JP4713062B2 - Exhaust gas treatment method - Google Patents
Exhaust gas treatment method Download PDFInfo
- Publication number
- JP4713062B2 JP4713062B2 JP2003031352A JP2003031352A JP4713062B2 JP 4713062 B2 JP4713062 B2 JP 4713062B2 JP 2003031352 A JP2003031352 A JP 2003031352A JP 2003031352 A JP2003031352 A JP 2003031352A JP 4713062 B2 JP4713062 B2 JP 4713062B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- gas
- gas treatment
- treatment method
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、酸性ガス成分を含有する排ガス、特にごみ焼却排ガスや発電所ボイラーガス等の排ガス中の酸性ガス成分を効率よく除去できる酸性ガス処理方法に関するものである。
【0002】
【従来の技術】
ごみ焼却炉、火力発電所その他のボイラー等から生じる排ガスは、一般に硫黄酸化物、塩化水素等の酸性ガス成分を多量に含有するため、通常はこれを排ガス煙道中において消石灰などの塩基性物質粉体からなる酸性ガス処理剤と接触させて硫酸塩や塩化物の粉体とし、これをバグフィルターや電気集塵器で分離した後にガス分を大気中に放出している。
【0003】
酸性ガス処理剤として用いられる消石灰は、通常、集塵装置の直前の煙道に吹き込まれ、排ガス中の酸性ガス成分と反応し、排ガス処理が行われる。消石灰と酸性ガス成分との反応性は、反応場所の温度や水分などの環境の影響を受け、一般に反応温度は低いほうが反応性は良好であり、水分は多いほうが反応性が良好である。
【0004】
排ガス処理の温度については、近年、ごみ焼却炉から生じる排ガス中に含まれる猛毒物質であるダイオキシン類の低減のために、また排ガスを利用した熱回収ボイラー導入の結果として、低く抑えられるようになってきた。具体的には、ダイオキシン類は、250℃から300℃付近において再合成されるといわれているため、近年のごみ焼却炉の集塵設備は、このダイオキシン類の再合成を防止するために排ガス温度150℃〜180℃でバグフィルターを使用する、低温バグフィルター方式が採られている。
【0005】
排ガス中の水分については、従来、直接水噴射による排ガスの減温方法の場合の40%程度であったが、熱回収ボイラーを利用する設備が増え、20%程度に減少している。従って、近年の環境では、温度が低くなってきていることにより反応性が良くなっている反面、水分が減少している部分については反応性が悪くなる方向になっている。
【0006】
また消石灰を用いた排ガス処理において、SO2の除去性能が悪くなるという問題がある。これは酸性ガス成分としてHCl、SO2が混在する場合に、反応性が高いHClと消石灰が先に反応し、その結果SO2と消石灰の反応が不十分になるためであり、SO2の排出濃度を低減させるためにはさらに多くの消石灰を吹き込む必要があった。
さらにHClと消石灰は反応するとCaCl2になるが、CaCl2は潮解性物質であるため、温度が低くなると潮解し、バグフィルターの濾布に付着してしまう恐れがある。
【0007】
一方、発電所ボイラーなどの排ガスの酸性ガス成分の中の硫黄酸化物の処理については、炭酸カルシウムスラリーと接触させて処理する湿式法が行われているが、湿式法は設備の運転や維持管理の面で費用がかかり、また水分の蒸発による排ガス量が増大するなどの欠点があった。
また、どちらの場合においても、大気中に放出するときに排ガス中水分が凝集し白煙が発生してしまうので、それを防ぐために排ガスを再加熱する必要があるという問題がある。
【0008】
【発明が解決しようとする課題】
そこで本発明は、上記の従来の酸性ガス処理方法がもつ問題点を解決し、水分が低い条件における酸性ガス中の酸性ガス成分を効率よく除去できる排ガス処理方法を提供することを目的としてなされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、ガス中水分が低い条件における排ガス処理方法について鋭意研究を重ねた結果、300℃以上の高温雰囲気では、消石灰とHClやSO2 などの酸性ガス成分の反応が、ガス中水分が低い条件であっても反応性が向上することを見出し、この知見に基づいて本発明を完成するに至った。
【0010】
すなわち、本発明は、水分が低い条件(例えば25重量%以下)における排ガス中の酸性ガス成分の一つである硫黄酸化物を処理する方法において、消石灰を含む酸性ガス処理剤を、煙道内の排ガス温度が所定の温度範囲となる領域(以下「第1領域」と略記することがある。)に吹き込み、その第1領域に、吹き込んだ酸性ガス処理剤を滞留させることを特徴とする排ガス処理方法を提供するものである。本発明の排ガス処理方法において、煙道内の第1領域は、排ガス温度が250℃〜800℃(好適には300℃〜400℃)となる領域である。また本発明の排ガス処理方法において、水分量が20%以下の排ガス処理に好適である。
【0011】
【発明の実施の形態】
以下、本発明の排ガス処理方法について詳細に説明する。
【0012】
本発明の排ガス処理方法で対象とする排ガスは、特に限定されるものではないが、ごみ焼却炉、発電ボイラー等から排出される高温の排ガスで、ガス中に炭酸ガスのほか、亜硫酸、二酸化硫黄等の硫黄酸化物や塩化水素等の酸性ガスを含有するものであり、このような排ガスが送られる煙道において本発明の処理方法が適用される。
【0013】
本発明の排ガス処理方法において、酸性ガス処理剤としては、消石灰を含む塩基性物質粉体を用いる。消石灰100%でもよいが、炭酸水素ナトリウム等の塩基性物質を含有していてもよい。
消石灰は、工業用消石灰でもよいが、本発明の方法において酸性ガス成分の除去効率をより向上させ、充分な能力を発揮するために、BET比表面積が35m2/g以上および細孔容積が0.15cm3/g以上である高反応性消石灰を使用するのが好適である。
【0014】
このような酸性ガス処理剤を、酸性ガス成分を含む排ガスを送る煙道中に吹き込む。煙道中を送られる排ガスの温度は、徐々に低下するが、本発明の方法においては排ガス温度が250℃から800℃の範囲である煙道中に酸性ガス処理剤を吹き込むことが重要である。このような温度範囲で高い処理性能を得ることができる。排ガス中の水分量が少ない場合には、温度250℃未満では、消石灰と酸性ガス、特に硫黄酸化物との反応性が低下し、処理効率が悪くなる傾向がある。また800℃より高い温度でも処理性能が低下するが、これは、消石灰から脱水して生成した生石灰粒子が熱変成を受けて溶融し、粒子構造が変化するためと推察される。
【0015】
ごみ焼却炉や発電所ボイラー等の燃焼排ガスのようにCO2が多く含まれている排ガスの場合には、排ガス温度が300℃から400℃の範囲内で処理を行うことが好適である。即ち、排ガス温度が400℃を超えると、消石灰とCO2との反応が他の酸性ガス成分との反応に比べて優先的に起こるため、他の酸性ガス成分を処理するためには更に酸性ガス処理剤を吹き込む必要が生じ、酸性ガス処理剤の量、それに伴う生成煤塵量が多くなる。
【0016】
一方、ダイオキシン類の再合成問題を回避するためには、集塵機における排ガス温度は300℃以上であることが好ましく、350℃以上であるとより好ましい。
なお、酸性ガス処理剤の吹き込みは、煙道のように連続的に排ガスが流れる系では、空気輸送により行なうことが一般的である。
【0017】
このように本発明の排ガス処理方法では、所定の温度範囲で消石灰を含む酸性ガス処理剤と酸性ガスとを反応させることを特徴とするものであるが、このような温度範囲内に酸性ガス処理剤を長時間にわたって滞留させることを目的としてセラミックフィルターなどの高温対応型濾過式集塵機を使用すると効果的である。従って、集塵機は排ガス温度が300℃から400℃の範囲の煙道内に設置することが好ましい。
【0018】
このような高い排ガス温度の領域に集塵機を設けることにより、酸性ガス成分と酸性ガス処理剤の接触時間を長くし、酸性ガス処理剤の反応性を向上させることができる。
また、高温時に酸性ガス処理剤を含む排ガス中煤塵を集塵することで、ダイオキシン類の再合成や反応物の潮解による装置への不具合を起こす危険が低減される。さらに排ガスの温度を必要以上に下げる必要がなくなるため、排ガスの再加熱も不要になる。
【0019】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。尚、以下の実施例において「%」は特に断らない限り「重量%」を意味するものとする。
【0020】
<実施例及び比較例>
図1に示すように、ガス混合部11と、酸性ガス処理剤を耐熱性の網状部材内に固定した酸性ガス処理剤固定層13を内部に設けた反応部12とを有する試験装置を用意した。各ガス供給部(図示せず)と混合部11との導管及び混合部11と反応部12との導管は加熱導管とし、また反応部12にも加熱装置を設置し、酸性ガス処理剤固定層13を所定の温度に加熱した。この状態で、酸性ガス成分を含む原ガスと所定水分を含むガスを混合部11にて混合して反応ガスとし、その反応ガスを加熱導管で加熱し、反応部12で、あらかじめ所定温度に加熱してある酸性ガス処理剤固定層13に通じて酸性ガス成分と反応させ、反応後の処理ガスの濃度を分析計14で測定し、酸性ガス除去率を求めた。
【0021】
酸性ガス成分としてはSO2ガスを、酸性ガス処理剤としてはJIS特号消石灰(BET比表面積15m2/g、細孔容積0.07cm3/g、奥多摩工業社製)と高反応性消石灰「タマカルク‐スポンジアカル(TK−SP)」(BET比表面積45m2/g、細孔容積0.20cm3/g、奥多摩工業社製)を用いた。
排ガス中のSO2ガス濃度は1500ppm、反応時間は2時間とした。
【0022】
<酸性ガス処理剤及び反応温度による処理の比較>
まず、上記の各酸性ガス処理剤372mgを用いて、排ガス中の水分8%の条件において温度を種々変化させて処理を行い、処理後のSO2量からSO2除去率を求めた。結果を表1に示す。
【0023】
【表1】
【0024】
<ガス中水分及び処理温度による処理の比較>
次に、酸性ガス処理剤としてTK−SP1116mgを用いて、排ガス中のSO2ガス濃度1500ppm、CO2濃度9%の条件において、水分及び温度を種々変化させて処理したときのSO2除去率を求めた。結果を表2に示す。
【0025】
【表2】
【0026】
以上の結果からも分かるように、本発明の処理方法によれは、排ガス中水分が低い条件であっても効率的に酸性ガスを除去できた。
【0027】
【発明の効果】
本発明によれば、酸性ガス成分を含む高温の排ガス中に酸性ガス処理剤を吹き込むことで、排ガス中水分が低い条件であっても酸性ガスを効率的に除去できるため、酸性ガス排出濃度を低減するとともに酸性ガス処理剤使用量を低減することができる。特に、所定の排ガス温度の領域に集塵機を設置することにより、高温時に酸性ガス処理剤を含む排ガス中煤塵を集塵することができ、ダイオキシン類の再合成や反応物の潮解による装置への不具合を起こす危険が低減される。また排ガスの温度を必要以上に下げる必要がなくなるため、排ガスの再加熱も不要になるメリットがある。
また、炭酸カルシウムスラリーを利用した湿式法と比べて、排ガス量が増えることも無く、設備費用や運転費用も少なく、経済的である。
【図面の簡単な説明】
【図1】 本発明の実施例で用いた装置の概要を示す図。[0001]
[Technical field to which the invention belongs]
The present invention relates to an acid gas treatment method capable of efficiently removing an acid gas component containing an acid gas component, particularly an acid gas component in exhaust gas such as waste incineration exhaust gas and power plant boiler gas.
[0002]
[Prior art]
Exhaust gas generated from refuse incinerators, thermal power plants and other boilers generally contains a large amount of acidic gas components such as sulfur oxides and hydrogen chloride. It is brought into contact with an acid gas treating agent consisting of a body to form a sulfate or chloride powder, which is separated by a bag filter or an electrostatic precipitator and then released into the atmosphere.
[0003]
Slaked lime used as an acid gas treating agent is usually blown into the flue immediately before the dust collector, reacts with the acid gas component in the exhaust gas, and the exhaust gas treatment is performed. The reactivity between slaked lime and acid gas components is affected by the temperature of the reaction site and the environment such as moisture. Generally, the lower the reaction temperature, the better the reactivity, and the more moisture, the better the reactivity.
[0004]
In recent years, the temperature of exhaust gas treatment has been kept low in order to reduce dioxins, which are extremely toxic substances contained in exhaust gas generated from waste incinerators, and as a result of the introduction of heat recovery boilers using exhaust gas. I came. Specifically, since dioxins are said to be re-synthesized in the vicinity of 250 ° C. to 300 ° C., the dust collection equipment of recent garbage incinerators uses an exhaust gas temperature to prevent re-synthesis of dioxins. A low-temperature bag filter system using a bag filter at 150 ° C. to 180 ° C. is adopted.
[0005]
Conventionally, the moisture in the exhaust gas was about 40% in the case of the temperature reduction method of the exhaust gas by direct water injection, but the number of facilities using a heat recovery boiler has increased, and has decreased to about 20%. Accordingly, in recent environments, the reactivity is improved due to the lowering of temperature, but the reactivity of the portion where moisture is reduced tends to deteriorate.
[0006]
Further, in the exhaust gas treatment using slaked lime, there is a problem that the SO 2 removal performance is deteriorated. This is because when HCl and SO 2 are mixed as acid gas components, HCl and slaked lime having high reactivity react first, and as a result, the reaction between SO 2 and slaked lime becomes insufficient, and SO 2 is discharged. In order to reduce the concentration, it was necessary to blow in more slaked lime.
Further, HCl and slaked lime react to become CaCl 2 , but CaCl 2 is a deliquescent substance, and therefore, when the temperature is lowered, it may deliquesce and adhere to the filter cloth of the bag filter.
[0007]
On the other hand, for the treatment of sulfur oxides in the acidic gas components of exhaust gas from power plant boilers, etc., a wet method is used in which it is treated in contact with a calcium carbonate slurry. However, there are drawbacks such as an increase in the amount of exhaust gas due to evaporation of moisture.
In either case, the moisture in the exhaust gas agglomerates and white smoke is generated when released into the atmosphere, and there is a problem that the exhaust gas needs to be reheated to prevent it.
[0008]
[Problems to be solved by the invention]
Then, this invention was made | formed for the purpose of solving the problem which said conventional acid gas processing method has, and providing the exhaust gas processing method which can remove efficiently the acid gas component in the acid gas in the conditions where moisture is low . Is.
[0009]
[Means for Solving the Problems]
As a result of intensive research on exhaust gas treatment methods under conditions where the moisture in the gas is low, the present inventors have found that the reaction between slaked lime and acidic gas components such as HCl and SO 2 causes the moisture in the gas in a high temperature atmosphere of 300 ° C. or higher. The inventors have found that the reactivity is improved even under low conditions, and have completed the present invention based on this finding.
[0010]
That is, the present invention provides a method for treating sulfur oxide, which is one of acid gas components in exhaust gas under low moisture conditions (for example, 25% by weight or less), in which an acidic gas treating agent containing slaked lime is added to the flue. (sometimes hereinafter abbreviated as "first region".) exhaust gas temperature region to be a predetermined temperature range to look blown write, in the first region, characterized in that to stay the acid gas treating agent was blown An exhaust gas treatment method is provided. In the exhaust gas treatment method of the present invention, the first region in the flue is a region where the exhaust gas temperature is 250 ° C to 800 ° C (preferably 300 ° C to 400 ° C). The exhaust gas treatment method of the present invention is suitable for exhaust gas treatment with a moisture content of 20% or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the exhaust gas treatment method of the present invention will be described in detail.
[0012]
The exhaust gas targeted by the exhaust gas treatment method of the present invention is not particularly limited, but is a high-temperature exhaust gas discharged from a waste incinerator, a power generation boiler, etc. In addition to carbon dioxide in the gas, sulfurous acid, sulfur dioxide The treatment method of the present invention is applied to a flue that contains a sulfur oxide such as hydrogen chloride or an acidic gas such as hydrogen chloride.
[0013]
In the exhaust gas treatment method of the present invention, a basic substance powder containing slaked lime is used as the acid gas treating agent. Although it may be 100% slaked lime, it may contain a basic substance such as sodium bicarbonate.
The slaked lime may be industrial slaked lime, but in order to further improve the removal efficiency of the acidic gas component in the method of the present invention and to exhibit sufficient capacity, the BET specific surface area is 35 m 2 / g or more and the pore volume is 0. It is preferable to use highly reactive slaked lime that is at least 15 cm 3 / g.
[0014]
Such an acid gas treating agent is blown into a flue for sending exhaust gas containing an acid gas component. Although the temperature of the exhaust gas sent through the flue gradually decreases, in the method of the present invention, it is important to blow the acid gas treating agent into the flue where the exhaust gas temperature is in the range of 250 ° C to 800 ° C. High processing performance can be obtained in such a temperature range. When the amount of water in the exhaust gas is small, if the temperature is lower than 250 ° C., the reactivity between slaked lime and acidic gas, particularly sulfur oxide, tends to decrease, and the processing efficiency tends to deteriorate. In addition, the treatment performance deteriorates even at a temperature higher than 800 ° C., but this is presumably because quick lime particles generated by dehydration from slaked lime are melted by thermal transformation and the particle structure changes.
[0015]
In the case of an exhaust gas containing a large amount of CO 2 such as a combustion exhaust gas from a garbage incinerator or a power plant boiler, it is preferable to perform the treatment within an exhaust gas temperature range of 300 ° C to 400 ° C. That is, when the exhaust gas temperature exceeds 400 ° C., the reaction between slaked lime and CO 2 occurs preferentially over the reaction with other acid gas components. A treatment agent needs to be blown in, and the amount of acid gas treatment agent and the amount of generated dust accompanying it increase.
[0016]
On the other hand, in order to avoid the problem of resynthesis of dioxins, the exhaust gas temperature in the dust collector is preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
Note that the blowing of the acidic gas treating agent is generally performed by pneumatic transportation in a system in which exhaust gas continuously flows like a flue.
[0017]
As described above, in the exhaust gas treatment method of the present invention, the acidic gas treatment agent containing slaked lime and the acidic gas are reacted in a predetermined temperature range, and the acidic gas treatment is performed within such a temperature range. For the purpose of retaining the agent for a long time, it is effective to use a high-temperature filtration type dust collector such as a ceramic filter. Therefore, the dust collector is preferably installed in a flue whose exhaust gas temperature is in the range of 300 ° C to 400 ° C.
[0018]
By providing the dust collector in such a high exhaust gas temperature region, the contact time between the acidic gas component and the acidic gas treating agent can be extended, and the reactivity of the acidic gas treating agent can be improved.
Moreover, by collecting the dust in the exhaust gas containing the acid gas treating agent at high temperatures, the risk of causing malfunctions in the apparatus due to resynthesis of dioxins and deliquescence of reactants is reduced. Furthermore, since it is not necessary to lower the temperature of the exhaust gas more than necessary, it is not necessary to reheat the exhaust gas.
[0019]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. In the following examples, “%” means “% by weight” unless otherwise specified.
[0020]
<Examples and Comparative Examples>
As shown in FIG. 1, a test apparatus having a
[0021]
SO 2 gas is used as the acid gas component, JIS special slaked lime (BET specific surface area 15 m 2 / g, pore volume 0.07 cm 3 / g, manufactured by Okutama Kogyo Co., Ltd.) and highly reactive slaked lime “ Tamacalc-sponge acal (TK-SP) "(BET specific surface area 45 m 2 / g, pore volume 0.20 cm 3 / g, manufactured by Okutama Kogyo Co., Ltd.) was used.
The SO 2 gas concentration in the exhaust gas was 1500 ppm, and the reaction time was 2 hours.
[0022]
<Comparison of treatment with acid gas treating agent and reaction temperature>
First, using 372 mg of each of the acidic gas treating agents described above, treatment was performed under various conditions of temperature of 8% moisture in the exhaust gas, and the SO 2 removal rate was determined from the amount of SO 2 after the treatment. The results are shown in Table 1.
[0023]
[Table 1]
[0024]
<Comparison of treatment by moisture in gas and treatment temperature>
Next, using TK-SP 1116 mg as the acid gas treatment agent, the SO 2 removal rate when the moisture and temperature were changed variously under the conditions of SO 2 gas concentration of 1500 ppm and CO 2 concentration of 9% in the exhaust gas was Asked. The results are shown in Table 2.
[0025]
[Table 2]
[0026]
As can be seen from the above results, according to the treatment method of the present invention, the acidic gas could be efficiently removed even under the condition of low moisture in the exhaust gas.
[0027]
【The invention's effect】
According to the present invention, the acidic gas treatment agent is blown into the high-temperature exhaust gas containing the acidic gas component, so that the acidic gas can be efficiently removed even under low moisture conditions in the exhaust gas. It is possible to reduce the amount of the acidic gas treating agent used while reducing the amount. In particular, by installing a dust collector in the specified exhaust gas temperature range, it is possible to collect the dust in the exhaust gas containing the acid gas treatment agent at high temperatures, which causes problems with equipment due to resynthesis of dioxins and liquefaction of the reactants. The risk of causing this is reduced. Moreover, since it is not necessary to lower the temperature of the exhaust gas more than necessary, there is an advantage that it is not necessary to reheat the exhaust gas.
Compared with the wet method using calcium carbonate slurry, the amount of exhaust gas does not increase, and the equipment and operating costs are low, which is economical.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an apparatus used in an embodiment of the present invention.
Claims (5)
消石灰を含む酸性ガス処理剤を、煙道内の排ガス温度が300〜400℃となる領域に吹き込み、滞留させることを特徴とする排ガス処理方法。In a method for treating sulfur oxide, which is one of acid gas components in exhaust gas having a moisture content of 25% by weight or less, generated from a waste incinerator or a thermal power plant boiler,
The acid gas treating agent containing hydrated lime, see write blown in a region the exhaust gas temperature of the flue is 300 to 400 ° C., an exhaust gas treatment method which comprises causing the residence.
前記領域に濾過式の集塵装置を設置することにより前記酸性ガス処理剤を前記領域に滞留させることを特徴とする排ガス処理方法。An exhaust gas treatment method according to claim 1 or 2 ,
Exhaust gas treatment method, characterized in that for retention of the acid gas treatment agent in the region by placing the filtration type dust collector to the area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003031352A JP4713062B2 (en) | 2003-02-07 | 2003-02-07 | Exhaust gas treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003031352A JP4713062B2 (en) | 2003-02-07 | 2003-02-07 | Exhaust gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004237249A JP2004237249A (en) | 2004-08-26 |
JP4713062B2 true JP4713062B2 (en) | 2011-06-29 |
Family
ID=32957978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003031352A Expired - Fee Related JP4713062B2 (en) | 2003-02-07 | 2003-02-07 | Exhaust gas treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4713062B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6104036B2 (en) * | 2013-02-19 | 2017-03-29 | 三菱重工環境・化学エンジニアリング株式会社 | Exhaust gas treatment method and exhaust gas treatment system |
JP2023170353A (en) * | 2022-05-19 | 2023-12-01 | 三菱重工業株式会社 | Treatment method for exhaust gas, and facility executing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5554023A (en) * | 1978-10-17 | 1980-04-21 | Mitsubishi Heavy Ind Ltd | Harmful gas removal apparatus |
JPS6025531A (en) * | 1983-07-21 | 1985-02-08 | Hitachi Zosen Corp | Dry purification of exhaust gas |
JPH08257345A (en) * | 1995-03-27 | 1996-10-08 | Ngk Insulators Ltd | Exhaust gas treatment process and dry reaction column used therefor |
JPH10249154A (en) * | 1997-03-12 | 1998-09-22 | Kawasaki Heavy Ind Ltd | Method of suppressing generation of dioxines |
JPH1133355A (en) * | 1997-07-24 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | Method for dechlorinating combustion exhaust gas and dechlorination device |
JP2000262848A (en) * | 1999-03-18 | 2000-09-26 | Ngk Insulators Ltd | Treatment of exhaust gas |
JP2000296312A (en) * | 1999-04-12 | 2000-10-24 | Showa Chemical Industry Co Ltd | Waste gas treating agent |
JP2002029738A (en) * | 2000-07-18 | 2002-01-29 | Okutama Kogyo Co Ltd | Calcium hydroxide and acidic gas treating agent by using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269538A (en) * | 2000-03-28 | 2001-10-02 | Mitsubishi Heavy Ind Ltd | Device and method for treating waste gas |
JP2002058963A (en) * | 2000-08-22 | 2002-02-26 | Sumitomo Osaka Cement Co Ltd | Exhaust gas treating agent and its method |
JP2003200021A (en) * | 2002-01-11 | 2003-07-15 | Kurita Water Ind Ltd | Method for injecting fine powder and injection nozzle |
-
2003
- 2003-02-07 JP JP2003031352A patent/JP4713062B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5554023A (en) * | 1978-10-17 | 1980-04-21 | Mitsubishi Heavy Ind Ltd | Harmful gas removal apparatus |
JPS6025531A (en) * | 1983-07-21 | 1985-02-08 | Hitachi Zosen Corp | Dry purification of exhaust gas |
JPH08257345A (en) * | 1995-03-27 | 1996-10-08 | Ngk Insulators Ltd | Exhaust gas treatment process and dry reaction column used therefor |
JPH10249154A (en) * | 1997-03-12 | 1998-09-22 | Kawasaki Heavy Ind Ltd | Method of suppressing generation of dioxines |
JPH1133355A (en) * | 1997-07-24 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | Method for dechlorinating combustion exhaust gas and dechlorination device |
JP2000262848A (en) * | 1999-03-18 | 2000-09-26 | Ngk Insulators Ltd | Treatment of exhaust gas |
JP2000296312A (en) * | 1999-04-12 | 2000-10-24 | Showa Chemical Industry Co Ltd | Waste gas treating agent |
JP2002029738A (en) * | 2000-07-18 | 2002-01-29 | Okutama Kogyo Co Ltd | Calcium hydroxide and acidic gas treating agent by using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2004237249A (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100734230B1 (en) | Method and apparatus for removing mercury species from hot flue gas | |
WO2004076033A1 (en) | Method for absorbing and fixing carbon dioxide in combustion waste gas | |
EP2578297B1 (en) | Exhaust gas treatment system and method | |
JPH07204432A (en) | Exhaust gas treatment method | |
JP4936002B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP4713062B2 (en) | Exhaust gas treatment method | |
KR102556853B1 (en) | Carbon Dioxide Removing System From Exhaust Gases | |
JP2007098296A (en) | Method for recovering valuable material from bed material ash and method for utilizing recovered valuable material | |
JP2017087099A (en) | Exhaust gas treatment equipment and exhaust gas treatment method in waste incineration | |
JP3545266B2 (en) | Dry exhaust gas treatment method and apparatus | |
JP4124584B2 (en) | Removal method of dioxins in exhaust gas from waste treatment furnace | |
JP5299601B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
CN115957610A (en) | Waste incineration flue gas treatment system and treatment method | |
JP5299600B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP3101181B2 (en) | Exhaust gas treatment agent and exhaust gas treatment method | |
JP2010215802A (en) | Dry gas purification facility and coal gasification combined power generation facility | |
JPH108118A (en) | Production of desulfurizing agent for steel making from waste gas of waste incineration | |
JP2000015057A (en) | Treatment method and apparatus for incinerator exhaust gas | |
JPH1176753A (en) | Treatment of incineration waste gas | |
JP2000153130A (en) | Method and apparatus for exhaust gas purification | |
JP2000296312A (en) | Waste gas treating agent | |
JP2001259364A (en) | Exhaust gas treatment agent in high temperature region and method for regenerating the same | |
JPH0549853A (en) | Method for stack gas desulfurization method and device therefor | |
JP2000167514A (en) | Exhaust gas treatment for reducing discharge of dioxins | |
JP3567170B2 (en) | Heavy metal fixing agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4713062 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |