JP4713731B2 - Equipment for measuring the internal quality of fruits and vegetables - Google Patents

Equipment for measuring the internal quality of fruits and vegetables Download PDF

Info

Publication number
JP4713731B2
JP4713731B2 JP2000385313A JP2000385313A JP4713731B2 JP 4713731 B2 JP4713731 B2 JP 4713731B2 JP 2000385313 A JP2000385313 A JP 2000385313A JP 2000385313 A JP2000385313 A JP 2000385313A JP 4713731 B2 JP4713731 B2 JP 4713731B2
Authority
JP
Japan
Prior art keywords
light
vegetables
fruits
light receiving
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000385313A
Other languages
Japanese (ja)
Other versions
JP2002181701A (en
Inventor
崇史 乙井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saika Technological Institute Foundation
Original Assignee
Saika Technological Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saika Technological Institute Foundation filed Critical Saika Technological Institute Foundation
Priority to JP2000385313A priority Critical patent/JP4713731B2/en
Publication of JP2002181701A publication Critical patent/JP2002181701A/en
Application granted granted Critical
Publication of JP4713731B2 publication Critical patent/JP4713731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、甘夏、ミカン、八朔、柿、なしやリンゴ、あるいはメロン等の青果物の糖度、酸度、水分含有率、鮮度等の内部品質を非破壊測定で判定するものにおいて特に有用な青果物の内部品質測定装置及び内部品質測定方法に関し、高精度で且つ高速に品質を判定することができる青果物の内部品質測定装置に関する。
【0002】
【従来の技術】
上記青果物の内部品質測定装置としては、例えば平ベルトを備えるベルトコンベアにて載置搬送されてくる青果物の水平方向一側面に、ベルトコンベアの搬送幅方向(左右方向)一側に配設した単一のランプ(照射手段)から測定光(集光領域光)を照射し、前記ランプとは反対側、つまりベルトコンベアの搬送幅方向(左右方向)他側に配置した受光手段により前記青果物を透過してきた測定光を受光する投受光直線型の装置により内部品質測定を行うものが一般的である。
そして、前記装置においてリファーレンス(reference)光を得るためには、例えば青果物が測定位置に位置していない状態でランプ(照射手段)からの強い光である集光領域光の光量をNDフィルターへの切り替えにより減衰させるか、測定位置に標準体を挿出入して減衰させることによって飽和しない状態で受光するようにしている。
しかしながら、透過した光を水平方向で対向位置させた受光手段にて検出して青果物の糖度や酸度等を測定するものにおいては、青果物のサイズが大きなものや表皮が厚いものあるいは果肉の密度が高いもの等、光の減衰が大きくなる青果物である場合に、青果物の測定表面に反射した反射光等の回り込み光と透過光の比が小さくなり、この回り込み光が青果物の内部品質測定の精度劣化の最大の原因になる不都合が発生する。
そこで、上記不都合を解消するために、青果物を取り囲むように複数のランプ(照射手段)を配置することにより青果物に対する照射光の光量を増大させると共に、前記回り込み光に対して排除することができるように照射光の照射方向と受光手段の受光方向を直交させた投受光直交型に構成された内部品質測定装置が多く用いられている。
前記投受光直交型の内部品質測定装置では、リファーレンス光を得るため果物の搬送経路に標準体を定期的に移動させる必要がある。そして、標準体の移動を高速かつ所定のタイミングで行わせなければならないため、装置全体の構成が複雑になり、コスト高を招く不都合があるだけでなく、前記タイミングが何らかの原因でずれてしまうと、青果物同士が計測筺体の中で衝突することになる。しかも搬送装置は一般に慣性力が大きいため、前記衝突が発生したときに瞬時に停止させることができない。このため、機器の破損事故につながり、多大なダメージを受けることもあり、改善の余地があった。因みに、青果物や標準体をパケットにセットして所定間隔を置いて搬送可能なパケット型の連続コンベアを用いることによって、前記タイミングのずれによる不都合を解消することができるものであるが、青果物を挿入する多数のパケットのうちの特定のパケットにに標準体がセットされて循環してくるものであるため、その特定のパケットには青果物をセットすることができず、青果物を単純周期動作にて人為的にセットしている作業者の動作を妨げることになり、作業能率の低下及び精神衛生の悪化を招くものである。又、青果物をセットするパケットには果樹液等が付着し易く、その付着した果樹液に埃が付着してしまい、その埃が標準体に付着して検出精度が低下する等のトラブル発生を招くこともある。又、投受光直交型の内部品質測定装置において、照射手段からの照射光をオプティカルファイバー等により受光手段へ導くことも考えられるが、光結合部において高い精度を必要とするだけでなく、照射手段がハロゲンランプ等の高温となるものであるため、ファイバーと照射手段とを直結することができない。従って、ファイバー受光面が小さいことから埃の付着等による測定誤差が大きく、それらを解決するためには高価になり、特に多くのハロゲンランプで構成している場合には更に不利になるものであり、実現性に乏しいものである。
前記不都合となる原因を分光分析を行って内部品質を測定する場合を用いて説明してみれば、
分光分析の基底となる吸光度の式は、照射手段である光源からの光の強度をI0(λ)、青果物を透過した光の強度をIt(λ)、k(λ)=c・εとすると、
吸光度は、log(It(λ)/I0(λ))=−d・k(λ)…式(3)で表される。
但し、d=光路長、c=濃度、ε=特定波長の吸収の強さ(モル吸収係数)、λ=波長となる。
即ち、吸光度そのものを求めるのであれば、リファーレンス光の減衰度をαとすれば、α・I0(λ)=リファーレンス光となり、青果物に照射される忠実な光路及び必要な既知の減衰度と平坦な波長特性を持つフィルターが必要になる。この意味からして、当然リファーレンス光として受光手段に入射する光としては集光領域光でなければならないことになる。
従って、通常概念上リファーレンス光を得るためには、搬送される青果物の間隙を縫って投受光直線型ではNDフィルターの切り替えを行うか、或いは標準体を挿出入する、又投受光直交型では搬送系の遮光効果(作用)により受光部にほとんど光が入らないため、NDフィルターを使用することができず、測定位置に標準体を挿出入させる構成をとることになる。いずれも、光源と集光領域光が標準体を透過した式(3)に準じ、リファーレンス光として得ている。
前記投受光直交型で使用する標準体としては、テフロン、セラミック等の適した形状で受光センサ及び電気系の増幅器が飽和しない適切な値と減衰度と波長特性を持つ物質(材質のもの)を使用している。
【0003】
【発明が解決しようとする課題】
本発明が前述の状況に鑑み、解決しようとするところは、構成の簡素化を図りながらも、青果物の内部品質を精度よく、しかも能率よく測定することができるようにする点にある。
【0004】
【課題を解決するための手段】
本発明の青果物の内部品質測定装置は、前述の課題解決のために、被測定物となる青果物の測定位置を基準として、受光手段の受光部に対向した位置に反射手段を備え、前記受光部の受光軸にほぼ直交する方向から測定光を照射するための照射手段を配置し、前記測定位置まで青果物を搬送し、かつ、前記照射手段からの測定光が前記受光部へ入射することを阻止するための遮光手段を備えた搬送手段を設け、前記照射手段からの集光領域光が青果物に照射され透過した測定光を該照射手段の照射軸に対してほぼ直交する位置にある前記受光部にて読み込んで内部品質測定を行い、青果物が前記測定位置に位置していない状態で、かつ、隣接する青果物に前記照射手段からの拡散領域光が照射され、その乱反射光が前記反射手段に到達して測定に影響を及ぼす領域外である状態で前記反射手段にて前記照射手段の拡散領域光を反射させて前記受光部に入射した光をリファーレンス光として読み込みを行うことを特徴としている。
青果物は同種類に於いても大きさ、表皮、密度等の違いによりd即ち光路長による減衰率(透過率)が大きく(2桁程度)変化する。青果物の内部性状の測定の重要な点は、de・ke(λ)を実効吸光度とすると、糖度、酸度等の内部性状(内部品質)に関係のない実効光路長deをキャンセルするところにある。
内部性状と相関が低い吸光度を示す波長をλ0とすると、
de・ke(λ)/de・ke(λ0
なる演算を行うことによりdeを消去するのである。一般には先ず、測定系の暗状態での暗電流データを被測定物データ、及びリファーレンスデータより差し引き、その差をとったものを2次微分等の演算処理を行うことによりオフセット及び勾配等をキャンセルし、結果的に糖度や酸度等に相関のある波長とその周辺波長との差を得て、重回帰、P・L・S等による統計処理等により内部性状を算出するのである。
統計処理に於いて内部性状を表す式として、
1・de・ke(λ1)+a2・de・ke(λ2)・・・
−b1・de・ke(λ01)−b2・de・ke(λ02)・・・+c
上記λ1、λ2は内部性状と相関が高い吸光度を示す波長であり、λ01、λ02は内部性状と相関が低い吸光度を示す波長であり、a1、b1、cは近似のための係数及び定数である。
上記式からλ0の項により実効光路長deが近似的にキャンセルされることになる。
以上のことからリファーレンス光は絶対的である必要はなく定数であってもよいことを意味している。現実には、光源の劣化、受光手段の受光面に付着する埃等による光学的な経時変化に伴う波長特性の変化が生じる点を解決すれば精度良く内部品質の測定を行うことができるのである。
従って、飽和することのない光量の少ない(弱い光である)拡散領域光を受光手段にて受光する構成にすることによって、投受光直交型において必要となる標準体等を不要にすることができるだけでなく、照射手段の劣化等が反映している拡散領域光を反射手段にて反射させて受光手段に到達させることにより、受光手段の受光面等の汚れ等も反映したリファーレンス光を得ることができる。しかも、青果物を透過した測定光を照射手段とほぼ直交する方向から受光部にて読み込むことによって、青果物の表面に反射した反射光等の回り込み光が受光部に到達することがない。
【0005】
前記反射手段から前記受光部へ取り込む反射光の光量を変更調節する手段を設けることによって、照射手段の初期設置時や交換時等において照射手段からの照射光量に合わせて反射手段にて反射させた受光手段への拡散領域光の光量を最適な量に迅速に調節することができる。
【0006】
前記照射手段を青果物に対して前記搬送手段の搬送方向と直交する左右方向から照射するように配置し、前記搬送手段の搬送方向と直交する左右方向ほぼ中間部に形成の隙間から下方へ入射してきた測定光を受光するように前記受光手段を配置し、前記反射手段を前記受光手段の直上方に配置することによって、照射手段からの照射光に対する遮光を搬送手段にて行うことができるだけでなく、反射手段を上方の広い空間を利用して配置することができる。
【0007】
青果物に対する前記照射手段の照射向きを変更調節自在又は青果物に対する前記照射手段の上下高さを変更調節自在に構成することによって、青果物の大きさに応じて照射方向又は照射高さを最適な方向又は高さにすることができる。
【0008】
前記照射手段の拡散領域光のうちの搬送方向における照射幅を制限するための遮光手段を設けることによって、搬送方向において隣接する青果物同士の間隔(リファーレンス光を得るための間隔)を狭くすることができる。
【0009】
【発明の実施の形態】
図1及び図2に、本発明の青果物の内部品質(内部性状)測定装置が示されている。この測定装置は、被測定物としての青果物Mを搬送する搬送手段としてのベルトコンベア1と、このベルトコンベア1により搬送されてきた青果物Mの有無を検出するための光電装置2と、この光電装置2を通過した青果物Mの内部品質を計測するための投受光直交型の測定部3と、前記ベルトコンベア1の搬送速度等を算出するためのロータリエンコーダ4とを備えている。前記青果物の内部品質測定装置の具体的構成は、図に示されるものに限定されるものではなく、自由に変更可能である。
【0010】
前記光電装置2は、前記ベルトコンベア1の左右両側の一側に配置された投光部5と、この投光部5からベルトコンベア1の搬送方向と直交する方向(ほぼ直交する方向でもよい)、つまり搬送幅方向に照射される光を受け入れる受光部6とからなり、投光部5の光軸線上の青果物の有無により二値化されたデータを出力し、このデータと前記ベルトコンベア1の搬送に同期した前記ロータリエンコーダ4のパルス数から青果物の位置やサイズ(大きさ)、搬送方向で隣り合う青果物の間隙を計測することができるようにしている。
【0011】
前記ベルトコンベア1は、電動モータ等の動力により駆動回転される左右一対の無端状のベルト7,8と、これらベルト7,8それぞれの上面に立設して青果物を載置支持すると共に後述の照射手段10からの照射光を遮光するための遮光板兼用の左右2列の板状体7A,8Aとから構成している。
前記板状体7A,8Aのうちの搬送幅方向外側に位置する板状体7Aが搬送幅方向内側に位置する板状体8Aよりも上下(縦)寸法を長く設定しているが、同一寸法でもよい。又、前記板状体7A又は8Aは、搬送幅方向外側に位置する板状片7a又は8aと搬送幅方向内側に位置する板状片7b又は8bとを搬送方向に沿って交互に位置させて構成されるている。又、前記板状片7a,7b,8a,8bの材質としては、いずれもウレタン等の合成樹脂やゴム等から構成することによって、青果物を傷付けることなく載置搬送することができる。又、前記板状体7A,8Aのうち、搬送幅方向内側に位置する板状体8Aを上端側ほど搬送幅方向外側に位置する傾斜姿勢で設けて、青果物の外面と板状体8Aの上端の間に隙間が発生することなく接触させることができるようにしている。図では、1枚のベルトに2列の板状体7B,8Bを設けているが、1列(1枚のものでもよい)の板状体を設けてもよいし、3列以上(3枚以上のものでもよい)の板状体を設けて実施することもできる。又、板状体の代わりにパケット等を設けて実施してもよいし、これら青果物を載置支持するものが全くない平ベルトのみで構成してもよい。又、前記一対のベルト7,8同士を所定間隔を置いて併設することにより形成される隙間Sの真下に後述の受光手段11を配置できるようにしている。そして、この受光手段11のベルト搬送方向両側に遮光ブラシ9,9を配置することによって、青果物の搬送を妨げることなく、前記隙間Sから受光手段11の受光部へ入り込む乱反射光を遮断することができるようにしているが、例えば搬送装置に固定して使用する遮光効果の有利なパケット型等の他の構成に変更してもよい。
【0012】
前記測定部3は、図1〜図3に示すように、青果物に測定光を照射するための照射手段10と、前記ベルトコンベア1にて照射位置まで載置搬送されてきた青果物に向けて照射して透過した測定光のうち、前記ベルトコンベア1に形成の隙間Sから下方へ入射(移動)してきた測定光を受光するための受光手段11と、図4に示すように、前記受光手段11により受光した測定光を成分波長に分散してスペクトルを決定するための分光器を備えた分光装置12と、この分光装置12からの結果に基づいて演算処理して糖度、酸度、水分含有率、鮮度等の品質を判定する品質判定手段13と、この品質判定手段13からの判定結果を出力する判定出力手段14とから構成している。図1に示す15は、受光手段11にて受光した透過光や後述のリファーレンス光を前記分光装置12に導くためのオプティカルファイバーである。ここでは、受光手段11をベルトコンベア1の下方に配置することによって、照射手段10からの回り込み光等に対する遮光をベルトコンベア1により兼用構成することができるだけでなく、上方に配置した場合に比べて青果物からの受光距離を常にほぼ一定距離とした状態に保持することができる利点があるが、受光手段11をベルトコンベア1の上方に配置して実施することもできる。前記受光手段11は、搬送される青果物の搬送経路の真下に配置されることから、受光手段11の受光面に腐った青果物や破壊された青果物の果汁等が落下し、それに埃等が付着してしまうことがあるため、例えば受光面を定期的に拭き取る等の自動清掃手段を設けて実施することによって、清掃の手間を不要にすることができる。
【0013】
前記照射手段10は、図2及び図3に示すように、ベルトコンベア1の搬送幅方向両側に配置した左右一対の反射鏡型のハロゲンランプ等からなる投光器等でなり、図3及び図5に示すように、集光領域光10Aを青果物に左右両側から照射し、青果物を透過した光を前記受光手段11により受光するように構成している。前記照射手段10は、1個又は2個、あるいは照度確保のために3個以上多数個設けて実施してもよい。尚、前記照射手段10を多数個設ける場合には、青果物を透過した集光領域光を受光手段11に受け取ることができると共に後述の反射手段16が拡散領域光を受け取ることができ、しかも青果物の搬送を妨げないように受光手段11又は反射手段16を中心として取り囲む状態で配置することになる。又、青果物に対する前記照射手段10の照射向きを変更調節自在又は青果物に対する前記照射手段10の上下高さを変更調節自在に構成することによって、青果物の大きさに応じて照射方向又は照射高さを最適な方向又は高さにすることが望ましい。前記変更調節は、手動操作又は電動力を用いて行うことができる。前記電動力を用いる場合には、例えば青果物の大きさ(高さ)に応じて自動的に照射方向又は照射高さを変更するように構成して実施してもよい。
又、図2及び図3に示すように、前記照射手段10の搬送方向両側それぞれに該照射手段10の拡散領域光の照射角Hを制限するための遮光手段としての遮光板17を設けている。このように遮光板17,17を設けることによって、搬送方向で隣り合う青果物M,M同士の間隔を狭くすることができる利点がある。尚、前記照射角H内に青果物Mが存在した状態でリファーレンス光を読み込むと、青果物Mの表面に反射した反射光が直接又は反射手段16を介して受光手段11に入り込んで測定精度に誤差が発生してしまうことから、照射角H内に青果物Mが存在しないように青果物M,M同士の間隔を考慮する必要がある。このため、前記のように遮光板17,17を用いて照射角Hを絞り込むことによりリファーレンス光の読み込み及び青果物Mの透過光の読み込みを能率よく行うことができるのである。前記遮光板17,17は、固定式の他、角度が変更調節できるものや、遮光板17,17の青果物側先端位置を変更できるようにスライド移動自在に構成したものを用いてもよい。尚、前記遮光板17,17の角度変更やスライド移動させる構成は、手動力又は電動力を用いて行うことになる。
【0014】
前記受光手段11の対向位置する上方箇所に、前記照射手段10からの拡散領域光10Bを受けて該受光手段11に対して拡散反射光16Aを入射させるための反射手段16を設けている。
前記反射手段16は、最大径の青果物が十分通過できる高さに設定すると共に、高さ調節ができる高さ調節機構(図示せず)を備えていることが好ましい。前記高さ調節機構を手動力又は電動力を用いて高さ調節することによって、照射手段10の初期設置時や照射手段10の交換時等において反射させる光量のレベル調節を迅速に行うことができる。前記反射手段16を高さ調節することによって、反射手段16から受光手段11の受光部へ取り込む反射光の光量を変更調節する手段を構成することができるが、反射手段16の反射面積を変更する構成であってもよい。図に示す反射手段16は、直径が60mmのテフロンの白色の艶消し円盤をベルトコンベア1のコンベア表面から高さ180mmの位置に設置している。上記高さに設定された状態において、十分な照度が得られる青果物の光量を10-5とすると、リファーレンス光は、10-3程度の強い光量が得られる。前記反射手段16の反射面として理想拡散面に近い材料として乳白色ガラス(オパールガラス)、酸化マグネシウム塗布板、硫酸バリウム塗布板等、を用いることができる他、照射手段10からの拡散領域光を受光手段11に対して集光する表面加工を施したり、外乱光に影響されない、機器に見合った必要な形状をした反射手段16に構成して実施することもできる。前記反射手段16の反射面が下方を向いた状態であるため、反射面の汚れの影響が少なく、定期的な掃除で十分である。前記反射光をリファーレンス光として用いる場合には、搬送されてくる青果物同士の隙間毎にリファーレンス光の波長データをチェックすることによって、計測精度に影響を及ぼす程度の光源の劣化や光学系の汚れ等、波長特性変動の推移監視を行い未然に知ることができる利点がある。
【0015】
前記構成の青果物の内部品質測定装置を用いて青果物の内部品質測定を行う場合について説明すれば、ベルトコンベア1の搬送始端側に図示していない青果物自動供給装置により自動的又は人手により人為的に青果物を供給して、青果物を連続的に搬送する。そして、搬送されてきた青果物が光電装置2によって検知され、青果物が受光手段11に達するタイミング及びサイズの計測並びに搬送方向前後に近接する青果物の距離を計測する。測定部3に青果物が達し、受光手段11に青果物の回り込み光がない読み込み最適域にすると受光手段11にて透過光を受光して内部品質の測定を行う。
リファーレンス光の測定に於いては拡散領域光が隣接する被測定物(青果物)に照射され、その乱反射光が反射手段16に到達し、測定に影響を及ぼす領域が存在する。本装置では光電装置2をそれの光軸線上からこの影響を及ぼす領域の線上までの距離を100mmのところに置いている(受光手段11から200mmの位置)、これがリファーレンス光の読み込みができる時間であり、毎分60mの搬送速度では最大100秒となる。前記反射手段16の反射面から得られる照度は青果物の透過光に比べて大きいので、10ミリ秒という短い時間でもリファーレンス光の読み込みを行うことができる。又、ここでは分光装置12の増幅器のゲイン設定においても最適な波長特性振幅に調節することができる装置を用いている。前記ベルトコンベア1により搬送終端部まで連続的に搬送された青果物は、前記測定値に基づいて他の選別装置を用いて自動的に又は人為的に選別することになる。
【0016】
【発明の効果】
請求項1によれば、照射手段の劣化等が反映している拡散領域光を反射手段にて反射させて受光手段にリファーレンス光として到達させる構成にすることによって、投受光直交型において必要であった標準体等を不要にすることができるから、構成の簡素化を図ることができると共に、青果物の糖度、酸度、水分含有率、鮮度等の内部品質を、非破壊で且つ迅速に、しかも高い精度で測定することができる青果物の内部品質測定装置を提供することができる。しかも、青果物を透過した測定光を照射手段とほぼ直交する方向から受光することによって、青果物の表面に反射した反射光等の回り込み光が受光手段に到達することがなく、より一層検出精度を高めることができる。
【0017】
請求項2によれば、反射手段から前記受光部へ取り込む反射光の光量を変更調節する手段を設けることによって、照射手段の初期設置時や交換時等において照射手段からの照射光量に合わせて反射手段にて反射させた受光手段への拡散領域光の光量を最適な量に迅速に調節することができ、使用面において有利になる。
【0018】
請求項3によれば、照射手段を青果物に対して搬送手段の搬送幅方向から照射するように配置し、搬送手段の搬送幅方向ほぼ中間部に形成の隙間から下方へしてきた測定光を受光するように受光手段を配置し、反射手段を受光手段の直上方に配置することによって、照射手段からの照射光に対する遮光を搬送手段にて行うことができ、その分構成の簡素化を図ることができるだけでなく、反射手段を上方の広い空間を利用して的確に配置することができる。
【0019】
請求項4によれば、青果物に対する照射手段の照射向きを変更調節自在又は青果物に対する照射手段の上下高さを変更調節自在に構成することによって、青果物の大きさに応じて照射方向又は照射高さを最適な方向又は高さにして、青果物に効率よく照射することができ、青果物の大きさに係わらず測定精度を向上させることができる。
【0020】
請求項5によれば、照射手段の拡散領域光のうちの搬送方向における照射幅を制限するための遮光手段を設けることによって、搬送方向において隣接する青果物同士の間隔(リファーレンス光を得るための間隔)を狭くすることができ、搬送する青果物同士の間隔を狭くして能率よくリファーレンス光は勿論のこと、青果物の内部品質測定を行うことができる。
【図面の簡単な説明】
【図1】青果物の内部品質測定装置の概略斜視図である。
【図2】青果物の内部品質測定装置の概略平面図である。
【図3】測定部の縦断背面図である。
【図4】測定光を処理するためのブロック図である。
【図5】照射手段の光の領域を示す説明図である。
【符号の説明】
1 ベルトコンベア(搬送手段)
2 光電装置 3 測定部
4 ロータリエンコーダ
5 投光部 6 受光部
7,8 ベルト 7A,8A 板状体
7a,7b,8a,8b 板状片
9 遮光ブラシ 10 照射手段
10A 集光領域光 10B 拡散領域光
11 受光手段 12 分光装置
13 品質判定手段 14 判定出力手段
15 オプティカルファイバー
16 反射手段 16A 拡散反射光
17 遮光板 H 照射角
M 青果物
[0001]
BACKGROUND OF THE INVENTION
The present invention is particularly useful for non-destructive measurement of fruits and vegetables such as sugar content, acidity, water content, freshness, etc. of fruits and vegetables such as sweet summer, mandarin orange, yam, strawberry, none, apples, and melons. The present invention relates to an internal quality measuring device and an internal quality measuring method, and more particularly to an internal quality measuring device for fruits and vegetables capable of determining quality with high accuracy and high speed.
[0002]
[Prior art]
As an apparatus for measuring the internal quality of fruits and vegetables, for example, a single unit disposed on one side in the horizontal direction of the fruits and vegetables carried and transported by a belt conveyor having a flat belt, on one side in the transport width direction (left and right direction) of the belt conveyor. Measurement light (condensed area light) is emitted from one lamp (irradiation means), and the fruits and vegetables are transmitted by the light receiving means disposed on the opposite side of the lamp, that is, on the other side of the conveyor width direction (left and right direction) of the belt conveyor. In general, an internal quality measurement is performed by a linear light-receiving / receiving device that receives the measured light.
In order to obtain the reference light in the apparatus, for example, the light amount of the condensed region light, which is strong light from the lamp (irradiation means) in a state where the fruits and vegetables are not located at the measurement position, is supplied to the ND filter. The light is received without being saturated by attenuation by switching, or by inserting and inserting a standard to the measurement position.
However, in the case of measuring the sugar content, acidity, etc. of the fruits and vegetables by detecting the transmitted light with the light receiving means positioned opposite to each other in the horizontal direction, the fruits and vegetables having a large size, a thick epidermis or a high density of the pulp In the case of fruits and vegetables with a large attenuation of light, the ratio of the reflected light such as reflected light reflected on the measurement surface of the fruits and the transmitted light becomes small, and this reflected light reduces the accuracy of the internal quality measurement of the fruits and vegetables. The biggest inconvenience occurs.
Therefore, in order to eliminate the above inconvenience, by arranging a plurality of lamps (irradiation means) so as to surround the fruits and vegetables, it is possible to increase the amount of irradiation light to the fruits and vegetables and to eliminate the wraparound light. In many cases, an internal quality measuring device configured in a light emitting / receiving orthogonal type in which the irradiation direction of irradiation light and the light receiving direction of the light receiving means are orthogonal to each other is used.
In the light emitting / receiving orthogonal type internal quality measuring apparatus, it is necessary to periodically move the standard body to the fruit transport path in order to obtain the reference light. And, since the standard body must be moved at high speed and at a predetermined timing, the configuration of the entire apparatus becomes complicated, and there is a disadvantage incurring high costs, and the timing is shifted for some reason. , Fruits and vegetables will collide in the measuring enclosure. In addition, since the inertial force is generally large, it cannot be stopped instantaneously when the collision occurs. For this reason, it led to the damage accident of an apparatus, received a lot of damage, and there was room for improvement. By the way, by using a packet-type continuous conveyor that can set fruits and vegetables and standard bodies in packets and transport them at a predetermined interval, the inconvenience due to the timing deviation can be eliminated. Since a standard is set in a specific packet among a large number of packets that circulate, the fruits and vegetables cannot be set in that particular packet. Therefore, the operation of the operator who is set manually is hindered, and the work efficiency is lowered and the mental health is deteriorated. In addition, fruit juice or the like tends to adhere to the packet for setting the fruits and vegetables, and dust adheres to the attached fruit juice, which causes troubles such as adhesion of the dust to the standard body and lowering detection accuracy. Sometimes. In addition, in the orthogonal light quality measuring device, it is conceivable to guide the irradiation light from the irradiation means to the light receiving means by an optical fiber or the like, but not only the optical coupling part requires high accuracy but also the irradiation means. Is a high temperature such as a halogen lamp, the fiber and the irradiation means cannot be directly connected. Therefore, since the fiber light receiving surface is small, measurement errors due to adhesion of dust and the like are large, and it is expensive to solve them, especially when it is composed of many halogen lamps. It's not feasible.
If you explain the cause of the inconvenience using the case of measuring the internal quality by performing spectroscopic analysis,
The equation of absorbance that is the basis of the spectroscopic analysis is that the intensity of light from a light source that is an irradiation means is I 0 (λ), the intensity of light that has passed through fruits and vegetables is It (λ), and k (λ) = c · ε. Then
The absorbance is represented by log (It (λ) / I 0 (λ)) = − d · k (λ) (3).
However, d = optical path length, c = concentration, ε = intensity of absorption at a specific wavelength (molar absorption coefficient), and λ = wavelength.
That is, if the absorbance itself is to be obtained, if α is the attenuation of the reference light, α · I 0 (λ) = reference light, and the faithful optical path irradiated to the fruits and vegetables and the necessary known attenuation A filter with a flat wavelength characteristic is required. In this sense, naturally, the light incident on the light receiving means as the reference light must be the condensing region light.
Therefore, in order to obtain the reference light in general concept, the gap between the fruits and vegetables to be conveyed is sewn and the ND filter is switched in the light projection / reception linear type, or the standard body is inserted / removed, or in the light projection / reception orthogonal type Since almost no light enters the light receiving portion due to the light shielding effect (action) of the transport system, the ND filter cannot be used, and a configuration is adopted in which the standard is inserted / removed at the measurement position. In either case, the reference light is obtained in accordance with the formula (3) in which the light source and the condensing area light are transmitted through the standard body.
The standard body used for the light emitting / receiving orthogonal type is a material (material) having an appropriate value such as Teflon, ceramic, etc. that has an appropriate value, attenuation, and wavelength characteristics that does not saturate the light receiving sensor and the electric amplifier. I use it.
[0003]
[Problems to be solved by the invention]
In view of the above situation, the present invention intends to solve the problem in that the internal quality of fruits and vegetables can be measured accurately and efficiently while simplifying the configuration.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problem, the fruit and vegetables internal quality measuring device according to the present invention comprises a reflecting means at a position facing the light receiving part of the light receiving means with reference to the measurement position of the fruit or vegetable to be measured, and the light receiving part An irradiating means for irradiating measurement light from a direction substantially perpendicular to the light receiving axis is arranged, the fruits and vegetables are conveyed to the measurement position, and the measurement light from the irradiating means is prevented from entering the light receiving unit. The light receiving unit is provided at a position substantially orthogonal to the irradiation axis of the irradiation unit provided with a conveying unit including a light blocking unit for performing the measurement light transmitted through the condensed light from the irradiation unit to the fruits and vegetables , The internal quality is measured, the fruit and vegetables are not positioned at the measurement position, and the adjacent fruit and vegetables are irradiated with the diffusion region light from the irradiation means, and the irregularly reflected light reaches the reflection means. Measured In a state that affects areas outside of, it is characterized in that reads the light incident on the light receiving portion by reflecting diffused region light of the irradiation unit by the reflecting means as a referral Reference light.
Even if the fruits and vegetables are the same type, the attenuation rate (transmittance) due to d, that is, the optical path length, varies greatly (about two orders of magnitude) due to differences in size, skin, density, and the like. An important point in measuring the internal properties of fruits and vegetables is that if de · ke (λ) is the effective absorbance, the effective optical path length de unrelated to the internal properties (internal quality) such as sugar content and acidity is canceled.
Assuming that λ 0 is a wavelength that shows a low correlation with the internal properties,
de · ke (λ) / de · ke (λ 0 )
De is deleted by performing the following operation. In general, first, the dark current data in the dark state of the measurement system is subtracted from the measured object data and the reference data, and the difference is obtained by performing an arithmetic process such as a second derivative to obtain an offset and a gradient. As a result, the difference between the wavelength having a correlation with the sugar content, the acidity, and the like and the surrounding wavelength is obtained, and the internal property is calculated by statistical processing such as multiple regression and P / L / S.
As an expression for internal properties in statistical processing,
a 1 · de · ke (λ 1 ) + a 2 · de · ke (λ 2 ) ...
-B 1 · de · ke (λ 01 ) -b 2 · de · ke (λ 02 ) ... + c
The above-mentioned λ 1 and λ 2 are wavelengths showing a high correlation with internal properties, λ 01 and λ 02 are wavelengths showing a low correlation with internal properties, and a 1 , b 1 and c are approximate. Coefficients and constants.
From the above equation, the effective optical path length de is approximately canceled by the term λ 0 .
From the above, it is meant that the reference light need not be absolute and may be a constant. In reality, it is possible to measure the internal quality with high accuracy by solving the problem that the wavelength characteristics change due to optical aging due to deterioration of the light source and dust adhering to the light receiving surface of the light receiving means. .
Therefore, by adopting a configuration in which the light receiving means receives the diffusion region light with a small amount of light (which is weak light) that does not saturate, it is possible to eliminate the need for a standard body required in the light emitting / receiving orthogonal type. In addition, the diffused region light reflecting the deterioration of the irradiation means is reflected by the reflection means to reach the light receiving means, thereby obtaining the reference light reflecting the dirt on the light receiving surface of the light receiving means. Can do. In addition, the measurement light that has passed through the fruits and vegetables is read by the light receiving unit from a direction substantially orthogonal to the irradiating means, so that the reflected light such as reflected light reflected on the surface of the fruits and vegetables does not reach the light receiving unit.
[0005]
By providing means for changing and adjusting the amount of reflected light taken into the light receiving unit from the reflecting means, the reflected light is reflected by the reflecting means in accordance with the amount of light emitted from the irradiating means at the time of initial installation or replacement of the irradiating means. It is possible to quickly adjust the amount of diffusion region light to the light receiving means to an optimum amount.
[0006]
The irradiating means is arranged so as to irradiate the fruits and vegetables from the left and right direction perpendicular to the conveying direction of the conveying means, and is incident downward from the gap formed in the middle of the left and right direction perpendicular to the conveying direction of the conveying means. By arranging the light receiving means so as to receive the measured light and disposing the reflecting means directly above the light receiving means, not only the light emitted from the irradiation means can be shielded by the conveying means. The reflecting means can be arranged using a wide upper space.
[0007]
By configuring the irradiation direction of the irradiating means with respect to the fruits and vegetables to be adjustable or adjusting the vertical height of the irradiating means with respect to the fruits and vegetables, the irradiation direction or the irradiation height can be optimally adjusted according to the size of the fruits or vegetables. Can be height.
[0008]
By providing a light shielding means for limiting the irradiation width in the transport direction of the diffusion region light of the irradiation means, the interval between adjacent fruits and vegetables in the transport direction (interval for obtaining reference light) is reduced. Can do.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an apparatus for measuring the internal quality (internal properties) of fruits and vegetables of the present invention. This measuring apparatus includes a belt conveyor 1 as a conveying means for conveying fruits and vegetables M as an object to be measured, a photoelectric device 2 for detecting the presence or absence of the fruits and vegetables M conveyed by the belt conveyor 1, and the photoelectric device. 2 is provided with a light emitting / receiving orthogonal measuring unit 3 for measuring the internal quality of the fruits and vegetables M having passed through 2, and a rotary encoder 4 for calculating the conveying speed of the belt conveyor 1 and the like. The specific configuration of the fruit and vegetables internal quality measuring device is not limited to that shown in the figure, and can be freely changed.
[0010]
The photoelectric device 2 includes a light projecting unit 5 disposed on one side of the left and right sides of the belt conveyor 1 and a direction perpendicular to the conveying direction of the belt conveyor 1 from the light projecting unit 5 (may be a substantially orthogonal direction). That is, it comprises a light receiving unit 6 that receives light irradiated in the conveyance width direction, and outputs binarized data depending on the presence or absence of fruits and vegetables on the optical axis of the light projecting unit 5, and this data and the belt conveyor 1 From the number of pulses of the rotary encoder 4 synchronized with the conveyance, the position and size (size) of the fruits and vegetables and the gap between the fruits and vegetables adjacent in the conveyance direction can be measured.
[0011]
The belt conveyor 1 is a pair of left and right endless belts 7 and 8 that are driven and rotated by the power of an electric motor or the like, and stands on the upper surface of each of the belts 7 and 8 to place and support fruits and vegetables. It is composed of two left and right rows of plate-like bodies 7A and 8A that also serve as a light shielding plate for shielding the irradiation light from the irradiation means 10.
Of the plate-like bodies 7A and 8A, the plate-like body 7A located on the outer side in the transport width direction has a vertical (vertical) dimension set longer than the plate-like body 8A located on the inner side in the transport width direction. But you can. The plate-like body 7A or 8A is formed by alternately positioning the plate-like pieces 7a or 8a located on the outer side in the conveyance width direction and the plate-like pieces 7b or 8b located on the inner side in the conveyance width direction. Is composed. The plate-like pieces 7a, 7b, 8a, 8b can be placed and transported without damaging the fruits and vegetables by making them all from synthetic resin such as urethane or rubber. Further, of the plate-like bodies 7A and 8A, the plate-like body 8A located on the inner side in the conveyance width direction is provided in an inclined posture located on the outer side in the conveyance width direction toward the upper end side, and the outer surface of the fruits and vegetables and the upper end of the plate-like body 8A The contact can be made without generating a gap between them. In the figure, two rows of plate-like bodies 7B and 8B are provided on one belt, but one row (or one) may be provided, or three or more rows (three pieces) It can also be carried out by providing a plate-like body of the above. Moreover, it may be carried out by providing a packet or the like instead of the plate-like body, or it may be constituted only by a flat belt having nothing to place and support these fruits and vegetables. In addition, a light receiving means 11 described later can be disposed immediately below a gap S formed by arranging the pair of belts 7 and 8 at a predetermined interval. Then, by arranging the light-shielding brushes 9 and 9 on both sides of the light receiving means 11 in the belt conveying direction, the irregularly reflected light entering the light receiving portion of the light receiving means 11 from the gap S can be blocked without hindering the conveyance of fruits and vegetables. However, the configuration may be changed to other configurations such as a packet type that is advantageous in light shielding effect and is used by being fixed to the transport device.
[0012]
As shown in FIGS. 1 to 3, the measuring unit 3 irradiates the fruits and vegetables that have been placed and transported to the irradiation position by the irradiation means 10 for irradiating the fruits and vegetables with measurement light and the belt conveyor 1. The light receiving means 11 for receiving the measurement light incident (moved) downward from the gap S formed on the belt conveyor 1 among the transmitted measurement light, and the light receiving means 11 as shown in FIG. The spectroscopic device 12 including a spectroscope for determining the spectrum by dispersing the measurement light received by the component wavelength, and performing arithmetic processing based on the result from the spectroscopic device 12, sugar content, acidity, water content, It comprises a quality judgment means 13 for judging quality such as freshness and a judgment output means 14 for outputting a judgment result from the quality judgment means 13. Reference numeral 15 shown in FIG. 1 denotes an optical fiber for guiding transmitted light received by the light receiving means 11 and reference light described later to the spectroscopic device 12. Here, by arranging the light receiving means 11 below the belt conveyor 1, the belt conveyor 1 can not only be used to shield the sneak light from the irradiation means 10, but also compared to the case where it is arranged above. Although there is an advantage that the light receiving distance from the fruits and vegetables can be always kept at a substantially constant distance, the light receiving means 11 can be arranged above the belt conveyor 1 for implementation. Since the light receiving means 11 is arranged directly below the transport route of the fruits and vegetables to be transported, rotten fruits and juices of broken fruits and vegetables fall on the light receiving surface of the light receiving means 11, and dust or the like adheres to them. Therefore, for example, by providing automatic cleaning means such as periodically wiping the light receiving surface, it is possible to eliminate the need for cleaning.
[0013]
As shown in FIGS. 2 and 3, the irradiating means 10 includes a projector composed of a pair of left and right reflecting mirror type halogen lamps disposed on both sides of the belt conveyor 1 in the transport width direction. As shown, the condensed region light 10 </ b> A is irradiated to the fruits and vegetables from the left and right sides, and the light transmitted through the fruits and vegetables is received by the light receiving means 11. One or two irradiation means 10 may be provided, or three or more irradiation means 10 may be provided to ensure illuminance. When a large number of the irradiating means 10 are provided, the condensed area light transmitted through the fruits and vegetables can be received by the light receiving means 11, and the reflecting means 16 described later can receive the diffused area light. The light receiving means 11 or the reflecting means 16 is disposed so as to surround it so as not to disturb the conveyance. Further, the irradiation direction or the irradiation height can be adjusted according to the size of the fruits and vegetables by configuring the irradiation direction of the irradiation means 10 with respect to the fruits and vegetables to be adjustable. It is desirable to have an optimal direction or height. The change adjustment can be performed manually or using an electric force. When using the electric power, for example, the irradiation direction or the irradiation height may be automatically changed according to the size (height) of the fruits and vegetables.
Further, as shown in FIGS. 2 and 3, light shielding plates 17 are provided as light shielding means for limiting the irradiation angle H of the diffusion region light of the irradiation means 10 on both sides of the irradiation means 10 in the transport direction. . By providing the light shielding plates 17 and 17 in this manner, there is an advantage that the interval between the fruits and vegetables M and M adjacent in the transport direction can be narrowed. When the reference light is read in a state where the fruits and vegetables M exist within the irradiation angle H, the reflected light reflected on the surface of the fruits and vegetables M enters the light receiving means 11 directly or via the reflecting means 16 and causes an error in measurement accuracy. Therefore, it is necessary to consider the interval between the fruits and vegetables M and M so that the fruits and vegetables M do not exist within the irradiation angle H. For this reason, the reading of the reference light and the reading of the transmitted light of the fruits and vegetables M can be efficiently performed by narrowing the irradiation angle H using the light shielding plates 17 and 17 as described above. In addition to the fixed type, the light shielding plates 17 and 17 may be of a type that can change and adjust the angle, or that that is slidable so that the fruit and vegetables side tip position of the light shielding plates 17 and 17 can be changed. Note that the angle change of the light shielding plates 17 and 17 and the sliding movement are performed using a manual force or an electric force.
[0014]
Reflecting means 16 for receiving the diffused region light 10B from the irradiating means 10 and causing the diffuse reflected light 16A to enter the light receiving means 11 is provided at an upper position opposite to the light receiving means 11.
The reflecting means 16 is preferably provided with a height adjusting mechanism (not shown) capable of adjusting the height while being set to a height at which the fruits and vegetables having the maximum diameter can sufficiently pass. By adjusting the height of the height adjusting mechanism using a manual force or an electric force, it is possible to quickly adjust the level of the amount of light that is reflected when the irradiation unit 10 is initially installed or when the irradiation unit 10 is replaced. . By adjusting the height of the reflecting means 16, it is possible to configure a means for changing and adjusting the amount of reflected light taken from the reflecting means 16 into the light receiving unit of the light receiving means 11. However, the reflection area of the reflecting means 16 is changed. It may be a configuration. The reflecting means 16 shown in the figure has a white matte disc of Teflon having a diameter of 60 mm and is installed at a height of 180 mm from the conveyor surface of the belt conveyor 1. In the state where the height is set, if the light quantity of fruits and vegetables that can obtain sufficient illuminance is 10 −5 , the reference light can obtain a strong light quantity of about 10 −3 . As the reflecting surface of the reflecting means 16, milk white glass (opal glass), magnesium oxide coated plate, barium sulfate coated plate, etc. can be used as a material close to the ideal diffusing surface, and the diffused region light from the irradiation means 10 is received. It is also possible to implement the surface processing for condensing the means 11 or to configure the reflecting means 16 having a necessary shape suitable for the apparatus, which is not affected by disturbance light. Since the reflecting surface of the reflecting means 16 faces downward, there is little influence of dirt on the reflecting surface, and regular cleaning is sufficient. When the reflected light is used as reference light, the wavelength data of the reference light is checked for each gap between the transported fruits and vegetables, so that the deterioration of the light source and the optical system are affected to the extent that the measurement accuracy is affected. There is an advantage that it is possible to know in advance by monitoring changes in wavelength characteristics such as dirt.
[0015]
The case of measuring the internal quality of fruits and vegetables using the internal quality measuring device for fruits and vegetables having the above-described structure will be described. The automatic supply device for fruits and vegetables not shown on the conveying start end side of the belt conveyor 1 automatically or manually. Supply fruits and vegetables and transport them continuously. Then, the conveyed fruits and vegetables are detected by the photoelectric device 2, and the timing and size at which the fruits and vegetables reach the light receiving means 11 and the distance between the fruits and vegetables that are close to each other in the conveyance direction are measured. When the fruits and vegetables reach the measuring unit 3 and the light receiving means 11 is in an optimum reading range where there is no wraparound light of the fruits and vegetables, the light receiving means 11 receives the transmitted light and measures the internal quality.
In the measurement of the reference light, the diffused region light is irradiated to the adjacent object to be measured (fruits and vegetables), and the irregularly reflected light reaches the reflecting means 16 and there is a region that affects the measurement. In this apparatus, the distance from the optical axis of the photoelectric device 2 to the line of the region in which the photoelectric device 2 is affected is set to 100 mm (position of 200 mm from the light receiving means 11), and this is the time during which the reference light can be read. The maximum speed is 100 seconds at a conveyance speed of 60 m / min. Since the illuminance obtained from the reflecting surface of the reflecting means 16 is larger than the transmitted light of fruits and vegetables, the reference light can be read even in a short time of 10 milliseconds. Further, here, a device that can be adjusted to an optimum wavelength characteristic amplitude in the gain setting of the amplifier of the spectroscopic device 12 is used. The fruits and vegetables that are continuously conveyed to the conveying terminal by the belt conveyor 1 are automatically or manually selected using another sorting device based on the measured values.
[0016]
【The invention's effect】
According to the first aspect of the present invention, the diffused region light reflected by the deterioration of the irradiating means is reflected by the reflecting means so as to reach the light receiving means as the reference light. The standard can be made unnecessary, so the structure can be simplified, and the internal quality of fruits and vegetables such as sugar content, acidity, moisture content, freshness, etc. is non-destructive and quick. An apparatus for measuring the internal quality of fruits and vegetables that can be measured with high accuracy can be provided. Moreover, by receiving the measurement light that has passed through the fruits and vegetables from a direction substantially orthogonal to the irradiation means, sneak light such as reflected light reflected on the surface of the fruits and vegetables does not reach the light receiving means, and the detection accuracy is further improved. be able to.
[0017]
According to the second aspect, by providing means for changing and adjusting the amount of reflected light taken from the reflecting means into the light receiving unit, the reflected light is reflected in accordance with the amount of irradiation light from the irradiating means at the time of initial installation or replacement of the irradiating means. It is possible to quickly adjust the light amount of the diffusion region light reflected by the means to the light receiving means to an optimum amount, which is advantageous in use.
[0018]
According to the third aspect, the irradiation means is arranged so as to irradiate the fruits and vegetables from the conveyance width direction of the conveyance means, and receives the measurement light that has been directed downward from the gap formed in the middle of the conveyance width direction of the conveyance means. By arranging the light receiving means and arranging the reflecting means directly above the light receiving means, it is possible to block the irradiation light from the irradiation means by the transport means, and simplify the configuration accordingly. In addition to the above, it is possible to accurately arrange the reflecting means using a wide space above.
[0019]
According to the fourth aspect of the present invention, the irradiation direction or the irradiation height according to the size of the fruits and vegetables can be adjusted by changing the irradiation direction of the irradiation means for the fruits and vegetables or by changing and adjusting the vertical height of the irradiation means for the fruits and vegetables. Can be efficiently irradiated to the fruits and vegetables, and the measurement accuracy can be improved regardless of the size of the fruits and vegetables.
[0020]
According to claim 5, by providing the light shielding means for limiting the irradiation width in the transport direction of the diffusion region light of the irradiation means, the interval between the fruits and vegetables adjacent in the transport direction (for obtaining the reference light) The distance between the fruits and vegetables to be conveyed can be narrowed to efficiently measure the internal quality of the fruits and vegetables as well as the reference light.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an internal quality measuring apparatus for fruits and vegetables.
FIG. 2 is a schematic plan view of an apparatus for measuring the internal quality of fruits and vegetables.
FIG. 3 is a longitudinal rear view of a measurement unit.
FIG. 4 is a block diagram for processing measurement light.
FIG. 5 is an explanatory diagram showing a light region of an irradiation unit.
[Explanation of symbols]
1 Belt conveyor (conveying means)
2 Photoelectric device 3 Measuring unit 4 Rotary encoder 5 Light projecting unit 6 Light receiving unit
7,8 Belt 7A, 8A Plate
7a, 7b, 8a, 8b Plate-shaped piece 9 Shading brush 10 Irradiation means
10A Focusing area light 10B Diffusing area light
11 Light receiving means 12 Spectrometer
13 Quality judgment means 14 Judgment output means
15 Optical fiber
16 Reflecting means 16A Diffuse reflected light
17 Shading plate H Irradiation angle M

Claims (5)

被測定物となる青果物の測定位置を基準として、受光手段の受光部に対向した位置に反射手段を備え、前記受光部の受光軸にほぼ直交する方向から測定光を照射するための照射手段を配置し、前記測定位置まで青果物を搬送し、かつ、前記照射手段からの測定光が前記受光部へ入射することを阻止するための遮光手段を備えた搬送手段を設け、前記照射手段からの集光領域光が青果物に照射され透過した測定光を該照射手段の照射軸に対してほぼ直交する位置にある前記受光部にて読み込んで内部品質測定を行い、青果物が前記測定位置に位置していない状態で、かつ、隣接する青果物に前記照射手段からの拡散領域光が照射され、その乱反射光が前記反射手段に到達して測定に影響を及ぼす領域外である状態で前記反射手段にて前記照射手段の拡散領域光を反射させて前記受光部に入射した光をリファーレンス光として読み込みを行うことを特徴とする青果物の内部品質測定装置。An irradiating means for irradiating the measuring light from a direction substantially perpendicular to the light receiving axis of the light receiving section is provided with a reflecting means at a position opposed to the light receiving section of the light receiving means on the basis of the measurement position of the fruits and vegetables to be measured A transporting means provided with a light shielding means for disposing and transporting the fruits and vegetables to the measurement position and preventing the measurement light from the irradiation means from entering the light receiving section; The measurement light transmitted through the light region light irradiated to the fruits and vegetables is read by the light receiving unit at a position substantially orthogonal to the irradiation axis of the irradiating means to measure the internal quality, and the fruits and vegetables are located at the measurement position. in the absence, and the irradiated diffusion region light from the irradiation means to the adjacent fresh produce, in a state that irregularly reflected light is affected areas outside the measurement reaches the reflecting means at the reflecting means Irradiation Internal quality measuring apparatus fruit or vegetable, characterized in that to read the light incident on the light receiving portion by reflecting stage of the diffusion region light as referral Reference light. 前記反射手段から前記受光部へ取り込む反射光の光量を変更調節する手段を設けてなる請求項1記載の青果物の内部品質測定装置。2. The fruit and vegetables internal quality measuring device according to claim 1, further comprising means for changing and adjusting the amount of reflected light taken into said light receiving section from said reflecting means. 前記照射手段を青果物に対して前記搬送手段の搬送方向と直交する左右方向から照射するように配置し、前記搬送手段の搬送方向と直交する左右方向ほぼ中間部に形成の隙間から下方へ入射してきた測定光を受光するように前記受光手段を配置し、前記反射手段を前記受光手段の直上方に配置してなる請求項1記載の青果物の内部品質測定装置。The irradiating means is arranged so as to irradiate the fruits and vegetables from the left and right direction perpendicular to the conveying direction of the conveying means, and is incident downward from the gap formed in the middle of the left and right direction perpendicular to the conveying direction of the conveying means. 2. The fruit and vegetables internal quality measuring apparatus according to claim 1, wherein the light receiving means is disposed so as to receive the measured light, and the reflecting means is disposed directly above the light receiving means. 青果物に対する前記照射手段の照射向きを変更調節自在又は青果物に対する前記照射手段の上下高さを変更調節自在に構成してなる請求項1又は3記載の青果物の内部品質測定装置。4. The fruit and vegetables internal quality measuring device according to claim 1 or 3, wherein the irradiation direction of the irradiating means with respect to the fruits and vegetables can be changed and adjusted, or the vertical height of the irradiating means with respect to the fruits and vegetables can be changed and adjusted. 前記照射手段の拡散領域光のうちの搬送方向における照射幅を制限するための遮光手段を設けてなる請求項3記載の青果物の内部品質測定装置。4. The fruit and vegetables internal quality measuring apparatus according to claim 3, further comprising a light shielding means for limiting an irradiation width in a transport direction of the diffusion region light of the irradiation means.
JP2000385313A 2000-12-19 2000-12-19 Equipment for measuring the internal quality of fruits and vegetables Expired - Fee Related JP4713731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385313A JP4713731B2 (en) 2000-12-19 2000-12-19 Equipment for measuring the internal quality of fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385313A JP4713731B2 (en) 2000-12-19 2000-12-19 Equipment for measuring the internal quality of fruits and vegetables

Publications (2)

Publication Number Publication Date
JP2002181701A JP2002181701A (en) 2002-06-26
JP4713731B2 true JP4713731B2 (en) 2011-06-29

Family

ID=18852600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385313A Expired - Fee Related JP4713731B2 (en) 2000-12-19 2000-12-19 Equipment for measuring the internal quality of fruits and vegetables

Country Status (1)

Country Link
JP (1) JP4713731B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798518B1 (en) 2002-12-24 2008-01-28 가부시끼 가이샤 구보다 Fruit-vegetable quality evaluation device
JP2006267037A (en) * 2005-03-25 2006-10-05 Mitsui Mining & Smelting Co Ltd Internal quality evaluating apparatus and internal quality evaluation method of fresh product
JP4616747B2 (en) * 2005-10-06 2011-01-19 ヤンマー株式会社 Reference body for calibration of light emitting / receiving means
JP2008002903A (en) * 2006-06-21 2008-01-10 Mitsui Mining & Smelting Co Ltd Internal quality evaluation apparatus of vegetables and fruits
CN109564152A (en) * 2016-07-25 2019-04-02 株式会社岛津制作所 Photometer
JP2020165779A (en) * 2019-03-29 2020-10-08 三井金属計測機工株式会社 Device and method for inspecting fruits and vegetables, fruit and vegetable inspection device with freshness preservation feature, and fruit and vegetable inspection method for preserving freshness

Also Published As

Publication number Publication date
JP2002181701A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR100806555B1 (en) Measurement apparatus for measuring internal quality of object and method of controlling the same
JP3746453B2 (en) Double-sided multi-lamp online internal quality inspection system
US6520311B1 (en) Multi-row type online internal quality inspection device
JP2000199743A (en) Measuring apparatus for internal quality of object
JP2003329583A (en) Method and apparatus for inspecting internal quality of fruit and vegetable
JP4713731B2 (en) Equipment for measuring the internal quality of fruits and vegetables
JP3056037B2 (en) Optical measurement method and device
JP2006267037A (en) Internal quality evaluating apparatus and internal quality evaluation method of fresh product
JP2007232733A (en) Object internal quality measuring device
JP2007069061A (en) Sorting system of vegetables and fruits
EP0843974B1 (en) Method and device for inspecting without direct contact the ends of cigarettes, or similar
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JPH1015499A (en) Inspection apparatus for fruits
JP4192012B2 (en) Quality evaluation equipment and quality measurement equipment
JPH1082739A (en) Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2007232743A (en) Object internal quality measuring device
JP2005043315A (en) Nondestructive quality determination apparatus for agricultural product
JP4117220B2 (en) Agricultural product placement table of agricultural product nondestructive quality judgment device
JP3576105B2 (en) Internal quality measurement device
JP3923018B2 (en) Fruit and vegetable quality evaluation equipment
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP4362423B2 (en) Spectroscopic analyzer
JP4386620B2 (en) Fruit and vegetable evaluation apparatus and fruit and vegetable evaluation method
JP2006047217A (en) Device for evaluating internal quality
JP2007232742A (en) Object internal quality measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4713731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees