JP4724273B2 - Substrate surface treatment method - Google Patents

Substrate surface treatment method Download PDF

Info

Publication number
JP4724273B2
JP4724273B2 JP2000206442A JP2000206442A JP4724273B2 JP 4724273 B2 JP4724273 B2 JP 4724273B2 JP 2000206442 A JP2000206442 A JP 2000206442A JP 2000206442 A JP2000206442 A JP 2000206442A JP 4724273 B2 JP4724273 B2 JP 4724273B2
Authority
JP
Japan
Prior art keywords
metal film
convex
substrate
film
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000206442A
Other languages
Japanese (ja)
Other versions
JP2002026049A (en
Inventor
英志 豊田
亮 並河
千景 則武
市治 近藤
健 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Nitto Denko Corp
Original Assignee
Denso Corp
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nitto Denko Corp filed Critical Denso Corp
Priority to JP2000206442A priority Critical patent/JP4724273B2/en
Publication of JP2002026049A publication Critical patent/JP2002026049A/en
Application granted granted Critical
Publication of JP4724273B2 publication Critical patent/JP4724273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基板の表面処理方法に関する。本発明の基板の表面処理方法は、半導体基板の表面処理に有用であり、各種電子部品、たとえばダイオード、トランジスタ、LSI等の等の半導体デバイス製造時において、バンプ形成領域に金属膜(UBM膜;アンダーバンプメタル)の金属膜パターンの形成に好適に用いることができる。
【0002】
【従来の技術】
半導体デバイスとしては、アルミ電極等の金属電極を備えたものが知られている。当該アルミ電極にはハンダなどによりバンプが形成されるが、ハンダとアルミ電極とは濡れ性がよくない。そのため、アルミ電極上には、さらにハンダなどとの濡れ性の良好な金属膜により金属膜のパターンが形成されている。
【0003】
半導体デバイスの製造における前記金属膜のパターン形成は、一般にホトリソグラフィによるパターン形成方法が行われている。しかしながら、前述のホトリソグラフィによるパターン形成は、ホトリソグラフィおよびエッチング工程における設備等のプロセスコストが非常に高く、またエッチング液等の廃液処理が煩わしく、作業環境を悪化させるという問題点がある。
【0004】
また、最近では、前記金属膜パターンの形成方法として、半導体基板上に形成された絶縁部と電極部の表面に濡れ性の良好な金属膜を設け、この金属膜に対する絶縁部と電極部との接着性の差を利用して、接着シートにより絶縁部上の金属膜のみを剥離除去してパターンを形成する手法も提案されている(特開平10−64912号公報)。
【0005】
かかる金属膜剥離除去用接着シートによるパターン形成方法では、金属膜を形成する部位以外、例えば絶縁部上の金属膜については、接着シートで取残しなく剥離除去すること、すなわち絶縁部上の金属膜の剥離の確実性が要求される。しかし、絶縁膜と金属膜との密着性が高いと、絶縁部上の金属膜を完全にパターン化した形で剥離除去するのは困難であった。
【0006】
【発明が解決しようとする課題】
本発明は、半導体デバイス製造において、表面に凹凸形状を有する基板(たとえば、金属膜パターンの形成に用いられる、凸部絶縁部と凹部電極部が表面に形成された半導体基板等)の、凸部のみを選択的に改質しうる基板の表面処理方法を提供することを目的とする。
【0007】
また本発明は、前記基板の表面処理方法を利用して、金属膜パターンを形成する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す方法に方法により、上記目的を達成しうることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、凸部絶縁部と凹部電極部が表面に形成された基板(A)上の凸部絶縁部にのみ、フッ素含有樹脂またはフッ素粘着性物質を含む表面部材からなる平板状またはシート状の物品(B)の表面部を接触させた状態で加熱処理を行なうことにより、フッ素含有樹脂またはフッ素粘着性物質を含む表面部材の一部を基板(A)上の凸部絶縁部に転写させて、前記凸部絶縁部及び凹部電極部の表面に形成される金属膜に対する前記凸部絶縁部の密着性を弱める表面処理を施した後、凸部絶縁膜及び凹部電極部上に金属膜を形成する工程と、形成した金属膜の最表層部の全面に接着シートを貼り付けた後、当該接着シートを引き剥がす工程を施すことにより、凸部絶縁部表面の金属膜を選択的に剥離除去することを特徴とする、半導体基板上の凹部電極部にのみ金属膜パターンを形成する方法、に関する。
【0010】
上記方法によれば、物品(B)の表面部材を適宜に選択することにより、凸部の表面にのみ、所望の処理を行なうことができ、凸部表面と凹部表面の性状を差別化することができる。
【0012】
品(B)の表面部材を基板(A)上の凸部絶縁部に転写する方法によれば、当該凸部絶縁部の性状変化を簡易に行うことができる。
【0013】
基板(A)上の凸部絶縁部に転写させる、物品(B)の表面部材としては、フッ素含有樹脂を含んでものがあげられる。
【0014】
基板(A)上の凸部絶縁部に、フッ素含有樹脂が転写されることにより、当該凸部絶縁部の自由エネルギーを低下させることができ、基板(A)上の凸部絶縁部の密着性を効果的に弱めることができる。
【0015】
また、基板(A)上の凸部絶縁部に転写させる、物品(B)の表面部材としては、フッ素粘着性物質を含んでなるものがあげられる。
【0016】
フッ素粘着性物質は基板(A)上の凸部絶縁部への転写が容易であり、表面部の自由エネルギーを低下させることができ、基板(A)上の凸部絶縁部の密着性を効果的に弱めることができる。
【0019】
半導体基板上の凸部絶縁部の表面にのみ、記転写処理行なうことで、当該凸部絶縁部と、その後に形成する金属膜との間の密着性を効果的に弱めることができ、これにより金属膜の剥離性が向上する。一方、凹部電極部については、前記表面処理は行なわれないため、金属膜との密着性は低下しない。このように半導体基板上の凸部絶縁部のみを選択的に処理することにより、接着シートを用いた金属膜パターンの形成に良好な結果をもたらす。
【0020】
【発明の実施の形態】
以下に本発明の基板の表面処理方法を、基板(A)として半導体基板を用いた場合を例にあげて、半導体製造工程において、当該基板に金属膜パターンを形成する方法を詳細に説明するが、本発明の基板の表面処理方法は、これら例に限定されるものではない。
【0021】
図1は、半導体基板1上に凸部絶縁部3と凹部電極部4とが形成されたものの断面図であり、当該電極部4上に金属電極パターンが形成される。
【0022】
半導体基板1としては、シリコン基板等があげられる。また、本発明の半導体基板1上には、ダイオード、トランジスタ等の半導体素子領域2を形成することもできる。電極部4は半導体素子2との導通を得るためにパターン化されている。半導体基板1上の絶縁部3と電極部4の形成方法は特に制限されず、各種の方法により形成することができる。たとえば、かかる絶縁部3と電極部4は、半導体基板1上にCVD法などにより絶縁部3を形成した後、ホトリソグラフィ法を用いて、絶縁部3をパターン化し、その必要箇所に電極部4を形成する方法により形成される。電極部4としては、アルミ電極等が用いられ、絶縁部3としては、シリカ、BPSG(Bolon Phosphorus Silicate Glass ) 、PSG( Phosphorus Silicate Glass ) 、窒素化ケイ素、ポリイミドなどが用いられる。
【0023】
次いで、図2に示すように、半導体基板1上の絶縁部3の表面にのみ、表面処理用シート5(平板状またはシート状の物品(B))を接触させ、加熱する。加熱は、ヒーター6により行う。図2では、半導体基板1の下部にのみヒーター6が設けられているが、ヒーター6は、表面処理用シート5の上部に設けることもできる。ヒーター6としては、熱板、ヒートロールによる貼り合わせ等が用いられる。これにより、表面処理用シート5の一部(微少量)が、絶縁部3上の表層部に転写して、絶縁部3の性状が変化する。
【0024】
表面処理用シート5としては、たとえば、フッ素含有樹脂が好適に用いられる。このようなものの例としては、ポリテトラフルオロエチレン、ポリ(クロロトリフルオロエチレン)、ポリフッ化ビニリデン等の汎用フッ素樹樹脂からなるシートが挙げられるが、これら以外のものを用いてもよい。また、表面処理用シート5としては、シート基材上にフッ素系粘着層を設けた粘着シート5´を用いることができる。シート基材は、シート状、テープ状のいずれでもよい。シート基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロースなどの一般的な接着シートに用いられるプラスチックフィルムがあげられる。粘着層には、たとえば、フッ素原子を含有するアクリル系ポリマー等各種の粘着性物質が用いられる。表面処理用シート5として、粘着シート5´を用いる場合には、基板との接触面側に、粘着シート5´の接着層を接触させる。
【0025】
本発明の金属電極パターン形成方法では、半導体基板1に前記処理を施し、半導体基板1から表面処理用シート5を離す。次いで、半導体基板1上に形成されている絶縁部3と電極部4の表面に金属膜を設ける。当該金属膜が金属膜剥離除去用接着シートAの被着部である。被着部となる金属膜9は、はんだ濡れ性の良好な膜であり、具体的には金、銅、銀、白金、鉄、錫、ニッケル、ニッケル−バナジウム合金等を用いて形成されている。これらのなかでも金(Au)を用いるのが好ましい。
【0026】
金属膜は、図3に示すように金属膜7,8,9を順次に形成した3層とするのが好ましい。第1層の金属膜7は、電極部4と良好な接合を形成するための膜であり、具体的にはチタン、バナジウム、クロム、コバルト、ジルコニウム、アルミニウム、タンタル、タングステン、白金、これら金属の窒化物やこれら金属を主成分とする合金等の薄膜が用いられる。これらのなかでもチタン薄膜が好ましい。第2層の金属膜8は、金属膜7と絶縁部3との界面にかかる応力を調整するための膜であり、具体的にはニッケル、銅、パラジウム、これらの金属を主成分とする合金等の薄膜が用いられる。これらのなかでもニッケル薄膜が好ましい。第2層の金属膜8の内部応力により、金属膜7と絶縁部3との界面の接着性が低下し、接着シートAによる金属膜の剥離除去がより容易になっている。そして、第3層として、接着シートAの被着部となる、はんだ濡れ性の良好な金属膜9が設けられている。
【0027】
次いで、半導体基板1上に形成された絶縁部3と電極部4の表面に設けた金属膜9に、図4に示すように、接着シートAの接着層を貼り付け、その後、当該接着シートAを引き剥がす。この剥離除去の際、絶縁部3表面は、前記表面処理により、金属膜7との界面の剥離性がよい。一方、電極部4と金属膜7との界面は接着性が良いため、接着シートAで剥離除去されることはない。この操作により、絶縁部3表面の金属膜7,8,9が選択的に剥離除去され、図5に示すように、半導体基板1上の電極部4に所望の金属電極パターンが形成される。
【0028】
かかる本発明の金属電極パターン形成方法により、図5のように半導体基板1上の電極部4に確実に、バンプとの濡れ性のよい金属電極パターンが形成される。このようにパターン形成された金属電極にはバンプを容易に形成することができ、半導体デバイスの製造工程を簡易かつ低コストで行うことができる。
【0029】
接着シートAは、シート基材a上に、接着層bが形成されたものである。なお、接着シートAは、シート状、テープ状のいずれでもよい。
【0030】
シート基材aとしては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロースなどの一般的な接着シートに用いられるプラスチックフィルムがあげられる。接着層を形成する接着剤としては、一般的な感圧接着剤に適用されるベースポリマーが用いられる。かかるベースポリマーとしては、アクリル系ポリマーや、ゴム系材料等の公知の各種のものをいずれも使用できるが、特にアクリル系ポリマーを使用するのが好ましい。接着層には架橋剤、各種添加剤を適宜に配合することもできる。
【0031】
【実施例】
以下に、実施例によって本発明を具体的に説明するが、本発明はこれらによって何等限定されるものではない。
【0032】
参考例1
アクリル酸2−エチルヘキシル/アクリル酸メチル/アクリル酸=30/70/10(重量比)の共重合体からなるアクリルポリマーA(重量平均分子量280万、重量平均分子量(Mw)÷数平均分子量(Mn)=22)の27重量%トルエン溶液100g、ジペンタエリスリトールヘキサアクリレート(日本合成化学製;商品名:UV3000B)10gおよびポリイソシアネート化合物(日本ポリウレタン工業製;商品名:コロネートL)0.8gを配合した接着剤組成物(トルエン溶液)を、厚さが50μmのポリエステルフィルムからなるフィルム基材上に塗布し、乾燥オーブンにて130℃で各々3分間乾燥し、厚さが35μmの接着剤層を形成し接着シートを作製した。
【0033】
実施例1
図1に示すような凸部絶縁部3と凹部電極部4が表面に形成された半導体基板1を準備する。なお、凸部絶縁部3はポリイミド膜、凹部電極部4はアルミ薄膜である。次いで、図2に示すように、厚さ1mmのPTFE(ポリテトラフルオロエチレン)板を、前記凸部絶縁部3にのみ接触させ、半導体基板1の下部及びPTFEの上部から熱板にて挟み、150℃、10kg/cm2 の条件で30秒間圧着した。その後、PTFE板を取り外した。
【0034】
続いて図3に示すように、半導体基板1上に、金属膜7,8,9を設けた後、金属膜上に、参考例1で作成した接着シートを50℃でロールに沿わせながら貼りつけた。その後、この温度で1分間加熱保持し、室温まで冷却した。上記接着シートを剥離したところ、絶縁膜3上の金属膜7,8,9のみが接着シートと共に剥離除去され、電極部4上にバンプ接続用の金属電極パターンが形成された。
【0035】
比較例1
実施例1において、PTFE板に係わる表面処理を行なわないこと以外は、実施例1と同様の操作を行った。絶縁部3上の金属膜は部分的にしか剥離除去されず、金属電極パターンは得られなかった。
【0036】
参考例2
アクリル酸2−エチルヘキシル/アクリル酸ペンタフルオロエチル/アクリル酸=50/47/3(重量比)の共重合体からなるポリマーA(重量平均分子量30万、重量平均分子量(Mw)÷数平均分子量(Mn)=8)および日本ポリウレタン工業製;商品名:コロネートL)3.2gを配合した接着剤組成物(酢酸エチル溶液)を、厚さが100μmのポリエステルフィルムからなるフィルム基材上塗布し、乾燥オーブンにて130℃で各々3分間乾燥し、厚さが5μmの粘着層を形成し表面処理用接着シートを作製した。
【0037】
実施例2
図1に示すような凸部絶縁部3と凹部電極部4が表面に形成された半導体基板1を準備する。なお、凸部絶縁部3はポリイミド膜、凹部電極部4はアルミ薄膜である。次いで、図2に示すように、表面処理用接着シートの粘着層を、前記凸部絶縁部3にのみ接触させ、140℃でロールに沿わせながら貼りつけた。
【0038】
その後 続いて図3に示すように、半導体基板1上に、金属膜7,8,9を設けた後、金属膜上に、参考例1で作成した接着シートを50℃でロールに沿わせながら貼りつけた。その後、この温度で1分間加熱保持し、室温まで冷却した。上記接着シートを剥離したところ、絶縁膜3上の金属膜7,8,9のみが接着シートと共に剥離除去され、電極部4上にバンプ接続用の金属電極パターンが形成された。
【図面の簡単な説明】
【図1】凸部絶縁部と凹部電極部を有する半導体基板の断面図である。
【図2】凸部絶縁部にのみ表面処理する方法の断面図である
【図3】凸部絶縁部と凹部電極部の表面に金属膜が設けられたもの断面図である。
【図4】図3の金属膜に金属膜剥離除去用接着シートを貼り付ける工程である。
【図5】半導体基板上の凹部電極部に形成された金属電極パターンである。
【符号の説明】
1 半導体基板
3 絶縁部
4 電極部
5 表面処理用シート
7,8,9 金属膜
A 接着シート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate surface treatment method. The substrate surface treatment method of the present invention is useful for the surface treatment of a semiconductor substrate, and a metal film (UBM film; in a bump formation region) when manufacturing various electronic components, for example, semiconductor devices such as diodes, transistors, LSIs and the like. It can be suitably used for forming a metal film pattern of under bump metal.
[0002]
[Prior art]
A semiconductor device having a metal electrode such as an aluminum electrode is known. Bumps are formed on the aluminum electrode by solder or the like, but the solder and the aluminum electrode have poor wettability. Therefore, a metal film pattern is formed on the aluminum electrode by a metal film having good wettability with solder or the like.
[0003]
The pattern formation of the metal film in the manufacture of a semiconductor device is generally performed by a pattern formation method by photolithography. However, the above-described pattern formation by photolithography has a problem that the process cost of equipment and the like in photolithography and etching processes is very high, and the waste liquid treatment such as an etching solution is troublesome and the working environment is deteriorated.
[0004]
Recently, as a method for forming the metal film pattern, a metal film having good wettability is provided on the surfaces of the insulating part and the electrode part formed on the semiconductor substrate, and the insulating part and the electrode part with respect to the metal film are provided. A method of forming a pattern by peeling and removing only the metal film on the insulating portion with an adhesive sheet by using the difference in adhesiveness has also been proposed (Japanese Patent Laid-Open No. 10-64912).
[0005]
In such a pattern forming method using the metal film peeling and removing adhesive sheet, the metal film on the insulating portion other than the portion where the metal film is to be formed is peeled and removed without leaving the adhesive sheet, that is, the metal film on the insulating portion. The certainty of peeling is required. However, if the adhesion between the insulating film and the metal film is high, it is difficult to peel and remove the metal film on the insulating portion in a completely patterned form.
[0006]
[Problems to be solved by the invention]
The present invention relates to a convex portion of a substrate having a concavo-convex shape on the surface thereof (for example, a semiconductor substrate having a convex insulating portion and a concave electrode portion formed on the surface thereof used for forming a metal film pattern) in semiconductor device manufacturing. It is an object of the present invention to provide a substrate surface treatment method capable of selectively modifying only the substrate.
[0007]
It is another object of the present invention to provide a method for forming a metal film pattern using the substrate surface treatment method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above object can be achieved by the following method and have completed the present invention.
[0009]
That is, the present invention provides a flat plate-like shape made of a surface member containing a fluorine-containing resin or a fluorine-adhesive substance only on the convex insulating portion on the substrate (A) on which the convex insulating portion and the concave electrode portion are formed. By performing heat treatment in a state where the surface portion of the sheet-like article (B) is in contact, a part of the surface member containing the fluorine-containing resin or the fluorine-adhesive substance is formed on the convex insulating portion on the substrate (A). After transferring and applying a surface treatment that weakens the adhesion of the convex insulating part to the metal film formed on the surface of the convex insulating part and the concave electrode part, a metal is formed on the convex insulating film and the concave electrode part. A step of forming a film and a step of peeling off the adhesive sheet after applying an adhesive sheet to the entire surface of the outermost layer portion of the formed metal film, thereby selectively selecting the metal film on the surface of the convex insulating portion. A semiconductor characterized by peeling and removing A method of forming a metal film pattern only in the recess electrode portion on the substrate, relates.
[0010]
According to the above method, by appropriately selecting the surface member of the article (B), a desired treatment can be performed only on the surface of the convex portion, and the properties of the convex surface and the concave surface are differentiated. Can do.
[0012]
According to the surface member of the object product (B) in the method of transferring the convex portion insulating portion on the substrate (A), it is possible to perform property change of the convex portion insulating portion easily.
[0013]
Examples of the surface member of the article (B) to be transferred to the convex insulating portion on the substrate (A) include those containing a fluorine-containing resin.
[0014]
By transferring the fluorine-containing resin to the convex insulating portion on the substrate (A), the free energy of the convex insulating portion can be reduced, and the adhesion of the convex insulating portion on the substrate (A). Can be weakened effectively.
[0015]
Moreover, as a surface member of the article (B) to be transferred to the convex insulating portion on the substrate (A), a material containing a fluorine-adhesive substance can be mentioned.
[0016]
The fluorine adhesive substance can be easily transferred to the convex insulating portion on the substrate (A), can reduce the free energy of the surface portion, and has an effect on the adhesion of the convex insulating portion on the substrate (A). Can be weakened.
[0019]
Only on the surface of the convex portion insulating portion on a semiconductor substrate, by performing the pre-Symbol transfer process, can be weakened and the convex portion insulating portion, the adhesion between the metal film subsequently formed effectively, This improves the peelability of the metal film. On the other hand, since the surface treatment is not performed on the recessed electrode part, the adhesion with the metal film does not deteriorate. In this way, by selectively processing only the convex insulating portion on the semiconductor substrate, a favorable result is obtained in the formation of the metal film pattern using the adhesive sheet.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the following, a method for forming a metal film pattern on a substrate in the semiconductor manufacturing process will be described in detail by taking as an example the case of using a semiconductor substrate as the substrate (A). The substrate surface treatment method of the present invention is not limited to these examples.
[0021]
FIG. 1 is a cross-sectional view of a semiconductor substrate 1 in which a convex insulating part 3 and a concave electrode part 4 are formed. A metal electrode pattern is formed on the electrode part 4.
[0022]
An example of the semiconductor substrate 1 is a silicon substrate. In addition, a semiconductor element region 2 such as a diode or a transistor can be formed on the semiconductor substrate 1 of the present invention. The electrode part 4 is patterned in order to obtain conduction with the semiconductor element 2. The method for forming the insulating portion 3 and the electrode portion 4 on the semiconductor substrate 1 is not particularly limited, and can be formed by various methods. For example, the insulating part 3 and the electrode part 4 are formed by forming the insulating part 3 on the semiconductor substrate 1 by the CVD method or the like, and then patterning the insulating part 3 by using the photolithography method, and the electrode part 4 is provided at a necessary portion thereof. It is formed by the method of forming. As the electrode part 4, an aluminum electrode or the like is used, and as the insulating part 3, silica, BPSG (Bolon Phosphorus Silicate Glass), PSG (Phosphorus Silicate Glass), silicon nitride, polyimide, or the like is used.
[0023]
Next, as shown in FIG. 2, only the surface of the insulating portion 3 on the semiconductor substrate 1 is brought into contact with the surface treatment sheet 5 (a flat plate or sheet-shaped article (B)) and heated. Heating is performed by the heater 6. In FIG. 2, the heater 6 is provided only at the lower part of the semiconductor substrate 1, but the heater 6 can also be provided at the upper part of the surface treatment sheet 5. As the heater 6, a hot plate, bonding with a heat roll, or the like is used. As a result, a part (a small amount) of the surface treatment sheet 5 is transferred to the surface layer portion on the insulating portion 3, and the properties of the insulating portion 3 change.
[0024]
As the surface treatment sheet 5, for example, a fluorine-containing resin is preferably used. Examples of such a sheet include a sheet made of a general-purpose fluorine resin such as polytetrafluoroethylene, poly (chlorotrifluoroethylene), and polyvinylidene fluoride, but other sheets may be used. Moreover, as the sheet 5 for surface treatment, an adhesive sheet 5 ′ in which a fluorine-based adhesive layer is provided on a sheet base material can be used. The sheet base material may be either a sheet shape or a tape shape. Examples of the sheet substrate include plastic films used for general adhesive sheets such as polyethylene, polypropylene, polyethylene terephthalate, and acetylcellulose. For the adhesive layer, for example, various adhesive materials such as an acrylic polymer containing fluorine atoms are used. When the adhesive sheet 5 ′ is used as the surface treatment sheet 5, the adhesive layer of the adhesive sheet 5 ′ is brought into contact with the contact surface side with the substrate.
[0025]
In the metal electrode pattern forming method of the present invention, the semiconductor substrate 1 is subjected to the treatment, and the surface treatment sheet 5 is separated from the semiconductor substrate 1. Next, a metal film is provided on the surfaces of the insulating portion 3 and the electrode portion 4 formed on the semiconductor substrate 1. The said metal film is a deposit part of the adhesive sheet A for metal film peeling removal. The metal film 9 serving as an adherent portion is a film having good solder wettability, and is specifically formed using gold, copper, silver, platinum, iron, tin, nickel, nickel-vanadium alloy, or the like. . Of these, gold (Au) is preferably used.
[0026]
As shown in FIG. 3, the metal film is preferably a three-layer structure in which metal films 7, 8, and 9 are sequentially formed. The first-layer metal film 7 is a film for forming a good bond with the electrode portion 4, and specifically, titanium, vanadium, chromium, cobalt, zirconium, aluminum, tantalum, tungsten, platinum, and these metals. Thin films such as nitrides and alloys containing these metals as main components are used. Among these, a titanium thin film is preferable. The second-layer metal film 8 is a film for adjusting the stress applied to the interface between the metal film 7 and the insulating portion 3. Specifically, nickel, copper, palladium, and an alloy containing these metals as main components are used. A thin film such as is used. Among these, a nickel thin film is preferable. Due to the internal stress of the metal film 8 of the second layer, the adhesiveness at the interface between the metal film 7 and the insulating portion 3 is lowered, and the metal sheet is more easily peeled and removed by the adhesive sheet A. And as a 3rd layer, the metal film 9 with favorable solder wettability used as the adhesion part of the adhesive sheet A is provided.
[0027]
Next, as shown in FIG. 4, an adhesive layer of an adhesive sheet A is attached to the metal film 9 provided on the surfaces of the insulating part 3 and the electrode part 4 formed on the semiconductor substrate 1, and then the adhesive sheet A Tear off. At the time of peeling and removing, the surface of the insulating portion 3 has good peelability at the interface with the metal film 7 by the surface treatment. On the other hand, the interface between the electrode part 4 and the metal film 7 has good adhesiveness, and therefore is not peeled off by the adhesive sheet A. By this operation, the metal films 7, 8, 9 on the surface of the insulating portion 3 are selectively peeled and removed, and a desired metal electrode pattern is formed on the electrode portion 4 on the semiconductor substrate 1 as shown in FIG.
[0028]
By such a metal electrode pattern forming method of the present invention, a metal electrode pattern having good wettability with bumps is reliably formed on the electrode portion 4 on the semiconductor substrate 1 as shown in FIG. Bumps can be easily formed on the metal electrode thus patterned, and the manufacturing process of the semiconductor device can be performed easily and at low cost.
[0029]
The adhesive sheet A is obtained by forming an adhesive layer b on a sheet base material a. The adhesive sheet A may be either a sheet shape or a tape shape.
[0030]
Examples of the sheet substrate a include plastic films used for general adhesive sheets such as polyethylene, polypropylene, polyethylene terephthalate, and acetylcellulose. As the adhesive forming the adhesive layer, a base polymer applied to a general pressure-sensitive adhesive is used. As the base polymer, any of various known polymers such as acrylic polymers and rubber materials can be used, but it is particularly preferable to use acrylic polymers. A cross-linking agent and various additives can be appropriately blended in the adhesive layer.
[0031]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0032]
Reference example 1
Acrylic polymer A consisting of a copolymer of 2-ethylhexyl acrylate / methyl acrylate / acrylic acid = 30/70/10 (weight ratio) (weight average molecular weight 2.80 million, weight average molecular weight (Mw) ÷ number average molecular weight (Mn ) = 22) 27 wt% toluene solution 100 g, dipentaerythritol hexaacrylate (manufactured by Nippon Gosei Kagaku; trade name: UV3000B) and polyisocyanate compound (manufactured by Nippon Polyurethane Industry; trade name: Coronate L) 0.8 g The applied adhesive composition (toluene solution) was applied onto a film substrate made of a polyester film having a thickness of 50 μm, and dried in a drying oven at 130 ° C. for 3 minutes each to form an adhesive layer having a thickness of 35 μm. An adhesive sheet was formed.
[0033]
Example 1
A semiconductor substrate 1 having a convex insulating portion 3 and a concave electrode portion 4 as shown in FIG. The convex insulating part 3 is a polyimide film, and the concave electrode part 4 is an aluminum thin film. Next, as shown in FIG. 2, a PTFE (polytetrafluoroethylene) plate having a thickness of 1 mm is brought into contact only with the convex insulating portion 3, and sandwiched between a lower part of the semiconductor substrate 1 and an upper part of the PTFE with a hot plate, Pressure bonding was performed for 30 seconds at 150 ° C. and 10 kg / cm 2 . Thereafter, the PTFE plate was removed.
[0034]
Subsequently, as shown in FIG. 3, after the metal films 7, 8, and 9 are provided on the semiconductor substrate 1, the adhesive sheet prepared in Reference Example 1 is pasted on the metal film while following the roll at 50 ° C. Wearing. Thereafter, the mixture was kept at this temperature for 1 minute and cooled to room temperature. When the adhesive sheet was peeled off, only the metal films 7, 8 and 9 on the insulating film 3 were peeled off together with the adhesive sheet, and a metal electrode pattern for bump connection was formed on the electrode portion 4.
[0035]
Comparative Example 1
In Example 1, the same operation as in Example 1 was performed except that the surface treatment relating to the PTFE plate was not performed. The metal film on the insulating part 3 was peeled and removed only partially, and a metal electrode pattern was not obtained.
[0036]
Reference example 2
Polymer A consisting of a copolymer of 2-ethylhexyl acrylate / pentafluoroethyl acrylate / acrylic acid = 50/47/3 (weight ratio) (weight average molecular weight 300,000, weight average molecular weight (Mw) / number average molecular weight ( Mn) = 8) and Nippon Polyurethane Industry Co., Ltd .; Trade name: Coronate L) An adhesive composition (ethyl acetate solution) blended with 3.2 g was applied onto a film substrate made of a polyester film having a thickness of 100 μm, Each of them was dried at 130 ° C. for 3 minutes in a drying oven to form an adhesive layer having a thickness of 5 μm to produce an adhesive sheet for surface treatment.
[0037]
Example 2
A semiconductor substrate 1 having a convex insulating portion 3 and a concave electrode portion 4 as shown in FIG. The convex insulating part 3 is a polyimide film, and the concave electrode part 4 is an aluminum thin film. Next, as shown in FIG. 2, the pressure-sensitive adhesive layer of the surface treatment adhesive sheet was brought into contact only with the convex insulating portion 3, and was stuck along a roll at 140 ° C.
[0038]
Subsequently, as shown in FIG. 3, after providing the metal films 7, 8 and 9 on the semiconductor substrate 1, the adhesive sheet prepared in Reference Example 1 was placed on the metal film along the roll at 50 ° C. Pasted. Thereafter, the mixture was kept at this temperature for 1 minute and cooled to room temperature. When the adhesive sheet was peeled off, only the metal films 7, 8 and 9 on the insulating film 3 were peeled off together with the adhesive sheet, and a metal electrode pattern for bump connection was formed on the electrode portion 4.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor substrate having a convex insulating portion and a concave electrode portion.
FIG. 2 is a cross-sectional view of a method of performing a surface treatment only on a convex insulating portion. FIG. 3 is a cross-sectional view in which a metal film is provided on the surfaces of the convex insulating portion and the concave electrode portion.
4 is a step of attaching a metal film peeling and removing adhesive sheet to the metal film of FIG. 3;
FIG. 5 is a metal electrode pattern formed in a recessed electrode portion on a semiconductor substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 3 Insulation part 4 Electrode part 5 Surface treatment sheet 7, 8, 9 Metal film A Adhesive sheet

Claims (1)

凸部絶縁部と凹部電極部が表面に形成された基板(A)上の凸部絶縁部にのみ、フッ素含有樹脂またはフッ素粘着性物質を含む表面部材からなる平板状またはシート状の物品(B)の表面部を接触させた状態で加熱処理を行なうことにより、フッ素含有樹脂またはフッ素粘着性物質を含む表面部材の一部を基板(A)上の凸部絶縁部に転写させて、前記凸部絶縁部及び凹部電極部の表面に形成される金属膜に対する前記凸部絶縁部の密着性を弱める表面処理を施した後、凸部絶縁膜及び凹部電極部上に金属膜を形成する工程と、形成した金属膜の最表層部の全面に接着シートを貼り付けた後、当該接着シートを引き剥がす工程を施すことにより、凸部絶縁部表面の金属膜を選択的に剥離除去することを特徴とする、半導体基板上の凹部電極部にのみ金属膜パターンを形成する方法。 A flat or sheet-like article (B) made of a surface member containing a fluorine-containing resin or a fluorine-adhesive substance only on the convex insulating part on the substrate (A) on which the convex insulating part and the concave electrode part are formed. ) In a state where the surface portion is in contact with each other, a part of the surface member containing the fluorine-containing resin or the fluorine adhesive substance is transferred to the convex insulating portion on the substrate (A), and the convex portion Forming a metal film on the convex insulating film and the concave electrode part after applying a surface treatment to weaken the adhesion of the convex insulating part to the metal film formed on the surface of the partial insulating part and the concave electrode part; The adhesive film is attached to the entire surface of the outermost layer portion of the formed metal film, and then the adhesive film is peeled off to selectively remove the metal film on the surface of the convex insulating portion. The recessed electrode part on the semiconductor substrate A method of forming a metal film pattern only.
JP2000206442A 2000-07-07 2000-07-07 Substrate surface treatment method Expired - Fee Related JP4724273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206442A JP4724273B2 (en) 2000-07-07 2000-07-07 Substrate surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206442A JP4724273B2 (en) 2000-07-07 2000-07-07 Substrate surface treatment method

Publications (2)

Publication Number Publication Date
JP2002026049A JP2002026049A (en) 2002-01-25
JP4724273B2 true JP4724273B2 (en) 2011-07-13

Family

ID=18703369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206442A Expired - Fee Related JP4724273B2 (en) 2000-07-07 2000-07-07 Substrate surface treatment method

Country Status (1)

Country Link
JP (1) JP4724273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410833B2 (en) 2004-03-31 2008-08-12 International Business Machines Corporation Interconnections for flip-chip using lead-free solders and having reaction barrier layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114318A (en) * 1998-10-08 2000-04-21 Ricoh Co Ltd Semiconductor chip, its manufacture, sheet for applying flux, and method for mounting semiconductor chip

Also Published As

Publication number Publication date
JP2002026049A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
EP0786802B1 (en) Wafer dicing/bonding sheet and process for producing semiconductor device
JP5027460B2 (en) Wafer bonding method, thinning method, and peeling method
JP3280876B2 (en) Wafer dicing / bonding sheet and method of manufacturing semiconductor device
TWI230567B (en) Printed circuit board and method of producing the same
KR100767890B1 (en) Heat-peelable pressure-sensitive adhesive sheet for electronic part, method of processing electronic part, and electronic part
JPWO2004065510A1 (en) Adhesive sheet, semiconductor wafer surface protection method and workpiece processing method
JP2016106403A (en) Multilayer bonding layer for thin wafer handling
US9865490B2 (en) Cyclic olefin polymer compositions and polysiloxane release layers for use in temporary wafer bonding processes
TW200816427A (en) Semiconductor device and method for manufacturing the same
JP4724273B2 (en) Substrate surface treatment method
US11056339B1 (en) Thin film electrode separation method using thermal expansion coefficient
CN110444504B (en) Semiconductor device assembly and method of manufacturing the same
JP4578698B2 (en) Metal electrode pattern forming method
JP5289007B2 (en) Masking pressure-sensitive adhesive sheet and tape, and sputtering target manufacturing method
JP3552639B2 (en) Metal electrode pattern forming method and adhesive sheet for peeling and removing metal film
JP3741918B2 (en) Method for forming metal thin film on ceramic substrate and ceramic substrate
JP2019534578A (en) Polyimide film for reflow process of semiconductor package and manufacturing method thereof
JP4498498B2 (en) Method for producing double-sided metal-clad laminate
JPH05206205A (en) Joining method of flip chip
JP2001284350A (en) Pattern-forming method and adhesive sheet for peeling off thin film
JP4800529B2 (en) Pattern formation method
JP5009770B2 (en) Manufacturing method of semiconductor substrate
JPH05185800A (en) Transfer sheet
JPH05190556A (en) Manufacture of semiconductor component
JP2004090488A (en) Metal layer transfer sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees