JP4720100B2 - LED driving device, backlight light source device, and color liquid crystal display device - Google Patents

LED driving device, backlight light source device, and color liquid crystal display device Download PDF

Info

Publication number
JP4720100B2
JP4720100B2 JP2004124793A JP2004124793A JP4720100B2 JP 4720100 B2 JP4720100 B2 JP 4720100B2 JP 2004124793 A JP2004124793 A JP 2004124793A JP 2004124793 A JP2004124793 A JP 2004124793A JP 4720100 B2 JP4720100 B2 JP 4720100B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
driving
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124793A
Other languages
Japanese (ja)
Other versions
JP2005310997A (en
Inventor
徳昌 古川
弘明 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004124793A priority Critical patent/JP4720100B2/en
Publication of JP2005310997A publication Critical patent/JP2005310997A/en
Application granted granted Critical
Publication of JP4720100B2 publication Critical patent/JP4720100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

本発明は、直列接続された複数の発光ダイオード(LED:light emitting diode)をパルス幅変調定電流駆動回路により定電流駆動するようにしたLED駆動装置、バックライト光源装置及びカラー液晶表示装置に関する。   The present invention relates to an LED driving device, a backlight light source device, and a color liquid crystal display device in which a plurality of light emitting diodes (LEDs) connected in series are driven with constant current by a pulse width modulation constant current driving circuit.

近年、液晶TVやプラズマディスプレイ(PDP:Plasma Display Panel)に代表されるようにディスプレイの薄型化が流れとしてあり、中でもモバイル用ディスプレイの多くは液晶系であり、忠実な色の再現性が望まれている。また、液晶パネルのバックライトは蛍光管を使ったCCFL(Cold Cathode Fluorescent Lamp)タイプが主流であるが、環境的に水銀レスが要求されてきており、CCFLに変わる光源として発光ダイオード等が有望視されている。   In recent years, there has been a trend toward thinner displays as represented by LCD TVs and plasma displays (PDPs), and many of the mobile displays are liquid crystal systems, and faithful color reproducibility is desired. ing. In addition, CCFL (Cold Cathode Fluorescent Lamp) type, which uses fluorescent tubes, is the mainstream backlight for liquid crystal panels, but environmentally mercury-free has been required, and light-emitting diodes etc. are promising as light sources to replace CCFLs. Has been.

一般的に、発光ダイオードを表示画素に用いたディスプレイでは、発光ダイオードをマトリクスの駆動をするために、各画素に対してX−Yのアドレッシング駆動回路を必要とし、これにより、光らせたい画素の位置にある発光ダイオードを選択(アドレッシング)し、点灯させる時間を変調することにより輝度調整を実施し(パルス幅変調(PWM:Pulse Width Modulation)駆動)、所定の階調性のある表示画面を得ている。このため、駆動用の回路が複雑になりコストが高くなっている(例えば、特許文献1参照)。   Generally, in a display using light emitting diodes as display pixels, in order to drive the light emitting diodes in a matrix, an XY addressing drive circuit is required for each pixel. Select (addressing) the light-emitting diodes in the, and adjust the brightness by modulating the lighting time (pulse width modulation (PWM) drive) to obtain a display screen with a predetermined gradation Yes. This complicates the driving circuit and increases the cost (for example, see Patent Document 1).

また、発光ダイオードは、個々の素子に輝度のばらつきを持っているが、個々の素子のばらつきを補正しようとすると、必然的に、1つ1つの素子を独立した駆動回路で駆動せねばならず、駆動の形態が、前述した発光ダイオードを表示画素に用いたディスプレイに相当する形に酷似してくる。   In addition, light emitting diodes have variations in luminance among individual elements. However, in order to correct variations in individual elements, each element must be driven by an independent drive circuit. The driving mode is very similar to the shape corresponding to a display using the above-described light emitting diode as a display pixel.

すなわち、アドレッシングによる駆動回路の複雑さを呈する欠点があった。   That is, there is a drawback that the complexity of the drive circuit due to addressing is exhibited.

一方で、発光ダイオードを光源として用いる場合、赤(R)、緑(G)、青(B)の発光効率が異なるため、個々の色に流す電流も傾向的に独立していなければならない。さらに、各々の色で使用する半導体が異なるため、各色に用いる素子の製造バラツキによる効率の偏差範囲などにも相違が見られ、これらを克服する必要がある。   On the other hand, when a light emitting diode is used as a light source, red (R), green (G), and blue (B) have different luminous efficiencies, and therefore, the currents flowing through the individual colors must also tend to be independent. Furthermore, since the semiconductors used for the respective colors are different, there are differences in efficiency deviation ranges due to manufacturing variations of elements used for the respective colors, and these must be overcome.

特開2001−272938号公報JP 2001-272938

ところで、発光ダイオード個々の素子のばらつきを個別に調整するためには、マトリクス型の駆動が必要とされていた。また、各発光ダイオードの電力が大きい、照明用途のLED駆動においては、大電力駆動用のLSI等は未だ作成されておらず、現実的にはコスト点で不利であるため、直列接続形式が用いられると考えられるが、直列接続形式では、個々の発光ダイオードの電流バラツキを効率よく的確に測定することが困難である。   By the way, in order to individually adjust the variation of each element of the light emitting diode, a matrix type drive is required. Also, in LED driving for lighting applications where the power of each light-emitting diode is large, LSIs for high-power driving have not been created yet, and it is actually disadvantageous in terms of cost, so the series connection type is used. However, in the serial connection type, it is difficult to efficiently and accurately measure the current variation of individual light emitting diodes.

そこで、本発明の目的は、上述の如き従来の実情に鑑み、直列接続された複数の発光ダイオードを低電流駆動するにあたり、簡単な回路で発光ダイオード個々の素子のばらつきを個別に測定することができるようにしたLED駆動装置、バックライト光源装置及びカラー液晶表示装置を提供することにある。   Therefore, in view of the conventional situation as described above, the object of the present invention is to measure the variation of individual elements of a light emitting diode with a simple circuit when driving a plurality of light emitting diodes connected in series at a low current. It is an object of the present invention to provide an LED driving device, a backlight light source device, and a color liquid crystal display device which can be used.

本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.

本発明は、直列接続された複数の発光ダイオード(LED:light emitting diode)をパルス幅変調定電流駆動回路により定電流駆動するLED駆動装置であって、直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、上記各発光ダイオードによって出力される光を検出する受光素子と、上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段とを備え、上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動するパルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたことを特徴とする。 The present invention relates to an LED driving device that drives a plurality of light emitting diodes (LEDs) connected in series at a constant current by a pulse width modulation constant current driving circuit , and each of the plurality of light emitting diodes connected in series. A plurality of switching elements that are connected in parallel and that can individually bypass the drive currents flowing through the light emitting diodes, a light receiving element that detects light output from the light emitting diodes, and switching control of the switching elements. Switching element driving means for driving, and an arbitrary light emitting diode as a light emitting diode to be measured for supplying a driving current for measurement, and providing a driving setting control signal to the switching element driving means, thereby providing the switching element each switching element driven by a driving means is turned on, The driving current flowing through the light-emitting diodes other than-option has been any of the measured light-emitting diode, to bypass through each switching element driven by the switching element driving unit, the driving current is supplied for measurement only to the measured light-emitting diode In this way, the light emitting diode to be measured is turned on, the light of the light emitting diode that has been turned on is detected by the light receiving element, and the variation in the light emission amount of each light emitting diode is measured based on the detection output by the light receiving element. Control means for performing , in the state where the switching element of the pulse width modulation constant current drive circuit for constant current driving the plurality of light emitting diodes connected in series is always on, to the switching element drive means By giving a drive setting control signal to the light emitting diode other than the light emitting diode to be measured, Bypassing the drive current flowing through the diode via the switching element, the drive current flows only through the light emitting diode under measurement, and the switching element bypassing the drive current flowing through the light emitting diode under measurement is driven by a pulse width modulation signal. Thus, a shunt current corresponding to the On-OFF period ratio is caused to flow through the switching element .

本発明は、表示パネルを背面側から照明するバックライト光源装置であって、直列接続された複数の発光ダイオードと、直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、上記各発光ダイオードによって出力される光を検出する受光素子と、上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段とを備え、上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動するパルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたことを特徴とする。 The present invention is a backlight light source device that illuminates a display panel from the back side, and is connected in parallel to each of a plurality of light emitting diodes connected in series and a plurality of light emitting diodes connected in series. A plurality of switching elements that can individually bypass the drive current flowing through the light-emitting element, a light-receiving element that detects light output from each of the light-emitting diodes, and a switching-element driving unit that drives the switching elements by switching control Each switching element driven by the switching element driving means by selecting an arbitrary light emitting diode as a light emitting diode to be measured for supplying a driving current for measurement and giving a driving setting control signal to the switching element driving means the turn on, any selected measured emission da The driving current flowing through the light-emitting diodes other than diode bypasses through each switching element driven by the switching element driving means, by supplying a driving current for measurement only to the measured light-emitting diode, the measured light-emitting diode is lit, the light emitting diode is lit by the detection by the light receiving element, on the basis of the detection output of the light receiving element, and a control means for controlling to measure the variation in light emission amount of each light-emitting diode, said The control means gives a drive setting control signal to the switching element driving means in a state where the switching elements of the pulse width modulation constant current driving circuit for constant current driving the plurality of light emitting diodes connected in series are always turned on. Drive current that flows in light emitting diodes other than the light emitting diode to be measured. By-passing each via a switching element, a driving current is allowed to flow only to the light emitting diode to be measured, and a switching element that bypasses the driving current flowing to the light emitting diode to be measured is driven by a pulse width modulation signal. A shunt current according to a period ratio is made to flow through the switching element .

本発明は、カラーフィルタを備えた透過型のカラー液晶表示パネルと、このカラー液晶表示パネルを背面側から照明するバックライト光源装置とからなるカラー液晶表示装置であって、上記バックライト光源装置は、直列接続された複数の発光ダイオードと、直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、上記各発光ダイオードによって出力される光を検出する受光素子と、上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段とを備え、上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動するパルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたことを特徴とする。 The present invention is a color liquid crystal display device comprising a transmissive color liquid crystal display panel provided with a color filter and a backlight light source device for illuminating the color liquid crystal display panel from the back side. A plurality of light-emitting diodes connected in series, a plurality of switching elements connected in parallel to each of the plurality of light-emitting diodes connected in series, and individually enabling the drive current flowing through each of the light-emitting diodes to be bypassed; A light-receiving element that detects light output from the light-emitting diode, a switching element driving unit that is driven by switching control of each of the switching elements, and an arbitrary light-emitting diode as a light-emitting diode to be measured that supplies a measurement drive current and, given the drive setting control signal to the switching element driving means By Rukoto, turn on the switching elements to be driven by the switching element driving unit, the driving current flowing through the light-emitting diodes other than any of the measured light-emitting diodes selected, each is driven by the switching device drive unit By bypassing through the switching element and passing a measurement drive current only to the light emitting diode to be measured, the light emitting diode to be measured is turned on, and the light of the light emitting diode that has been turned on is detected by the light receiving element, and the light receiving element Control means for performing control for measuring variations in the amount of light emission of each light emitting diode based on the detection output of the light emitting diode, and the control means performs pulse width modulation for driving the plurality of light emitting diodes connected in series at a constant current. With the switching element of the constant current drive circuit always on, By supplying a drive setting control signal to the switching element driving means, the drive current flowing in the light emitting diodes other than the light emitting diode to be measured is bypassed through the switching elements, respectively, and the driving current is allowed to flow only to the light emitting diode to be measured. A switching element that bypasses the drive current flowing through the light emitting diode to be measured is driven by a pulse width modulation signal, so that a shunt current corresponding to the On-OFF period ratio flows through the switching element. And

本発明では、直列接続された複数の発光ダイオード(LED:light emitting diode)をパルス幅変調定電流駆動回路により定電流駆動するにあたり、上記直列接続された複数の発光ダイオードに流れる駆動電流を個別にスイッチング素子を介してバイパス可能としたことにより、発光ダイオードの個々の輝度特性のばらつきを検出することができる。   In the present invention, when a plurality of light emitting diodes (LEDs) connected in series are driven with constant current by a pulse width modulation constant current drive circuit, the drive currents flowing through the plurality of light emitting diodes connected in series are individually By enabling bypassing via the switching element, it is possible to detect variations in individual luminance characteristics of the light emitting diodes.

また、本発明では、上記直列接続された複数の発光ダイオードをパルス幅変調定電流駆動回路により定電流駆動するための主定電流回路と測定用基準定電流回路を上記直列接続された複数の発光ダイオードに切換手段を介して選択的に接続可能としたことにより、測定用基準定電流回路から測定用基準定電流を流して発光ダイオードの個々の輝度特性を検出することができる。   In the present invention, the main constant current circuit for driving the plurality of light emitting diodes connected in series by the pulse width modulation constant current driving circuit and the reference constant current circuit for measurement are the plurality of light emitting elements connected in series. Since the diode can be selectively connected via the switching means, it is possible to detect the individual luminance characteristics of the light emitting diode by supplying the measurement reference constant current from the measurement reference constant current circuit.

さらに、本発明では、上記制御回路により測定用の駆動電流を流す被測定発光ダイオードを順次選択し、上記複数の発光ダイオードが発光した光を受光して光量を検出する光センサによる検出出力に基づいて、測定回路により上記複数の発光ダイオードの発光量のばらつきを測定することができる。   Further, in the present invention, based on a detection output from an optical sensor that sequentially selects light emitting diodes to be measured that allow a driving current for measurement to flow through the control circuit, and receives light emitted from the plurality of light emitting diodes to detect the amount of light. Thus, the variation in the light emission amount of the plurality of light emitting diodes can be measured by the measurement circuit.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Needless to say, the present invention is not limited to the following examples, and can be arbitrarily changed without departing from the gist of the present invention.

本発明は、例えば図1に示すような構成のバックライト方式のカラー液晶表示装置100に適用される。   The present invention is applied to a backlight type color liquid crystal display device 100 having a configuration as shown in FIG.

このカラー液晶表示装置100は、透過型のカラー液晶表示パネル10と、このカラー液晶表示パネル10の背面側に設けられたバックライト光源装置20からなる。   The color liquid crystal display device 100 includes a transmissive color liquid crystal display panel 10 and a backlight light source device 20 provided on the back side of the color liquid crystal display panel 10.

透過型のカラー液晶表示パネル10は、ガラス等の構成された2枚の透明な基板(TFT基板11、対向電極基板12)を互いに対向配置させ、その間隙に例えばツイステッドネマチック(TN)液晶を封入した液晶層13を設けた構成となっている。TFT基板11にはマトリクス状に配置された信号線14と走査線15及びこれらの交点に配置されたスイッチング素子としての薄膜トランジスタ16と画素電極17が形成されている。薄膜トランジスタ16は走査線15により順次選択されると共に、信号線14から供給される映像信号を対応する画素電極17に書き込む。一方、対向電極基板12の内表面には対向電極18及びカラーフィルタ19が形成されている。   In the transmissive color liquid crystal display panel 10, two transparent substrates (TFT substrate 11 and counter electrode substrate 12) made of glass or the like are arranged opposite to each other, and, for example, twisted nematic (TN) liquid crystal is enclosed in the gap. The liquid crystal layer 13 is provided. On the TFT substrate 11, signal lines 14 and scanning lines 15 arranged in a matrix and thin film transistors 16 and pixel electrodes 17 as switching elements arranged at the intersections thereof are formed. The thin film transistor 16 is sequentially selected by the scanning line 15 and writes the video signal supplied from the signal line 14 to the corresponding pixel electrode 17. On the other hand, a counter electrode 18 and a color filter 19 are formed on the inner surface of the counter electrode substrate 12.

このカラー液晶表示装置100では、この様な構成の透過型のカラー液晶表示パネル10を2枚の偏光板31,32で挟み、バックライト光源装置20により背面側から白色光を照射した状態で、アクティブマトリクス方式で駆動することによって、所望のフルカラー 映像表示が得られる。   In this color liquid crystal display device 100, the transmissive color liquid crystal display panel 10 having such a configuration is sandwiched between two polarizing plates 31 and 32, and white light is irradiated from the back side by the backlight light source device 20. A desired full-color video display can be obtained by driving in an active matrix system.

上記バックライト光源装置20は、光源21と波長選択フィルタ22からなり、上記光源21が出射する光で上記波長選択フィルタ22を介して上記カラー液晶表示パネル10を背面側から照明する。   The backlight light source device 20 includes a light source 21 and a wavelength selection filter 22, and illuminates the color liquid crystal display panel 10 from the back side through the wavelength selection filter 22 with light emitted from the light source 21.

このカラー液晶表示装置100は、例えば図2に電気的なブロック構成を示す駆動回路200により駆動される。   The color liquid crystal display device 100 is driven by, for example, a drive circuit 200 having an electrical block configuration shown in FIG.

この駆動回路200は、カラー液晶表示パネル10やバックライト光源装置20の駆動電源を供給する電源部110、カラー液晶表示パネル10を駆動するXドライバ回路120及びYドライバ回路130、外部から映像信号が入力端子140を介して供給されるRGBプロセス処理部150、このRGBプロセス処理部150に接続された映像メモリ160及び制御部170、バックライト光源装置20の駆動制御するバックライト駆動制御部180等を備えてなる。   The driving circuit 200 includes a power supply unit 110 that supplies driving power to the color liquid crystal display panel 10 and the backlight light source device 20, an X driver circuit 120 and a Y driver circuit 130 that drive the color liquid crystal display panel 10, and external video signals. An RGB process processing unit 150 supplied via an input terminal 140, a video memory 160 and a control unit 170 connected to the RGB process processing unit 150, a backlight drive control unit 180 for controlling the drive of the backlight light source device 20, and the like. Prepare.

この駆動回路200において、入力端子140を介して入力された映像信号は、RGBプロセス処理部150によりクロマ処理等の信号処理がなされ、さらに、コンポジット信号からカラー液晶表示パネル10の駆動に適したRGBセパレート信号に変換されて、制御部170に供給されるとともに、画像メモリ160を介してXドライバ120に供給される。また、制御部170は、上記RGBセパレート信号に応じた所定のタイミングでXドライバ120及びYドライバ回路130を制御して、上記画像メモリ160を介してXドライバ120に供給されるRGBセパレート信号でカラー液晶表示パネル10を駆動することにより、上記RGBセパレート信号に応じた映像を表示する。   In this drive circuit 200, the video signal input through the input terminal 140 is subjected to signal processing such as chroma processing by the RGB process processing unit 150, and further, RGB signals suitable for driving the color liquid crystal display panel 10 from the composite signal. It is converted into a separate signal, supplied to the control unit 170, and also supplied to the X driver 120 via the image memory 160. In addition, the control unit 170 controls the X driver 120 and the Y driver circuit 130 at a predetermined timing according to the RGB separate signal, and performs color processing using the RGB separate signal supplied to the X driver 120 via the image memory 160. By driving the liquid crystal display panel 10, an image corresponding to the RGB separate signal is displayed.

ここで、カラーフィルタ19は各画素電極17に対応した複数のセグメントに分割されている。例えば、図3の(A)に示すように3原色である赤色フィルタCFR、緑色フィルタCFG、青色フィルタCFBの3つのセグメント、図3の(B)に示すように3原色(RGB)にシアン(C)を加えた赤色フィルタCFR、シアン色フィルタCFC、緑色フィルタCFG、青色フィルタCFBの4つのセグメント、あるいは、図3の(C)に示すように3原色(RGB)にシアン(C)とイエロー(Y)を加えた赤色フィルタCFR、シアン色フィルタCFC、青色フィルタCFG、イエロー色フィルタCFY、青色フィルタCFBの5つのセグメントに分割されている。   Here, the color filter 19 is divided into a plurality of segments corresponding to the pixel electrodes 17. For example, as shown in FIG. 3A, three segments of three primary colors, a red filter CFR, a green filter CFG, and a blue filter CFB, and as shown in FIG. 3B, the three primary colors (RGB) are cyan ( Four segments of red filter CFR, cyan filter CFC, green filter CFG, and blue filter CFB with C) added, or cyan (C) and yellow as three primary colors (RGB) as shown in FIG. It is divided into five segments: a red filter CFR to which (Y) is added, a cyan filter CFC, a blue filter CFG, a yellow filter CFY, and a blue filter CFB.

ここで、上記バックライト光源装置20には、透過型のカラー液晶表示パネル10を背面に配設された複数の発光ダイオード(LED:light emitting diode)により照射するエリアライト方式の光源21が採用されている。   Here, the backlight light source device 20 employs an area light type light source 21 that irradiates a transmissive color liquid crystal display panel 10 with a plurality of light emitting diodes (LEDs) disposed on the back surface. ing.

このバックライト光源装置20の光源21における発光ダイオードの配置について説明する。   The arrangement of the light emitting diodes in the light source 21 of the backlight light source device 20 will be described.

図4は、発光ダイオードの配置例として、単位セル4−1,4−2毎に、赤の発光ダイオード1、緑の発光ダイオード2及び青の発光ダイオード3をそれぞれ2個使用し、合計6個の発光ダイオードを一列に配列した様子を示している。   FIG. 4 shows an example of the arrangement of the light emitting diodes, using two red light emitting diodes 1, two green light emitting diodes 2, and blue light emitting diodes 3 for each of the unit cells 4-1 and 4-2. The light emitting diodes are arranged in a line.

この配置例では6個であるが、使用する発光ダイオードの定格、発光効率などにより、混合色をバランスの良い白色光とするために、光出力バランスを整える必要から、各色の個数配分は本例以外のバリエーションがありうる。   In this arrangement example, there are six. However, in order to make the mixed color white light with a good balance according to the rating of the light emitting diode to be used, light emission efficiency, etc., it is necessary to adjust the light output balance. There can be other variations.

図4に示した配置例において、上記単位セル4−1と単位セル4−2は、全く同一の物であり、中央の両端矢印部分で接続されている。また、図5は、上記単位セル4−1及び単位セル4−2が接続された形を電気回路図記号のダイオードマークによって図示したものである。この例の場合、各発光ダイオード、すなわち、赤の発光ダイオード1、緑の発光ダイオード2、青の発光ダイオード3は左から右に電流が流れる方向に極性を合わせて直列接続されている。   In the arrangement example shown in FIG. 4, the unit cell 4-1 and the unit cell 4-2 are exactly the same, and are connected by a double-ended arrow portion at the center. Further, FIG. 5 shows a shape in which the unit cell 4-1 and the unit cell 4-2 are connected by a diode mark of an electric circuit diagram symbol. In this example, each light-emitting diode, that is, red light-emitting diode 1, green light-emitting diode 2, and blue light-emitting diode 3 are connected in series with the polarity in the direction in which current flows from left to right.

ここで、赤の発光ダイオード1、緑の発光ダイオード2及び青の発光ダイオード3をそれぞれ2個使用し、合計6個の発光ダイオードを一列に配列した単位セル4を各色の発光ダイオードの個数でパターン表記すると図6に示すように(2G 2R 2B)となる。すなわち、(2G 2R 2B)は、緑と赤と青2個ずつ合計6個のパターンを基本単位としていることを示す。そして、図7に示すように、上記基本単位の単位セル4を3つ連続に繋げた場合、記号が3*(2G 2R 2B)で、発光ダイオードの個数でパターン表記すると(6G 6R 6B)で示される。   Here, two red light emitting diodes 1, green light emitting diodes 2, and blue light emitting diodes 3 are used, and unit cells 4 in which a total of six light emitting diodes are arranged in a row are patterned by the number of light emitting diodes of each color. When expressed, it becomes (2G 2R 2B) as shown in FIG. That is, (2G 2R 2B) indicates that the basic unit is a total of six patterns of two each of green, red, and blue. As shown in FIG. 7, when three unit cells 4 of the basic unit are connected in succession, the symbol is 3 * (2G 2R 2B), and the pattern is expressed by the number of light emitting diodes (6G 6R 6B). Indicated.

次に、上記バックライト光源装置20の光源21における実際の発光ダイオードの配置例を図7の表記に基づき説明する。   Next, an actual arrangement example of light emitting diodes in the light source 21 of the backlight light source device 20 will be described based on the notation of FIG.

光源21には、図8に示すように、前述した発光ダイオードの基本単位(2G 2R 2B)の3倍を1つの中単位(6G 6R 6B)として、垂直に4行、水平に5列、合計で360個の発光ダイオードが配置されている。   As shown in FIG. 8, the light source 21 includes three times the basic unit (2G 2R 2B) of the above-described light emitting diode as one middle unit (6G 6R 6B), 4 rows vertically, 5 columns horizontally, total 360 light-emitting diodes are arranged.

そして、上記360個の発光ダイオード全てに対して、個々のアドレッシングを施すことは容易でないので、このバックライト光源装置20では、図9に示すような駆動構成としている。   Since it is not easy to perform individual addressing on all the 360 light emitting diodes, the backlight light source device 20 has a driving configuration as shown in FIG.

すなわち、n列のそれぞれに対応するRGBのペアg1〜gnは、各列にRGBの各発光ダイオードそれぞれが独立して直列接続されており、DC−DCコンバータ7により定電流が流される構成となっている。   That is, the RGB pairs g1 to gn corresponding to each of the n columns are configured such that each of the RGB light emitting diodes is independently connected in series to each column, and a constant current is passed by the DC-DC converter 7. ing.

図10を参照して、定電流をLED直列接続基板m1,m2に流すための具体的な構成例の説明をする。   With reference to FIG. 10, a specific configuration example for flowing a constant current through the LED series connection substrates m1 and m2 will be described.

すなわち、複数の発光ダイオードLED1〜LEDnが直列接続されたLED列40は、一端が検出抵抗(Rc)5を介してDC−DCコンバーター7に接続され、また、他端がFET6を介して接地されている。   That is, the LED array 40 in which the plurality of light emitting diodes LED1 to LEDn are connected in series is connected to the DC-DC converter 7 through the detection resistor (Rc) 5 and grounded through the FET 6 at the other end. ing.

上記DC−DCコンバーター7は、出力電圧Vccの設定に対して、検出抵抗5による電圧降下を検出して、直列接続されたLED列に所定の定電流ILEDが流れるようにフィードバックループを構成している。この例では、上記検出抵抗5による降下電圧が上記DC−DCコンバーター7内に設けられたサンプルホールド回路を介して帰還される。   The DC-DC converter 7 detects a voltage drop due to the detection resistor 5 with respect to the setting of the output voltage Vcc, and configures a feedback loop so that a predetermined constant current ILED flows through the LED strings connected in series. Yes. In this example, the voltage drop due to the detection resistor 5 is fed back via a sample and hold circuit provided in the DC-DC converter 7.

なお、この例では、定電流を波高値で制御するために、電流検出のフィードバックループにサンプルホールドを備えているが、これはひとつの例であって、他の方法を用いてもよい。   In this example, in order to control the constant current with the peak value, the current detection feedback loop is provided with a sample hold, but this is one example, and other methods may be used.

また、上記バックライト駆動制御部180に備えられたドライバーIC181からFET6のゲートに加えられるmain PWM(Pulse Width Modulation)信号により、LED列40に流れる電流が所定の期間ON−OFFされることにより、発光ダイオードの発光量を増減せしめる構成となっている。   In addition, a current PWM (Pulse Width Modulation) signal applied to the gate of the FET 6 from the driver IC 181 provided in the backlight drive control unit 180 is turned on and off for a predetermined period by a main PWM (Pulse Width Modulation) signal. The light emission amount of the light emitting diode is increased or decreased.

すなわち、このバックライト光源装置20では、上記バックライト駆動制御部180に備えられたドライバーIC181から供給されるmain PWM信号によりFET6をスイッチング動作させて、複数の発光ダイオードLED1〜LEDnを直列接続してなるLED列40にDC−DCコンバーター7により供給された駆動電流をOn−OFFすることによって、上記発光ダイオードLED1〜LEDnをパルス幅変調定電流駆動するようになっている。   That is, in the backlight light source device 20, the FET 6 is switched by a main PWM signal supplied from the driver IC 181 provided in the backlight drive control unit 180, and a plurality of light emitting diodes LED1 to LEDn are connected in series. The light emitting diodes LED1 to LEDn are driven by pulse width modulation constant current by turning on and off the drive current supplied to the LED array 40 by the DC-DC converter 7.

また、この構成例では、上記LED列40に測定用基準定電流を流すため測定用基準定電流回路であるDC−DCコンバータと、上記DC−DCコンバータ70に接続された検出抵抗(Rref)50と、切換スイッチ60を備え、上記LED列40の一端が上記切換スイッチ60を介して、上記LED列40に駆動電流を流すため主定電流回路である上記DC−DCコンバータ7と、上記LED列40に測定用基準定電流を流すため測定用基準定電流回路であるDC−DCコンバータ70に選択的に接続されるようになっている。   Further, in this configuration example, a DC-DC converter which is a measurement reference constant current circuit for causing a measurement reference constant current to flow through the LED array 40, and a detection resistor (Rref) 50 connected to the DC-DC converter 70. The DC-DC converter 7 which is a main constant current circuit for causing a drive current to flow through the LED string 40 via one end of the LED switch 40, and the LED string. In order to cause the reference constant current for measurement to flow through 40, it is selectively connected to a DC-DC converter 70 which is a reference constant current circuit for measurement.

さらに、上記発光ダイオードLED1〜LEDnには、各々にスイッチング素子SW1〜SWnが並列に接続されており、、上記直列接続された複数の発光ダイオードLED1〜LEDnに流れる駆動電流を個別に上記スイッチング素子SW1〜SWnを介してバイパスすることができるようになっている。   Further, switching elements SW1 to SWn are connected in parallel to the light emitting diodes LED1 to LEDn, respectively, and the driving currents flowing through the plurality of light emitting diodes LED1 to LEDn connected in series are individually switched to the switching elements SW1. It can be bypassed via SWn.

このように、直列接続された複数の発光ダイオードLED1〜LEDnをパルス幅変調定電流駆動回路により定電流駆動するにあたり、上記直列接続された複数の発光ダイオードLED1〜LEDnに流れる駆動電流を個別にスイッチング素子SW1〜SWnを介してバイパス可能としたことにより、発光ダイオードの個々の輝度特性のばらつきを検出することができる。   As described above, when the plurality of light emitting diodes LED1 to LEDn connected in series are driven with constant current by the pulse width modulation constant current driving circuit, the drive currents flowing through the plurality of light emitting diodes LED1 to LEDn connected in series are individually switched. By enabling bypassing via the elements SW1 to SWn, variations in individual luminance characteristics of the light emitting diodes can be detected.

ここで、通常の点灯時における駆動電流供給する主定電流回路である上記DC−DCコンバータ7は、比較的電圧が高い多数個の発光ダイオードLED1〜LEDnが直列接続されたLED列40を駆動する関係で、耐圧を必要とし、構成部品形状が大きい。これに対して、上記スイッチング素子SW1〜SWnを使用して、個々の発光ダイオードLED1〜LEDnに基準電流IrefLEDを流す際には、図11に示すように、発光ダイオードを1つだけ点灯させればよいので、電圧は非常に低くてよい。上記DC−DCコンバータ7を非常に低電圧まで動作可能な構成とするのは非効率なので、切換スイッチ60を介して上記LED列40に測定用基準定電流を流すため測定用基準定電流回路であるDC−DCコンバータ70を接続するようにしている。   Here, the DC-DC converter 7, which is a main constant current circuit for supplying drive current during normal lighting, drives the LED array 40 in which a plurality of light emitting diodes LED1 to LEDn having a relatively high voltage are connected in series. In relation, it requires pressure resistance and has a large component shape. On the other hand, when the reference current IrefLED is supplied to each of the light emitting diodes LED1 to LEDn using the switching elements SW1 to SWn, as shown in FIG. 11, only one light emitting diode is lit. Since it is good, the voltage can be very low. Since it is inefficient to make the DC-DC converter 7 operable to a very low voltage, a measurement reference constant current circuit is used to cause the measurement reference constant current to flow through the LED array 40 via the changeover switch 60. A certain DC-DC converter 70 is connected.

このDC−DCコンバーター70は、出力電圧Vtestの設定に対して、検出抵抗(Rref)50による電圧降下を検出し、所定の定電流(IrefLED)が流れるようにフィードバックループを構成している。   This DC-DC converter 70 detects a voltage drop caused by the detection resistor (Rref) 50 with respect to the setting of the output voltage Vtest, and constitutes a feedback loop so that a predetermined constant current (IrefLED) flows.

また、DC−DCコンバータ70から基準電流IrefLEDを供給する際には、FET6は常時ONとされている。   Further, when the reference current IrefLED is supplied from the DC-DC converter 70, the FET 6 is always ON.

なお、この図10及び図11に示した一群のLED列40は、図9に示したn列のそれぞれに対応するRGBのペアg1〜gnの1列に対している。したがって、同様の回路が、本例では、gn列×3倍(RGB分)必要となる。   The group of LED rows 40 shown in FIGS. 10 and 11 is for one row of RGB pairs g1 to gn corresponding to each of the n rows shown in FIG. Therefore, in this example, a similar circuit is required for gn columns × 3 times (for RGB).

図10及び図11に示した一群のLED列40におけるLED41の個数は、光量バランスの観点で個数は変動するので種々のケースが考えられる。特に、近年、総個数を削減する為に各素子の投入電力を大きくしているため、各素子の輝度特性のばらつきを検出して調整により克服する必要がある。   Since the number of LEDs 41 in the group of LED rows 40 shown in FIGS. 10 and 11 varies from the viewpoint of light quantity balance, various cases can be considered. In particular, in recent years, since the input power of each element has been increased in order to reduce the total number, it is necessary to overcome the brightness characteristic variation of each element by detection and adjustment.

ここで、上記スイッチング素子SW1〜SWnにはトランジスタを用いることができ、上記トランジスタのベースに供給するスイッチング制御信号により、上記直列接続された複数の発光ダイオードLED1〜LEDnに流れる駆動電流を個別に上記トランジスタからなるスイッチング素子SW1〜SWnを介してバイパスする制御を行うことができる。   Here, transistors can be used for the switching elements SW1 to SWn, and the drive currents flowing through the plurality of light emitting diodes LED1 to LEDn connected in series are individually determined by the switching control signal supplied to the base of the transistors. Bypass control can be performed through the switching elements SW1 to SWn made of transistors.

例えば図12に示す構成では、直列接続された5個の発光ダイオード41A〜41Eに個々に並列にスイッチング素子としてトランジスタ82A〜82Eが接続されており、各トランジスタ82A〜82Eのベース・エミッタ間にはクランプ用のダイオード83A〜83Eが接続され、さらに、各トランジスタ82A〜82Eのベースに結合用コンデンサ84A〜84Eが接続されている。   For example, in the configuration shown in FIG. 12, transistors 82A to 82E are connected as switching elements in parallel to five light emitting diodes 41A to 41E connected in series, and between the bases and emitters of the transistors 82A to 82E, respectively. Clamping diodes 83A to 83E are connected, and coupling capacitors 84A to 84E are connected to the bases of the transistors 82A to 82E.

直列接続された5個の発光ダイオード41A〜41Eには、上から下に向けて、各々Vfa〜Vfeまでの、個別の電圧降下を有しており、製造ロットに応じてばらつきを持つ。また、直列接続された5個の発光ダイオード41A〜41EはFET6によってPWM駆動されている。   The five light-emitting diodes 41A to 41E connected in series have individual voltage drops from Vfa to Vfe from the top to the bottom, and vary depending on the production lot. The five light emitting diodes 41A to 41E connected in series are PWM driven by the FET 6.

このような構成の駆動回路において、各トランジスタ82A〜82Eの各ベースには、上記バックライト駆動制御部180に備えられた駆動制御回路182からスイッチング制御信号として結合用コンデンサ84A〜84Eを介してsub_PWM信号a〜eが供給される。上記結合用コンデンサ84A〜84Eに入力されるsub_PWM信号a〜eは、ダイオード83A〜83Eによってトランジスタ82A〜82Eのエミッタ電位がクランプされるため、交流信号として扱うことができる。したがって、直列接続であっても電位を考えずに、トランジスタ82A〜82EのON−OFF駆動ができる。   In the drive circuit having such a configuration, the bases of the transistors 82A to 82E are connected to the sub_PWM via the coupling capacitors 84A to 84E as switching control signals from the drive control circuit 182 provided in the backlight drive control unit 180. Signals a to e are supplied. The sub_PWM signals a to e input to the coupling capacitors 84A to 84E can be handled as AC signals because the emitter potentials of the transistors 82A to 82E are clamped by the diodes 83A to 83E. Therefore, the transistors 82A to 82E can be turned on and off without considering the potential even in series connection.

例えば発光ダイオード41Aに並列接続されたトランジスタ82AがONすると、ダイオード41Aのアノード−カソード間はトランジスタ82Aのオン抵抗にて短絡バイパスされ、発光ダイオード41Aの駆動電流の全てがトランジスタ82Aに流れ、発光ダイオード41Aは不点灯となる。   For example, when the transistor 82A connected in parallel to the light emitting diode 41A is turned ON, the anode-cathode of the diode 41A is short-circuited and bypassed by the ON resistance of the transistor 82A, and all the drive current of the light emitting diode 41A flows to the transistor 82A. 41A is not lit.

ここで、図12に示した構成例における動作の一例を図13を参照して説明する。   Here, an example of the operation in the configuration example shown in FIG. 12 will be described with reference to FIG.

図13において、(a)〜(b)は縦列接続された5つのトランジスタ82A〜82Eのベースに加えられるsub_PWM信号a〜eの波形を示している。又、t1,t2,t3,t4,t5はその時間軸上のタイミングを示している。   In FIG. 13, (a) to (b) show waveforms of sub_PWM signals a to e applied to the bases of five transistors 82A to 82E connected in series. In addition, t1, t2, t3, t4, and t5 indicate timings on the time axis.

今、t1の時点では、sub_PWM信号aのみが低レベルであり、トランジスタ82Aはoffしている。t1時にはトランジスタ82B〜82Eは全てONしており、これにより、発光ダイオード41Aのみが点灯する。   At time t1, only the sub_PWM signal a is at a low level, and the transistor 82A is off. At t1, the transistors 82B to 82E are all turned on, so that only the light emitting diode 41A is lit.

同様にして、t2の時点には発光ダイオード41B,t3の時点には発光ダイオード41C,t4の時点には発光ダイオード41D,t5の時点には発光ダイオード41Eと順次個別に点灯させることができる。ここでは、5個の縦列接続を例としているが、これは、任意の個数n個の場合も同様である。バイパスする時間をOn−OFFの期間比率の操作により加減すれば、分流する電流の精度があがり、測定時間も確保可能である。   Similarly, the light emitting diode 41B can be turned on individually at the time t2, the light emitting diode 41C at the time t3, the light emitting diode 41D at the time t4, and the light emitting diode 41E at the time t5. Here, five tandem connections are taken as an example, but this is the same for an arbitrary number n. If the bypass time is adjusted by the operation of the on-off period ratio, the accuracy of the diverted current is improved, and the measurement time can be secured.

トランジスタ駆動用に使用するsub_PWM信号a〜eは、main_PWM信号と独立して選択することが可能な構成となっているため、自由度が高い。また、sub_PWM信号a〜eの周波数を上げることにより、点灯時間を非常に短くすることができ、素早い点灯が可能である。   The sub_PWM signals a to e used for driving the transistor have a configuration that can be selected independently of the main_PWM signal, and thus have a high degree of freedom. Further, by increasing the frequency of the sub_PWM signals a to e, the lighting time can be shortened very quickly, and quick lighting is possible.

次に、図14を参照して、バックライト光源装置20における発光ダイオードの発光量のばらつきを測定するための構成例について説明する。   Next, with reference to FIG. 14, a configuration example for measuring the variation in the light emission amount of the light emitting diode in the backlight light source device 20 will be described.

このバックライト光源装置20では、上述した一連の説明による動作により、任意個別の発光ダイオードを選択点灯可能である。そこで、上記複数の発光ダイオードが発光した光を受光して光量を検出する光センサを設け、測定用の駆動電流を流す被測定発光ダイオードを順次選択し、上記光センサによる検出出力に基づいて、上記複数の発光ダイオードの発光量のばらつきを測定することができる。   In the backlight light source device 20, any individual light emitting diode can be selectively lit by the operation according to the series of explanations described above. Therefore, an optical sensor that receives light emitted from the plurality of light emitting diodes and detects the amount of light is provided, and sequentially select the light emitting diodes to be measured that pass a driving current for measurement, and based on the detection output by the optical sensor, Variations in the light emission amounts of the plurality of light emitting diodes can be measured.

例えば、図14に示す構成例は、直接接続された複数の発光ダイオードLED1〜LEDnから発光された光を受光する光センサであるフォトダイオード185を備える。   For example, the configuration example shown in FIG. 14 includes a photodiode 185 that is an optical sensor that receives light emitted from a plurality of directly connected light emitting diodes LED1 to LEDn.

フォトダイオード185の検出出力は演算増幅器186Aにより構成された電流電圧変換回路186を介してA/D変換器187に供給されデジタルデータとしてマイクロプロセッサ188に供給されるようになっている。   The detection output of the photodiode 185 is supplied to the A / D converter 187 via the current-voltage conversion circuit 186 constituted by the operational amplifier 186A, and is supplied to the microprocessor 188 as digital data.

上記マイクロプロセッサ188は、上記直列接続された複数の発光ダイオードLED1〜LEDnに接続されたFET6をスイッチグ制御することによってPWM駆動するためのドライバーIC181及び上記直列接続された複数の発光ダイオードLED1〜LEDnにそれぞれ並列接続されたスイッチング素子SW1〜SWnにスイッチグ制御信号を供給する駆動制御回路182に対し、バス189を介して駆動設定制御信号を与え、上記FET6を常時オンにした状態で、任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流す制御を行い、測定用の駆動電流を流す被測定発光ダイオードを順次選択し、上記光センサによる検出出力に基づいて、上記複数の発光ダイオードの発光量のばらつきを測定する。   The microprocessor 188 includes a driver IC 181 for PWM driving by switching the FET 6 connected to the plurality of light emitting diodes LED1 to LEDn connected in series and the plurality of light emitting diodes LED1 to LEDn connected in series. A drive setting control signal is supplied via the bus 189 to the drive control circuit 182 that supplies a switching control signal to the switching elements SW1 to SWn that are connected in parallel, and any measurement target is obtained with the FET 6 always on. Bypass the drive current that flows to the light-emitting diodes other than the light-emitting diodes through the switching elements, and control the flow of the measurement drive current only to the light-emitting diode to be measured. Select the above light sensor Based on the detection output that measures the variation in light emission amount of the plurality of light emitting diodes.

すなわち、上記マイクロプロセッサ188は、任意の発光ダイオードを選択し、その発光ダイオードを非常に短い時間(例えば1μ秒)点灯させ、その値をフォトダイオード185により検出してメモリに記憶する。発光ダイオードが選択されるのは非常にわずかな時間であるので、例えば本例のように、360個の発光ダイオードが有り、個別に1μ秒の時間を要したとしても、合計は360μ秒ということになる。   That is, the microprocessor 188 selects an arbitrary light emitting diode, lights up the light emitting diode for a very short time (for example, 1 μsec), detects the value by the photodiode 185, and stores it in the memory. Since the light-emitting diodes are selected for a very short time, there are 360 light-emitting diodes as in this example, for example. Even if it takes 1 μs individually, the total is 360 μs. become.

なお、発光ダイオードを液晶用バックライト光源として使用する場合には、必ずしも、光センサは発光ダイオードの近傍に配置できず、配置上の制約と形状の制約を受ける。この際、形状により、離れたい位置に存在する発光ダイオードは弱く検出され、センサーに近い位置にある発光ダイオードの光は強く検出されるという場合がある。これらは、光学シュミレーションや基準発光ダイオードによる実測等により、補正値データーをメモリテーブルとして用意し、光学センスした光量データーを補正すること等で対応することができる。   When a light emitting diode is used as a backlight light source for a liquid crystal, the optical sensor cannot necessarily be disposed in the vicinity of the light emitting diode, and is subject to arrangement restrictions and shape restrictions. At this time, depending on the shape, there are cases where the light-emitting diodes present at positions desired to be separated are detected weakly, and the light from the light-emitting diodes located near the sensor is detected strongly. These can be dealt with by preparing correction value data as a memory table by optical simulation or actual measurement using a reference light emitting diode, and correcting optically sensed light quantity data.

ここで、発光ダイオードは長時間使用により輝度特性が劣化し発光量が少なくなる特性を有するので、発光量を維持するために駆動電流を徐々に増やすのでは寿命が短くなってしまうが、発光ダイオードの輝度特性についての経時変化を考慮した補正値データをメモリテーブルにようしておき、上記マイクロプロセッサ188により駆動電流を時間とともに減らす制御を行うようにすれば、発光ダイオードの寿命を延ばすことができる。   Here, since the light emitting diode has the characteristic that the luminance characteristic deteriorates and the light emission amount decreases with long-term use, if the drive current is gradually increased in order to maintain the light emission amount, the life is shortened. If the correction value data considering the change with time in the luminance characteristic is stored in a memory table and the microprocessor 188 performs control to reduce the drive current with time, the life of the light emitting diode can be extended. .

本発明を適用したバックライト方式のカラー液晶表示装置の構成を示す模式的な斜視図である。It is a typical perspective view which shows the structure of the color liquid crystal display device of the backlight system to which this invention is applied. 上記カラー液晶表示装置の駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the drive circuit of the said color liquid crystal display device. 上記カラー液晶表示装置おけるカラー液晶パネルに設けられるカラーフィルタの構成を示す模式的な平面図である。It is a typical top view which shows the structure of the color filter provided in the color liquid crystal panel in the said color liquid crystal display device. 上記カラー液晶表示装置を構成するバックライト光源装置における発光ダイオードの配置例を模式的に示す図である。It is a figure which shows typically the example of arrangement | positioning of the light emitting diode in the backlight light source device which comprises the said color liquid crystal display device. 上記発光ダイオードの配置例における各発光ダイオードが接続された形を電気回路図記号のダイオードマークによって模式的に示した図である。It is the figure which showed typically the form where each light emitting diode in the example of arrangement | positioning of the said light emitting diode was connected by the diode mark of the electric circuit diagram symbol. 赤の発光ダイオード、緑の発光ダイオード及び青の発光ダイオードをそれぞれ2個使用し、合計6個の発光ダイオードを一列に配列した単位セルを各色の発光ダイオードの個数でパターン表記して模式的に示した図である。A unit cell in which two red light emitting diodes, two green light emitting diodes and two blue light emitting diodes are used and a total of six light emitting diodes are arranged in a row is schematically shown by pattern notation with the number of light emitting diodes of each color. It is a figure. 基本単位の単位セル4を3つ連続に繋げた場合を発光ダイオードの個数でパターン表記して模式的に示した図である。It is the figure which showed typically the case where the unit cell 4 of a basic unit was connected continuously by pattern description with the number of light emitting diodes. 上記バックライト光源装置の光源21における実際の発光ダイオードの配置例をLEDの個数でパターン表記して模式的に示した図である。It is the figure which showed typically the example of arrangement | positioning of the light emitting diode in the light source 21 of the said backlight light source device by pattern notation with the number of LED. 上記バックライト光源装置における発光ダイオードの駆動構成を模式的に示す図である。It is a figure which shows typically the drive structure of the light emitting diode in the said backlight light source device. 上記バックライト光源装置における直列接続された複数の発光ダイオードに定電流を流すための具体的な構成例を模式的に示す図である。It is a figure which shows typically the example of a concrete structure for sending a constant current to the some light emitting diode connected in series in the said backlight light source device. 上記バックライト光源装置における直列接続された複数の発光ダイオード個々の素子のばらつきを検出調整するための具体的な構成例を模式的に示す図である。It is a figure which shows typically the example of a specific structure for detecting and adjusting the dispersion | variation in each element of the some light emitting diode connected in series in the said backlight light source device. 上記バックライト光源装置における直列接続された複数の発光ダイオードにスイッチング素子としてトランジスタを接続してなる構成例を模式的に示す図である。It is a figure which shows typically the structural example formed by connecting a transistor as a switching element to the several light emitting diode connected in series in the said backlight light source device. 上記バックライト光源装置における直列接続された複数の発光ダイオードにスイッチング素子としてトランジスタを接続してなる構成例の動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of the structural example which connects a transistor as a switching element to the several light emitting diode connected in series in the said backlight light source device. 上記バックライト光源装置における発光ダイオードの発光量のばらつきを測定するための構成例を模式的に示す図である。It is a figure which shows typically the structural example for measuring the dispersion | variation in the emitted light amount of the light emitting diode in the said backlight light source device.

符号の説明Explanation of symbols

1,2,3,41,41A〜41E、LED1〜LEDn 発光ダイオード、4−1,4−2 単位セル、5,50 検出抵抗、7,70 DC−DCコンバーター、6 FET、10 カラー液晶表示パネル、11 TFT基板、12 対向電極基板、13 液晶層、14 信号線、15 走査線、16 薄膜トランジスタ、17 画素電極、18 対向電極、19 カラーフィルタ、20 バックライト光源装置、21 光源21、22 波長選択フィルタ、31,32 偏光板、40 LED列、50 切換スイッチ、82A〜82E トランジスタ、83A〜83E ダイオード、84A〜84E コンデンサ、100 カラー液晶表示装置、110 電源部、120 Xドライバ回路、130 Yドライバ回路、140 入力端子140、150 RGBプロセス処理部、160 映像メモリ、170 制御部、180 バックライト駆動制御部、181 ドライバーIC、182 駆動制御回路、185 フォトダイオード、186 電流電圧変換回路、186A 演算増幅器、187 A/D変換器、188 マイクロプロセッサ、200 駆動回路、SW1〜SWn スイッチング素子   1, 2, 3, 41, 41A to 41E, LED1 to LEDn Light emitting diode, 4-1, 4-2 unit cell, 5,50 detection resistor, 7,70 DC-DC converter, 6 FET, 10 color liquid crystal display panel , 11 TFT substrate, 12 Counter electrode substrate, 13 Liquid crystal layer, 14 Signal line, 15 Scan line, 16 Thin film transistor, 17 Pixel electrode, 18 Counter electrode, 19 Color filter, 20 Back light source device, 21 Light source 21, 22 Wavelength selection Filter, 31, 32 Polarizing plate, 40 LED array, 50 selector switch, 82A to 82E transistor, 83A to 83E diode, 84A to 84E capacitor, 100 color liquid crystal display device, 110 power supply unit, 120 X driver circuit, 130 Y driver circuit 140 Input terminal 140, 150 RG Process processing unit, 160 video memory, 170 control unit, 180 backlight drive control unit, 181 driver IC, 182 drive control circuit, 185 photodiode, 186 current-voltage conversion circuit, 186A operational amplifier, 187 A / D converter, 188 Microprocessor, 200 drive circuit, SW1-SWn switching element

Claims (3)

直列接続された複数の発光ダイオード(LED:light emitting diode)をパルス幅変調定電流駆動回路により定電流駆動するLED駆動装置であって、
直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、
上記各発光ダイオードによって出力される光を検出する受光素子と、
上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、
測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段と
を備え、
上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動する上記パルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたLED駆動装置。
An LED driving device that drives a plurality of light emitting diodes (LEDs) connected in series by a pulse width modulation constant current driving circuit .
A plurality of switching elements that are connected in parallel to each of the plurality of light emitting diodes connected in series, and that can individually bypass the drive current flowing through each of the light emitting diodes;
A light receiving element for detecting light output by each of the light emitting diodes;
Switching element driving means for driving the switching elements by switching control;
Each switching element driven by the switching element driving means is selected by selecting an arbitrary light emitting diode as a measured light emitting diode through which a driving current for measurement is passed, and giving a driving setting control signal to the switching element driving means. Turn on, the driving current flowing through the light emitting diode other than any of the measured light-emitting diodes selected to bypass through each switching element driven by the switching element driving means, for measuring only the measured light-emitting diode By passing a drive current, the light emitting diode to be measured is turned on, the light of the light emitting diode that has been turned on is detected by the light receiving element, and the variation in the light emission amount of each light emitting diode is determined based on the detection output by the light receiving element. Control means for controlling the measurement and
With
The control means is a drive setting control signal to the switching element driving means in a state in which the switching elements of the pulse width modulation constant current driving circuit for driving the plurality of light emitting diodes connected in series with constant current are always on. By passing the driving current flowing in the light emitting diodes other than the light emitting diode to be measured through the switching elements, the driving current flows only in the light emitting diode to be measured, and the driving current flowing in the light emitting diode to be measured is bypassed. An LED drive device in which a shunt current corresponding to an On-OFF period ratio is caused to flow through the switching element by driving the switching element to be driven by a pulse width modulation signal .
表示パネルを背面側から照明するバックライト光源装置であって、
直列接続された複数の発光ダイオード(LED:light emitting diode)と、
直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、
上記各発光ダイオードによって出力される光を検出する受光素子と、
上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、
測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段と
を備え、
上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動するパルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたバックライト光源装置。
A backlight light source device for illuminating the display panel from the back side,
A plurality of light emitting diodes (LEDs) connected in series;
A plurality of switching elements that are connected in parallel to each of the plurality of light emitting diodes connected in series, and that can individually bypass the drive current flowing through each of the light emitting diodes;
A light receiving element for detecting light output by each of the light emitting diodes;
Switching element driving means for driving the switching elements by switching control;
Each switching element driven by the switching element driving means is selected by selecting an arbitrary light emitting diode as a measured light emitting diode through which a driving current for measurement is passed, and giving a driving setting control signal to the switching element driving means. Turn on, the driving current flowing through the light emitting diode other than any of the measured light-emitting diodes selected to bypass through each switching element driven by the switching element driving means, for measuring only the measured light-emitting diode By passing a drive current, the light emitting diode to be measured is turned on, the light of the light emitting diode that has been turned on is detected by the light receiving element, and the variation in the light emission amount of each light emitting diode is determined based on the detection output by the light receiving element. Control means for controlling the measurement and
With
The control means outputs a drive setting control signal to the switching element driving means in a state where the switching elements of the pulse width modulation constant current driving circuit for constant current driving the plurality of light emitting diodes connected in series are always turned on. By applying, the drive current flowing in the light emitting diodes other than the light emitting diode to be measured is bypassed via the switching elements, the drive current flows only in the light emitting diode to be measured, and the drive current flowing in the light emitting diode to be measured is bypassed. A backlight light source device in which a shunt current corresponding to an On-OFF period ratio is caused to flow through the switching element by driving the switching element with a pulse width modulation signal .
カラーフィルタを備えた透過型のカラー液晶表示パネルと、このカラー液晶表示パネルを背面側から照明するバックライト光源装置とからなるカラー液晶表示装置であって、
上記バックライト光源装置は、
直列接続された複数の発光ダイオード(LED:light emitting diode)と、
直列接続された複数の発光ダイオードの各々に並列に接続され、上記各発光ダイオードに流れる駆動電流を個別にバイパス可能にする複数のスイッチング素子と、
上記各発光ダイオードによって出力される光を検出する受光素子と、
上記各スイッチング素子をスイッチング制御することによって駆動するスイッチング素子駆動手段と、
測定用の駆動電流を流す被測定発光ダイオードとして任意の発光ダイオードを選択し、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、上記スイッチング素子駆動手段によって駆動される各スイッチング素子をオンにして、選択された任意の被測定発光ダイオード以外の発光ダイオードに流れる駆動電流を、上記スイッチング素子駆動手段によって駆動される各スイッチング素子を介してバイパスし、被測定発光ダイオードのみに測定用の駆動電流を流すことにより、被測定発光ダイオードを点灯させ、点灯させた発光ダイオードの光を上記受光素子によって検出させ、上記受光素子による検出出力に基づいて、上記各発光ダイオードの発光量のばらつきを測定する制御を行う制御手段と
を備え、
上記制御手段は、上記直列接続された複数の発光ダイオードを定電流駆動するパルス幅変調定電流駆動回路のスイッチング素子を常時オンにした状態で、上記スイッチング素子駆動手段に対して駆動設定制御信号を与えることによって、被測定発光ダイオード以外の発光ダイオードに流れる駆動電流をそれぞれスイッチング素子を介してバイパスして上記被測定発光ダイオードのみに駆動電流を流し、上記被測定発光ダイオードに流れる駆動電流をバイパスするスイッチング素子をパルス幅変調信号により駆動することによって、On−OFFの期間比率に応じた分流電流を上記スイッチング素子を介して流すようにしたカラー液晶表示装置。
A color liquid crystal display device comprising a transmissive color liquid crystal display panel provided with a color filter and a backlight light source device for illuminating the color liquid crystal display panel from the back side,
The backlight light source device is
A plurality of light emitting diodes (LEDs) connected in series;
A plurality of switching elements that are connected in parallel to each of the plurality of light emitting diodes connected in series, and that can individually bypass the drive current flowing through each of the light emitting diodes;
A light receiving element for detecting light output by each of the light emitting diodes;
Switching element driving means for driving the switching elements by switching control;
Each switching element driven by the switching element driving means is selected by selecting an arbitrary light emitting diode as a measured light emitting diode through which a driving current for measurement is passed, and giving a driving setting control signal to the switching element driving means. Turn on, the driving current flowing through the light emitting diode other than any of the measured light-emitting diodes selected to bypass through each switching element driven by the switching element driving means, for measuring only the measured light-emitting diode By passing a drive current, the light emitting diode to be measured is turned on, the light of the light emitting diode that has been turned on is detected by the light receiving element, and the variation in the light emission amount of each light emitting diode is determined based on the detection output by the light receiving element. Control means for controlling the measurement and
With
The control means outputs a drive setting control signal to the switching element driving means in a state where the switching elements of the pulse width modulation constant current driving circuit for constant current driving the plurality of light emitting diodes connected in series are always turned on. By applying, the drive current flowing in the light emitting diodes other than the light emitting diode to be measured is bypassed via the switching elements, the drive current flows only in the light emitting diode to be measured, and the drive current flowing in the light emitting diode to be measured is bypassed. A color liquid crystal display device in which a shunt current corresponding to an On-OFF period ratio is caused to flow through the switching element by driving the switching element with a pulse width modulation signal .
JP2004124793A 2004-04-20 2004-04-20 LED driving device, backlight light source device, and color liquid crystal display device Expired - Fee Related JP4720100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124793A JP4720100B2 (en) 2004-04-20 2004-04-20 LED driving device, backlight light source device, and color liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124793A JP4720100B2 (en) 2004-04-20 2004-04-20 LED driving device, backlight light source device, and color liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2005310997A JP2005310997A (en) 2005-11-04
JP4720100B2 true JP4720100B2 (en) 2011-07-13

Family

ID=35439422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124793A Expired - Fee Related JP4720100B2 (en) 2004-04-20 2004-04-20 LED driving device, backlight light source device, and color liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4720100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11317497B2 (en) 2019-06-20 2022-04-26 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975038B2 (en) * 2005-11-08 2012-07-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CIRCUIT DEVICE AND CIRCUIT DEVICE DRIVE METHOD
KR100727354B1 (en) * 2005-11-09 2007-06-13 주식회사 유양정보통신 Constant Current Pulse Width Modulation Driving Circuit for Light Emitting Diode
US8791645B2 (en) 2006-02-10 2014-07-29 Honeywell International Inc. Systems and methods for controlling light sources
WO2007093938A1 (en) * 2006-02-14 2007-08-23 Koninklijke Philips Electronics N.V. Current driving of leds
JP4869744B2 (en) 2006-03-09 2012-02-08 株式会社 日立ディスプレイズ LED lighting device and liquid crystal display device using the same
US20070236447A1 (en) * 2006-04-07 2007-10-11 Samsung Electro-Mechanics Co., Ltd. Backlight unit using light emitting diode
JP4640264B2 (en) * 2006-06-02 2011-03-02 ソニー株式会社 Planar light source device and display device assembly
EP1898676A1 (en) 2006-09-06 2008-03-12 THOMSON Licensing Display apparatus
JP4860701B2 (en) * 2006-09-06 2012-01-25 シャープ株式会社 LIGHTING DEVICE, BACKLIGHT DEVICE, LIQUID CRYSTAL DISPLAY DEVICE, LIGHTING DEVICE CONTROL METHOD, LIQUID CRYSTAL DISPLAY DEVICE CONTROL METHOD
KR101483662B1 (en) * 2006-09-20 2015-01-16 코닌클리케 필립스 엔.브이. Light emitting element control system and lighting system comprising same
JP4908145B2 (en) * 2006-10-12 2012-04-04 株式会社日立製作所 Liquid crystal display
JP5080799B2 (en) * 2006-12-25 2012-11-21 エルジー ディスプレイ カンパニー リミテッド LED backlight system
JP4933948B2 (en) * 2007-04-27 2012-05-16 シャープ株式会社 LED driving circuit and light emitting device
TW200910290A (en) * 2007-08-28 2009-03-01 Coretronic Corp Light source device
JP5007650B2 (en) 2007-10-16 2012-08-22 ソニー株式会社 Display device, light amount adjustment method for display device, and electronic device
US8665188B2 (en) 2008-02-04 2014-03-04 National Semiconductor Corporation Laser diode / LED drive circuit
JP5624269B2 (en) * 2008-08-26 2014-11-12 パナソニック株式会社 Lighting device, vehicle interior lighting device, vehicle lighting device
WO2010038766A1 (en) * 2008-10-01 2010-04-08 シャープ株式会社 Planar illuminating device and display device provided with same
US7986107B2 (en) * 2008-11-06 2011-07-26 Lumenetix, Inc. Electrical circuit for driving LEDs in dissimilar color string lengths
WO2010055456A1 (en) * 2008-11-13 2010-05-20 Koninklijke Philips Electronics N.V. Lighting system with a plurality of leds
EP2364575B1 (en) * 2008-11-17 2016-01-27 Express Imaging Systems, LLC Electronic control to regulate power for solid-state lighting and methods thereof
JP5475798B2 (en) * 2008-12-04 2014-04-16 コーニンクレッカ フィリップス エヌ ヴェ Illumination apparatus and method for embedding a data signal in a luminance output using an AC drive light source
JP2010205440A (en) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp Lighting system
JP2010257026A (en) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp Power supply circuit and illuminator
KR20120032472A (en) 2009-05-01 2012-04-05 익스프레스 이미징 시스템즈, 엘엘씨 Gas-discharge lamp replacement with passive cooling
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
WO2010135577A2 (en) 2009-05-20 2010-11-25 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US9713211B2 (en) 2009-09-24 2017-07-18 Cree, Inc. Solid state lighting apparatus with controllable bypass circuits and methods of operation thereof
US8901829B2 (en) 2009-09-24 2014-12-02 Cree Led Lighting Solutions, Inc. Solid state lighting apparatus with configurable shunts
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US10264637B2 (en) 2009-09-24 2019-04-16 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof
KR100986815B1 (en) 2010-02-05 2010-10-13 신봉섭 Constant current driving apparatus for light emitting diode
DE102010003136A1 (en) * 2010-03-23 2011-09-29 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for operating at least one LED
US8476836B2 (en) * 2010-05-07 2013-07-02 Cree, Inc. AC driven solid state lighting apparatus with LED string including switched segments
US8624505B2 (en) 2010-05-28 2014-01-07 Tsmc Solid State Lighting Ltd. Light color and intensity adjustable LED
US9801255B2 (en) 2010-06-30 2017-10-24 Philips Lighting Holding B.V. Dimmable lighting device
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US9839083B2 (en) 2011-06-03 2017-12-05 Cree, Inc. Solid state lighting apparatus and circuits including LED segments configured for targeted spectral power distribution and methods of operating the same
US9131561B2 (en) 2011-09-16 2015-09-08 Cree, Inc. Solid-state lighting apparatus and methods using energy storage
US8742671B2 (en) 2011-07-28 2014-06-03 Cree, Inc. Solid state lighting apparatus and methods using integrated driver circuitry
US8791641B2 (en) 2011-09-16 2014-07-29 Cree, Inc. Solid-state lighting apparatus and methods using energy storage
WO2013074900A1 (en) 2011-11-18 2013-05-23 Express Imaging Systems, Llc Adjustable output solid-state lamp with security features
US9360198B2 (en) 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
US8917026B2 (en) 2011-12-20 2014-12-23 Lumenetix, Inc. Linear bypass electrical circuit for driving LED strings
JP5447497B2 (en) * 2011-12-26 2014-03-19 三菱電機株式会社 Light source lighting device and lighting device
KR101360326B1 (en) 2012-01-20 2014-02-12 한국과학기술원 Ditect Connection Type LED Apparatus for Even Life by Switching Linearly and LED Lighting Apparatus Using The Same
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
EP2842392B1 (en) * 2012-04-23 2018-08-15 Koninklijke Philips N.V. Separately controllable array of radiation elements
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US8878440B2 (en) 2012-08-28 2014-11-04 Express Imaging Systems, Llc Luminaire with atmospheric electrical activity detection and visual alert capabilities
KR101982296B1 (en) * 2012-08-31 2019-05-24 엘지디스플레이 주식회사 Apparatus and Method for Driving Light Source in Back Light Unit
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9210759B2 (en) 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9743473B2 (en) 2013-03-15 2017-08-22 Lumenetix, Inc. Cascade LED driver and control methods
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
WO2016054085A1 (en) 2014-09-30 2016-04-07 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
WO2016064542A1 (en) 2014-10-24 2016-04-28 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
US10098212B2 (en) 2017-02-14 2018-10-09 Express Imaging Systems, Llc Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10219360B2 (en) 2017-04-03 2019-02-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10568191B2 (en) 2017-04-03 2020-02-18 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics
JP7352777B2 (en) 2019-12-16 2023-09-29 パナソニックIpマネジメント株式会社 Luminescence inspection device
JP7293177B2 (en) * 2020-09-16 2023-06-19 キヤノン株式会社 Accessory device, imaging device, imaging system, communication device, communication method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188415A (en) * 2001-12-18 2003-07-04 Asahi Matsushita Electric Works Ltd Led lighting device
JP2003243711A (en) * 2002-02-20 2003-08-29 Smk Corp Infrared emitting diode drive circuit for remote control transmitter
JP2003338973A (en) * 2002-03-15 2003-11-28 Sharp Corp Portable device having imaging function
JP2004029370A (en) * 2002-06-26 2004-01-29 Advanced Display Inc Surface light source device and liquid crystal display device using the same
JP2004038210A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
JP2004039290A (en) * 2002-06-28 2004-02-05 Matsushita Electric Works Ltd Lighting device
JP2004039291A (en) * 2002-06-28 2004-02-05 Matsushita Electric Works Ltd Lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038210A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
JP2003188415A (en) * 2001-12-18 2003-07-04 Asahi Matsushita Electric Works Ltd Led lighting device
JP2003243711A (en) * 2002-02-20 2003-08-29 Smk Corp Infrared emitting diode drive circuit for remote control transmitter
JP2003338973A (en) * 2002-03-15 2003-11-28 Sharp Corp Portable device having imaging function
JP2004029370A (en) * 2002-06-26 2004-01-29 Advanced Display Inc Surface light source device and liquid crystal display device using the same
JP2004039290A (en) * 2002-06-28 2004-02-05 Matsushita Electric Works Ltd Lighting device
JP2004039291A (en) * 2002-06-28 2004-02-05 Matsushita Electric Works Ltd Lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11317497B2 (en) 2019-06-20 2022-04-26 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp

Also Published As

Publication number Publication date
JP2005310997A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4720100B2 (en) LED driving device, backlight light source device, and color liquid crystal display device
JP4241487B2 (en) LED driving device, backlight light source device, and color liquid crystal display device
KR101196806B1 (en) Constant current driver, back light source and color liquid crystal display
JP4720099B2 (en) Constant current drive device, backlight light source device, and color liquid crystal display device
JP4182930B2 (en) Display device and backlight device
JP4306657B2 (en) Light emitting element driving device and display device
US8035603B2 (en) Illumination system and liquid crystal display
KR100752376B1 (en) Backlight Driving Circuit and Liquid Crystal Display Device of having the same
JP4722136B2 (en) Backlight device and liquid crystal display device
KR101804466B1 (en) Backlight having blue light emitting diodes and method of driving same
CN100530706C (en) Drive device for back light unit and drive method therefor
KR101471157B1 (en) Method for driving lighting blocks, back light assembly for performing the method and display apparatus having the back light assembly
JPWO2006006537A1 (en) Driving device for backlight unit and driving method thereof
KR100798111B1 (en) Apparatus of controlling backlight and apparatus of driving backlight comprising the same
KR20080032440A (en) Apparatus and method of driving backlight
KR102047732B1 (en) Backlight unit
KR20100053326A (en) Backlight apparatus using light emitting diode with driver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees