface 51 of the back surface portion 5 is set to a range of 0.01 degrees to 10 degrees.
[0045]
In the example of FIG. 3, the inclined surface 9 a and the inclined surface 9 b of the convex ridge 9 c and the concave ridge 9 d have the same shape, but the light from the light source 3 is the surface portion for the purpose of the present invention. It is sufficient that the inclined surface 9a always has an inclination in the direction of the incident portion 8 so as to be totally reflected in the four directions. Therefore, it does not have to be an isosceles triangle, and for example, it may be a right triangle having only the inclined surface 9a and the inclined surface 9b being vertical.
[0046]
By setting the angles θ1, θ2, and θ3 as described above, when a light beam is incident on the light guide plate 2 from the incident portion 8 at one end portion position of the light guide plate 2, as shown in FIG. The light present inside has a refraction angle within a predetermined range depending on the material used for the light guide plate 2. For example, when the material of the light guide plate 2 is polycarbonate (PC) resin, the refractive index n of the polycarbonate resin is 1.59. Therefore, when the light beam L0 enters the light guide plate 2 from the air layer, The existing light is 0 ≦ | α | ≦ sin -1 From the formula of (1 / n) (where n is an air layer and refractive index n = 1), the angle of refraction is approximately in the range of α = ± 38.997 °.
[0047]
Further, the light incident on the light guide plate 2 within the range of the refraction angle α = ± 38.997 ° is sin γ = (1 / n at the boundary surface between the light guide plate 2 and the air layer (refractive index n = 1). ) Can be used to express the critical angle. For example, since the refractive index of polycarbonate resin which is a resin material used for the general light guide plate 2 is about n = 1.59, the critical angle γ is about γ = 38.97 °. When an acrylic resin (PMMA) material is used as the material of the light guide plate 2, the refractive index n of the acrylic resin is about n = 1.49, and the refraction angle α is about α = 42.38 °. Therefore, the critical angle γ is also about γ = 42.38 °.
[0048]
Therefore, when the front surface portion 4 is a mirror surface, as shown in FIG. 3, the light beam L1 traveling in the direction of the front surface portion 4 among the light beams L1 traveling in the direction of the front surface portion 5 and the back surface portion 6 at the maximum refraction angle α is critical. Since it is larger than the angle γ, it is totally reflected as the light ray L11 at the surface portion 4. The light ray L11 travels in the direction of the back surface 5 and reaches the inclined surface 9b formed by the virtual horizontal surface 51 and the angle θ3. Also here, since the angle (incident angle) formed with the perpendicular to the inclined surface 9b is larger than the critical angle γ, the light ray L11 is totally reflected as the light ray L12 on the inclined surface 9b. Then, the light beam L12 travels in the direction opposite to the incident portion 8. Although not shown here, the light beam L12 is returned again into the light guide plate 2 by a reflector or the like provided in the vicinity of the side surface portion 6 on the opposite side of the incident portion 8.
[0049]
Although not shown, the light ray L1 traveling in the direction of the front surface portion 5 and the rear surface portion 6 at the maximum refraction angle α is directly and totally reflected by the front surface portion 4, and the inclined surface 9a formed by this light ray and the virtual horizontal plane 51 at an angle θ3. When the angle is toward, the angle (incident angle) formed with the perpendicular of the inclined surface 9a is smaller than the critical angle γ. For this reason, the light beam totally reflected by the front surface portion 4 breaks the critical angle γ and is refracted and emitted from the back surface portion 5. The emitted light at this time is small in energy and has little influence on the luminance of the light guide plate 2 directly. In this example, since all the light is used, it is returned again to the light guide plate 2 by the reflector 15 shown in FIG. Finally, the light is emitted from the surface portion 4.
[0050]
Further, when the refraction angle α is slightly small, as shown in FIG. 3, the light ray L2 reaching the inclined surface 9a has an angle (incident angle) formed with a perpendicular to the inclined surface 9a larger than the critical angle γ. For this reason, the light ray L2 is totally reflected as the light ray L21 on the inclined surface 9a. The totally reflected light beam L21 travels in the direction of the surface portion 4. Then, the light ray L21 that has reached the surface portion 4 has an angle (incident angle) formed with a perpendicular line that is smaller than the critical angle γ. The light beam L22 is emitted from the surface portion 4 along the surface portion 4 at a certain angle.
[0051]
Further, as shown in FIG. 3, in the case of a light beam having a small refraction angle α such as the light beam L3, the angle (incident angle) formed with the perpendicular of the inclined surface 9a is larger than the critical angle γ. For this reason, the light ray L3 is totally reflected as the light ray L31 on the inclined surface 9a. The totally reflected light beam L31 reaches the front surface portion 4, but since the angle (incident angle) formed with the perpendicular of the front surface portion 4 is larger than the critical angle γ, the light beam L31 travels again toward the back surface portion 5 as the light beam L30.
[0052]
The above description is a case where the surface portion 4 of the light guide plate 2 is a mirror surface. On the other hand, as shown in FIG. 4, when the light control element 13 is provided on the surface portion 4, even a light beam having a small refraction angle α such as the light beam L <b> 3 is totally reflected by the inclined surface 9 a. L31 reaches the surface portion 4. However, the light control element 13 provided on the surface portion 4 has an angle (incident angle) perpendicular to the normal of the light control element 13 at the light beam L31 traveling to the light control element 13 is smaller than the critical angle γ. For this reason, the light ray L31 breaks the critical angle γ and is refracted to be emitted as a light ray L30 ′ from the surface portion 4 at a certain angle. When there is no light control element 13, total reflection is performed.
[0053]
Similarly, the light beam L22 emitted along the surface portion 4 in FIG. 3 (broken line in FIG. 4) also reaches the surface portion 4, and the light beam L21 that reaches the surface portion 4 is caused by the light control element 13 provided on the surface portion 4. The angle (incident angle) formed at right angles to the normal line of the light control element 13 at the light beam L30 traveling to the light control element 13 is smaller than the critical angle γ. For this reason, L21 breaks the critical angle γ, and refracts to be emitted as a light ray L22 ′ from the surface portion 4 at a larger angle with the surface portion 4 than when there is no light control element 13 (L22).
[0054]
As described above, in this example, the surface portion is in a triangular angle range in a cross section perpendicular to the normal line of the convex ridge 9c and the concave ridge 9d provided radially on the surface portion 5 from the incident portion 8. Most of the light rays emitted from 4 are totally reflected by the inclined surface 9 b of the convex ridge 9 c provided on the back surface portion 5.
[0055]
Of the light rays existing in the light guide plate 2 (substantially within the range of refraction angle α = ± 38.997 °), the smaller the refraction angle α, the greater the energy of the light, and the light rays having a greater energy are emitted directly. The main rays are not rays but once totally reflected by the inclined surface 9a of the convex ridge 9c. That is, most of the light rays emitted from the front surface portion 4 are light rays having a large energy of light totally reflected by the inclined surface 9 a of the convex ridge 9 c provided on the back surface portion 5.
[0056]
Further, these emitted lights are emitted so as to be inclined toward the surface portion 4 side. Accordingly, without using a film-like diffusion sheet (not shown) or the film-like light polarizing sheet 11 and the reflector 15 shown in FIG. 1, for example, the light guide plate 2 is used upside down to emit light downward from the surface portion 4. Thus, the light can be projected onto the reflective liquid crystal panel, and the reflected light from the reflective liquid crystal panel can be used for a front light that transmits the light guide plate 2.
[0057]
Further, as the distance from the light source 3 increases, the pitch between the convex ridge 9c and the concave ridge 9d is changed, or the height of the convex ridge 9c and the depth of the concave ridge 9d are set. Thus, the amount of emitted light can be changed by changing the amount of light reaching the inclined surface 9a.
[0058]
Further, as shown in FIG. 5A, when the convex ridge 9c and the concave ridge 9d are continuously formed on the back surface portion 5 of the light guide plate 2, the light enters the light source 3 and reaches the ridge 9c and the ridge 9d. The emitted light rays are at the same distance from the light source 3 of the emitted radiation light, and the optical energy of all the ridges at arbitrary distances corresponding thereto is emitted equally.
[0059]
Further, as shown in FIG. 5B, when the convex ridge 9c and the concave ridge 9d are formed discontinuously on the back surface portion 5 of the light guide plate 2, the gap between the convex ridge 9c and the concave ridge 9d is formed. The light beam that has entered the light source 3 and reaches the ridges 9c and 9d is at the same distance from the light source 3 of the emitted radiation, but only the ridges at any distance corresponding to these light energy. Are equally emitted. Thereby, the emitted light from the surface part 5 can be partially emitted to the target position.
[0060]
As shown in FIG. 6, the ridge formed on the back surface portion 5 of the light guide plate 2 may be provided with a flat portion 91 and a flat portion 92 in which a triangular ridge portion is cut flat. . Further, although not shown, for example, a flat portion 91 or a flat portion 92 that is flatly cut out on the ridge 9c or ridge 9d of the front surface portion 4 may be provided, and a reflector may be provided in the vicinity of the back surface portion 5. . In this case, the light totally reflected by the front surface portion 4 directly travels in the direction of the back surface portion 5 is emitted from the back surface portion 5 to the outside. The emitted light beam is reflected by the reflector 15 and incident again on the light guide plate 2. The light beam is reflected and refracted on the inclined surface 9a and inclined surface 9b of the ridge 9c and ridge 9d of the surface portion 4, but is flat. In the part 91 and the flat part 92, it can radiate | emit from the surface part 4 substantially straight.
[0061]
Furthermore, as shown in FIG. 7, the inclined surfaces 9 a and 9 b adjacent to the triangular ridges of the back surface portion 5 of the light guide plate 2 may be curved or arcuate. In FIG. 7, the inclined surface 9a and the inclined surface 9b of the edge where the curve or circular arc shape was dented inward are shown. As a result, when the light existing in the light guide plate 2 reaches the inclined surface 9b of the concave concave ridge, the emission angle becomes larger than the straight ridge with respect to the normal line of the inclined surface 9b, and the outer side is closer. It will be in the state diffused.
[0062]
Although not shown, in the case of a curved or arcuate ridge surface that bulges outward, the light present in the light guide plate 2 reaches the sloping surface 9a or sloping surface 9b of the bulging convex ridge. With respect to the normal of this surface, the emission angle is smaller than the straight edge, and the light is inward, condensing the light at a location that matches the curvature, and diffusing the light further away. And when the inclined surface 9a and the inclined surface 9b which adjoin the triangular edge of the light-guide plate 2 are made into the curve or circular arc shape, the emission angle etc. of emitted light can be varied.
[0063]
In addition, although the inclined surface 9a and the inclined surface 9b of the convex ridge 9c and the concave ridge 9d here have the same shape, the light from the light source 3 is emitted to the surface portion 4 which is the object of the present invention. It suffices to have the inclined surface 9a in the direction of the incident portion 8 that totally reflects in the direction of the surface portion 4. Therefore, it does not have to be an isosceles triangle, and for example, it may be a right triangle having only the inclined surface 9a and the inclined surface 9b being vertical.
[0064]
Furthermore, if a film-like diffusion sheet is used in the upper part of the light guide plate 2, light rays emitted from the surface portion 4 of the light guide plate 2 in an arbitrary direction or a specific direction can be diffused. At that time, as the emitted light from the flat illumination device 1, a wide viewing angle can be obtained, and high-intensity emitted light can be obtained by the light guide plate 2 of the present invention.
[0065]
By the way, as a member arrange | positioned at the upper part of the light-guide plate 2, the light polarizing sheet 11 shown to FIG. 8 and FIG. 9 other than a diffusion sheet can be used.
[0066]
The light polarizing sheet 11 is formed into a film from a transparent resin such as acrylic resin (PMMA) or polycarbonate (PC). The light polarizing sheet 11 has a shape corresponding to the light guide plate 2 and has a triangular cross section as shown in FIG. 9 and is composed of a convex ridge 10a and a concave ridge 10b. As with the light guide plate 2, the light polarizing sheet 11 is provided with a convex ridge 10a, a concave ridge 10b, or a convex ridge 10a. It is also possible to make a flat surface with the concave ridge 10b.
[0067]
Further, as shown in FIG. 9, the light polarizing sheet 11 has an angle θ5 of the convex ridge 10a and an angle θ6 of the concave ridge 10b in the range of 60 to 80 degrees. The light polarizing sheet 11 has an angle θ7 formed with a virtual horizontal plane 11a parallel to the surface portion 12 in a range of 20 degrees to 60 degrees.
[0068]
Furthermore, the light polarizing sheet 11 has a convex ridge 10 a and a concave shape provided on the back side of the front surface portion 12, here the light source 3 radiates from the incident portion 8 of the light guide plate 2 in order to correspond to the light guide plate 2. 9b is provided on a line 11cb that connects 11b equivalent to the incident portion 8 of the light guide plate 2 to the normal line of the concentric ridge and 11d in the perpendicular direction.
[0069]
Similarly to the light guide plate 2, the light polarizing sheet 11 is provided such that the convex ridges 10 a are radially provided as lines 10 a 1 and the concave ridges 10 b are formed as lines 10 b 1, and the convex ridges 10 a are line 10 a 1, 10 a 2 (odd numbers). ), And concave ridges 10b are lines 10b1 and 10b2 (even numbers), and convex and concave ridges are alternately or continuously formed (lines 10an and 10bn).
[0070]
Here, the side 12a and the side 12b of the convex ridge 10a and the concave ridge 10b have the same shape, but the shape may match the light emitted from the surface portion 4 of the light guide plate 2, and isosceles triangles. Not necessarily.
[0071]
FIG. 10 is a partially enlarged side view of the light guide plate 2 and the light polarizing sheet 11 of the flat illumination device 1 according to the present invention. The flat illumination device 1 in FIG. 10 includes a light polarizing sheet 11 on the light guide plate 2. The light polarizing sheet 11 is arranged toward the surface portion 4 side of the light guide plate 2 so that the convex ridge 10 a faces the convex ridge 9 c provided on the light guide plate 2. And the light source 3 is arrange | positioned facing the incident part 8 formed in the corner 7 which is the one end part of the light-guide plate 2. FIG.
[0072]
Here, the description of the light guide plate 2 and the light polarizing sheet 11 is the same as that described above, so the description thereof will be omitted, and the locus of light will be described.
[0073]
In FIG. 10, the light ray L2 that has reached the inclined surface 9a has an angle (incident angle) formed with the perpendicular of the inclined surface 9a larger than the critical angle γ. For this reason, the light ray L2 is totally reflected as the light ray L21 on the inclined surface 9a. The totally reflected light beam L21 travels in the direction of the surface portion 4. The light beam L21 that has reached the surface portion 4 has an angle (incident angle) formed with a perpendicular line that is smaller than the critical angle γ. The light beam L22 reaches the side 12b of the convex ridge 10a of the light polarizing sheet 11. Also here, the light guide plate 2 and the light polarizing sheet 11 are made of the same material (polycarbonate (PC)), and the light beam L22 from the air layer to the side 12b of the light polarizing sheet 11 having a refractive index larger than air is the side 12b. The light is refracted and travels into the light polarizing sheet 11 as a light beam L23.
[0074]
Furthermore, the light ray L23 reaches the side 12a in the light polarizing sheet 11, and the incident angle here is larger than the critical angle γ = 38.97 °. For this reason, the light ray L23 is totally reflected as the light ray L24 on the side 12a. The totally reflected light beam L24 travels in the direction of the surface portion 12 of the light polarizing sheet 11.
[0075]
And since the incident angle in the surface part 12 of the light polarizing sheet 11 is smaller than critical angle (gamma) = 38.97 degrees, the light ray L24 radiate | emits the light ray L25 from the surface part 12 substantially perpendicularly.
[0076]
As described above, the light polarizing sheet 11 can emit light from the light guide plate 2 that is low along the light guide plate 2 in a direction substantially perpendicular to the light polarizing sheet 11 using total reflection. it can.
[0077]
For example, in the case of the light ray L3, the angle (incident angle) formed with the perpendicular of the inclined surface 9a is larger than the critical angle γ. For this reason, the light ray L3 is totally reflected as the light ray L31 on the inclined surface 9a. The totally reflected light beam L31 reaches the light control element 13 provided on the surface portion 4, and an angle (incident angle) perpendicular to the normal line of the light control element 13 is smaller than the critical angle γ. For this reason, the light ray L31 breaks the critical angle γ and is refracted to be emitted as a light ray L30 ′. Then, the light beam L30 ′ travels as a light beam L32 in the light polarizing sheet 11.
[0078]
Further, the light beam L32 reaches the side 12a in the light polarizing sheet 11. The incident angle of the light beam L32 here is larger than the critical angle γ = 38.97 °. For this reason, the light ray L32 is totally reflected as the light ray L33 on the side 12a. The totally reflected light beam L33 travels in the direction of the surface portion 12 of the light polarizing sheet 11.
[0079]
The incident angle of the light beam L33 at the surface portion 12 of the light polarizing sheet 11 is smaller than the critical angle γ = 38.97 °. For this reason, the light ray L33 is emitted from the surface portion 12 as a light ray L34 substantially perpendicularly.
[0080]
In the configuration of FIG. 10, a diffusion sheet may be used above the light polarizing sheet 11. In this case, the high-intensity light beam from the light polarizing sheet 11 is diffused by the diffusion sheet. Thereby, the light beam emitted from the surface portion 4 of the light guide plate 2 in an arbitrary direction or a specific direction is diffused, and as the emitted light from the flat illumination device 1, the emitted light having a high luminance and a wide viewing angle can be obtained. it can.
[0081]
As described above, according to the flat illumination device 1 of the present invention, the rear surface portion 5 of the light guide plate 2 is provided with the incident portion 8 cut out in an arc shape substantially equal to the radiated light of the light source 3 and always from the light source 3. A ridge 9c or ridge 9d having an inclined surface 9a in the direction of the incident portion 8 that totally reflects light in the direction of the surface portion 4 is provided concentrically with the incident portion 8, and is provided by a fine light control element or light polarizing sheet provided on the surface portion 4. A light beam with high luminance can be emitted. Furthermore, the emitted light can be diffused by the diffusion sheet, and the emitted light having a wide field of view can be emitted from the flat illumination device 1.
[0082]
Further, the flat illumination device 1 including the light guide plate 2 and the diffusion sheet or the light polarizing sheet 11 according to the present invention has a radial ridge from the position of the light source 3 to the surface portion 4 of the light guide plate 2 even with few point light sources 3. Therefore, a constant light energy can be given everywhere, and a light beam having a large light energy can be emitted from the light guide plate 2 at an arbitrary angle. Then, by polarizing this light beam in the substantially vertical direction with the light polarizing sheet 11 or diffusing with the diffusion sheet, it is possible to obtain high-luminance outgoing light with a wide viewing angle as the flat illumination device 1.
[0083]
As described above, the light guide plate and the flat illumination device of the present invention are provided with the incident part cut out in an arc shape at the corner of the light guide plate and in the incident part direction concentric with the arc shape of the cut off incident part on the back surface part. A convex or concave ridge with an inclined surface is provided, and the light emitted in a circular arc shape (radial) from the light source is taken into the light guide plate from the arc-shaped incident portion that coincides with the circular arc shape. Similarly, the circular arc shape (radial) The incident light that has traveled to is totally reflected by the inclined surface and emitted from the substantially surface portion, and the emitted light is refracted by a fine light control element provided on the surface portion, or the apex angle provided on the upper portion of the light guide plate is 60. By using a radial polarizing sheet similar to the ridge provided on the light guide plate and having a prism shape of ˜80 degrees, uniform and bright luminance can be obtained while maintaining the required viewing angle.
[0084]
【The invention's effect】
As described above, the flat illumination device according to claim 1 is ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. To correspond to light, a convex or / and concave ridge having an arcuate or radial extension concentrically with the arc shape with the incident portion cut off on the back surface and having an inclined surface in the direction of the incident portion is continuous or non-contiguous. A plurality of light guide plates that are continuously provided, and that totally reflects the arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A polarizing sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. Due to the inclined surface of the concave ridge in the direction of the incident part, the light beam emitted from the surface part along the light guide plate is totally totally reflected anywhere in the concentric region, and is completely projected at the shortest distance from the surface part. Can be guided to a ridge having a shape or a concave shape, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device. As a result, when used in a liquid crystal display device or the like, an appropriate viewing angle can be obtained with no bright spots.
[0085]
Moreover, since the angle which makes an inclined surface and the virtual horizontal surface of a back surface part is the range which is 0.01 degree-10 degree | times, the light guide plate which concerns on Claim 2 makes most light rays which exist in a light guide plate a virtual horizontal surface. It can be totally reflected in the direction of the surface portion by the small inclined surface formed. Thereby, the light beam with high energy from a light source can be advanced to a surface part, and can be radiate | emitted by the light polarizing sheet with which the fine light-control element provided in the surface part, the surface part vicinity, etc. were provided.
[0086]
Furthermore, since the light guide plate according to claim 3 has an inclined surface that is curved or arcuate, it diffuses light when the curved surface or arcuate shape is indented on the inside, or is curved or arcuate. In the case of a ridged surface that bulges outward, the light can be condensed at a location that matches the curvature, and the output angle of the emitted light can be varied so that the light is diffused further away from it. Can be designed.
[0087]
In addition, since the light guide plate according to the fourth aspect is provided concentrically with the circular arc shape in which the ridges are cut out continuously or discontinuously, the emitted light can be emitted from the front surface portion or the back surface portion along the ridge to the entire area. In addition, the light can be partially emitted to a target position. Thereby, viewing angle control, brightness control, and the like can be performed.
[0088]
Furthermore, since the light guide plate according to claim 5 has an apex angle in the range of 80 degrees to 179 degrees, the distance between the ridges can be adjusted as the ridge angle changes in the light guide plate. At the same time, the pitch between the edges can be set shorter as the distance from the light source increases. In addition, the height or depth of convex or concave ridges can be set, so the distance between the ridges decreases as the distance from the light source decreases, the height of the convex ridges increases, or the height of the concave ridges increases. By increasing the depth of the ridge, uniform emission light can be obtained by controlling the attenuation of the light intensity from the light source by the emission amount.
[0089]
Moreover, since the light guide plate according to claim 6 has the ridges cut out flatly at the apex angle, for example, when a ridge cut out flatly only on the front surface portion is provided and a reflector is provided in the vicinity of the back surface portion, The light totally reflected on the front surface travels in the direction of the back surface, and the light beam emitted from the back surface portion is reflected by the reflector and incident on the light guide plate again. However, in the flat part in this claim, it can radiate | emit from a surface part substantially straight. Thereby, for example, in a usage such as a front light, straight light can be observed from the upper part of the light guide plate.
[0090]
Furthermore, the flat illumination device according to claim 7 includes a light source that emits in an arc shape or a radial shape, a front surface portion or a back surface portion that emits light from the light source, and a side surface portion that intersects the front surface portion and the back surface portion at a right angle. And at least one of the corners where the two side surfaces intersect has an incident portion cut out in an arc shape that matches the light emitted in an arc shape or a radial shape. In order to correspond to the light that enters from the incident part and travels while spreading radially, Arc or radial concentric with the arc shape with the incident part cut off on the back With expanse A convex or / and concave ridge with an inclined surface in the direction of the incident part The light from the light source is totally reflected by the inclined surface toward the surface portion. Since the light guide plate and the polarizing sheet covering the surface portion are provided, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly the incident light propagated in the circular arc shape is received. Convex and concave ridges concentric with the circular arc shape provided on the back surface, and the light rays emitted from the surface portion along the light guide plate are totally reflected anywhere in the concentric region by the inclined surface. The light polarizing sheet can be completely guided to the convex or concave ridge of the light polarizing sheet at the shortest distance from the surface portion, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device. As a result, when used in a liquid crystal display device or the like, an appropriate viewing angle can be obtained with no bright spots.
[0091]
A flat illumination device according to claim 2 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in a circular arc shape or a radial shape, and has a fine light control element that refracts light on the surface portion. Inclined in the direction of the incident part with an arc or radial extension concentrically with the arc shape with the incident part cut off on the back surface so as to correspond to the light that travels while spreading in an arc or radial direction. A plurality of convex or / and concave ridges having a surface continuously or discontinuously, and a light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet covering the surface portion,
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion coincident with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. A light beam that has been totally reflected anywhere in the concentric region and proceeded in the direction of the surface portion by the inclined surface in the direction of the incident portion of the concave ridge is emitted from the surface portion by a fine light control element provided on the surface portion. The diffused light can be emitted by the diffusion sheet. Thereby, it is possible to obtain a bright luminance distribution corresponding to the luminance of the light source regardless of the size of the light guide plate, and to obtain outgoing light having a wide viewing angle.
[0092]
Furthermore, the flat illumination device according to claim 3 ,Circle Arc or radial the light Exit Rectangular A light source;
A front surface portion that emits light from the light source, a back surface portion located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and at least a corner where the two side surface portions intersect One has an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and the arc shape or radial light is incident from the entire incident portion and proceeds while spreading radially. Convex or / and concave ridges that are concentric with the arc shape with the incident part cut off on the back side and concentric with the light, and that have an inclined surface in the direction of the incident part. A light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet or a polarizing sheet covering the surface,
A reflection sheet covering a portion other than the surface portion and the incident portion;
The position where the end position where two adjacent side surfaces of the light source intersect each other and the incident section cut out in an arc shape of the light guide plate face each other To place the light source in the notched part of the incident part. Therefore, the light emitted in a circular arc shape from the light source is taken into the light guide plate from the incident portion that coincides with the circular arc shape, and similarly, the incident light propagated in the circular arc shape has a convex shape concentric with the circular arc shape provided on the back surface portion. By the inclined surface having the concave ridge in the incident part direction, it is totally totally reflected anywhere in the concentric region, or a small amount of light or light with lower energy than the back part is returned to the light guide plate again without a corner by the reflection sheet, A light beam traveling in the direction of the surface portion is emitted from the surface portion by a fine light control element provided on the surface portion, and this light beam is emitted from the surface portion by the diffusion sheet or from the surface portion along the light guide plate. The light beam emitted from the surface can be completely guided to the convex or concave ridge of the light polarizing sheet at the shortest distance from the surface portion, and can be polarized in a substantially vertical direction by the light polarizing sheet and emitted from the flat illumination device. Thereby, it is possible to obtain a bright luminance distribution corresponding to the luminance of the light source regardless of the size of the light guide plate, and to obtain outgoing light having a wide viewing angle.
[0093]
According to a fourth aspect of the present invention, there is provided a flat illumination device having a prism shape with an apex angle of 60 degrees to 80 degrees at a position corresponding to a ridge provided with a polarizing sheet radially on a light guide plate. Yes Therefore, the light beam emitted from the light guide plate along the light guide plate can be polarized vertically upward, and the pitch between the ridges and the height or depth of the ridges can be set according to the purpose. Can do. The emitted light distribution can be made uniform by emitting light substantially perpendicular to the flat illumination device and controlling the amount of light taken in from the light guide plate.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a flat illumination device according to the present invention.
FIG. 2 is a plan view of a ridge provided on the back surface of the light guide plate according to the present invention.
3 is a partial cross-sectional view of the light guide plate of FIG. 2;
4 is a partial cross-sectional view of a light guide plate in which a light control element is provided on the surface portion of the light guide plate in FIG. 3;
FIGS. 5A and 5B are partially enlarged views showing other configuration examples of ridges provided in the light guide plate according to the present invention. FIGS.
FIG. 6 is a partially enlarged view showing another configuration example of the ridge provided in the light guide plate according to the present invention.
FIG. 7 is a partially enlarged view showing another configuration example of the ridge provided in the light guide plate according to the present invention.
FIG. 8 is a plan view of a light polarizing sheet of the flat illumination device according to the present invention.
9 is a partial cross-sectional view of the light polarizing sheet of FIG.
FIG. 10 is a partially enlarged side view of the light guide plate and the light polarizing sheet of the flat illumination device according to the present invention, and shows a locus of light rays.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Plane illumination apparatus, 2 ... Light guide plate, 2c, 11c ... Line, 3 ... Light source, 4,12 ... Front surface part, 5 ... Back surface part, 6 ... Side surface part, 7 ... Corner, 8 ... Incident part, 9 ... Ridge , 9a, 9b ... inclined surface, 9c ... convex ridge, 9d ... concave ridge, 9cn ... convex ridge line, 9dn ... concave ridge line, 15 ... reflector, 13 ... fine light control element, 11 ... light polarizing sheet, n ... Refractive index, 51, 61, 10a, 10a1, 10a2, 10an ... convex ridge, 52, 62, 10b, 10b1, 10b2, 10bn ... concave ridge, 51 ... virtual horizontal line, 11d ... vertical direction of the normal line concentric with the light source , 91, 92 ... flat part, 9a1, 9b1 ... curved edge, 12a, 12b ... side, α ... refraction angle, θ1, θ5 ... convex ridge angle, θ2, θ6 ... concave ridge angle, θ3, θ7 ... An angle formed with a virtual horizon, γ ... Critical angle, L0, L1, L2, L21, L3, L22, L2 2 ′, L31, L30 ′, L12, L30, L11, L32, L33, L34, L23, L24, L25.

Claims (4)

弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、前記表面部の反対側に位置する裏面部と、これら前記表面部と前記裏面部とに直角に交わる側面部と、この二つの前記側面部が交差する隅の少なくとも1つを前記光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、前記入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、前記裏面部に前記入射部の前記欠切した円弧形状と同心に前記円弧状または放射状に広がりを持って前記入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、前記光源からの円弧状または放射状の光を前記傾斜面によって略前記表面部方向に全反射する導光板と、
前記表面部を覆う偏光シートとを具備し、
前記光源の互いに隣合う2つの側面が交差する端部位置と前記導光板の前記円弧状に欠切した入射部とが対向する位置で前記入射部の欠切部分内に前記光源を配置したことを特徴とする平面照明装置。
A rectangular light source for emitting light into circularly arcuate or radial,
A front surface portion that emits light from the light source, a back surface portion that is located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and the two side surface portions intersect. Having an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and entering the arc shape or radial light from the whole of the incident portion, A convex surface having an inclined surface in the direction of the incident portion with the arc or radial extent concentric with the notched arc shape of the incident portion on the back surface portion so as to correspond to light traveling while spreading radially. A plurality of continuous or non-continuous ridges, and / or a light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A polarizing sheet covering the surface portion,
The light source is arranged in a notched portion of the incident portion at a position where an end position where two adjacent side surfaces of the light source intersect each other and an incident portion notched in the arc shape of the light guide plate are opposed to each other . A flat illumination device characterized by that.
弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、前記表面部の反対側に位置する裏面部と、これら前記表面部と前記裏面部とに直角に交わる側面部と、この二つの前記側面部が交差する隅の少なくとも1つを前記光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有するとともに前記表面部に光を屈折させる微細な光制御素子を有し、前記入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、前記裏面部に前記入射部の前記欠切した円弧形状と同心に前記円弧状または放射状に広がりを持って前記入射部方向に傾斜面を持つ凸状または/および凹状の稜を連続または非連続に複数設け、前記光源からの円弧状または放射状の光を前記傾斜面によって略前記表面部方向に全反射する導光板と、
前記表面部を覆う拡散シートとを具備し、
前記光源の互いに隣合う2つの側面が交差する端部位置と前記導光板の前記円弧状に欠切した入射部とが対向する位置で前記入射部の欠切部分内に前記光源を配置したことを特徴とする平面照明装置。
A rectangular light source for emitting light into circularly arcuate or radial,
A front surface portion that emits light from the light source, a back surface portion that is located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and the two side surface portions intersect. And having a fine light control element that refracts light on the surface portion and has an incident portion cut out in an arc shape that coincides with light emitted radially or radially from the light source, The circular arc or radial light is incident from the entire incident portion, and the circular arc or concentricity with the notched circular arc shape of the incident portion on the back surface portion so as to correspond to the light traveling while spreading radially. A plurality of convex or / and concave ridges having a radially extending surface and an inclined surface in the direction of the incident portion are provided continuously or discontinuously, and the arc-shaped or radial light from the light source is approximately formed on the surface by the inclined surface. Direction A light guide plate is totally reflected,
A diffusion sheet covering the surface portion,
The light source is arranged in a notched portion of the incident portion at a position where an end position where two adjacent side surfaces of the light source intersect each other and an incident portion notched in the arc shape of the light guide plate are opposed to each other . A flat illumination device characterized by that.
弧状または放射状に光を出射する矩形状の光源と、
当該光源からの光を出射する表面部と、前記表面部の反対側に位置する裏面部と、これら前記表面部と前記裏面部とに直角に交わる側面部と、この二つの前記側面部が交差する隅の少なくとも1つを前記光源からの円弧状または放射状に出射した光に一致した円弧状に欠切した入射部を有し、前記入射部の全体から円弧状または放射状の光を入射し、放射状に広がりながら進行する光に対応するように、前記裏面部に前記入射部の前記欠切した円弧形状と同心に前記円弧状または放射状に広がりを持って前記入射部方向に傾斜面を持つ凸状または/および凹状の稜連続または非連続に複数を設け、前記光源からの円弧状または放射状の光を前記傾斜面によって略前記表面部方向に全反射する導光板と、
前記表面部を覆う拡散シートまたは偏光シートと、
前記表面部および前記入射部以外の部分を覆う反射シートとを具備し、
前記光源の互いに隣合う2つの側面が交差する端部位置と前記導光板の前記円弧状に欠切した入射部とが対向する位置で前記入射部の欠切部分内に前記光源を配置したことを特徴とする平面照明装置。
A rectangular light source for emitting light into circularly arcuate or radial,
A front surface portion that emits light from the light source, a back surface portion that is located on the opposite side of the front surface portion, a side surface portion that intersects the front surface portion and the back surface portion at a right angle, and the two side surface portions intersect. Having an incident part cut out in an arc shape that coincides with the light emitted from the light source in an arc shape or a radial shape, and entering the arc shape or radial light from the whole of the incident portion, A convex surface having an inclined surface in the direction of the incident portion with the arc or radial extent concentric with the notched arc shape of the incident portion on the back surface portion so as to correspond to light traveling while spreading radially. A plurality of continuous or non-continuous ridges or / and concave ridges, and a light guide plate that totally reflects arc-shaped or radial light from the light source substantially in the direction of the surface portion by the inclined surface;
A diffusion sheet or a polarizing sheet covering the surface portion;
A reflection sheet covering a portion other than the surface portion and the incident portion;
The light source is arranged in a notched portion of the incident portion at a position where an end position where two adjacent side surfaces of the light source intersect each other and an incident portion notched in the arc shape of the light guide plate are opposed to each other . A flat illumination device characterized by that.
前記偏光シートは、前記導光板に放射状に設けた前記稜に対応した位置に頂角が60度〜80度のプリズム形状をすることを特徴とする請求項1または請求項3記載の平面照明装置。The polarizing sheet, flat illumination according to claim 1 or claim 3, wherein the apex angle at a position corresponding to the edge provided radially on the light guide plate, characterized in that have a 60 to 80 degrees of prism-shaped apparatus.
JP2001221659A 2001-07-23 2001-07-23 Light guide plate and flat illumination device Expired - Fee Related JP4138276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221659A JP4138276B2 (en) 2001-07-23 2001-07-23 Light guide plate and flat illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221659A JP4138276B2 (en) 2001-07-23 2001-07-23 Light guide plate and flat illumination device

Publications (2)

Publication Number Publication Date
JP2003035824A JP2003035824A (en) 2003-02-07
JP4138276B2 true JP4138276B2 (en) 2008-08-27

Family

ID=19055295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221659A Expired - Fee Related JP4138276B2 (en) 2001-07-23 2001-07-23 Light guide plate and flat illumination device

Country Status (1)

Country Link
JP (1) JP4138276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086995A (en) * 2009-12-08 2011-06-08 乐金显示有限公司 Backlight unit and liquid crystal display device having the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380148C (en) * 2003-05-22 2008-04-09 日立化成工业株式会社 Optical film and surface light source using it
JP3708112B2 (en) 2003-12-09 2005-10-19 シャープ株式会社 Manufacturing method and display device of display panel with microlens array
CN100434988C (en) * 2004-02-16 2008-11-19 西铁城电子股份有限公司 Light guide plate
CN100463775C (en) * 2004-03-04 2009-02-25 精工爱普生株式会社 Method of producing microstructure element and its uses
JP4747627B2 (en) * 2004-07-23 2011-08-17 日立化成工業株式会社 Diffraction type condensing film and surface light source device using the same
US7995887B2 (en) 2005-08-03 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
US7978298B2 (en) 2006-03-23 2011-07-12 Sharp Kabushiki Kaisha Liquid crystal display device
EP2063313A4 (en) 2006-09-12 2011-08-17 Sharp Kk Liquid crystal display panel provided with microlens array, method for manufacturing the liquid crystal display panel, and liquid crystal display device
DE602007010964D1 (en) 2006-09-27 2011-01-13 Sharp Kk LIQUID CRYSTAL DISPLAY UNIT WITH MICROLINE ARRAY AND METHOD FOR THE PRODUCTION THEREOF.
ATE556348T1 (en) 2006-09-28 2012-05-15 Sharp Kk LIQUID CRYSTAL DISPLAY SCREEN WITH MICRO LENS ARRAY, PRODUCTION METHOD THEREOF AND LIQUID CRYSTAL DISPLAY ARRANGEMENT
US8243236B2 (en) 2006-10-18 2012-08-14 Sharp Kabushiki Kaisha Liquid crystal display and method for manufacturing liquid crystal display
CN101529317B (en) 2006-10-18 2011-09-21 夏普株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
WO2008084589A1 (en) 2007-01-11 2008-07-17 Sharp Kabushiki Kaisha Liquid crystal display panel with micro-lens array and liquid crystal display device
KR102133762B1 (en) 2013-01-10 2020-07-15 삼성디스플레이 주식회사 Backlight unit and display device having the same
CN108400193A (en) * 2018-04-17 2018-08-14 上海玛企电子科技有限公司 A kind of reflectance coating and photovoltaic module for photovoltaic module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086995A (en) * 2009-12-08 2011-06-08 乐金显示有限公司 Backlight unit and liquid crystal display device having the same
US8508693B2 (en) 2009-12-08 2013-08-13 Lg Display Co., Ltd. Backlight unit and liquid crystal display device having the same
CN102086995B (en) * 2009-12-08 2014-04-16 乐金显示有限公司 Backlight unit and liquid crystal display device having the same

Also Published As

Publication number Publication date
JP2003035824A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
KR101318497B1 (en) Liquid crystal display device
JP4138276B2 (en) Light guide plate and flat illumination device
US7401962B2 (en) Light deflection element and light source apparatus using the same
US7918597B2 (en) Spread illuminating apparatus
JP4588729B2 (en) Flat lighting device
JP3955505B2 (en) Light guide plate
TWI474085B (en) Surface light source device and liquid crystal display device
JP4260358B2 (en) Light guide plate and flat illumination device
JP2008027665A (en) Light guide plate and flat lighting device
JPH10206643A (en) Sheet-like light source device
JP4181792B2 (en) Light guide plate and flat illumination device
JP2000227522A (en) Light guide plate and plane lighting device
JP6858034B2 (en) Surface light source device and display device
JP4324133B2 (en) Light guide plate and flat illumination device
JP3778839B2 (en) Light guide plate and flat illumination device
JP4436845B2 (en) Light guide plate
US20070002568A1 (en) Back light unit
KR20110043863A (en) Color mixing lens and liquid crystal display having the same
JP4260512B2 (en) Flat lighting device
JP3973865B2 (en) Light guide, light source device and flat illumination device
JP2003066239A (en) Light transmission plate and planar illuminator
KR20110043864A (en) Color mixing lens and liquid crystal display having the same
JP3635248B2 (en) Flat lighting device
JP4182075B2 (en) Light guide plate and flat illumination device
JP4684791B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061016

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees