JP3923018B2 - Fruit and vegetable quality evaluation equipment - Google Patents

Fruit and vegetable quality evaluation equipment Download PDF

Info

Publication number
JP3923018B2
JP3923018B2 JP2003011091A JP2003011091A JP3923018B2 JP 3923018 B2 JP3923018 B2 JP 3923018B2 JP 2003011091 A JP2003011091 A JP 2003011091A JP 2003011091 A JP2003011091 A JP 2003011091A JP 3923018 B2 JP3923018 B2 JP 3923018B2
Authority
JP
Japan
Prior art keywords
light
measured
measurement
light receiving
quality evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011091A
Other languages
Japanese (ja)
Other versions
JP2004226102A (en
Inventor
真一 河端
憲一 石見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003011091A priority Critical patent/JP3923018B2/en
Priority to US10/540,742 priority patent/US7316322B2/en
Priority to KR1020057011826A priority patent/KR100798518B1/en
Priority to AU2003296077A priority patent/AU2003296077B2/en
Priority to PCT/JP2003/016536 priority patent/WO2004059300A1/en
Priority to CN2003801076012A priority patent/CN1732379B/en
Publication of JP2004226102A publication Critical patent/JP2004226102A/en
Application granted granted Critical
Publication of JP3923018B2 publication Critical patent/JP3923018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、計測箇所に位置する被計測物としての果菜類に対して光を投射する投光部と、前記被計測物からの透過光又は反射光を電荷蓄積型の受光センサにて受光して品質評価用の受光情報を得る受光部と、前記被計測物を前記計測箇所を経由して搬送する搬送手段と、前記受光部の前記受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段とを備えて構成されている果菜類の品質評価装置に関する。
【0002】
【従来の技術】
上記果菜類の品質評価装置は、被計測物として例えば蜜柑や林檎等の果菜類における品質、例えば糖度や酸度等の内部品質を非破壊状態で計測するためのものであるが、このような品質評価装置として、従来では、次のような構成のものがあった。
【0003】
すなわち、前記搬送手段にて搬送される被計測物が前記計測箇所よりも少し搬送方向上手側に位置する箇所に至ると、具体的には、投光部から投射されて受光部に向かう光が通過する光通過箇所に被計測物の搬送方向先頭位置が到達すると、受光センサに蓄積された電荷を放出させる電荷放出動作を2回繰り返して行うようになっており、その電荷放出動作を行った後において被計測物が前記計測箇所に至ると、計測用設定時間としての電荷蓄積時間が経過するまで受光センサに電荷を蓄積させる計測用の電荷蓄積処理を実行して、その蓄積された電荷を取り出して品質評価用の受光情報として用いて被計測物の内部品質情報を求める構成となっている。そして、被計測物の搬送方向先頭位置が前記光通過箇所に到達していない状態においては、受光センサに対して外部からの光が入らないようにシャッター機構を閉じ状態に維持しながら、受光センサが電荷蓄積動作を継続して行う構成となっている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002―107294号公報(第5−6頁、図5、図6)
【0005】
【発明が解決しようとする課題】
上記従来構成は、前記搬送手段にて搬送される被計測物が前記計測箇所よりも少し搬送方向上手側に位置する箇所に至ると、計測用の電荷蓄積処理に先立って電荷の放出動作を実行することにより、受光センサに残留電荷が極力残らないようにしたものである。説明を加えると、受光センサは被計測物からの透過光又は反射光を受光して電荷を蓄積する構成であるが、蓄積された電荷を取り出す処理を行った後においても蓄積された電荷の一部が受光センサ内部に残留することがある。このように残留電荷が存在している状態で新たに被計測物からの透過光又は反射光を受光すると、その受光情報に誤差が発生して、受光センサの受光情報に基づく被計測物の内部品質情報にも誤差が生じることになるから、計測用の電荷蓄積処理に先立って電荷の放出動作を実行することにより、このような残留電荷が極力残らないようにしているのである。
【0006】
しかし、上記従来構成では、搬送手段によって搬送される複数の被計測物が短い時間間隔で計測箇所に到達する状態が継続しているときには、上記したような残留電荷が極力残らないようにして計測処理を行うことができるが、例えば、搬送手段により被計測物が搬送されてくるタイミングが不定期になっており、被計測物が計測箇所に搬送されてくるまでの時間間隔が長くなるような場合があると、被計測物の搬送方向先頭位置が前記光通過箇所に到達していない間は受光センサが電荷蓄積動作を継続して行う構成となっていることから蓄積される電荷が大きくなるおそれがある。
【0007】
説明を加えると、上述した如く、被計測物の搬送方向先頭位置が前記光通過箇所に到達していない間においては、シャッター機構を閉じ状態にして受光センサに対して外部からの光が入らないようにしているが、このような無光状態においても受光センサにおいては暗電流が発生するものであり、このような暗電流が長い時間にわたって蓄積されると蓄積電荷が大きくなりサチレーションを起こすおそれもある。
【0008】
しかも、上記従来構成においては、被計測物の搬送方向先頭位置が前記光通過箇所に到達したときから計測用の電荷蓄積処理を実行するまでの短い時間の間に電荷の放出動作を実行する必要があるが、上記したようにサチレーションを起こしていると電荷を充分に放出させることが難しく残留電荷が残る場合がある。そうすると、そのような状況において、受光センサの検出結果に基づいて被計測物の内部品質情報を求めるようにすると内部品質情報に誤差が生じるおそれがあった。
【0009】
本発明はかかる点に着目してなされたものであり、その目的は、受光センサにおける残留電荷を少なくして極力適正な状態で品質評価用の受光情報を得ることにより、被計測物の内部品質情報に誤差が生じることを回避させることが可能となる果菜類の品質評価装置を提供する点にある。
【0010】
【課題を解決するための手段】
請求項1に記載の果菜類の品質評価装置は、計測箇所に位置する被計測物としての果菜類に対して光を投射する投光部と、前記被計測物からの透過光又は反射光を電荷蓄積型の受光センサにて受光して品質評価用の受光情報を得る受光部と、前記被計測物を前記計測箇所を経由して搬送する搬送手段と、前記受光部の前記受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段とを備えて構成されているものであって、前記制御手段が、被計測物が前記計測箇所に存在しないとき及び被計測物が前記計測箇所に存在しても前記品質評価用の受光情報の取得が終了しているときは、蓄電開始タイミングから蓄電用設定時間が経過するまで前記受光センサに電荷を蓄積させ、その後、放電用設定時間が経過するまで前記受光センサに蓄積された電荷を放出させる電荷蓄積放電処理を繰り返し実行し、且つ、前記搬送手段にて搬送される前記被計測物が前記計測箇所に至ると、そのときから放電用設定時間が経過するまで前記受光センサに蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで前記受光センサに前記品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行するように構成されていることを特徴とする。
【0011】
すなわち、被計測物は搬送手段によって計測箇所を経由する状態で搬送され、計測箇所に位置するときに前記品質評価用の受光情報が取得されて、その受光情報に基づいて被計測物の内部品質情報が求められることになるのであるが、制御手段は、被計測物が計測箇所に存在しないとき及び被計測物が計測箇所に存在しても品質評価用の受光情報の取得が終了しているときは、蓄電開始タイミングから蓄電用設定時間が経過するまで受光センサに電荷を蓄積させ、その後、放電用設定時間が経過するまで受光センサに蓄積された電荷を放出させる電荷蓄積放電処理を繰り返し実行することになる。つまり、前記計測用電荷蓄積処理を実行していないときには常に電荷蓄積放電処理を繰り返し実行することになるから、蓄積された電荷を放出させる動作が所定の時間間隔をあけて繰り返し行われるので、受光センサに蓄積されている電荷を充分に放出させることができ、電荷を放出させる動作が終了した後においては受光センサの内部に電荷が残留するおそれは少ないものになる。
【0012】
そして、制御手段は、搬送手段にて搬送される被計測物が計測箇所に至ると、そのときから放電用設定時間が経過するまで受光センサに蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで受光センサに品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行することになる。この計測用電荷蓄積処理によって蓄積された電荷を品質評価用の受光情報として用いて被計測物の内部品質情報を求めるのである。
【0013】
又、上述したように電荷蓄積放電処理を繰り返し実行しているときには、電荷を放出させる動作が終了した後においては受光センサの内部に電荷が残留するおそれは少ないので、前記計測用電荷蓄積処理において電荷を放出させる動作を実行した後には、受光センサの内部に電荷が残留するおそれは少なく、被計測物からの透過光又は反射光を受光して受光情報を得る場合に、その受光情報に残留電荷に起因した誤差は少ないものになる。
【0014】
従って、受光センサにおける残留電荷を少なくして極力適正な状態で品質評価用の受光情報を得ることにより、被計測物の内部品質情報の誤差を少なくすることが可能となる果菜類の品質評価装置を提供できるに至った。
【0015】
請求項2に記載の果菜類の品質評価装置は、請求項1において、前記被計測物からの透過光又は反射光が前記受光センサにて受光されることを許容する開放状態と受光されることを阻止する遮蔽状態とに切り換え自在な入射状態切換手段が備えられ、前記制御手段が、前記被計測物が前記計測箇所に至ると、前記遮蔽状態から前記開放状態に切り換え、且つ、その開放状態を前記計測用設定時間が経過するまで維持した後に前記遮蔽状態に戻すように前記入射状態切換手段の動作を制御するよう構成されていることを特徴とする。
【0016】
すなわち、搬送手段にて搬送される被計測物が計測箇所に至ると、入射状態切換手段が透過光又は反射光が受光センサにて受光されることを阻止する遮蔽状態から被計測物からの透過光又は反射光が前記受光センサにて受光されることを許容する開放状態に切り換えられるので、被計測物からの透過光又は反射光を受光センサにて受光することが可能な状態となって前記計測用電荷蓄積処理を適切に実行することができる。そして、前記開放状態に切り換えてから計測用設定時間が経過するまでその開放状態を維持した後に遮蔽状態に戻すことになるから、前記計測用電荷蓄積処理を実行していない状態においては、入射状態切換手段は遮蔽状態が維持されることになる。
【0017】
従って、前記計測用電荷蓄積処理を実行する間だけ被計測物からの透過光又は反射光が受光センサにて受光され、前記計測用電荷蓄積処理を適切に実行することが可能となり、しかも、電荷蓄積放電処理を繰り返し実行している間においては、被計測物からの透過光又は反射光が受光センサにて受光されることがないので、受光センサの内部に残留電荷が発生することを防止することができる。
【0018】
請求項3記載の果菜類の品質評価装置は、請求項1又は2において、前記搬送手段が、前記被計測物を受皿上の特定位置に位置させる状態で前記受皿に載置した状態で搬送するように構成され、前記制御手段が、前記受皿の搬送方向の先頭位置が設定位置に到達したことを検出する受皿検出手段を備えて構成され、この受皿検出手段の検出情報に基づいて前記被計測物が前記計測箇所に至ったことを判別するように構成されていることを特徴とする。
【0019】
すなわち、被計測物は受皿上の特定位置に位置させる状態で前記受皿に載置した状態で搬送される。そして、このように受皿に載置した状態で被計測物が搬送される場合に、受皿の搬送方向の先頭位置が設定位置に到達したことを受皿検出手段によって検出するようにして、この受皿検出手段の検出情報に基づいて被計測物が前記計測箇所に至ったことを判別するようにしている。
【0020】
例えば、前記設定位置と前記計測箇所との相対位置関係と、受皿の先頭位置と前記特定位置との間の相対位置関係とを対応付けておくと、受皿検出手段にて受皿の搬送方向の先頭位置が設定位置に到達したことが検出されるに伴って、直ちに被計測物が前記計測箇所に至ったことを判別する構成としたり、又、受皿検出手段にて受皿の搬送方向の先頭位置が設定位置に到達したことが検出されてから、前記計測箇所に搬送されるまでの所要時間が経過した後に被計測物が前記計測箇所に至ったことを判別する構成等がある。
【0021】
このように受皿上での被計測物の載置位置が特定されるので、受皿の先頭位置と被計測物との相対位置関係は被計測物の大きさにかかわらずほぼ一定となる。つまり、被計測物が小さい場合であっても受皿の先頭位置と被計測物との相対位置関係は同じであるから、受皿検出手段により受皿の搬送方向の先頭位置が設定位置に到達したことを検出したときの被計測物の位置は、被計測物の大きさにかかわらず常に同じ相対位置関係になる。従って、受皿検出手段の検出情報に基づいて被計測物が計測箇所に至ったことを判別することが可能となるのであり、しかも、被計測物が小さい場合であっても被計測物が計測箇所に至ったことを適正に判別することが可能となる。
【0022】
請求項4記載の果菜類の品質評価装置は、請求項1又は2において、前記制御手段が、前記搬送手段にて搬送される被計測物の搬送方向の先頭位置が前記計測箇所よりも搬送方向上手側に位置する手前側位置に到達したことを検出する被計測物検出手段と、前記搬送手段による前記被計測物の搬送距離を計測する搬送距離計測手段とを備えて構成され、前記被計測物検出手段の検出情報に基づいて前記被計測物の前記先頭位置が前記手前側位置に到達したことを検出してから前記搬送距離計測手段の検出情報に基づいて前記被計測物が前記計測箇所に至ったことを判別するように構成されていることを特徴とする。
【0023】
すなわち、被計測物の先頭位置が前記手前側位置に到達したことを検出してから、搬送距離計測手段の検出情報に基づいて被計測物が手前側位置から計測箇所にまで搬送されたことが検出されると、被計測物が計測箇所に至ったものと判別するようにしている。説明を加えると、搬送手段にて搬送される被計測物の搬送方向の先頭位置が計測箇所よりも搬送方向上手側に位置する手前側位置に到達したことが被計測物検出手段により検出されると、その時点から以降の被計測物の搬送距離が、手前側位置から計測箇所に至るまでの距離に相当する距離であることが搬送距離計測手段の検出情報に基づいて判別されると、その判別結果に基づいて被計測物が計測箇所に至ったことを判別するようにしているのである。従って、受皿に載置しない状態で搬送される被計測物であっても適切に計測箇所に至ったことを判別することが可能となる。
【0024】
【発明の実施の形態】
【0025】
(第1実施形態)
以下、本発明に係る果菜類の品質評価装置の第1実施形態を図面に基づいて説明する。
本発明に係る果菜類の品質評価装置は、被計測物として例えば蜜柑等の果菜類の品質としての糖度や酸度を計測するための装置であり、計測箇所に位置する被計測物としての果菜類に対して光を投射する投光部と、前記被計測物からの透過光を電荷蓄積型の受光センサにて受光して品質評価用の受光情報を得る受光部と、被計測物を計測箇所を経由して搬送する搬送手段と、受光部の受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段とを備えて構成されている。
【0026】
詳述すると、図1に示すように、品質評価装置は、被計測物Mに光を照射する投光部1と、被計測物Mを透過した光を受光し、その受光した光を計測する受光部2と、各種の制御処理を実行するマイクロコンピュータ利用の制御部3等を備えて構成され、被計測物Mは、搬送手段としての搬送コンベア4により一列で縦列状に載置搬送される構成となっており、本装置による計測箇所を順次、通過していくように構成されている。そして、計測箇所に位置する被計測物Mに対して、投光部1から投射した光が被計測物Mを透過した後に受光部2にて受光される状態で、投光部1と受光部2とが、計測個所の左右両側部に、すなわち、搬送コンベア4の搬送横幅方向の両側部に振り分けて配置される構成となっている。
【0027】
次に、前記投光部1の構成について説明する。
この投光部1は、2個の光源を備えるとともに、その2個の光源からの光を互いに異なる照射用の光軸にて計測箇所に位置する被計測物に照射するように構成されている。又、各光源による2本の照射用の光軸が計測箇所に位置する被計測物の表面部又はその近傍にて交差するように構成されている。
すなわち、図4及び図8に示すように、搬送コンベア4による搬送方向に沿って離間させた2個のハロゲンランプからなる光源5が設けられ、これら2個の光源5の夫々に対応させて次のような光学系が備えられている。つまり、光源5が発光する光を反射させて被計測物Mの表面に焦点を合わせるための集光手段としての凹面形状の光反射板6が備えられ、この光反射板6にて集光される光の焦点位置近くに対応するように位置させて、大きめの絞り孔7aを通過させることで集光された後の光の径方向外方側への広がりを抑制する絞り板7、絞り板7を通過した光を通過させる状態、小さめの絞り孔8aを通して通過させる状態、及び、光を遮断する状態の夫々に切り換え自在な光量調節板8、集光された光源5からの光を並行光に変更させるコリメータレンズ9、並行光に変化した光を反射して屈曲させる反射板10、この反射板10にて反射された光を集光させる集光レンズ11の夫々が1個の光源5に対する光学系として備えられている。前記各光量調節板8は、投光量調整用モータ12によって一体的に揺動操作され、前記各状態に切り換え自在に構成されている。
【0028】
そして、この投光部1は上記したような各部材がケーシング13に内装されてユニット状に組み立てられた構成となっている。又、計測箇所に位置する被計測物に対して斜め下方に向かう状態で光を照射するように、投光部1が斜め姿勢で備えられており、外形寸法が小さい被計測物であっても受光部2に直接光が入らないようにしている。
【0029】
次に、受光部2の構成について説明する。
この受光部2は、図4に示すように、被計測物Mを透過した光を集光する集光レンズ14、並行光に変化した光のうち近赤外域である波長領域680〜990ナノメートル(nm)の範囲の光だけを上向きに反射し、それ以外の波長の光をそのまま通過させるバンドパスミラー15、バンドパスミラー15により上向きに反射された計測対象光を集光させる集光レンズ16、集光レンズ16を通過した光をそのまま通過させて受光センサにて受光されることを許容する開放状態と受光されることを阻止する遮蔽状態とに切り換え自在な入射状態切換手段としてのシャッター機構17、開放状態のシャッター機構17を通過した光が入射されると、その光を分光して前記分光スペクトルデータを計測する分光器18等を備えて構成されている。尚、シャッター機構17の下方側、つまり光入射方向上手側箇所には、分光器に入射される光に対して作用する光量調整用の複数の各種のフィルターを切り換えるフィルター切り換え機構Eが備えられている。
【0030】
前記分光器18は、図6に示すように、受光位置である入光口20から入射した計測対象光を反射する反射鏡21と、反射された計測対象光を複数の波長の光に分光する分光手段としての凹面回折格子22と、凹面回折格子22によって分光された計測対象光における各波長毎の光量を検出することにより分光スペクトルデータを計測する受光センサ23とが、外部からの光を遮光する遮光性材料からなる暗箱24内に配置される構成となっている。前記受光センサ23は、凹面回折格子22にて分光反射された光を同時に各波長毎に受光するとともに波長毎の信号に変換して出力する、1024の単位受光部を備えた電荷蓄積型のCCDラインセンサにて構成されている。このラインセンサは、詳述はしないが、各単位受光部毎に光量を電気信号(電荷)に変換する光電変換部と、その光電変換部にて得られた電荷を蓄積する電荷蓄積部、及び、その蓄積電荷を外部に出力させるための駆動回路等が備えた半導体基板上に形成されている。
【0031】
又、前記シャッター機構17は、図6、図7に示すように、放射状に複数のスリット25が形成された円板17Aを、パルスモータ17Bによって縦軸芯周りで回転操作される状態で備えて構成され、前記暗箱24の入光口20には前記各スリット25が上下に重なると光を通過させる開放状態となり、スリット25の位置がずれると光を遮断する遮断状態となるように、スリット25とほぼ同じ形状の透過孔27が形成されており、光の漏洩がないように暗箱の入光口20に対して円板17Aを密接状態で摺動する状態で配備して構成されている。すなわち、このシャッター機構17は凹面回折格子22に対する入光口20に近接する状態で設けられている。この受光部2も投光部1と同様にして、上記したような各部材がケーシング28に内装されてユニット状に組み立てられた構成となっている。
【0032】
そして、投光部1及び受光部2の夫々が、投光用箇所及び受光用箇所の夫々に対して各別に着脱自在に取り付け可能なユニット状に構成されており、投光部1と受光部2とが着脱自在に取付けられる装置枠体Fが、計測箇所における搬送コンベア4の左右両側に相当する箇所を投光用箇所及び受光用箇所とするように、投光部1と受光部2に対する一対の取付部を備える状態で設けられている。
更には、前記装置枠体Fには、投光部1及び受光部2を一体的に上下方向に位置調節自在な上下位置調節手段としての上下位置調節機構29、及び、投光部1及び受光部2の夫々を各別に装置枠体Fに対して計測箇所に位置する被計測物に接近並びに離間する方向、すなわち、水平方向であって搬送コンベア4の搬送方向と直交する方向に沿って位置調節自在な水平位置調節手段としての水平位置調節機構30が備えられている。
【0033】
次に、前記上下位置調節機構29について説明する。図1〜図5に示すように、品質評価装置の外周部を囲うように矩形枠状に組み付けられた装置枠体Fが備えられ、その装置枠体Fの上部側箇所から位置固定状態で4本の固定支持棒31が垂下される状態で設けられ、これら4本の固定支持棒31の下端部には後述する品質評価装置校正用の被計測体Aを載置支持するための支持台32が取り付けられている。そして、この4本の固定支持棒31に対して4箇所の摺動支持部33により上下方向にスライド移動自在に昇降台34が支持されている。又、装置枠体Fの上部側箇所から垂下状態に支持された送りネジ35が電動モータ36にて回動自在に設けられ、昇降台34に備えられた雌ネジ部材37がこの送りネジ35に螺合しており、送りネジ35を電動モータ36にて回動操作することで昇降台34が任意の位置に上下移動調節可能な構成となっている。尚、送りネジ35は手動操作ハンドル38でも回動自在に構成されている。
又、前記昇降台34には、品質評価装置校正用の被計測体Aが支持台32に載置支持された状態でも昇降操作可能なように品質評価装置校正用の被計測体Aが上下方向に通過することを許容する挿通孔34aが形成されている。
【0034】
次に、水平位置調節機構30について説明する。
前記昇降台34には、図3に示すように、投光部1と受光部2との並び方向に沿って延びる2本のガイド棒39が設けられており、ユニット状に組み付けられた投光部1並びに受光部2の夫々が着脱自在に取付けられる前記一対の取付部としての支持部材40、41が各ガイド棒39にスライド移動自在に支持される構成となっている。前記各ガイド棒39は長手方向両端側で連結具39aにて連結されている。又、前記昇降台34には、投光部1と受光部2との並び方向に沿って延びる2本の送りネジ42、43が夫々電動モータ44、45によって回動操作可能に設けられ、各支持部材40、41に備えられた雌ネジ部46、47が各送りネジ42、43に螺合しており、電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで、前記各支持部材40、41が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節可能な構成となっている。従って、各支持部材40、41に夫々各別に取付けられる投光部1及び受光部2は電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで前記水平方向、すなわち、計測箇所に対して接近並びに離間する方向での相対位置を変更調節することが可能となる。
【0035】
従って、電動モータ36にて送りネジ35を回動操作させると昇降台34が上下移動調節されるが、それに伴って昇降台34に支持されている投光部1及び受光部2を一体的に上下移動調節することができ、前記各電動モータ44、45を回動操作させることで投光部1及び受光部2が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節することができる。
【0036】
前記各支持部材40、41に対する投光部1及び受光部2の取付けの構成について説明を加えると、前記各支持部材40、41の下端部における取付け用の台座部分40a,41aには、水平方向に適宜間隔をあけて横向きに突出する複数の位置決め用突起40b,41bが形成され、ユニット状に設けられた投光部1及び受光部2に夫々、それらの位置決め用突起40b,41bに対応する位置決め孔が設けられ、各支持部材40、41に対して投光部1及び受光部2を取付けるときは、図5、図6に示すように、位置決め用突起40b,41bを位置決め孔に嵌め合わせて位置決めした状態でその近くの適宜箇所をボルト止めすることで投光部1及び受光部2を取付ける構成となっている。従って、この装置においては、投光部1及び受光部2が夫々取付けられた状態においては、投光部1が位置する投光用箇所、計測箇所、及び、受光部2が位置する受光用箇所の夫々が一直線状に位置する形態で投光部1及び受光部2が配置される状態となる。但し、支持部材40、41の下端部における取付け用の台座部分40a,41aは、投光部1及び受光部2の上下方向の長さに対応するように左右で少し長さが異なるものを用いるようにしている。又、投光部1の取付け部には、投射方向が少し斜め下方となるように傾斜用の姿勢規制具40cを設けている。
【0037】
搬送コンベア4における被計測物Mの計測箇所の上方側に位置させて、前記支持台32から下方側に延設した支持アーム48により支持される状態でリファレンスフィルター49が設けられている。このリファレンスフィルター49は、所定の吸光度特性を有する光学フィルターで構成され、具体的には、一対のオパールガラスを備えて構成されている。
【0038】
上下位置調節機構29によって投光部1及び受光部2を一体的に上下移動調節することによって、図1に示すように、投光部1からの光が搬送コンベア4に載置される被計測物Mを透過した後に受光部2にて受光される通常計測状態と、図4の仮想線にて示すように、各投光部1からの光が前記リファレンスフィルター49を透過した後に受光部2にて受光されるリファレンス計測状態、及び、図3の実線にて示すような校正用計測状態の夫々に切り換えることができるように構成されている。
尚、詳述はしないが、この品質評価装置の外周部は、被計測物の搬送に伴う通過箇所を除いて装置枠体Fに備えられた壁体によって囲われて外部から光が入り込まないようになっている。
【0039】
そして、この品質評価装置には、前記支持台32に被計測物の光透過特性とほぼ同じような特性を有する擬似計測体Aを取り外し自在に装着できる構成となっている。尚、被計測体Aは支持台32にそのまま位置決めした状態で載置させる構成であり、容易に着脱可能な構成となっており、校正を行わないときには、被計測体Aを支持台32から取り外しておくことができる。
【0040】
この品質評価装置校正用の被計測体Aについて簡単に説明すると、図4に示すように、非透光性の部材で構成された略四角柱状の外側ケーシング52によって外周部が覆われ、この外側ケーシング52内部の下方側に位置する箇所に品質評価対象としての純水Jを封入状態で収納する収納部51が設けられ、この収納部51と外側ケーシング52との間に空気層が形成されている。そして、この空気層の温度が、品質評価装置によって品質が評価されるときの被計測物の温度又はそれに近い温度である設定温度(例えば、30℃)に維持されるようにペルチェ素子55を作用させる構成となっている。そして、外側ケーシング52における収納部51の左右両側箇所に対応する位置に夫々、光通過部61と光通過部62とが形成され、非透光性の部材で構成された外側ケーシング52の入光側光通過部61及び出光側光通過部62に対応する位置に通過孔が形成されるとともに、拡散体としてのオパールガラスGが気密状態に保持される状態で装着されている。
【0041】
そして、図10に示すように、前記搬送コンベア4は無端回動帯4aを電動モータ4bによって駆動する構成となっており、その無端回動帯4aを巻回する回転体4cの回転軸の回転状態にて搬送コンベアによる搬送距離を検出する搬送距離計測手段としてのロータリーエンコーダ19が備えられ、このロータリーエンコーダ19の検出情報も制御部3に入力される構成となっており、更に、搬送コンベア4による計測箇所の搬送方向上手側箇所には、搬送コンベア4にて搬送される被計測物の搬送方向の先頭位置が計測箇所よりも搬送方向上手側に位置する手前側位置に到達したか否かを検出する被計測物検出手段としての光学式の通過検出センサ50が備えられている。この通過検出センサ50は、光を発する発光器50aと、その光を受光する受光器50bとが、搬送コンベア4による搬送経路の左右両側部に振り分け配置され、発光器50aから発する光が被検出物で遮断されて受光器50bにて受光できなくなると被検出物が存在していると判別することができる構成となっている。
【0042】
前記制御部3は、マイクロコンピュータを利用して構成してあり、図9に示すように、前記通過検出センサ50、受光センサ23の検出情報に基づいて被計測物の内部品質を求めるとともに各部の動作を制御する構成となっている。この制御部3は、後述するような公知技術である分光分析手法を用いて被計測物Mの内部品質を解析する演算処理を実行するとともに、受光センサ23、シャッター機構17、投光量調整用モータ12、上下位置調節用モータ36、水平位置調節用モータ44、45の動作の管理等の各部の動作を制御する構成となっている。
【0043】
次に、制御部3による制御動作について説明する。
制御部3は、投光部1からの光を被計測物Mに代えて前記リファレンスフィルター49に照射して、そのリファレンスフィルター49からの透過光を、受光部2にて分光してその分光した光を受光して得られた分光スペクトルデータを基準分光スペクトルデータとして求める基準データ計測処理、搬送コンベア4により搬送される被計測物Mに対して、投光部1から光を照射して計測分光スペクトルデータを得て、この計測分光スペクトルデータと前記基準分光スペクトルデータとに基づいて、被計測物Mの内部品質を解析する通常データ計測処理の夫々を実行するように構成されている。
【0044】
前記基準データ計測処理について説明する。
搬送コンベア4による被計測物Mの搬送を停止させている状態で、上下位置調節機構29によって前記リファレンス計測状態に切り換え、シャッター機構17を開放状態に切り換えて、投光部1からの光を被計測物Mに代えて前記リファレンスフィルター49に照射して、そのリファレンスフィルター49からの透過光を、受光部2にて分光してその分光した光を受光して得られた分光スペクトルデータを基準分光スペクトルデータとして計測する。又、受光部2への光が遮断された無光状態での受光センサ18の検出値(暗電流データ)も計測される。すなわち、前記受光部2のシャッター機構17を遮蔽状態に切り換えて、そのときの受光センサ18の単位画素毎における検出値を暗電流データとして求めるようにしている。
【0045】
次に、通常データ計測処理について説明する。
この通常データ計測処理においては、上下位置調節機構29、具体的には上下位置調整用電動モータ36を操作して昇降台34を通常計測状態に切り換えて、搬送コンベア4による被計測物Mの搬送を行う。そして、被計測物が計測箇所に存在しないとき及び被計測物が前記計測箇所に存在しても後述するような品質評価用の受光情報の取得が終了しているときは、蓄電開始タイミングから蓄電用設定時間が経過するまで受光センサ23に電荷を蓄積させ、その後、放電用設定時間が経過するまで受光センサ23に蓄積された電荷を放出させる電荷蓄積放電処理を繰り返し実行し、且つ、搬送コンベア4にて搬送される被計測物が計測箇所に至ると、そのときから放電用設定時間が経過するまで受光センサ23に蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで受光センサ23に品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行するように構成されている。
【0046】
つまり、制御部3は、図12に示すように、被計測物が計測箇所に存在しないとき及び被計測物が前記計測箇所に存在しても後述するような品質評価用の受光情報の取得が終了しているときは、常に、蓄電開始タイミングから蓄電用設定時間(約40msec)が経過するまで受光センサ23に電荷を蓄積させ、その後、放電用設定時間(約10msec)が経過するまで受光センサ23に蓄積された電荷を放出させる電荷蓄積放電処理を設定周期T1(約50msec)毎に繰り返し実行するように受光センサ23の動作を制御するように構成されている。
【0047】
そして、制御部3は、通過検出センサ50の検出情報に基づいて被計測物の先頭位置が手前側位置に到達したことを検出してから、前記ロータリーエンコーダ19の検出情報に基づいて被計測物が計測箇所に至ったことを判別するように構成されている。説明を加えると、通過検出センサ50にて被計測物Mの搬送方向先頭位置が通過検出センサ50の検出位置である手前側箇所に来たことが検出されると、ロータリーエンコーダ19の検出情報に基づいて、その時点からの被計測物の搬送距離が前記手前側箇所から計測箇所に至るまでの搬送距離になったか否かを判別する。そして、その搬送距離になると被計測物Mが計測箇所に至ったものと判別することになる。
【0048】
このように被計測物Mが計測箇所に至ったものと判別すると、図12に示すように、前記電荷蓄積放電処理を繰り返し実行するのではなく、その時点から放電用設定時間が経過するまで受光センサ23に蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで受光センサ23に品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行することになる。又、制御部3は、このような受光センサ23の動作切り換えと併行して、被計測物が前記計測箇所に至るとシャッター機構17を遮蔽状態から開放状態に切り換え、且つ、その開放状態を電荷蓄積を行うためのシャッター開放時間T2が経過するまで維持した後に遮蔽状態に戻すようにシャッター機構17の動作を制御するよう構成されている。このようにシャッター機構17が開放されている間において、前記計測用設定時間が経過するまで投光部1から照射され被計測物を透過した光を受光部2にて分光した光を受光センサ23にて受光して電荷を蓄積することができる。つまり、シャッター機構17は、放電用設定時間と計測用設定時間とを合せた時間であり、図12に示す例では、放電用設定時間としては、被計測物が計測箇所に至った後に投光部1からの回り込み光が受光部2に直接入射しない程度の位置まで被計測物が移動するのに要する時間、例えば、約10msecに設定される。又、計測用設定時間は約40msecであり、シャッター開放時間T2は約50msecの例を示している。そして、このシャッター開放時間T2が経過した後に、蓄積された電荷を取り出して品質評価用の受光情報としての計測分光スペクトルデータを得ることになる。
【0049】
尚、前記計測用設定時間は、被計測物の品種の違い等に応じて変更されることになる。説明を加えると、例えば、林檎等であれば光が透過し難いので長めの時間(上記したように40msec程度)に設定する。又、温州蜜柑などのように光が比較的透過しやすいものであれば比較的短い時間(10msec程度)に設定する。尚、搬送コンベア4の搬送速度は被計測物の大きさや上記したような計測用の時間等を考慮して適宜設定される。つまり、林檎の場合には、蓄電用設定時間(約40msec)が電荷蓄積放電処理の蓄電用設定時間とほぼ同じであり蓄積可能な最大の時間が設定され、温州蜜柑の場合にはそれよりも短い時間が設定される。
【0050】
このような品種の違いによる動作条件の設定は、手動による切り換えを行うのではなく自動的に行う構成となっている。つまり、この実施形態では、図10に示すように、この品質評価装置とは別に、搬送コンベア4の搬送方向上手側箇所に、搬送されてくる被計測物の外観を検査する外観検査装置GKが配備されており、この外観検査装置GKの検出結果を利用して品種を判別して自動的に品種の違いによる動作条件の設定を行うようにしている。前記外観検査装置GKは、図11に示すように、遮蔽カバー80の内部に被計測物を撮像するカラー式ビデオカメラVCが備えられており、そのビデオカメラVCにて撮像した画像情報に対して周知の画像処理手法を用いて、外形寸法や色ムラ等の外観異常の有無などを判別する構成となっており、これらの情報も品質評価装置の評価結果と合わせて果菜類のランク分けに利用される構成となっている。尚、被計測物を間接的に照明する照明装置81や被計測物の側面を撮影するための反射鏡82も備えられている。そして、制御部3は、外観検査装置GKからの計測結果を受信して品種を判別して、判別結果に基づいて計測用設定時間を変更調整する構成となっている。
【0051】
そして、このようにして得られた基準分光スペクトルデータ、暗電流データ及び計測分光スペクトルデータに基づいて公知技術である分光分析手法を用いて被計測物Mの内部品質を解析する演算処理を実行するように構成されている。
つまり、上記したようにして得られた、前記基準データ計測モードにて求められた基準分光スペクトルデータ、及び、暗電流データを用いて正規化して、分光された各波長毎の吸光度スペクトルデータを得るとともに、その吸光度スペクトルデータの二次微分値を求める。具体的には、受光センサ23の単位受光部毎に得られた受光情報に対応する吸光度スペクトルデータを得ることになる。このように求められた吸光度スペクトルデータの二次微分値のうち成分を算出するための特定波長の二次微分値と予め設定されている検量式とにより、被計測物Mに含まれる糖度に対応する成分量や酸度に対応する品質評価値としての成分量を算出する品質評価処理を実行するように構成されている。
【0052】
従って、この実施形態では、前記制御部3、通過検出センサ50及びロータリーエンコーダ19により、受光部2の前記受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段Hが構成されることになる。
【0053】
前記吸光度スペクトルデータdは、基準分光スペクトルデータをRd、計測分光スペクトルデータをSdとし、暗電流データをDaとすると、
【0054】
【数1】
d=log[(Rd−Da)/(Sd−Da)]
【0055】
という演算式にて求められる。そして、このようにして得られた吸光度スペクトルデータdを二次微分した値のうち特定波長の値と、下記の数2に示されるような検量式とを用いて、被計測物Mに含まれる糖度や酸度に対応する成分量を算出するための検量値を求めるのである。
【0056】
【数2】
Y=K0+K1・A(λ1)+K2・A(λ2)
【0057】
但し、
Y ;成分量に対応する検量値
K0,K1,K2 ;係数
A(λ1 ),A(λ2 ) ;特定波長λにおける吸光度スペクトルの二次微分値
【0058】
尚、成分量を算出する成分毎に、特定の検量式、特定の係数K0,K1,K2、及び、波長λ1,λ2等が予め設定されて記憶されており、演算手段100は、この成分毎に特定の検量式を用いて各成分の検量値(成分量)を算出する構成となっている。
【0059】
次に検量式を作成する手順について説明する。
検量式は、被計測物に対する計測処理に先立って、予め、計測対象である被計測物と同じようなサンプルを実測したデータに基づいて装置毎に個別に設定されることになる。つまり、上述したような複数の品種の果菜類を計測対象としている場合には、異なる品種毎に夫々各別に検量式を作成して、夫々を記憶させておくことになる。
【0060】
先ず、前記サンプルとして数十個〜数百個の被計測物を用意して、各サンプルについて前記分光分析装置を用いて各波長毎の分光スペクトルデータを求め、さらに、その分光スペクトルデータから上記したような吸光度スペクトルデータを求める。このようにして求められた吸光度スペクトルデータは、受光センサ23の1024個の単位受光部毎に得られたデータである。そして、前記各サンプルについて、例えば破壊分析等に基づいて被計測物の化学成分を特別な検査装置によって精度よく検出する実成分量の検出処理を実行して、被計測物の実成分量を得る。そして、上記したようにして得られた各サンプル毎の吸光度スペクトルデータを用いて、前記実成分量の検出結果と対比させながら、重回帰分析の手法を用いて、吸光度スペクトルデータと特定の成分についての成分量との関係を示す前記検量式を求めるのである。
上記したように複数の品種に応じて複数の検量式が記憶されている場合、制御部3が計測処理に際してどの検量式を利用するかについては、上記したような外観検査装置からの計測結果に基づく計測用設定時間T4の変更調整と同様にそれに合わせて自動で行われることになる。
【0061】
〔第2実施形態〕
次に、本発明に係る第2実施形態について説明する。
この実施形態の品質評価装置は、投光部1と受光部2との配置構成、受光部2に対する光の通過経路構成、搬送コンベアの構成、受光センサ23の計測方法が異なる他は、第1実施形態の品質評価装置の構成と同じであるから、異なる構成についてのみ説明し、同じ構成については説明は省略する。又、投光部1及び受光部2は、夫々、ユニット状に組み立てられる構成であり、第1実施形態に使用されるものとほぼ同じ構成のものを使用する構成となっている。
【0062】
図13に示すように、第1実施形態における投光部1と同じ構成のユニット状の投光部1が2台備えられ、それら2台の投光部1が計測箇所の左右両側部、すなわち、搬送コンベア4aの搬送横幅方向の両側部に振り分けて配置され、各投光部1は光の照射方向がほぼ水平方向となるように構成されている。すなわち、前記各支持部材40、41と同様な支持部材40、41にユニット状の2台の投光部1が夫々取付けられる。但し、支持部材40、41の下端部における取付け用の台座部分40a,41aは、投光部1の上下長さに対応するように左右で同じものを用いるようにしている。又、各投光部1の光の照射方向がほぼ水平方向となるように、上記品質評価装置にて用いた傾斜用の姿勢規制具40cは使用しない構成となっている。
【0063】
搬送コンベア4Aは、被計測物を中央部に挿通孔70が形成された受皿71に載置した状態で搬送される構成となっており、この受皿71は、計測箇所の下方側には、前記投光部1から照射されて被計測物を透過して受皿71の挿通孔70を通して下方側に透過する光を受光する光ファイバー72の受光側端部が配置されている。その光ファイバー72の他端側には、前記受光部2とほぼ同じ構成のユニット状の受光部2が接続されて光が受光されることになる。この受光部2による受光情報に基づく制御部3での内部品質の解析処理については第1実施形態の場合と同様である。
【0064】
この品質評価装置においては、計測箇所に位置する被計測物に対して、その左右両側部に位置する各投光部1から光がほぼ水平方向に対向するように投射され、被計測物内部で散乱して下方側に透過して出て来た光を光ファイバー72にて受光して受光部2に導く構成となっている。
【0065】
そして、前記搬送コンベア4Aは、被計測物Mを受皿71上の特定位置に位置させる状態で受皿71に載置した状態で搬送するように構成されている。つまり、受皿71はゴム等の軟質材からなり、図14に示すように、外形形状が平面視で円筒形であり中央部に円形の挿通孔70が形成され、挿通孔70の外周側の上面側部分は中心側ほど下方に位置する斜め形状になるように構成され、計測対象となる被計測物Mである桃、梨、林檎等の略球形状の果菜類が、受皿71上に載置されると自重でその軸芯が平面視で中央部の挿通孔70とほぼ同じ軸芯上に位置する状態で載置されることになる。つまり、受皿71上の中心位置が前記特定位置に対応するものとなる。
前記受皿71は搬送コンベア4Aの無端回動帯4d上に載置されるフリーキャリア式の受皿であり、無端回動帯4dに搬送方向に所定間隔をあけて設けられた押し具4eにより押し操作しながら搬送するようになっており、搬送横幅方向の両端部は搬送方向に配備された規制具4fにより案内される構成となっている。又、無端回動帯4dの幅方向中央部の受皿71の下方側部分は、投光部1から照射されて被計測物Mを透過した光を光ファイバー72の受光側端部にて受光可能なように開放される構成となっている。
【0066】
この実施形態では、図15に示すように、受皿71の搬送方向の先頭位置が設定位置に到達したことを検出する受皿検出手段としての光学式の受皿検出センサ73が設けられている。この受皿検出センサ73は、第1実施形態の通過検出センサ50と同様に、光を発する発光器73aと、その光を受光する受光器73bとが、搬送コンベア4Aによる搬送経路の左右両側部に振り分け配置され、発光器73aから発する光が被検出物としての受皿71により遮断されて受光器73bにて受光できなくなると、受皿71の搬送方向の先頭位置が設定位置に到達したことを検出する構成となっている。
【0067】
そして、前記制御部3が、この受皿検出センサ73の検出情報に基づいて被計測物Mが計測箇所に至ったことを判別するように構成されている。すなわち、受皿検出センサ73が受皿71の搬送方向の先頭位置が設定位置に到達したことを検出すると、被計測物Mが計測箇所に至ったものと判別して、直ちに、上記第1実施形態における計測用電荷蓄積処理と同じ計測用電荷蓄積処理を実行するように構成されている。
【0068】
説明を加えると、受皿検出センサ73にて受皿の搬送方向の先頭位置が設定位置に到達したことが検出されたときには、光ファイバー72の受光側端部が平面視にて挿通孔70の搬送方向上手側箇所に位置するように、受皿検出センサ73と光ファイバー72の受光側端部との位置関係が予め設定されている。因みに、前記各投光部1は光ファイバー72の受光側端部に対して搬送横幅方向にほぼ直線状に並ぶように配置させる構成となっている。
受皿検出センサ73にて受皿の搬送方向の先頭位置が設定位置に到達したことが検出されると、直ちに計測用電荷蓄積処理を実行することで、被計測物からの透過光を光ファイバー72の受光側端部にて適正に受光することができるのである。
【0069】
そして、制御部3は、図16のタイムチャートに示すように、前記受皿検出センサ73にて受皿71の搬送方向の先頭位置が設定位置に到達したことが検出されると、直ちに、前記計測用電荷蓄積処理を実行するとともに、それと併行して、前記シャッター機構17を遮蔽状態から開放状態に切り換え、且つ、その開放状態をシャッター開放時間T4が経過するまで維持した後に遮蔽状態に戻すようにシャッター機構17の動作を制御する構成となっている。
この構成においては、受皿検出センサ73にて受皿71の搬送方向の先頭位置が設定位置に到達したことが検出されると、直ちに、前記計測用電荷蓄積処理を実行する構成であるから、搬送コンベア4Aの搬送速度の変動等の影響を受けることなく搬送コンベアのスベリや揺らぎに起因した計測誤差を少なくして被計測物が計測箇所に至ったことを精度よく検出できる利点がある。
【0070】
この実施形態においては、制御部3と受皿検出センサ73とにより、受光部2の前記受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段Hが構成されることになる。
【0071】
尚、この実施形態においても、第1実施形態と同様に、制御部3は、図16に示すように、被計測物が計測箇所に存在しないとき及び被計測物が前記計測箇所に存在しても上述したような品質評価用の受光情報の取得が終了しているときは、常に、蓄電開始タイミングから蓄電用設定時間が経過するまで受光センサ23に電荷を蓄積させ、その後、放電用設定時間が経過するまで受光センサに蓄積された電荷を放出させる電荷蓄積放電処理を設定周期T3毎に繰り返し実行するように受光センサ23の動作を制御するように構成されている。
【0072】
〔別実施形態〕
以下、別実施形態を列記する。
【0073】
(1)上記第1実施形態では、前記被計測物検出手段としての通過検出センサの検出情報に基づいて被計測物の先頭位置が手前側位置に到達したことを検出してから搬送距離計測手段としてのロータリーエンコーダの検出情報に基づいて被計測物が計測箇所に至ったことを判別する構成としたが、このような構成に代えて次のように構成するものでもよい。
つまり、前記通過検出センサによって被計測物が計測箇所に至ったか否かを直接検出する構成としてもよい。つまり、通過検出センサにて被計測物の搬送方向上手側箇所を検出する検出位置を、受光センサによる受光箇所よりも少しだけ搬送方向上手側に位置させて、通過検出センサによって被計測物の搬送方向上手側箇所が検出されると、直ちに、前記計測用電荷蓄積処理を実行する構成である。
【0074】
(2)上記第1実施形態では、前記被計測物検出手段としての通過検出センサを備えて被計測物を直接検出して、その検出結果に基づいて被計測物が計測箇所に至ったことを判別するようにしたが、このような構成に限らず、例えば、搬送距離計測手段としてのロータリーエンコーダの検出情報のみに基づいて、例えば、搬送コンベアが設定距離移動する毎に被計測物が計測箇所に至ったものと判別するようにする等各種の構成で実施してもよい。
【0075】
(3)上記第1実施形態では、前記計測用設定時間を被計測物の品種の違いに応じて変更させるために、外観検査装置の検出結果を利用して品種を判別して自動的に品種の違いによる動作条件の設定を行うようにしたが、このような構成に代えて、例えば、受光部にて計測される計測分光スペクトルデータの計測結果に基づいて、品種を判別して自動的に品種の違いによる動作条件の設定を行うようにしてもよい。例えば、予め、計測対象となる複数の果菜類について計測分光スペクトルデータを計測してその特徴を調べておき、被計測物を計測する際にその特徴に基づいて品種を判別するようにしてもよい。
【0076】
(4)上記第2実施形態では、受皿検出手段としての受皿検出センサを備えて、この受皿検出センサが受皿の搬送方向の先頭位置が設定位置に到達したことを検出すると、直ちに、前記計測用電荷蓄積処理を実行する構成としたが、このような構成に代えて、第1実施形態と同様に、受皿検出センサが受皿の搬送方向の先頭位置が手前側位置に到達したことを検出してからロータリーエンコーダの検出情報に基づいて被計測物が計測箇所に至ったことを判別する構成としてもよい。
【0077】
(5)上記第2実施形態では、受皿が無端回動帯に載置されるフリーキャリア式に構成したが、無端回動帯に設定ピッチ毎に連結される構成としてもよい。
【0078】
(6)上記第1実施形態では、投光部と受光部とが計測箇所の左右両側部に振り分けて配置される構成のものを例示したが、このような構成に代えて、投光部と受光部とが計測箇所の上下両側部に振り分けて配置される構成としてもよい。
【0079】
(7)上記第2実施形態では、計測箇所の左右両側部に一対の投光部を振り分けて配置し、計測箇所の下側に出てくる光を光ファイバーで受光して受光部に導く構成のものを例示したが、このような構成に代えて、計測箇所の横一側箇所に1つの投光部を配置する構成としてもよく、光ファイバーで受光するものに代えて、計測箇所の下側に受光部を備えて受光部にて透過光を直接受光する構成としてもよい。又、投光部と受光部とを計測箇所の例えば横一側箇所に並べて配置して光投射方向に対してほぼそれを反対方向に出てくる光を受光するようにしてもよい。
【0080】
(9)上記各実施形態では、投光部の光源としてハロゲンランプを用いたが、これに限らず、水銀灯、Ne放電管等の各種の光源を用いてもよく、受光部における受光センサは、CCD型ラインセンサに限らずMOS型ラインセンサ等の他の検出手段を用いるようにしてもよい。
【0081】
(10)上記各実施形態では、被計測物Mの内部品質として、糖度や酸度を例示したが、これに限らず、食味の情報等、それ以外の内部品質を計測してもよい。
【図面の簡単な説明】
【図1】品質評価装置の正面図
【図2】品質評価装置の側面図
【図3】品質評価装置の正面図
【図4】品質評価装置の一部切欠正面図
【図5】品質評価装置の平面図
【図6】分光器の構成図
【図7】シャッター機構を示す図
【図8】投光部の切欠平面図
【図9】制御ブロック図
【図10】設置状態を示す平面図
【図11】外観検査装置を示す図
【図12】計測作動のタイミングチャート
【図13】第2実施形態の品質評価装置の正面図
【図14】第2実施形態の受皿を示す図
【図15】第2実施形態の被計測物の検出状態を示す図
【図16】第2実施形態の計測作動のタイミングチャート
【符号の説明】
1 投光部
2 受光部
4、4A 搬送手段
17 入射状態切換手段
19 搬送距離計測手段
23 受光センサ
50 被計測物検出手段
73 受皿検出手段
H 制御手段
M 被計測物
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a light projecting unit that projects light onto fruit and vegetables as a measurement object located at a measurement location, and a light accumulation sensor that receives transmitted or reflected light from the measurement object. A light receiving unit that obtains light receiving information for quality evaluation, a transport unit that transports the object to be measured via the measurement location, and obtains internal quality information of the object to be measured based on the light receiving information of the light receiving unit. In addition, the present invention relates to a quality evaluation apparatus for fruit and vegetables that includes a control unit that controls the operation of each unit.
[0002]
[Prior art]
The quality evaluation apparatus for fruit vegetables is for measuring the quality of fruit vegetables such as mandarin orange and apple as an object to be measured, for example, internal quality such as sugar content and acidity in a non-destructive state. Conventionally, there has been an evaluation apparatus having the following configuration.
[0003]
That is, when the object to be measured conveyed by the conveying means reaches a position located slightly on the upper side in the conveying direction from the measurement position, specifically, the light projected from the light projecting unit and directed to the light receiving unit When the leading position in the transport direction of the object to be measured arrives at the passing light passage position, the charge discharging operation for discharging the charge accumulated in the light receiving sensor is repeated twice, and the charge discharging operation was performed. When the object to be measured later reaches the measurement location, a charge accumulation process for measurement is performed to accumulate charges in the light receiving sensor until the charge accumulation time as the measurement set time elapses, and the accumulated charge is The internal quality information of the object to be measured is obtained by taking it out and using it as received light information for quality evaluation. In a state where the leading position in the conveyance direction of the object to be measured has not reached the light passage portion, the light receiving sensor is maintained while keeping the shutter mechanism closed so that light from the outside does not enter the light receiving sensor. Is configured to continuously perform the charge accumulation operation (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2002-107294 A (page 5-6, FIGS. 5 and 6)
[0005]
[Problems to be solved by the invention]
In the above-described conventional configuration, when the object to be measured transported by the transport means reaches a position slightly closer to the transport direction than the measurement position, a charge discharging operation is performed prior to the charge accumulation processing for measurement. By doing so, the residual charge is prevented from remaining in the light receiving sensor as much as possible. In other words, the light receiving sensor is configured to receive the transmitted light or reflected light from the object to be measured and accumulate the charge. However, even after the process of extracting the accumulated charge is performed, May remain inside the light receiving sensor. In this way, when newly transmitted light or reflected light from the object to be measured is received in the presence of residual charges, an error occurs in the light reception information, and the inside of the object to be measured based on the light reception information of the light receiving sensor. Since an error also occurs in the quality information, the residual charge is prevented from remaining as much as possible by executing the charge discharging operation prior to the charge accumulation process for measurement.
[0006]
However, in the above-described conventional configuration, when a plurality of objects to be measured conveyed by the conveying means continue to reach the measurement location at short time intervals, measurement is performed so that the residual charge as described above does not remain as much as possible. Although the processing can be performed, for example, the timing at which the measurement object is conveyed by the conveyance means is irregular, and the time interval until the measurement object is conveyed to the measurement location is increased. If there is a case, the accumulated charge increases because the light receiving sensor is configured to continue the charge accumulation operation while the leading position in the conveyance direction of the object to be measured does not reach the light passage location. There is a fear.
[0007]
In other words, as described above, while the leading position in the transport direction of the object to be measured has not reached the light passage position, the shutter mechanism is closed and no light from the outside enters the light receiving sensor. However, even in such a non-light state, a dark current is generated in the light receiving sensor, and if such dark current is accumulated over a long period of time, the accumulated charge may increase and may cause saturation. is there.
[0008]
Moreover, in the above-described conventional configuration, it is necessary to execute the charge discharging operation in a short time from when the leading position in the transport direction of the object to be measured reaches the light passage point until the measurement charge accumulation process is performed. However, if saturation occurs as described above, it may be difficult to sufficiently release charges, and residual charges may remain. In such a situation, if the internal quality information of the object to be measured is obtained based on the detection result of the light receiving sensor, there is a possibility that an error occurs in the internal quality information.
[0009]
The present invention has been made paying attention to such a point, and the purpose thereof is to reduce the residual charge in the light receiving sensor and obtain light receiving information for quality evaluation in an appropriate state as much as possible. An object of the present invention is to provide a quality assessment apparatus for fruit and vegetables that can avoid the occurrence of errors in information.
[0010]
[Means for Solving the Problems]
The fruit vegetable quality evaluation apparatus according to claim 1, wherein a light projecting unit that projects light onto fruit vegetables as a measurement object located at a measurement location, and transmitted light or reflected light from the measurement object. Based on a light receiving unit that receives light by a charge storage type light receiving sensor and obtains light receiving information for quality evaluation, a transport unit that transports the object to be measured via the measurement location, and the light receiving information of the light receiving unit Control means for obtaining the internal quality information of the measured object and controlling the operation of each part, wherein the control means is configured when the measured object does not exist at the measurement location and Even if a measurement object is present at the measurement location, when the acquisition of the light reception information for quality evaluation has been completed, the light reception sensor accumulates charges until the set time for power storage elapses from the power storage start timing, and then The set time for discharge elapses The charge accumulation discharge process for releasing the charge accumulated in the light receiving sensor is repeatedly executed, and when the object to be measured conveyed by the conveying means reaches the measurement location, the set time for discharge from that time The charge accumulated in the light receiving sensor is discharged until the time elapses, and then the charge accumulated in the light receiving sensor is accumulated for use as the light receiving information for quality evaluation until the set time for measurement elapses. It is comprised so that may be performed.
[0011]
That is, the object to be measured is transported in a state of passing through the measurement location by the transport means, and the light reception information for quality evaluation is acquired when positioned at the measurement location, and the internal quality of the measurement target is based on the light reception information. Although the information is required, the control means has finished acquiring the light receiving information for quality evaluation when the measurement object does not exist at the measurement location and even when the measurement object exists at the measurement location. In this case, the charge accumulation discharge process is repeatedly executed to accumulate the charge in the light receiving sensor from the storage start timing until the set time for storage elapses, and then to release the charge accumulated in the light receiving sensor until the set time for discharge elapses. Will do. That is, when the measurement charge accumulation process is not executed, the charge accumulation / discharge process is always executed repeatedly. Therefore, the operation of releasing the accumulated charge is repeatedly performed at a predetermined time interval. The charge accumulated in the sensor can be sufficiently discharged, and there is little possibility that the charge remains in the light receiving sensor after the operation for discharging the charge is completed.
[0012]
Then, when the object to be measured conveyed by the conveying means reaches the measurement location, the control means releases the electric charge accumulated in the light receiving sensor until the set time for discharge elapses, and then the setting for measurement is performed. Until the time elapses, a measurement charge accumulation process for accumulating charges for use as light reception information for quality evaluation in the light receiving sensor is executed. The charge accumulated by the charge accumulation process for measurement is used as the received light information for quality evaluation to obtain the internal quality information of the measurement object.
[0013]
Further, when the charge accumulation / discharge process is repeatedly executed as described above, there is little possibility that the charge remains inside the light receiving sensor after the operation for discharging the charge is completed. After the operation to release the charge is performed, there is little possibility that the charge will remain in the light receiving sensor, and when the light receiving information is obtained by receiving the transmitted light or reflected light from the measurement object, it remains in the light receiving information. There are few errors due to charge.
[0014]
Therefore, by reducing the residual charge in the light receiving sensor and obtaining the light receiving information for quality evaluation in the most appropriate state, it is possible to reduce the error of the internal quality information of the object to be measured. I was able to provide.
[0015]
The quality evaluation apparatus for fruit vegetables according to claim 2 is received in the open state in which the transmitted light or reflected light from the object to be measured is allowed to be received by the light receiving sensor in claim 1. An incident state switching means that can be switched to a shielding state that prevents the light from being blocked is provided, and the control means switches from the shielding state to the open state when the object to be measured reaches the measurement location, and the open state. Is maintained until the set time for measurement elapses, and then the operation of the incident state switching means is controlled so as to return to the shielding state.
[0016]
That is, when the object to be measured conveyed by the conveying means reaches the measurement location, the incident state switching means transmits the light from the object to be measured from the shielding state that prevents the transmitted light or reflected light from being received by the light receiving sensor. Since the light or reflected light is switched to an open state that allows the light receiving sensor to receive the light or reflected light, the light receiving sensor can receive the transmitted light or reflected light from the object to be measured. The charge storage process for measurement can be appropriately executed. And since it will return to the shielding state after maintaining the open state until the set time for measurement elapses after switching to the open state, in the state where the charge accumulation process for measurement is not executed, the incident state The switching means is maintained in the shielding state.
[0017]
Therefore, only during execution of the measurement charge accumulation process, transmitted light or reflected light from the object to be measured is received by the light receiving sensor, and the measurement charge accumulation process can be appropriately executed. While the accumulated discharge process is repeatedly executed, transmitted light or reflected light from the object to be measured is not received by the light receiving sensor, so that residual charges are prevented from being generated inside the light receiving sensor. be able to.
[0018]
The fruit vegetable quality evaluation apparatus according to claim 3, in claim 1 or 2, the conveying means conveys the object to be measured in a state of being placed at a specific position on the saucer while being placed on the saucer. Configured so that the control means includes a saucer detection means for detecting that the leading position in the transport direction of the saucer has reached a set position, and the measurement target is based on detection information of the saucer detection means. It is configured to discriminate that an object has reached the measurement location.
[0019]
That is, the object to be measured is transported in a state where it is placed on the tray in a state of being positioned at a specific position on the tray. Then, when the object to be measured is transported in such a state that it is placed on the tray, the tray detection means detects that the leading position of the tray in the transport direction has reached the set position. Based on the detection information of the means, it is determined that the object to be measured has reached the measurement location.
[0020]
For example, if the relative positional relationship between the set position and the measurement location is associated with the relative positional relationship between the top position of the tray and the specific position, the top of the tray in the transport direction of the tray is obtained by the tray detection means. As it is detected that the position has reached the set position, it is configured to immediately determine that the object to be measured has reached the measurement location, or the start position in the transport direction of the tray is determined by the tray detection means. There is a configuration in which it is determined that an object to be measured has reached the measurement location after a lapse of a required time from the detection of reaching the set position to the transfer to the measurement location.
[0021]
Thus, since the mounting position of the object to be measured on the tray is specified, the relative positional relationship between the leading position of the tray and the object to be measured is substantially constant regardless of the size of the object to be measured. In other words, even if the object to be measured is small, the relative position relationship between the head position of the tray and the object to be measured is the same, so that the head position in the transport direction of the tray has reached the set position by the tray detection means. The position of the object to be measured when detected is always the same relative positional relationship regardless of the size of the object to be measured. Therefore, it is possible to determine that the object to be measured has reached the measurement location based on the detection information of the tray detection means, and even if the object to be measured is small, the object to be measured is It is possible to properly determine that the process has been reached.
[0022]
The quality evaluation apparatus for fruit vegetables according to claim 4 is characterized in that, in claim 1 or 2, the control means is configured such that the leading position in the transport direction of the object to be measured transported by the transport means is greater than the measurement location in the transport direction. A measurement object detecting means for detecting that the front position located on the upper side has been reached; and a conveyance distance measurement means for measuring a conveyance distance of the measurement object by the conveyance means. After detecting that the leading position of the object to be measured has reached the near side position based on the detection information of the object detecting means, the object to be measured is measured according to the detection information of the transport distance measuring means. It is characterized by being comprised so that it may have reached | attained.
[0023]
That is, after detecting that the leading position of the object to be measured has reached the near side position, the object to be measured has been transported from the near side position to the measurement location based on the detection information of the transport distance measuring means. When detected, it is determined that the object to be measured has reached the measurement location. In other words, the measurement object detection means detects that the leading position in the conveyance direction of the measurement object conveyed by the conveyance means has reached the near side position located on the upper side in the conveyance direction from the measurement location. And when it is determined based on the detection information of the transport distance measuring means that the transport distance of the object to be measured after that time is a distance corresponding to the distance from the near side position to the measurement location, Based on the determination result, it is determined that the object to be measured has reached the measurement location. Therefore, even if the object to be measured is conveyed without being placed on the tray, it can be determined that the measurement point has been reached appropriately.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
[0025]
(First embodiment)
Hereinafter, a first embodiment of a fruit vegetable quality evaluation apparatus according to the present invention will be described with reference to the drawings.
The fruit vegetable quality evaluation apparatus according to the present invention is an apparatus for measuring sugar content and acidity as the quality of fruit vegetables such as mandarin orange as the object to be measured, and the fruit vegetables as the object to be measured located at the measurement location. A light projecting unit for projecting light to the object, a light receiving unit for receiving light transmitted from the object to be measured by a charge storage type light receiving sensor and obtaining light reception information for quality evaluation, and a part for measuring the object to be measured And a control means for determining the internal quality information of the measurement object based on the light reception information of the light receiving section and controlling the operation of each section.
[0026]
Specifically, as shown in FIG. 1, the quality evaluation apparatus receives a light projecting unit 1 that irradiates light to the object to be measured M, light transmitted through the object to be measured M, and measures the received light. The light receiving unit 2 and a microcomputer-based control unit 3 that executes various control processes are included, and the object to be measured M is placed and conveyed in a single column by a conveyance conveyor 4 as a conveyance unit. It has a configuration, and is configured to sequentially pass through the measurement points by this apparatus. Then, the light projecting unit 1 and the light receiving unit in a state where the light projected from the light projecting unit 1 is received by the light receiving unit 2 after passing through the object M to be measured M positioned at the measurement location. 2 is arranged so as to be distributed to both the left and right side portions of the measurement location, that is, to both side portions of the transport conveyor 4 in the transport lateral width direction.
[0027]
Next, the configuration of the light projecting unit 1 will be described.
The light projecting unit 1 includes two light sources, and is configured to irradiate light to be measured from the two light sources onto a measurement object located at a measurement location using different irradiation optical axes. . Further, the two optical axes for irradiation by each light source are configured to intersect at or near the surface portion of the measurement object located at the measurement location.
That is, as shown in FIGS. 4 and 8, a light source 5 composed of two halogen lamps separated along the transport direction by the transport conveyor 4 is provided, and the following is performed corresponding to each of the two light sources 5. Such an optical system is provided. That is, a concave light reflecting plate 6 is provided as a light collecting means for reflecting light emitted from the light source 5 and focusing on the surface of the measurement object M, and is collected by the light reflecting plate 6. A diaphragm plate 7 and a diaphragm plate that are positioned so as to correspond to the focal position of the light to be transmitted and suppress the spread of the light after being condensed by passing through a large diaphragm hole 7a to the radially outward side The light quantity adjustment plate 8 that can be switched between a state in which the light that has passed through 7 is allowed to pass through, a state in which the light passes through a small aperture 8a, and a state in which the light is blocked, Each of the collimator lens 9 to be changed into the following, the reflecting plate 10 that reflects and bends the light changed to parallel light, and the condensing lens 11 that condenses the light reflected by the reflecting plate 10 are provided for one light source 5. It is provided as an optical system. Each light amount adjusting plate 8 is configured to be swingable integrally by a light emission amount adjusting motor 12 so as to be switched to each state.
[0028]
And this light projection part 1 becomes a structure by which each above-mentioned member was built in the casing 13, and was assembled in the unit form. Further, the light projecting unit 1 is provided in an oblique posture so that light is irradiated obliquely downward with respect to the measurement object located at the measurement location, and even if the measurement object has a small external dimension, Light is prevented from entering the light receiving unit 2 directly.
[0029]
Next, the configuration of the light receiving unit 2 will be described.
As shown in FIG. 4, the light receiving unit 2 includes a condensing lens 14 that collects light transmitted through the measurement object M, a wavelength region 680 to 990 nanometers in the near infrared region of the light that has changed into parallel light. A bandpass mirror 15 that reflects only light in the range of (nm) upward and passes light of other wavelengths as it is, and a condenser lens 16 that condenses the measurement target light reflected upward by the bandpass mirror 15. A shutter mechanism as an incident state switching means that can be switched between an open state that allows the light that has passed through the condenser lens 16 to pass through and is received by the light receiving sensor, and a shielding state that prevents light from being received. 17. When light that has passed through the shutter mechanism 17 in the open state is incident, it is configured to include a spectroscope 18 and the like that measure the spectral spectrum data by separating the light. A filter switching mechanism E that switches a plurality of various filters for adjusting the amount of light that acts on the light incident on the spectroscope is provided below the shutter mechanism 17, that is, on the upper side of the light incident direction. Yes.
[0030]
As shown in FIG. 6, the spectroscope 18 reflects the measurement target light incident from the light entrance 20 that is the light receiving position, and splits the reflected measurement target light into light of a plurality of wavelengths. The concave diffraction grating 22 serving as the spectroscopic means, and the light receiving sensor 23 that measures spectral spectrum data by detecting the amount of light for each wavelength in the measurement target light spectrally separated by the concave diffraction grating 22, shields light from the outside. It is the structure arrange | positioned in the dark box 24 which consists of a light-shielding material. The light receiving sensor 23 simultaneously receives the light spectrally reflected by the concave diffraction grating 22 for each wavelength, converts it to a signal for each wavelength, and outputs it. The charge storage type CCD has 1024 unit light receiving units. It consists of a line sensor. Although this line sensor is not described in detail, a photoelectric conversion unit that converts a light amount into an electric signal (charge) for each unit light receiving unit, a charge accumulation unit that accumulates charges obtained by the photoelectric conversion unit, and And formed on a semiconductor substrate provided with a drive circuit or the like for outputting the accumulated charge to the outside.
[0031]
Further, as shown in FIGS. 6 and 7, the shutter mechanism 17 is provided with a circular plate 17A in which a plurality of slits 25 are radially formed in a state of being rotated around a vertical axis by a pulse motor 17B. The slit 25 is configured such that when the slits 25 overlap each other at the light entrance 20 of the dark box 24, the slit 25 is in an open state in which light is allowed to pass therethrough. Are formed so that the disc 17A slides in close contact with the light entrance 20 of the dark box so as not to leak light. That is, the shutter mechanism 17 is provided in the state close to the light entrance 20 for the concave diffraction grating 22. Similarly to the light projecting unit 1, the light receiving unit 2 has a configuration in which each member as described above is built in the casing 28 and assembled in a unit shape.
[0032]
Each of the light projecting unit 1 and the light receiving unit 2 is configured in a unit shape that can be detachably attached to each of the light projecting part and the light receiving part. 2 with respect to the light projecting unit 1 and the light receiving unit 2 so that the positions corresponding to the left and right sides of the transport conveyor 4 at the measurement site are the light projecting site and the light receiving site. It is provided with a pair of attachment portions.
Further, the device frame F includes a vertical position adjusting mechanism 29 as a vertical position adjusting means that can adjust the light projecting unit 1 and the light receiving unit 2 integrally in the vertical direction, and the light projecting unit 1 and the light receiving unit. Each of the sections 2 is positioned along the direction of approaching and moving away from the measurement object located at the measurement location with respect to the apparatus frame F, that is, along the direction that is horizontal and orthogonal to the transport direction of the transport conveyor 4. A horizontal position adjusting mechanism 30 as an adjustable horizontal position adjusting means is provided.
[0033]
Next, the vertical position adjusting mechanism 29 will be described. As shown in FIG. 1 to FIG. 5, an apparatus frame F assembled in a rectangular frame shape so as to surround the outer peripheral portion of the quality evaluation apparatus is provided. The fixed support rods 31 are provided in a suspended state, and a support base 32 for placing and supporting a measurement target A for quality evaluation device calibration described later on the lower ends of the four fixed support rods 31. Is attached. A lifting platform 34 is supported on the four fixed support rods 31 by four sliding support portions 33 so as to be slidable in the vertical direction. Further, a feed screw 35 supported in a suspended state from an upper side portion of the apparatus frame F is rotatably provided by an electric motor 36, and a female screw member 37 provided on the lifting platform 34 is provided on the feed screw 35. They are screwed together, and the lifting platform 34 can be adjusted to move up and down to an arbitrary position by rotating the feed screw 35 with an electric motor 36. The feed screw 35 is also configured to be rotatable by a manual operation handle 38.
In addition, the measurement object A for calibrating the quality evaluation apparatus is vertically moved on the lift 34 so that the measurement object A for calibrating the quality evaluation apparatus can be moved up and down even when the measurement object A is placed and supported on the support base 32. An insertion hole 34a is formed to allow the passage to pass through.
[0034]
Next, the horizontal position adjusting mechanism 30 will be described.
As shown in FIG. 3, the elevator 34 is provided with two guide bars 39 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged, and the light projecting unit assembled in a unit shape. The support members 40 and 41 as the pair of attachment parts to which the part 1 and the light receiving part 2 are detachably attached are supported by the guide rods 39 so as to be slidable. Each guide bar 39 is connected by a connecting tool 39a at both ends in the longitudinal direction. In addition, the elevator 34 is provided with two feed screws 42 and 43 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged, and can be rotated by electric motors 44 and 45, respectively. Female screw portions 46 and 47 provided in the support members 40 and 41 are screwed into the feed screws 42 and 43, and the feed screws 42 and 43 are rotated forward and backward by the electric motors 44 and 45, respectively. By doing so, each of the support members 40 and 41 can be adjusted in position along the horizontal direction orthogonal to the transport direction of the transport conveyor 4. Accordingly, the light projecting unit 1 and the light receiving unit 2 respectively attached to the support members 40 and 41 respectively rotate the feed screws 42 and 43 forward and backward by the electric motors 44 and 45, respectively. That is, it is possible to change and adjust the relative position in the direction approaching and separating from the measurement location.
[0035]
Therefore, when the feed screw 35 is rotated by the electric motor 36, the lifting / lowering base 34 is adjusted to move up / down. Accordingly, the light projecting unit 1 and the light receiving unit 2 supported by the lifting / lowering base 34 are integrated. It is possible to adjust the vertical movement, and by rotating each of the electric motors 44 and 45, the light projecting unit 1 and the light receiving unit 2 are individually adjusted along the horizontal direction perpendicular to the transport direction of the transport conveyor 4. be able to.
[0036]
The construction of the mounting of the light projecting unit 1 and the light receiving unit 2 with respect to the support members 40 and 41 will be further described. In the mounting base portions 40a and 41a at the lower ends of the support members 40 and 41, A plurality of positioning projections 40b and 41b projecting laterally at appropriate intervals are formed, and the light projecting unit 1 and the light receiving unit 2 provided in a unit shape correspond to the positioning projections 40b and 41b, respectively. Positioning holes are provided, and when attaching the light projecting unit 1 and the light receiving unit 2 to the support members 40 and 41, as shown in FIGS. 5 and 6, the positioning projections 40b and 41b are fitted into the positioning holes. In this state, the light projecting unit 1 and the light receiving unit 2 are attached by bolting an appropriate location near them. Therefore, in this apparatus, in a state where the light projecting unit 1 and the light receiving unit 2 are respectively attached, a light projecting location where the light projecting unit 1 is located, a measurement location, and a light receiving location where the light receiving unit 2 is located. The light projecting unit 1 and the light receiving unit 2 are arranged in such a manner that each of the projectors is positioned in a straight line. However, the mounting pedestal portions 40a and 41a at the lower ends of the support members 40 and 41 are used that have slightly different lengths on the left and right so as to correspond to the vertical lengths of the light projecting unit 1 and the light receiving unit 2. I am doing so. Further, a tilting posture restricting tool 40c is provided at the mounting portion of the light projecting unit 1 so that the projection direction is slightly obliquely downward.
[0037]
A reference filter 49 is provided in a state of being supported by a support arm 48 that is positioned above the measurement location of the measurement object M on the conveyor 4 and extends downward from the support base 32. The reference filter 49 is composed of an optical filter having a predetermined absorbance characteristic, and specifically includes a pair of opal glasses.
[0038]
As shown in FIG. 1, the light to be measured is placed on the conveyor 4 by adjusting the vertical movement of the light projecting unit 1 and the light receiving unit 2 integrally by the vertical position adjusting mechanism 29. The normal measurement state in which light is received by the light receiving unit 2 after passing through the object M and the light receiving unit 2 after the light from each light projecting unit 1 passes through the reference filter 49, as indicated by the phantom lines in FIG. Can be switched between a reference measurement state received at 1 and a calibration measurement state as indicated by a solid line in FIG.
Although not described in detail, the outer peripheral portion of the quality evaluation apparatus is surrounded by a wall body provided in the apparatus frame F except for a passing portion accompanying conveyance of the measurement object so that light does not enter from the outside. It has become.
[0039]
In this quality evaluation apparatus, the pseudo measurement body A having substantially the same characteristics as the light transmission characteristics of the object to be measured can be detachably mounted on the support base 32. The object A to be measured is placed on the support base 32 while being positioned as it is, and is easily detachable. When calibration is not performed, the object A to be measured is detached from the support base 32. I can keep it.
[0040]
The measurement target A for calibrating the quality evaluation apparatus will be briefly described. As shown in FIG. 4, the outer peripheral portion is covered by an outer casing 52 having a substantially square pillar shape made of a non-translucent member. A storage part 51 for storing pure water J as a quality evaluation target in an enclosed state is provided at a position located on the lower side inside the casing 52, and an air layer is formed between the storage part 51 and the outer casing 52. Yes. Then, the Peltier element 55 is operated so that the temperature of the air layer is maintained at a set temperature (for example, 30 ° C.) that is the temperature of the object to be measured when the quality is evaluated by the quality evaluation device or a temperature close thereto. It is the composition which makes it. The light passing portion 61 and the light passing portion 62 are formed at positions corresponding to the left and right sides of the storage portion 51 in the outer casing 52, respectively, and the light incident on the outer casing 52 made of a non-translucent member. A passage hole is formed at a position corresponding to the side light passage portion 61 and the light exit side light passage portion 62, and the opal glass G as a diffuser is mounted in an airtight state.
[0041]
And as shown in FIG. 10, the said conveyance conveyor 4 becomes a structure which drives the endless rotation band 4a by the electric motor 4b, and rotation of the rotating shaft of the rotary body 4c which winds the endless rotation band 4a A rotary encoder 19 as a transport distance measuring means for detecting the transport distance by the transport conveyor in the state is provided, and the detection information of the rotary encoder 19 is also input to the control unit 3. Whether or not the leading position in the transport direction of the object to be measured transported by the transport conveyor 4 has reached the near side position located on the upper side in the transport direction than the measurement position, at the upper position in the transport direction of the measurement location by An optical passage detection sensor 50 is provided as an object to be measured detection means for detecting the object. In the passage detection sensor 50, a light emitter 50a that emits light and a light receiver 50b that receives the light are arranged on both the left and right sides of the conveyance path by the conveyer 4, and the light emitted from the light emitter 50a is detected. If it is blocked by an object and cannot be received by the light receiver 50b, it can be determined that an object to be detected exists.
[0042]
The control unit 3 is configured using a microcomputer. As shown in FIG. 9, the control unit 3 obtains the internal quality of the object to be measured based on the detection information of the passage detection sensor 50 and the light receiving sensor 23. It is the structure which controls operation | movement. The control unit 3 executes arithmetic processing for analyzing the internal quality of the object M to be measured using a spectroscopic analysis method that is a publicly-known technique as will be described later, and also includes a light receiving sensor 23, a shutter mechanism 17, and a light projection amount adjustment motor. 12, the operation of each part such as management of the operation of the vertical position adjusting motor 36 and the horizontal position adjusting motors 44 and 45 is controlled.
[0043]
Next, the control operation by the control unit 3 will be described.
The control unit 3 irradiates the reference filter 49 with the light from the light projecting unit 1 in place of the measurement object M, and splits the transmitted light from the reference filter 49 by the light receiving unit 2 and splits the light. Reference data measurement processing for obtaining spectral spectrum data obtained by receiving light as reference spectral spectrum data, and measuring and measuring light by irradiating light from the light projecting unit 1 to the measurement object M conveyed by the conveyor 4 Spectral data is obtained, and each of normal data measurement processing for analyzing the internal quality of the object M to be measured is executed based on the measured spectral data and the reference spectral data.
[0044]
The reference data measurement process will be described.
While the conveyance of the object to be measured M by the conveyor 4 is stopped, the vertical position adjustment mechanism 29 switches to the reference measurement state, the shutter mechanism 17 is switched to the open state, and the light from the light projecting unit 1 is received. The reference filter 49 is irradiated in place of the measurement object M, the transmitted light from the reference filter 49 is dispersed by the light receiving unit 2, and the spectral light data obtained by receiving the dispersed light is used as the reference spectrum. Measure as spectral data. Further, the detection value (dark current data) of the light receiving sensor 18 in a non-lighted state where light to the light receiving unit 2 is blocked is also measured. That is, the shutter mechanism 17 of the light receiving unit 2 is switched to the shielding state, and the detection value for each unit pixel of the light receiving sensor 18 at that time is obtained as dark current data.
[0045]
Next, normal data measurement processing will be described.
In this normal data measurement processing, the vertical position adjusting mechanism 29, specifically, the vertical position adjusting electric motor 36 is operated to switch the lifting platform 34 to the normal measurement state, and the object M is conveyed by the conveyor 4. I do. Then, when the measurement object does not exist at the measurement location and when the acquisition of the received light information for quality evaluation as will be described later is completed even when the measurement object exists at the measurement location, Until the set time for use elapses, the charge is accumulated in the light receiving sensor 23, and thereafter, the charge accumulation discharge process for discharging the charge accumulated in the light received sensor 23 is repeatedly executed until the set time for discharge elapses, and the conveyor When the measurement object conveyed at 4 reaches the measurement location, the charge accumulated in the light receiving sensor 23 is released until the set time for discharge elapses from that time, and then received until the set time for measurement elapses. The sensor 23 is configured to execute a measurement charge accumulation process for accumulating charges for use as light reception information for quality evaluation.
[0046]
That is, as shown in FIG. 12, the control unit 3 acquires light reception information for quality evaluation as described later when the measurement object does not exist at the measurement location and even when the measurement object exists at the measurement location. When completed, the charge is always accumulated in the light receiving sensor 23 until the set time for storage (about 40 msec) elapses from the start timing of power storage, and then the light receiving sensor until the set time for discharge (about 10 msec) elapses. The operation of the light receiving sensor 23 is controlled so as to repeatedly execute the charge accumulation / discharge process for releasing the charge accumulated in the unit 23 every set period T1 (about 50 msec).
[0047]
Then, the control unit 3 detects that the leading position of the measurement object has reached the near side position based on the detection information of the passage detection sensor 50, and then determines the measurement object based on the detection information of the rotary encoder 19. Is configured to discriminate that the measurement point has been reached. When the explanation is added, if it is detected by the passage detection sensor 50 that the leading position in the conveyance direction of the measurement object M has come to the near side which is the detection position of the passage detection sensor 50, the detection information of the rotary encoder 19 Based on this, it is determined whether or not the transport distance of the object to be measured from that time has reached the transport distance from the near side location to the measurement location. And if it becomes the conveyance distance, it will discriminate | determine that the to-be-measured object M reached the measurement location.
[0048]
If it is determined that the object to be measured M has reached the measurement location in this way, as shown in FIG. 12, the charge accumulation and discharge process is not repeatedly executed, but light is received until the set time for discharge elapses from that point. The charge accumulated in the sensor 23 is released, and thereafter, a charge accumulation process for measurement is performed in which the charge to be used as light reception information for quality evaluation is accumulated in the light receiving sensor 23 until the set time for measurement elapses. . In addition to the switching of the operation of the light receiving sensor 23, the control unit 3 switches the shutter mechanism 17 from the shield state to the open state when the object to be measured reaches the measurement location, and charges the open state to the charge state. It is configured to control the operation of the shutter mechanism 17 so as to return to the shielding state after maintaining the shutter opening time T2 for accumulation. While the shutter mechanism 17 is opened as described above, the light received by the light receiving sensor 23 is the light that is emitted from the light projecting unit 1 and transmitted through the object to be measured until the set time for measurement elapses. The light can be received and accumulated. That is, the shutter mechanism 17 is a time obtained by combining the set time for discharge and the set time for measurement. In the example shown in FIG. 12, the set time for discharge is projected after the object to be measured reaches the measurement location. The time required for the measurement object to move to a position where the sneak light from the unit 1 does not directly enter the light receiving unit 2 is set to about 10 msec, for example. The measurement set time is about 40 msec, and the shutter opening time T2 is about 50 msec. Then, after the shutter opening time T2 elapses, the accumulated electric charges are taken out to obtain measured spectral data as light reception information for quality evaluation.
[0049]
The set time for measurement is changed according to the difference in the type of the object to be measured. For example, in the case of an apple, it is difficult to transmit light, so a longer time (about 40 msec as described above) is set. In addition, if the light is relatively easy to transmit, such as Wenzhou mandarin orange, it is set to a relatively short time (about 10 msec). The transport speed of the transport conveyor 4 is appropriately set in consideration of the size of the object to be measured, the measurement time as described above, and the like. In other words, in the case of apples, the set time for storage (about 40 msec) is almost the same as the set time for storage in the charge storage and discharge process, and the maximum time that can be stored is set. A short time is set.
[0050]
The setting of the operation condition due to such a difference in product type is automatically performed instead of manual switching. In other words, in this embodiment, as shown in FIG. 10, an appearance inspection apparatus GK that inspects the appearance of the object to be measured conveyed at the upper position in the conveyance direction of the conveyor 4 separately from the quality evaluation apparatus. The product type is determined using the detection result of the appearance inspection apparatus GK, and the operation condition is automatically set according to the product type. As shown in FIG. 11, the appearance inspection apparatus GK includes a color video camera VC that captures an object to be measured inside a shielding cover 80, and performs image information captured by the video camera VC. Using a well-known image processing method, it is configured to determine the presence or absence of appearance abnormalities such as external dimensions and color unevenness, and this information is also used to rank fruits and vegetables together with the evaluation results of the quality evaluation device It becomes the composition which is done. An illumination device 81 that indirectly illuminates the measurement object and a reflecting mirror 82 for photographing the side surface of the measurement object are also provided. And the control part 3 becomes a structure which receives the measurement result from the external appearance inspection apparatus GK, discriminate | determines a kind, and changes and adjusts the setting time for measurement based on a discrimination | determination result.
[0051]
And the arithmetic processing which analyzes the internal quality of the to-be-measured object M is performed using the spectral analysis method which is a well-known technique based on the reference | standard spectral spectrum data, dark current data, and measurement spectral spectrum data which were obtained in this way. It is configured as follows.
That is, normalization is performed using the reference spectral spectrum data obtained in the above-described reference data measurement mode and the dark current data obtained as described above, and absorbance spectral data for each wavelength obtained is obtained. At the same time, a second derivative value of the absorbance spectrum data is obtained. Specifically, absorbance spectrum data corresponding to the light reception information obtained for each unit light receiving unit of the light receiving sensor 23 is obtained. Corresponding to the sugar content contained in the measurement object M by the secondary differential value of the specific wavelength for calculating the component among the secondary differential values of the absorbance spectrum data thus obtained and the preset calibration equation. It is configured to execute a quality evaluation process for calculating a component amount as a quality evaluation value corresponding to the component amount and acidity to be performed.
[0052]
Therefore, in this embodiment, the control unit 3, the passage detection sensor 50, and the rotary encoder 19 obtain the internal quality information of the measurement object based on the light reception information of the light receiving unit 2 and control the operation of each unit. H will be constructed.
[0053]
When the absorbance spectrum data d is Rd as the reference spectrum data, Sd as the measured spectrum data, and Da as the dark current data,
[0054]
[Expression 1]
d = log [(Rd−Da) / (Sd−Da)]
[0055]
It is calculated by the following formula. And it contains in the to-be-measured object M using the value of a specific wavelength among the values which carried out the second derivative of the absorbance spectrum data d obtained by doing in this way, and the calibration formula as shown in following Formula 2. A calibration value for calculating the amount of the component corresponding to the sugar content or acidity is obtained.
[0056]
[Expression 2]
Y = K0 + K1 · A (λ1) + K2 · A (λ2)
[0057]
However,
Y: Calibration value corresponding to the component amount
K0, K1, K2; coefficients
A (λ1), A (λ2); second derivative of absorbance spectrum at specific wavelength λ
[0058]
A specific calibration equation, specific coefficients K0, K1, K2, wavelengths λ1, λ2, and the like are preset and stored for each component for which the component amount is calculated. The calibration value (component amount) of each component is calculated using a specific calibration formula.
[0059]
Next, a procedure for creating a calibration formula will be described.
The calibration formula is individually set for each apparatus based on data obtained by actually measuring a sample similar to the measurement object to be measured in advance before the measurement process for the measurement object. That is, when a plurality of varieties of fruit and vegetables as described above are to be measured, a calibration formula is created for each of the different varieties, and each is stored.
[0060]
First, several tens to several hundreds of objects to be measured are prepared as the samples, and spectral spectrum data for each wavelength is obtained for each sample using the spectroscopic analyzer, and further, the above-described spectral spectral data is described above. Such absorbance spectrum data is obtained. The absorbance spectrum data obtained in this way is data obtained for each of the 1024 unit light receiving portions of the light receiving sensor 23. For each sample, for example, based on destructive analysis or the like, the actual component amount detection process for accurately detecting the chemical component of the object to be measured by a special inspection device is executed to obtain the actual component amount of the object to be measured. . Then, using the absorbance spectrum data for each sample obtained as described above, contrasting with the detection result of the actual component amount, using the method of multiple regression analysis, the absorbance spectrum data and the specific component The calibration equation showing the relationship with the amount of the component is obtained.
As described above, when a plurality of calibration formulas are stored in accordance with a plurality of types, the calibration formula used by the control unit 3 in the measurement process is determined based on the measurement result from the appearance inspection apparatus as described above. Similarly to the change adjustment of the measurement set time T4 based on the time, it is automatically performed in accordance with it.
[0061]
[Second Embodiment]
Next, a second embodiment according to the present invention will be described.
The quality evaluation apparatus of this embodiment is the first except that the arrangement configuration of the light projecting unit 1 and the light receiving unit 2, the configuration of the light passage path with respect to the light receiving unit 2, the configuration of the conveyor, and the measurement method of the light receiving sensor 23 are different. Since it is the same as the configuration of the quality evaluation apparatus of the embodiment, only different configurations will be described, and description of the same configurations will be omitted. The light projecting unit 1 and the light receiving unit 2 are each configured to be assembled in a unit shape, and are configured to use substantially the same configuration as that used in the first embodiment.
[0062]
As shown in FIG. 13, two unit-like light projecting units 1 having the same configuration as the light projecting unit 1 in the first embodiment are provided, and these two light projecting units 1 are the left and right side portions of the measurement location, that is, Each of the light projecting units 1 is configured so that the light irradiation direction is substantially horizontal. That is, two unit-shaped light projecting portions 1 are attached to the support members 40 and 41 similar to the support members 40 and 41, respectively. However, the mounting base portions 40 a and 41 a at the lower ends of the support members 40 and 41 are the same on the left and right so as to correspond to the vertical length of the light projecting unit 1. Further, the tilting posture restricting tool 40c used in the quality evaluation apparatus is not used so that the light irradiation direction of each light projecting unit 1 is substantially horizontal.
[0063]
The transport conveyor 4A is configured to transport the object to be measured in a state of being placed on a tray 71 having an insertion hole 70 formed in the center thereof. A light receiving side end of an optical fiber 72 that receives light irradiated from the light projecting unit 1 and transmitted through the object to be measured and transmitted downward through the insertion hole 70 of the tray 71 is disposed. The other end side of the optical fiber 72 is connected to a unit-shaped light receiving unit 2 having substantially the same configuration as the light receiving unit 2 to receive light. The internal quality analysis processing in the control unit 3 based on the light reception information by the light receiving unit 2 is the same as in the case of the first embodiment.
[0064]
In this quality evaluation apparatus, light is projected from the light projecting units 1 located on the left and right sides of the measurement object located at the measurement location so as to face each other in a substantially horizontal direction. Light that is scattered and transmitted downward is received by the optical fiber 72 and guided to the light receiving unit 2.
[0065]
And the said conveyor 4A is comprised so that the to-be-measured object M may be conveyed in the state mounted in the saucer 71 in the state located in the specific position on the saucer 71. FIG. That is, the tray 71 is made of a soft material such as rubber, and as shown in FIG. 14, the outer shape is cylindrical in plan view, the circular insertion hole 70 is formed in the center, and the upper surface on the outer peripheral side of the insertion hole 70. The side portion is configured to have an oblique shape that is positioned downward toward the center side, and substantially spherical fruit vegetables such as peaches, pears, and apples that are measurement objects M to be measured are placed on the saucer 71. If it does, it will be mounted in the state which the axial center is located on the substantially same axial center as the insertion hole 70 of a center part by planar weight by planar view. That is, the center position on the tray 71 corresponds to the specific position.
The tray 71 is a free carrier type tray that is placed on the endless rotating band 4d of the conveyor 4A, and is pushed by a pressing tool 4e provided at a predetermined interval in the transport direction on the endless rotating band 4d. However, both end portions in the transport width direction are guided by a restricting tool 4f arranged in the transport direction. Further, the lower side portion of the tray 71 in the center in the width direction of the endless rotation band 4 d can receive the light irradiated from the light projecting unit 1 and transmitted through the measurement object M at the light receiving side end of the optical fiber 72. It is the composition which is opened like this.
[0066]
In this embodiment, as shown in FIG. 15, an optical tray detection sensor 73 is provided as a tray detection means for detecting that the leading position in the transport direction of the tray 71 has reached the set position. As with the passage detection sensor 50 of the first embodiment, the tray detection sensor 73 includes a light emitter 73a that emits light and a light receiver 73b that receives the light on the left and right sides of the transport path by the transport conveyor 4A. When the light emitted from the light emitter 73a is divided and arranged and is blocked by the receiving tray 71 as the detected object and cannot be received by the light receiving device 73b, it is detected that the leading position in the conveying direction of the receiving tray 71 has reached the set position. It has a configuration.
[0067]
And the said control part 3 is comprised so that it may discriminate | determine that the to-be-measured object M reached the measurement location based on the detection information of this saucer detection sensor 73. FIG. That is, when the tray detection sensor 73 detects that the leading position in the transport direction of the tray 71 has reached the set position, it is determined that the measurement object M has reached the measurement location, and immediately in the first embodiment. The measurement charge accumulation process is the same as the measurement charge accumulation process.
[0068]
In other words, when the tray detection sensor 73 detects that the leading position in the tray transport direction has reached the set position, the light receiving side end of the optical fiber 72 is superior in the transport direction of the insertion hole 70 in plan view. The positional relationship between the tray detection sensor 73 and the light receiving side end of the optical fiber 72 is set in advance so as to be positioned at the side portion. Incidentally, each of the light projecting units 1 is arranged so as to be arranged substantially linearly in the conveyance lateral width direction with respect to the light receiving side end of the optical fiber 72.
When it is detected by the tray detection sensor 73 that the leading position in the tray transport direction has reached the set position, the measurement charge accumulation processing is immediately executed, so that the transmitted light from the object to be measured is received by the optical fiber 72. Light can be received appropriately at the side end.
[0069]
Then, as shown in the time chart of FIG. 16, the control unit 3 immediately detects that the start position in the transport direction of the tray 71 has reached the set position by the tray detection sensor 73. At the same time as executing the charge accumulation process, the shutter mechanism 17 is switched from the shield state to the open state, and the shutter state is returned to the shield state after maintaining the open state until the shutter open time T4 elapses. The operation of the mechanism 17 is controlled.
In this configuration, when the tray detection sensor 73 detects that the leading position in the transport direction of the tray 71 has reached the set position, the measurement charge accumulation process is executed immediately. There is an advantage that it is possible to accurately detect that the object to be measured has reached the measurement location by reducing measurement errors caused by sliding or fluctuation of the conveyer without being affected by fluctuations in the conveyance speed of 4A.
[0070]
In this embodiment, the control unit H and the tray detection sensor 73 constitute control means H that obtains internal quality information of the measurement object based on the light reception information of the light receiving unit 2 and controls the operation of each unit. It will be.
[0071]
In this embodiment, as in the first embodiment, as shown in FIG. 16, the control unit 3 is configured so that the measurement object does not exist at the measurement location and the measurement object exists at the measurement location. In addition, when the acquisition of the light reception information for quality evaluation as described above is finished, the charge is always accumulated in the light receiving sensor 23 until the set time for power storage elapses from the power storage start timing, and then the set time for discharge. It is configured to control the operation of the light receiving sensor 23 so as to repeatedly execute the charge accumulation discharge process for releasing the charge accumulated in the light receiving sensor until the elapse of time elapses every set period T3.
[0072]
[Another embodiment]
Hereinafter, other embodiments are listed.
[0073]
(1) In the first embodiment, the conveyance distance measuring unit after detecting that the leading position of the measured object has reached the near side position based on the detection information of the passage detection sensor as the measured object detecting unit. Although it is configured to determine that the object to be measured has reached the measurement location based on the detection information of the rotary encoder, the following configuration may be used instead of such a configuration.
That is, it is good also as a structure which detects directly whether the to-be-measured object reached the measurement location by the said passage detection sensor. In other words, the detection position for detecting the position on the upper side in the conveyance direction of the object to be measured by the passage detection sensor is positioned slightly on the upper side in the conveyance direction from the light reception position by the light receiving sensor, and the object to be measured is conveyed by the passage detection sensor. The configuration is such that the measurement charge accumulating process is executed as soon as a position on the upper side in the direction is detected.
[0074]
(2) In the first embodiment, the measurement object is directly detected by including a passage detection sensor as the measurement object detection means, and the measurement object reaches the measurement location based on the detection result. However, the present invention is not limited to such a configuration. For example, based on only detection information of a rotary encoder as a transport distance measuring means, for example, each time the transport conveyor moves a set distance, the object to be measured is measured. It may be implemented with various configurations such as discriminating that it has been reached.
[0075]
(3) In the first embodiment, in order to change the set time for measurement according to the difference in the type of the object to be measured, the type is automatically determined by using the detection result of the appearance inspection device. However, instead of such a configuration, for example, based on the measurement result of the measured spectral spectrum data measured by the light receiving unit, the product type is automatically determined. Operation conditions may be set depending on the type of product. For example, measurement spectral spectrum data may be measured for a plurality of fruits and vegetables to be measured in advance, and the characteristics thereof may be examined, and the variety may be determined based on the characteristics when measuring the measurement object. .
[0076]
(4) In the second embodiment, a tray detection sensor as a tray detection means is provided, and when the tray detection sensor detects that the leading position in the transport direction of the tray has reached the set position, The charge accumulation process is performed. However, instead of such a structure, as in the first embodiment, the tray detection sensor detects that the leading position in the transport direction of the tray has reached the near side position. Further, it may be configured to determine that the object to be measured has reached the measurement location based on the detection information of the rotary encoder.
[0077]
(5) In the said 2nd Embodiment, although the saucer was comprised in the free carrier type mounted in an endless rotation zone, it is good also as a structure connected to an endless rotation zone for every set pitch.
[0078]
(6) In the first embodiment, the light projecting unit and the light receiving unit are illustrated as being arranged on both the left and right sides of the measurement location. However, instead of such a configuration, It is good also as a structure which distributes and arrange | positions a light-receiving part to the up-and-down both sides of a measurement location.
[0079]
(7) In the second embodiment described above, a pair of light projecting portions are distributed and arranged on the left and right side portions of the measurement location, and the light coming out below the measurement location is received by the optical fiber and guided to the light receiving portion. However, instead of such a configuration, a single light projecting unit may be arranged at one side of the measurement location. It is good also as a structure provided with a light-receiving part and receiving a transmitted light directly in a light-receiving part. Further, the light projecting unit and the light receiving unit may be arranged side by side at, for example, one side of the measurement location so as to receive light emitted in a direction almost opposite to the light projection direction.
[0080]
(9) In each of the above embodiments, a halogen lamp is used as the light source of the light projecting unit. However, the present invention is not limited to this, and various light sources such as a mercury lamp and a Ne discharge tube may be used. Other detection means such as a MOS line sensor may be used instead of the CCD line sensor.
[0081]
(10) In each of the above embodiments, the sugar content and the acidity are exemplified as the internal quality of the measurement object M. However, the internal quality is not limited to this, and other internal qualities such as taste information may be measured.
[Brief description of the drawings]
FIG. 1 is a front view of a quality evaluation apparatus.
FIG. 2 is a side view of the quality evaluation apparatus.
FIG. 3 is a front view of the quality evaluation apparatus.
FIG. 4 is a partially cutaway front view of a quality evaluation apparatus.
FIG. 5 is a plan view of the quality evaluation apparatus.
FIG. 6 is a block diagram of the spectrometer.
FIG. 7 shows a shutter mechanism.
FIG. 8 is a cutaway plan view of a light projecting unit.
FIG. 9 is a control block diagram.
FIG. 10 is a plan view showing an installation state.
FIG. 11 shows an appearance inspection apparatus.
FIG. 12 Timing chart of measurement operation
FIG. 13 is a front view of a quality evaluation apparatus according to a second embodiment.
FIG. 14 is a view showing a saucer according to the second embodiment.
FIG. 15 is a diagram showing a detection state of an object to be measured according to the second embodiment.
FIG. 16 is a timing chart of the measurement operation of the second embodiment.
[Explanation of symbols]
1 Light emitter
2 Light receiver
4, 4A Conveying means
17 Incident state switching means
19 Transport distance measuring means
23 Light receiving sensor
50 Measurement object detection means
73 Trays detection means
H Control means
M Object to be measured

Claims (4)

計測箇所に位置する被計測物としての果菜類に対して光を投射する投光部と、前記被計測物からの透過光又は反射光を電荷蓄積型の受光センサにて受光して品質評価用の受光情報を得る受光部と、前記被計測物を前記計測箇所を経由して搬送する搬送手段と、前記受光部の前記受光情報に基づいて被計測物の内部品質情報を求めるとともに各部の動作を制御する制御手段とを備えて構成されている果菜類の品質評価装置であって、
前記制御手段が、
被計測物が前記計測箇所に存在しないとき及び被計測物が前記計測箇所に存在しても前記品質評価用の受光情報の取得が終了しているときは、蓄電開始タイミングから蓄電用設定時間が経過するまで前記受光センサに電荷を蓄積させ、その後、放電用設定時間が経過するまで前記受光センサに蓄積された電荷を放出させる電荷蓄積放電処理を繰り返し実行し、
且つ、前記搬送手段にて搬送される前記被計測物が前記計測箇所に至ると、そのときから放電用設定時間が経過するまで前記受光センサに蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで前記受光センサに前記品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行するように構成されている果菜類の品質評価装置。
A light projecting unit that projects light onto fruit and vegetables as an object to be measured located at a measurement location, and a transmitted light or reflected light from the object to be measured is received by a charge storage type light receiving sensor for quality evaluation. A light receiving unit that obtains the received light information, a transport unit that transports the measured object via the measurement location, and obtains internal quality information of the measured object based on the received light information of the light receiving unit, and the operation of each unit A quality evaluation apparatus for fruit and vegetables, comprising a control means for controlling
The control means is
When the object to be measured does not exist at the measurement location and when the acquisition of the light receiving information for quality evaluation has been completed even if the object to be measured is present at the measurement location, the set time for storage from the storage start timing Charge is accumulated in the light receiving sensor until it elapses, and then repeatedly executes charge accumulation discharge processing for discharging the charge accumulated in the light receiving sensor until a set time for discharge elapses,
Further, when the object to be measured conveyed by the conveying means reaches the measurement location, the charge accumulated in the light receiving sensor is released until the set time for discharge elapses from that point, and then the setting for measurement is performed. A fruit vegetable quality evaluation apparatus configured to execute a measurement charge accumulation process for accumulating charges for use as light reception information for quality evaluation in the light reception sensor until time elapses.
前記被計測物からの透過光又は反射光が前記受光センサにて受光されることを許容する開放状態と受光されることを阻止する遮蔽状態とに切り換え自在な入射状態切換手段が備えられ、
前記制御手段が、
前記被計測物が前記計測箇所に至ると、前記遮蔽状態から前記開放状態に切り換え、且つ、その開放状態を前記計測用設定時間が経過するまで維持した後に前記遮蔽状態に戻すように前記入射状態切換手段の動作を制御するよう構成されている請求項1記載の果菜類の品質評価装置。
Incident state switching means is provided that can be switched between an open state that allows transmitted light or reflected light from the object to be measured to be received by the light receiving sensor and a shielded state that prevents light from being received,
The control means is
When the object to be measured reaches the measurement location, the incident state is switched from the shielded state to the open state, and the open state is maintained until the set time for measurement elapses and then returned to the shielded state. 2. The fruit vegetable quality evaluation apparatus according to claim 1, which is configured to control the operation of the switching means.
前記搬送手段が、前記被計測物を受皿上の特定位置に位置させる状態で前記受皿に載置した状態で搬送するように構成され、
前記制御手段が、
前記受皿の搬送方向の先頭位置が設定位置に到達したことを検出する受皿検出手段を備えて構成され、この受皿検出手段の検出情報に基づいて前記被計測物が前記計測箇所に至ったことを判別するように構成されている請求項1又は2記載の果菜類の品質評価装置。
The transport means is configured to transport the object to be measured while being placed on the tray in a state of being positioned at a specific position on the tray.
The control means is
It is configured to include a tray detection means for detecting that the leading position in the transport direction of the tray has reached the set position, and based on the detection information of the tray detection means, the measurement object has reached the measurement location. The quality evaluation apparatus for fruit and vegetables according to claim 1 or 2 configured to discriminate.
前記制御手段が、
前記搬送手段にて搬送される被計測物の搬送方向の先頭位置が前記計測箇所よりも搬送方向上手側に位置する手前側位置に到達したことを検出する被計測物検出手段と、前記搬送手段による前記被計測物の搬送距離を計測する搬送距離計測手段とを備えて構成され、
前記被計測物検出手段の検出情報に基づいて前記被計測物の前記先頭位置が前記手前側位置に到達したことを検出してから前記搬送距離計測手段の検出情報に基づいて前記被計測物が前記計測箇所に至ったことを判別するように構成されている請求項1又は2記載の果菜類の品質評価装置。
The control means is
A measurement object detection means for detecting that a leading position in the conveyance direction of the measurement object conveyed by the conveyance means has reached a near side position located on the upper side in the conveyance direction with respect to the measurement location; and the conveyance means And a transport distance measuring means for measuring the transport distance of the object to be measured by
The object to be measured is detected based on the detection information of the transport distance measuring means after detecting that the leading position of the object to be measured has reached the near side position based on the detection information of the object to be measured. The fruit vegetable quality evaluation apparatus according to claim 1 or 2, wherein the quality evaluation apparatus is configured to determine that the measurement point has been reached.
JP2003011091A 2002-12-24 2003-01-20 Fruit and vegetable quality evaluation equipment Expired - Fee Related JP3923018B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003011091A JP3923018B2 (en) 2003-01-20 2003-01-20 Fruit and vegetable quality evaluation equipment
US10/540,742 US7316322B2 (en) 2002-12-24 2003-12-24 Quality evaluation apparatus for fruits and vegetables
KR1020057011826A KR100798518B1 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
AU2003296077A AU2003296077B2 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
PCT/JP2003/016536 WO2004059300A1 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
CN2003801076012A CN1732379B (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011091A JP3923018B2 (en) 2003-01-20 2003-01-20 Fruit and vegetable quality evaluation equipment

Publications (2)

Publication Number Publication Date
JP2004226102A JP2004226102A (en) 2004-08-12
JP3923018B2 true JP3923018B2 (en) 2007-05-30

Family

ID=32900092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011091A Expired - Fee Related JP3923018B2 (en) 2002-12-24 2003-01-20 Fruit and vegetable quality evaluation equipment

Country Status (1)

Country Link
JP (1) JP3923018B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6535843B2 (en) * 2015-01-27 2019-07-03 地方独立行政法人北海道立総合研究機構 Spectral imaging system
JP2021055998A (en) * 2017-12-29 2021-04-08 シャープ株式会社 Inspection device, inspection method, manufacturing equipment, control program, and storage medium

Also Published As

Publication number Publication date
JP2004226102A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
KR100798518B1 (en) Fruit-vegetable quality evaluation device
JP2002174592A (en) Evaluation apparatus
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP4192012B2 (en) Quality evaluation equipment and quality measurement equipment
JP3923018B2 (en) Fruit and vegetable quality evaluation equipment
JP2002098636A (en) Spectroscopic analyzer
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP3576105B2 (en) Internal quality measurement device
JP2004219375A (en) Apparatus for evaluating quality of fruits and vegetables
JP4362423B2 (en) Spectroscopic analyzer
JP3576158B2 (en) Agricultural product internal quality evaluation device
JP3847197B2 (en) Spectroscopic analyzer
JP3919491B2 (en) Agricultural product quality measuring device
JP4378240B2 (en) Equipment for evaluating internal quality of fruits and vegetables
JP2005106526A (en) Internal quality measuring device
JP3989360B2 (en) Quality evaluation device calibration method
JP2004184172A (en) Quality evaluation apparatus for greens and fruits
JP3847285B2 (en) Spectroscopic analyzer
JP2004191353A (en) Internal quality evaluation apparatus
JP2006047217A (en) Device for evaluating internal quality
JP4222908B2 (en) Light receiving device for internal quality evaluation and internal quality evaluation device
JP2006047214A (en) Method of measuring internal quality for produce
JP2010203781A (en) Quality measuring instrument
JP2002107294A (en) Spectral analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees