JP4710179B2 - Manufacturing method of bearing unit for wheel drive wheel - Google Patents

Manufacturing method of bearing unit for wheel drive wheel Download PDF

Info

Publication number
JP4710179B2
JP4710179B2 JP2001201668A JP2001201668A JP4710179B2 JP 4710179 B2 JP4710179 B2 JP 4710179B2 JP 2001201668 A JP2001201668 A JP 2001201668A JP 2001201668 A JP2001201668 A JP 2001201668A JP 4710179 B2 JP4710179 B2 JP 4710179B2
Authority
JP
Japan
Prior art keywords
inner ring
caulking
axial force
hub
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001201668A
Other languages
Japanese (ja)
Other versions
JP2003013979A (en
Inventor
信行 萩原
勝 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001201668A priority Critical patent/JP4710179B2/en
Publication of JP2003013979A publication Critical patent/JP2003013979A/en
Application granted granted Critical
Publication of JP4710179B2 publication Critical patent/JP4710179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用ハブユニットに装着する車輪駆動用軸受ユニットの製造方法に関する。
【0002】
【従来の技術】
例えば、特開2001−3945号公報に開示した車両用ハブユニットでは、駆動車輪のハブホイールの軸部に、複列アンギュラー玉軸受が外嵌装着してある。この軸部の内端は、ローリング等により径方向外方に加締めてあり、この加締め部を玉軸受の内輪に押圧して、玉軸受の抜け止めとしている。
【0003】
特に、上記公報では、加締め部の基部側は、内輪の内周面端部の丸い面取り部位に密着してある一方、その先端部側は、この丸い面取り部位から積極的に離脱してある。これにより、加締めのための軸力を充分に確保すると共に、強い加締めの軸力による圧痕の残存を防止している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報では、加締め部の先端部側は、内輪の内周面端部の丸い面取り部位から積極的に離脱してあり、丸い面取り部位と加締め部との間に隙間が存在する。そのため、加締め部の基部側で丸い面取り部位に確実に密着しているか否か検査することは、極めて困難であるといったことがある。
【0005】
本発明は、上述したような事情に鑑みてなされたものであって、加締め部が内輪の丸い面取り部位に確実に密着しているか否かを極めて容易に且つ正確に検査することができる車輪駆動用軸受ユニットの製造方法を提供することを目的とする。
【0006】
上記の目的を達成するため、本発明は、ハブの軸部に、該軸部とは別体で該軸部の縮径部に外嵌されて少なくとも車両内側の内輪軌道が形成され、該内輪軌道の車両内側に同一径の外径部を有する内輪を有する転がり軸受を外嵌装着し、該軸部の内端を径方向外方に加締め、加締め部を前記内輪に押圧して前記軸受の抜け止めとした車輪駆動用軸受ユニットの製造方法において、
加締め作業による内輪の所定の測定点における径方向の膨張量と加締め後の加締め部による前記内輪への軸力との相関関係を予め計測して求め、求めた相関関係に従って加締めの軸力を管理することを特徴とする車輪駆動用軸受ユニットの製造方法において、
加締め作業による内輪の所定の測定点における径方向の膨張量と加締め後の加締め部による前記内輪への軸力との相関関係を予め計測して求め、求めた相関関係に従って加締めの軸力を管理することを特徴とする。
本発明の車輪駆動用軸受ユニットの製造方法においては、検査用内輪と該検査用内輪と合わせて軸方向幅が実際の内輪の軸方向幅となるロードセルとを用い、ハブ軸部の前記縮径部に該ロードセルをスキマ嵌合する一方、その車両内方側に該検査用内輪を締代嵌合して、ハブ軸部の内端を径方向外方に加締めることにより前記相関関係を求めることが好ましい。
【0007】
このように、本発明によれば、加締め作業の前後の内輪の外径寸法を計測して、その膨張量により加締めの軸力を管理するようにしている。
【0008】
即ち、内輪の外径膨張量と加締めの軸力との間には、一定の相関関係があり、この外径膨張量に基づいて、加締めの軸力を把握することにより、加締め部が内輪の丸い面取り部位に確実に密着しているか否かを極めて容易に且つ正確に検査することができる。したがって、内輪の外径膨張量を適切に管理すれば、良好な加締め状態を得ることができる。
【0009】
例えば、加締めの軸力が不足すると、使用中にハブと内輪の嵌合面にクリープが発生して、嵌合部が摩耗することがあるが、本発明では、内輪の外径の膨張量により、加締めの軸力が一定値以下にならないように管理すれば、嵌合部の摩耗を未然に防ぐことができる。
【0010】
また、加締めの軸力が強過ぎると、内輪と転動体の予圧が高くなり過ぎて、圧痕が生じることがあるが、本発明では、内輪の外径の膨張量により、加締めの軸力が一定値以上にならないように管理すれば、圧痕を確実に防止できる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態及び参考例に係る車輪駆動用軸受ユニットの製造方法を図面を参照しつつ説明する。
【0012】
図1(a)は、本発明の参考例に係り、内輪の外径膨張量と加締めの軸力との相関関係を求める実験時に用いる車輪駆動用軸受ユニットの模式図であり、加締め前の状態を示し、(b)は、計測箇所のための説明図である。
【0013】
図2は、図1の同実験時に用いる車輪駆動用軸受ユニットの模式図であり、加締め後の状態を示す。図3は、内輪の外径膨張量と加締めの軸力との相関関係の一例を示すグラフである。
【0014】
内輪の外径膨張量と加締めの軸力との相関関係を求める実験時には、ハブaの軸部bの内端外周面には、実際に用いられる内輪の外端側を切断して幅を短くした検査用内輪cと、ロードセルdとを嵌合する。検査用内輪cとロードセルdを組み合わせた時の幅が実際の内輪の幅に等しくなるように設定している。
【0015】
軸部bと検査用内輪cとは、締代をもって嵌合するようになっているので、嵌合によって内輪が膨張する。そのため、加締め前の検査用内輪cの軌道肩の外径寸法は、検査用内輪cを軸部bに外嵌した状態で測定する。この寸法を加締め前の外径寸法(φDb)とする。
【0016】
ロードセルdの外径には、複数の歪みゲージが貼着してある。曲げモーメントによる歪みがキャンセルされるように、複数の歪みゲージは、等ピッチで配置してある。また、軸部bの圧縮膨張による歪みの影響を受けないように、ロードセルdと軸部bとは、スキマ嵌合にしてある。
【0017】
なお、図1(a)の図示例では、内輪の内端外径に段部を形成したが、図1(b)に示すように、段部を形成しない構造であってもよい。その場合には、内輪軌道肩の外径寸法膨張量は、内端に向かうほど大きくなり、測定位置によって異なる。したがって、測定データの信頼性を高めるためには、図1(b)に示すように、予め測定点を決めておくことが望ましい。
【0018】
加締めによる検査用内輪cの軌道肩の外径寸法は、(φDa)であり、加締めによる膨張量は、(Da−Db)である。加締め後の軸力は、ロードセルdにより測定する。この膨張量と加締めの軸力との関係をプロットした一例を図3に示す。
【0019】
図3から明らかなように、内輪の外径膨張量と加締めの軸力との関係は、ほぼ直線関係になり、内輪の外径膨張量が大きくなると、加締めの軸力も大きくなっている。したがって、図3から、例えば加締めの軸力を105N以上にするためには、内輪の外径膨張量を32μm以上に管理すれば良いことが分かる。
【0020】
なお、本実験にて用いた内輪は、内径がφ26mm、軌道肩の外径寸法がφ46.5mmのものであるが、寸法が異なるものであってもほぼ同じ傾向にある。即ち、内輪軌道肩の外径膨張量と加締めの軸力とのグラフは、ほぼ直線関係で表示でき、内輪の外径膨張量が大きくなる程、加締めの軸力も大きくなる。
【0021】
したがって、以上の相関関係から、内輪の外径膨張量により、加締めの軸力を管理することができる。なお、寸法の異なるものについて加締めの軸力を管理する場合には、内輪の外径膨張量と加締めの軸力の相関関係を予め計測しておけばよい。
【0022】
以上から、本実施の形態及び参考例によれば、加締め部が内輪の内周面端部の丸い面取り部位に密着してあり、加締め作業の前後の内輪の外径寸法を計測して、その膨張量により加締めの軸力を管理するようにしている。
【0023】
即ち、内輪の外径膨張量と加締めの軸力との間には、一定の相関関係があり、この外径膨張量に基づいて、加締めの軸力を把握することにより、加締め部が内輪の丸い面取り部位に確実に密着しているか否かを極めて容易に且つ正確に検査することができる。したがって、内輪の外径膨張量を適切に管理すれば、良好な加締め状態を得ることができる。
【0024】
例えば、加締めの軸力が不足すると、使用中にハブと内輪の嵌合面にクリープが発生して、嵌合部が摩耗することがあるが、本発明では、内輪の外径膨張量により、加締めの軸力が一定値以下にならないように管理すれば、嵌合部の摩耗を未然に防ぐことができる。
【0025】
また、加締めの軸力が強過ぎると、内輪と転動体の予圧が高くなり過ぎて、圧痕が生じることがあるが、本発明では、内輪の外径膨張量により、加締めの軸力が一定値以上にならないように管理すれば、圧痕を確実に防止できる。
【0026】
参考例】
(第1参考例)
図4は、本発明の第1参考例を、加締め部を加工する以前の状態で示す半部断面図である。図5は、同じく加締め部を加工した後の状態で示す半部断面図である。図6は、傾斜面部と円筒部の内周面との境界位置の概念を説明する為の、図4のA部拡大図である。
【0027】
駆動輪用転がり軸受ユニット1は、外輪3の内径側にハブ4c及び内輪5を、複数個の転動体6、6を介して回転自在に支持して成る。このうちの外輪3は、その外周面に一体に設けた第一のフランジ7により懸架装置を構成する図示しないナックルに結合固定した状態で、使用時にも回転しない。又、上記外輪3の内周面には1対の外輪軌道8、8を設けて、この外輪3の内径側に上記ハブ4c及び内輪5を、この外輪3と同心に、回転自在に支持している。
【0028】
このうちのハブ4cは、外周面の外端(軸方向に関して外とは、自動車への組み付け状態で車両の幅方向外側となる側)寄り部分に、車輪を支持する為の第二のフランジ9を設けている。又、上記ハブ4cの外周面の中間部に第一の内輪軌道10を形成し、同じく内端(軸方向に関して内とは、自動車への組み付け状態で車両の幅方向内側となる側)部に形成した嵌合円筒面部に相当する小径段部11に、その外周面に第二の内輪軌道12を形成した上記内輪5を外嵌固定している。又、上記ハブ4cの中心部には、スプライン孔13を設けている。
【0029】
上記内輪5の内周面と内端面とは、断面形状が凸円弧形である面取り部35により滑らかに連続している。但し、加工上の理由により、この面取り部35とすべき凸円弧形の曲面を旋削加工後、内周面を研削加工するので、通常、この面取り35の外端位置での接線は、上記内輪5の中心軸に対し凡そ10〜20度傾斜している。従って、上記外端位置での接線の傾きは不連続になっている。又、上記内輪5の内端部でこの面取り部35の径方向外側に位置する部分には段付部36を全周に亙り形成して、この面取り部35の径方向に関する厚さを、この部分よりも外寄り部分の厚さよりも小さくしている。この構成により、図5に示す加締め部28の形成作業に伴って上記内輪5の内端部に径方向外方に加わる大きな力に拘らず、この内輪5の中間部外周面に形成した第二の内輪軌道12の形状が歪むのを防止している。
【0030】
上記加締め部28を形成すべく、上記ハブ4cの内端部に形成した円筒部37は、外周面を円筒面とし、内周面を、内端開口に向かうほど内径が大きくなる方向に僅かに(例えば母線が中心軸に対し0〜5度程度)傾斜したテーパ面としている。又、上記円筒部37の外周面に関しては、略円筒面状になっていれば良く、僅かに傾斜したテーパ面とする事もできる。そして、テーパ面とする場合には、傾斜方向は問わない(何れの方向に傾斜していても良い)。尚、図示の例では、上記円筒部37の外周面と上記内輪5を外嵌する為の小径段部11の外周面との境界部に、断面形状が凹円弧状である段差部38を形成して、これら両外周面同士の間に僅かな(例えば0.01〜0.5mm程度の)段差を設けている。この様な段差部38は、上記加締め部28を形成する為に上記円筒部37を径方向外方に塑性変形させる際に変形の基点となって、この円筒部37から上記加締め部28への加工を、亀裂や過大な空隙等の欠陥を生じさせずに、滑らかに行なえる様にする為に設けている。この為に、上記段差部38と上記小径段部11との境界部の軸方向位置を、上記面取り部35の外端部の軸方向位置とほぼ一致させている。又、上記円筒部37の先端面(内端面)外周縁部には面取りを施して、上記加工の過程でこの外周縁部に加わる引っ張り方向の力に拘らず、この外周縁部に亀裂等の損傷が発生しにくくしている。
【0031】
上記の様な円筒部37の内周面の軸方向外端部と、上記ハブ4cの中心部に形成した前記スプライン孔13の軸方向内端部との間には、円すい凹面状の傾斜面部39を形成している。この傾斜面部39は、軸方向内方に向かうほど直径が大きくなる方向に傾斜した円すい凹面状である。この様な傾斜面部39の母線は、上記ハブ4cの中心軸に対し、上記円筒部37の内周面よりも大きく(例えば20〜70度、より好ましくは25〜65度)傾斜している。
【0032】
上記斜面部39と上記円筒部37の内周面の外端部との境界部分には、図6(A)に示す様に、隅Rと呼ばれる断面円弧状の連続部を形成したり、同図(B)に示す様に、逃げと呼ばれる凹溝を形成する場合が多い。この様な場合に上記境界位置αは、上記傾斜面部39の母線の延長線と上記円筒部37の内周面の母線の延長線とが交差する位置とする。尚、図示の例では、上記スプライン孔13の軸方向内端部と上記円筒部37の内周面外端部とを、傾斜角度が変化しない、連続した円すい凹面状の傾斜面部39により連続させている。これに対して、上記スプライン孔13の軸方向内端部と上記円筒部37の内周面外端部との間に、このスプライン孔13よりも大径でこの円筒部37の内径よりも小径の円筒面部を形成する等、円すい凹面状の傾斜面部が単一の傾きになっていない構造とする事もできる。
【0033】
本第1参考例においても、加締め部28が内輪の内周面端部の丸い面取り部位35に密着してあり、加締め作業の前後の内輪の外径寸法を計測して、その膨張量により加締めの軸力を管理するようにしている。
【0034】
即ち、内輪の外径膨張量と加締めの軸力との間には、一定の相関関係があり、この外径膨張量に基づいて、加締めの軸力を把握することにより、加締め部28が内輪の丸い面取り部位35に確実に密着しているか否かを極めて容易に且つ正確に検査することができる。したがって、内輪の外径膨張量を適切に管理すれば、良好な加締め状態を得ることができる。
(第2参考例)
図7は、本発明の第2参考例を、加締め部を加工する以前の状態で示す半部断面図である。図8は、同じく加締め部を加工した後の状態で示す半部断面図である。
【0035】
上記の第1例の構造の場合には、ハブ4cの中間部外周面に直接第一の内輪軌道10を形成していたのに対して、本例の場合には、外周面に第一の内輪軌道10を形成した内輪5aを、ハブ4dの中間部に外嵌している。そして、外周面に第二の内輪軌道12を形成した内輪5の外端面を、上記内輪5aの内端面に突き当てている。そして、上記ハブ4dの内端部に形成した円筒部37を径方向外方に塑性変形させて形成した加締め部28(図8参照)により、上記両内輪5、5aを、上記ハブ4dに固定する様にしている。その他の部分の構造及び作用は、上述した第1例の場合と同様である。
【0036】
なお、本発明は、上述した実施の形態及び参考例に限定されず、種々変形可能である。
【0037】
【発明の効果】
以上説明したように、本発明によれば、加締め作業の前後の内輪の外径寸法を計測して、その膨張量により加締めの軸力を管理するようにしている。
【0038】
即ち、内輪の外径膨張量と加締めの軸力との間には、一定の相関関係があり、この外径膨張量に基づいて、加締めの軸力を把握することにより、加締め部が内輪の丸い面取り部位に確実に密着しているか否かを極めて容易に且つ正確に検査することができる。したがって、内輪の外径膨張量を適切に管理すれば、良好な加締め状態を得ることができる。
【0039】
例えば、加締めの軸力が不足すると、使用中にハブと内輪の嵌合面にクリープが発生して、嵌合部が摩耗することがあるが、本発明では、内輪の外径膨張量により、加締めの軸力が一定値以下にならないように管理すれば、嵌合部の摩耗を未然に防ぐことができる。
【0040】
また、加締めの軸力が強過ぎると、内輪と転動体の予圧が高くなり過ぎて、圧痕が生じることがあるが、本発明では、内輪の外径膨張量により、加締めの軸力が一定値以上にならないように管理すれば、圧痕を確実に防止できる。
【図面の簡単な説明】
【図1】 (a)は、本発明の参考例に係り、内輪の外径膨張量と加締めの軸力との相関関係を求める実験時に用いる車輪駆動用軸受ユニットの模式図であり、加締め前の状態を示し、(b)は、計測箇所のための説明図である。
【図2】 図1の同実験時に用いる車輪駆動用軸受ユニットの模式図であり、加締め後の状態を示す。
【図3】 内輪の外径膨張量と加締めの軸力との相関関係の一例を示すグラフである。
【図4】 本発明の第1参考例を、加締め部を加工する以前の状態で示す半部断面図である。
【図5】 同じく加締め部を加工した後の状態で示す半部断面図である。
【図6】 傾斜面部と円筒部の内周面との境界位置の概念を説明する為の、図1のA部拡大図である。
【図7】 本発明の第2参考例を、加締め部を加工する以前の状態で示す半部断面図である。
【図8】 同じく加締め部を加工した後の状態で示す半部断面図である。
【符号の説明】
a ハブ
b 軸部
c 検査用内輪
d ロードセル
1 駆動輪用転がり軸受ユニット
3 外輪
4、4c、4d ハブ
5、5a 内輪
6 転動体
7 第一のフランジ
8 外輪軌道
9 第二のフランジ
10 第一の内輪軌道
11 小径段部
12 第二の内輪軌道
13 スプライン孔
28 加締め部
35 面取り部
36 段付部
37 円筒部
38 段差部
39 傾斜面部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a wheel drive bearing unit to be mounted on a vehicle hub unit.
[0002]
[Prior art]
For example, in the vehicle hub unit disclosed in Japanese Patent Laid-Open No. 2001-3945, a double-row angular ball bearing is externally fitted to the shaft portion of the hub wheel of the drive wheel. The inner end of the shaft portion is caulked radially outward by rolling or the like, and the caulking portion is pressed against the inner ring of the ball bearing to prevent the ball bearing from coming off.
[0003]
In particular, in the above publication, the base side of the caulking portion is in close contact with the round chamfered portion of the inner circumferential surface end portion of the inner ring, while the tip end side is actively detached from the round chamfered portion. . As a result, sufficient axial force for caulking is ensured, and indentation remains due to strong caulking axial force.
[0004]
[Problems to be solved by the invention]
However, in the above publication, the front end portion side of the caulking portion is positively separated from the round chamfered portion of the inner circumferential surface end portion of the inner ring, and there is a gap between the round chamfered portion and the caulking portion. . For this reason, it may be extremely difficult to inspect whether or not the chamfered portion is firmly attached to the round chamfered portion on the base side.
[0005]
The present invention has been made in view of the circumstances as described above, and can very easily and accurately inspect whether or not the caulking portion is securely in close contact with the round chamfered portion of the inner ring. It aims at providing the manufacturing method of a bearing unit for a drive.
[0006]
To achieve the above object, the present invention is, in the axial portion of the hub, the inner ring raceway of at least the vehicle inner side is fitted around the reduced diameter portion of the shaft portion in a separate body is formed with the shaft portion, the inner race A rolling bearing having an inner ring having an outer diameter portion of the same diameter is fitted on the vehicle inner side of the track, and the inner end of the shaft portion is crimped radially outward, and the crimping portion is pressed against the inner ring to In the manufacturing method of the wheel drive bearing unit that prevents the bearing from coming off,
A correlation between the amount of radial expansion at a predetermined measurement point of the inner ring by the caulking operation and the axial force applied to the inner ring by the caulking portion after caulking is measured in advance, and caulking is performed according to the obtained correlation. In the manufacturing method of the wheel drive bearing unit characterized by managing the axial force,
A correlation between the amount of radial expansion at a predetermined measurement point of the inner ring by the caulking operation and the axial force applied to the inner ring by the caulking portion after caulking is measured in advance, and caulking is performed according to the obtained correlation. It is characterized by managing axial force.
In the manufacturing method of the wheel drive bearing unit of the present invention, the reduced diameter of the hub shaft portion is obtained by using an inner ring for inspection and a load cell whose axial width is the axial width of the actual inner ring together with the inner ring for inspection. The load cell is clearance-fitted to the part, and the inner ring for inspection is fitted to the inner side of the vehicle, and the inner end of the hub shaft part is caulked radially outward to obtain the correlation. It is preferable.
[0007]
As described above, according to the present invention, the outer diameter of the inner ring before and after the caulking work is measured, and the axial force of the caulking is managed by the amount of expansion.
[0008]
That is, there is a certain correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking. Based on the outer diameter expansion amount, the caulking portion is obtained by grasping the axial force of the caulking. It is possible to inspect very easily and accurately whether or not is firmly attached to the round chamfered portion of the inner ring. Therefore, if the outer diameter expansion amount of the inner ring is appropriately managed, a good crimped state can be obtained.
[0009]
For example, if the axial force of caulking is insufficient, creep may occur on the fitting surface between the hub and the inner ring during use, and the fitting portion may be worn. In the present invention, the expansion amount of the outer diameter of the inner ring Thus, if the caulking axial force is managed so as not to become a predetermined value or less, wear of the fitting portion can be prevented in advance.
[0010]
In addition, if the caulking axial force is too strong, the preload of the inner ring and the rolling element becomes too high, and indentation may occur, but in the present invention, the caulking axial force depends on the expansion amount of the outer diameter of the inner ring. Indentation can be reliably prevented by managing so that does not exceed a certain value.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the wheel drive bearing unit which concerns on embodiment and reference example of this invention is demonstrated, referring drawings.
[0012]
FIG. 1A is a schematic diagram of a wheel drive bearing unit used in an experiment for obtaining a correlation between an outer diameter expansion amount of an inner ring and a caulking axial force according to a reference example of the present invention. (B) is explanatory drawing for a measurement location.
[0013]
FIG. 2 is a schematic view of the wheel drive bearing unit used in the experiment of FIG. 1 and shows a state after caulking. FIG. 3 is a graph showing an example of the correlation between the outer diameter expansion amount of the inner ring and the axial force of caulking.
[0014]
At the time of the experiment for obtaining the correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking, the outer end side of the inner ring that is actually used is cut to the outer peripheral surface of the inner end of the shaft portion b of the hub a. The shortened inner ring for inspection c and the load cell d are fitted. The width when the test inner ring c and the load cell d are combined is set to be equal to the actual width of the inner ring.
[0015]
Since the shaft part b and the inner ring c for inspection are fitted with a tightening allowance, the inner ring is expanded by fitting. Therefore, the outer diameter dimension of the track shoulder of the test inner ring c before caulking is measured in a state in which the test inner ring c is externally fitted to the shaft portion b. This dimension is the outer diameter dimension (φDb) before caulking.
[0016]
A plurality of strain gauges are attached to the outer diameter of the load cell d. The plurality of strain gauges are arranged at an equal pitch so that the strain due to the bending moment is canceled. In addition, the load cell d and the shaft portion b are clearance-fitted so as not to be affected by the distortion caused by the compression and expansion of the shaft portion b.
[0017]
In the illustrated example of FIG. 1A, the step portion is formed on the inner end outer diameter of the inner ring. However, as shown in FIG. 1B, the step portion may not be formed. In that case, the outer diameter dimension expansion amount of the inner ring raceway shoulder becomes larger toward the inner end, and varies depending on the measurement position. Therefore, in order to increase the reliability of measurement data, it is desirable to determine measurement points in advance as shown in FIG.
[0018]
The outer diameter dimension of the track shoulder of the inner ring for inspection c by caulking is (φDa), and the expansion amount by caulking is (Da−Db). The axial force after caulking is measured by the load cell d. An example in which the relationship between the expansion amount and the caulking axial force is plotted is shown in FIG.
[0019]
As is apparent from FIG. 3, the relationship between the outer diameter expansion amount of the inner ring and the caulking axial force is substantially linear, and when the outer diameter expansion amount of the inner ring increases, the caulking axial force also increases. . Therefore, FIG. 3 shows that, for example, in order to set the caulking axial force to 105 N or more, the outer diameter expansion amount of the inner ring may be managed to 32 μm or more.
[0020]
The inner ring used in this experiment has an inner diameter of 26 mm and an outer diameter of the track shoulder of 46.5 mm. That is, a graph of the outer diameter expansion amount of the inner ring raceway shoulder and the caulking axial force can be displayed in a substantially linear relationship, and the caulking axial force increases as the outer diameter expansion amount of the inner ring increases.
[0021]
Therefore, from the above correlation, the caulking axial force can be managed by the outer diameter expansion amount of the inner ring. In addition, when managing the axial force of the caulking for different dimensions, the correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking may be measured in advance.
[0022]
As described above, according to the present embodiment and the reference example , the caulking portion is in close contact with the round chamfered portion of the inner circumferential surface end portion of the inner ring, and the outer diameter dimension of the inner ring before and after the caulking operation is measured. The axial force of caulking is managed by the amount of expansion.
[0023]
That is, there is a certain correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking. Based on the outer diameter expansion amount, the caulking portion is obtained by grasping the axial force of the caulking. It is possible to inspect very easily and accurately whether or not is firmly attached to the round chamfered portion of the inner ring. Therefore, if the outer diameter expansion amount of the inner ring is appropriately managed, a good crimped state can be obtained.
[0024]
For example, if the caulking axial force is insufficient, creep may occur on the fitting surface between the hub and the inner ring during use, and the fitting part may be worn. If the caulking axial force is managed so as not to be below a certain value, wear of the fitting portion can be prevented beforehand.
[0025]
Also, if the caulking axial force is too strong, the preload between the inner ring and the rolling element becomes too high, and indentations may occur.However, in the present invention, the caulking axial force is caused by the outer diameter expansion amount of the inner ring. If it is managed so as not to exceed a certain value, indentation can be reliably prevented.
[0026]
[ Reference example]
(First Reference Example)
FIG. 4 is a half sectional view showing the first reference example of the present invention in a state before the caulking portion is processed. FIG. 5 is a half cross-sectional view showing a state after processing the caulking portion. FIG. 6 is an enlarged view of part A in FIG. 4 for explaining the concept of the boundary position between the inclined surface part and the inner peripheral surface of the cylindrical part.
[0027]
The driving wheel rolling bearing unit 1 is configured such that a hub 4 c and an inner ring 5 are rotatably supported via a plurality of rolling elements 6 on the inner diameter side of an outer ring 3. Of these, the outer ring 3 is coupled and fixed to a knuckle (not shown) constituting a suspension device by a first flange 7 integrally provided on the outer peripheral surface thereof, and does not rotate during use. Further, a pair of outer ring raceways 8 and 8 are provided on the inner peripheral surface of the outer ring 3, and the hub 4 c and the inner ring 5 are rotatably supported concentrically with the outer ring 3 on the inner diameter side of the outer ring 3. ing.
[0028]
Of these, the hub 4c is a second flange 9 for supporting the wheel at a portion closer to the outer end of the outer peripheral surface (outside in the axial direction is the outer side in the width direction of the vehicle when assembled to the automobile). Is provided. Further, a first inner ring raceway 10 is formed at an intermediate portion of the outer peripheral surface of the hub 4c, and is similarly formed at an inner end (inside with respect to the axial direction, the inner side is the inner side in the width direction of the vehicle when assembled in a vehicle). The inner ring 5 having the second inner ring raceway 12 formed on the outer peripheral surface thereof is externally fitted and fixed to the small diameter step portion 11 corresponding to the formed fitting cylindrical surface portion. A spline hole 13 is provided at the center of the hub 4c.
[0029]
The inner peripheral surface and the inner end surface of the inner ring 5 are smoothly continuous by a chamfered portion 35 having a convex arc shape in cross section. However, since the inner peripheral surface is ground after turning the convex arcuate curved surface to be the chamfered part 35 for processing reasons, the tangent at the outer end position of the chamfer 35 is usually It is inclined about 10 to 20 degrees with respect to the central axis of the inner ring 5. Therefore, the slope of the tangent line at the outer end position is discontinuous. Further, a stepped portion 36 is formed on the inner end portion of the inner ring 5 at the outer side in the radial direction of the chamfered portion 35 over the entire circumference, and the thickness of the chamfered portion 35 in the radial direction is determined by this. It is smaller than the thickness of the outer part than the part. With this configuration, the first outer ring 5 formed on the outer peripheral surface of the intermediate portion of the inner ring 5 regardless of the large force applied radially outward to the inner end portion of the inner ring 5 along with the forming operation of the crimping portion 28 shown in FIG. The shape of the second inner ring raceway 12 is prevented from being distorted.
[0030]
In order to form the caulking portion 28, the cylindrical portion 37 formed at the inner end of the hub 4c has an outer peripheral surface as a cylindrical surface, and the inner peripheral surface slightly increases in the direction in which the inner diameter increases toward the inner end opening. (For example, the busbar is inclined at 0 to 5 degrees with respect to the central axis). Further, the outer peripheral surface of the cylindrical portion 37 only needs to be substantially cylindrical, and may be a slightly inclined taper surface. And when setting it as a taper surface, the inclination direction is not ask | required (it may incline in any direction). In the illustrated example, a stepped portion 38 having a concave arc shape in cross section is formed at the boundary between the outer peripheral surface of the cylindrical portion 37 and the outer peripheral surface of the small-diameter stepped portion 11 for fitting the inner ring 5 externally. Then, a slight step (for example, about 0.01 to 0.5 mm) is provided between the two outer peripheral surfaces. Such a stepped portion 38 becomes a base point of deformation when the cylindrical portion 37 is plastically deformed radially outward to form the crimped portion 28, and from the cylindrical portion 37 to the crimped portion 28. Is provided to enable smooth processing without causing defects such as cracks and excessive voids. For this reason, the axial position of the boundary portion between the stepped portion 38 and the small diameter stepped portion 11 is substantially matched with the axial position of the outer end portion of the chamfered portion 35. Further, the outer peripheral edge portion of the front end surface (inner end surface) of the cylindrical portion 37 is chamfered, and the outer peripheral edge portion is free of cracks or the like regardless of the tensile force applied to the outer peripheral edge portion in the process. Damage is less likely to occur.
[0031]
Between the axially outer end portion of the inner peripheral surface of the cylindrical portion 37 as described above and the axially inner end portion of the spline hole 13 formed at the center portion of the hub 4c, a conical concave inclined surface portion is formed. 39 is formed. The inclined surface portion 39 has a conical concave shape inclined in a direction in which the diameter increases toward the inner side in the axial direction. The generatrix of the inclined surface portion 39 is inclined larger than the inner peripheral surface of the cylindrical portion 37 (for example, 20 to 70 degrees, more preferably 25 to 65 degrees) with respect to the central axis of the hub 4c.
[0032]
As shown in FIG. 6 (A), at the boundary portion between the slope portion 39 and the outer end portion of the inner peripheral surface of the cylindrical portion 37, a continuous portion having a circular arc shape called a corner R is formed. As shown in FIG. (B), a concave groove called escape is often formed. In such a case, the boundary position α is a position where the extended line of the bus bar of the inclined surface portion 39 and the extended line of the bus bar of the inner peripheral surface of the cylindrical portion 37 intersect. In the illustrated example, the inner end of the spline hole 13 in the axial direction and the outer end of the inner peripheral surface of the cylindrical portion 37 are made continuous by a continuous conical concave inclined surface 39 that does not change the inclination angle. ing. On the other hand, between the inner end in the axial direction of the spline hole 13 and the outer end of the inner peripheral surface of the cylindrical portion 37, the diameter is larger than the spline hole 13 and smaller than the inner diameter of the cylindrical portion 37. It is also possible to adopt a structure in which the conical concave inclined surface portion does not have a single inclination, such as forming a cylindrical surface portion.
[0033]
Also in the first reference example, the caulking portion 28 is in close contact with the round chamfered portion 35 at the inner circumferential surface end portion of the inner ring, and the outer diameter dimension of the inner ring before and after the caulking operation is measured and the amount of expansion is measured. In this way, the axial force of caulking is managed.
[0034]
That is, there is a certain correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking. Based on the outer diameter expansion amount, the caulking portion is obtained by grasping the axial force of the caulking. It can be very easily and accurately inspected whether 28 is securely attached to the round chamfered portion 35 of the inner ring. Therefore, if the outer diameter expansion amount of the inner ring is appropriately managed, a good crimped state can be obtained.
(Second reference example)
FIG. 7 is a half sectional view showing a second reference example of the present invention in a state before the caulking portion is processed. FIG. 8 is a half sectional view showing a state after the caulking portion has been processed.
[0035]
In the case of the structure of the first example, the first inner ring raceway 10 is directly formed on the outer peripheral surface of the intermediate portion of the hub 4c, whereas in the case of this example, the first inner ring raceway 10 is formed on the outer peripheral surface. The inner ring 5a that forms the inner ring raceway 10 is externally fitted to the intermediate part of the hub 4d. The outer end surface of the inner ring 5 having the second inner ring raceway 12 formed on the outer peripheral surface is abutted against the inner end surface of the inner ring 5a. Then, the inner rings 5 and 5a are connected to the hub 4d by a caulking portion 28 (see FIG. 8) formed by plastically deforming the cylindrical portion 37 formed at the inner end of the hub 4d radially outward. I try to fix it. The structure and operation of the other parts are the same as in the case of the first example described above.
[0036]
In addition, this invention is not limited to embodiment mentioned above and a reference example, A various deformation | transformation is possible.
[0037]
【The invention's effect】
As described above, according to the present invention, the outer diameter of the inner ring before and after the caulking work is measured, and the caulking axial force is managed by the amount of expansion.
[0038]
That is, there is a certain correlation between the outer diameter expansion amount of the inner ring and the axial force of the caulking. Based on the outer diameter expansion amount, the caulking portion is obtained by grasping the axial force of the caulking. It is possible to inspect very easily and accurately whether or not is firmly attached to the round chamfered portion of the inner ring. Therefore, if the outer diameter expansion amount of the inner ring is appropriately managed, a good crimped state can be obtained.
[0039]
For example, if the caulking axial force is insufficient, creep may occur on the fitting surface between the hub and the inner ring during use, and the fitting part may be worn. If the caulking axial force is managed so as not to be below a certain value, wear of the fitting portion can be prevented beforehand.
[0040]
Also, if the caulking axial force is too strong, the preload between the inner ring and the rolling element becomes too high, and indentations may occur.However, in the present invention, the caulking axial force is caused by the outer diameter expansion amount of the inner ring. If it is managed so as not to exceed a certain value, the indentation can be surely prevented.
[Brief description of the drawings]
FIG. 1A is a schematic diagram of a wheel drive bearing unit used in an experiment for obtaining a correlation between an outer diameter expansion amount of an inner ring and a caulking axial force according to a reference example of the present invention. The state before a fastening is shown, (b) is explanatory drawing for a measurement location.
FIG. 2 is a schematic diagram of a wheel drive bearing unit used in the same experiment of FIG. 1, showing a state after caulking.
FIG. 3 is a graph showing an example of a correlation between an outer diameter expansion amount of an inner ring and a caulking axial force.
FIG. 4 is a half sectional view showing a first reference example of the present invention in a state before a caulking portion is processed.
FIG. 5 is a half cross-sectional view showing a state after processing a caulking portion in the same manner.
6 is an enlarged view of a portion A in FIG. 1 for explaining the concept of the boundary position between the inclined surface portion and the inner peripheral surface of the cylindrical portion. FIG.
FIG. 7 is a half sectional view showing a second reference example of the present invention in a state before a caulking portion is processed.
FIG. 8 is a half cross-sectional view showing a state after the caulking portion is similarly processed.
[Explanation of symbols]
a hub b shaft c inner ring for inspection d load cell 1 rolling bearing unit for driving wheel 3 outer ring 4, 4c, 4d hub 5, 5a inner ring 6 rolling element 7 first flange 8 outer ring raceway 9 second flange 10 first Inner ring raceway 11 Small diameter step portion 12 Second inner ring raceway 13 Spline hole 28 Clamping portion 35 Chamfering portion 36 Stepped portion 37 Cylindrical portion 38 Step portion 39 Inclined surface portion

Claims (2)

ハブの軸部に、該軸部とは別体で該軸部の縮径部に外嵌されて少なくとも車両内側の内輪軌道が形成され、該内輪軌道の車両内側に同一径の外径部を有する内輪を有する転がり軸受を外嵌装着し、該軸部の内端を径方向外方に加締め、加締め部を前記内輪に押圧して前記軸受の抜け止めとした車輪駆動用軸受ユニットの製造方法において、
加締め作業による内輪の所定の測定点における径方向の膨張量と加締め後の加締め部による前記内輪への軸力との相関関係を予め計測して求め、求めた相関関係に従って加締めの軸力を管理することを特徴とする車輪駆動用軸受ユニットの製造方法。
An inner ring raceway at least inside the vehicle is formed on the shaft portion of the hub, and is fitted outside the reduced diameter portion of the shaft portion separately from the shaft portion, and an outer diameter portion having the same diameter is formed inside the vehicle of the inner ring raceway. A wheel drive bearing unit in which a rolling bearing having an inner ring is externally fitted, the inner end of the shaft portion is caulked radially outward, and the caulking portion is pressed against the inner ring to prevent the bearing from coming off. In the manufacturing method,
A correlation between the amount of radial expansion at a predetermined measurement point of the inner ring by the caulking operation and the axial force applied to the inner ring by the caulking portion after caulking is measured in advance, and caulking is performed according to the obtained correlation. A method for manufacturing a wheel drive bearing unit, characterized by managing axial force.
検査用内輪と該検査用内輪と合わせて軸方向幅が実際の内輪の軸方向幅となるロードセルとを用い、ハブ軸部の前記縮径部に該ロードセルをスキマ嵌合する一方、その車両内方側に該検査用内輪を締代嵌合して、ハブ軸部の内端を径方向外方に加締めることにより前記相関関係を求めることを特徴とする請求項1に記載の車輪駆動用軸受ユニットの製造方法。  Using the inner ring for inspection and the load cell whose axial width is the actual axial width of the inner ring together with the inner ring for inspection, the load cell is clearance-fitted to the reduced diameter portion of the hub shaft portion, while the inside of the vehicle 2. The wheel drive according to claim 1, wherein the correlation is obtained by fitting the inner ring for inspection to the side and tightening the inner end of the hub shaft portion radially outward. 3. Manufacturing method of bearing unit.
JP2001201668A 2001-07-03 2001-07-03 Manufacturing method of bearing unit for wheel drive wheel Expired - Lifetime JP4710179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201668A JP4710179B2 (en) 2001-07-03 2001-07-03 Manufacturing method of bearing unit for wheel drive wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201668A JP4710179B2 (en) 2001-07-03 2001-07-03 Manufacturing method of bearing unit for wheel drive wheel

Publications (2)

Publication Number Publication Date
JP2003013979A JP2003013979A (en) 2003-01-15
JP4710179B2 true JP4710179B2 (en) 2011-06-29

Family

ID=19038587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201668A Expired - Lifetime JP4710179B2 (en) 2001-07-03 2001-07-03 Manufacturing method of bearing unit for wheel drive wheel

Country Status (1)

Country Link
JP (1) JP4710179B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917992B2 (en) 2004-08-03 2007-05-23 Ntn株式会社 Wheel bearing device
JP4573200B2 (en) * 2007-01-12 2010-11-04 Ntn株式会社 Wheel bearing device
JP5245593B2 (en) * 2008-07-14 2013-07-24 株式会社ジェイテクト Manufacturing method of wheel bearing device
JP2010112452A (en) 2008-11-06 2010-05-20 Ntn Corp Wheel bearing device
JP7290086B2 (en) * 2019-09-06 2023-06-13 日本精工株式会社 HUB UNIT BEARING AND MANUFACTURING METHOD THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272903A (en) * 1997-03-31 1998-10-13 Nippon Seiko Kk Wheel supporting hub unit
JP2000211302A (en) * 1999-01-26 2000-08-02 Nsk Ltd Rolling bearing unit for wheel support
JP2000317552A (en) * 1999-05-11 2000-11-21 Koyo Seiko Co Ltd Caulking method, and holding jig used therefor
JP2001003945A (en) * 1999-06-22 2001-01-09 Koyo Seiko Co Ltd Bearing device
JP2001050832A (en) * 1999-08-06 2001-02-23 Koyo Seiko Co Ltd Method for measuring axial tension of bearing unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272903A (en) * 1997-03-31 1998-10-13 Nippon Seiko Kk Wheel supporting hub unit
JP2000211302A (en) * 1999-01-26 2000-08-02 Nsk Ltd Rolling bearing unit for wheel support
JP2000317552A (en) * 1999-05-11 2000-11-21 Koyo Seiko Co Ltd Caulking method, and holding jig used therefor
JP2001003945A (en) * 1999-06-22 2001-01-09 Koyo Seiko Co Ltd Bearing device
JP2001050832A (en) * 1999-08-06 2001-02-23 Koyo Seiko Co Ltd Method for measuring axial tension of bearing unit

Also Published As

Publication number Publication date
JP2003013979A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
EP1312821B1 (en) Bearing unit for vehicle wheel support
US6688773B2 (en) Deformable spindle end portion
JP3855315B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JPH10272903A (en) Wheel supporting hub unit
JP2002139060A (en) Wheel bearing device
JPH10196661A (en) Wheel supporting hub unit
JP2003074571A (en) Srolling bearing unit for driving wheel and driving unit for car wheel
US8221004B2 (en) Method of making wheel support bearing
JP2000211302A (en) Rolling bearing unit for wheel support
JP4710179B2 (en) Manufacturing method of bearing unit for wheel drive wheel
JP3815376B2 (en) Rolling bearing unit for wheel support
JP4016499B2 (en) Manufacturing method of hub unit
JP4612521B2 (en) Wheel bearing device
JP4784008B2 (en) Wheel drive bearing unit and method for manufacturing the wheel drive bearing unit
JP2001171309A (en) Rolling bearing unit for supporting wheel
JP4682459B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP4467480B2 (en) Wheel bearing device and caulking method thereof
JP4453033B2 (en) Manufacturing method of wheel supporting hub unit
JP4306645B2 (en) Manufacturing method of wheel supporting hub unit
JP4986512B2 (en) Wheel bearing device
JP5283316B2 (en) Manufacturing method of wheel bearing device
JP4576704B2 (en) Rolling bearing unit for wheel support
JP4186959B2 (en) Rolling bearing unit for wheel support
JP4467481B2 (en) Wheel bearing device
JP2007024131A (en) Bearing device for wheel and caulking method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250