JP4708833B2 - High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method - Google Patents

High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method Download PDF

Info

Publication number
JP4708833B2
JP4708833B2 JP2005112190A JP2005112190A JP4708833B2 JP 4708833 B2 JP4708833 B2 JP 4708833B2 JP 2005112190 A JP2005112190 A JP 2005112190A JP 2005112190 A JP2005112190 A JP 2005112190A JP 4708833 B2 JP4708833 B2 JP 4708833B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy material
heat treatment
sag resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005112190A
Other languages
Japanese (ja)
Other versions
JP2006291271A (en
Inventor
一芳 山崎
進 平井
青木  伸夫
柴田  均
保 辛木
孝之 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
SWCC Corp
Original Assignee
Nippon Seisen Co Ltd
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, SWCC Showa Cable Systems Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005112190A priority Critical patent/JP4708833B2/en
Publication of JP2006291271A publication Critical patent/JP2006291271A/en
Application granted granted Critical
Publication of JP4708833B2 publication Critical patent/JP4708833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、例えば光ピックアップ用サスペンションワイヤなどの導電性ばね製品の用途において、特に耐へたり性に優れた高強度かつ高導電性の銅合金材料とその製造方法に関する。   The present invention relates to a high-strength and high-conductivity copper alloy material excellent in sag resistance, and a method for producing the same, particularly in the use of conductive spring products such as suspension wires for optical pickups.

銅は、電気抵抗が小さく導電性に優れることから、電気・電子用材料として多用され、その用途は種々電線からコネクタ、端子、スイッチなどの各種部品に至るまで多岐にわたって用いられている。しかしながら、一方で、銅は、軟質であるため、ばね製品のように高強度が要求される用途には本来不向きである。   Copper is widely used as an electrical / electronic material because of its low electrical resistance and excellent electrical conductivity, and its application is widely used from various electric wires to various parts such as connectors, terminals, and switches. However, on the other hand, since copper is soft, it is inherently unsuitable for applications that require high strength such as spring products.

そこで、高い導電性と高い強度が共に要求される導電性のばね製品、例えば、光ピックアップ用サスペンションワイヤなどの用途では、従来から高強度ステンレス鋼を芯材とし、その表面に銅をメッキもしくはクラッドした銅被覆材、あるいは、銅に他の元素を添加したリン青銅やベリリウム銅などの銅合金が使用されている。   Therefore, conductive spring products that require both high conductivity and high strength, such as suspension wires for optical pickups, have conventionally used high-strength stainless steel as the core and copper plated or clad on the surface. Copper alloys such as phosphor bronze and beryllium copper obtained by adding other elements to copper are used.

しかしながら、前者の銅被覆材は、芯材自体の強度によって高強度は維持できるものの、銅被覆した芯材からの剥離や銅の被覆状態の不均一により、品質特性にバラツキを生じやすいうえ、製造工程が複雑で品質の低下や製造コストの上昇が避けられないという問題があった。   However, although the former copper coating material can maintain high strength depending on the strength of the core material itself, it is likely to cause variations in quality characteristics due to peeling from the copper-coated core material and non-uniformity of the copper coating state. There is a problem in that the process is complicated, and deterioration in quality and increase in manufacturing cost are inevitable.

一方、後者の銅合金は、強度が大きいうえに導電性も比較的良好で、銅被覆材のような品質のバラツキといった問題も少ないことから広く用いられている。その特性として、例えばベリリウム銅では、引張強さが1400MPa程度と高く(純銅は約200MPa)、導電率も20%IACS程度と比較的良好であるが、Beは人体に有害であり、これを含む部品や装置を廃棄する場合には、別途処理工程を設けるなどの環境対策が必要となることから、最近ではその使用が制限されている。一方、前記リン青銅ではこのような問題はないものの、強度的にベリリウム銅には達しないことから、耐へたり性が求められる安定的なばね材としては満足し難いものである。   On the other hand, the latter copper alloy is widely used because it has high strength and relatively good electrical conductivity, and there are few problems such as variations in quality as in a copper coating material. As its properties, for example, beryllium copper has a high tensile strength of about 1400 MPa (pure copper is about 200 MPa) and conductivity is relatively good at about 20% IACS, but Be is harmful to the human body and includes this. In the case of discarding parts and devices, environmental measures such as providing a separate processing step are necessary, and their use has recently been limited. On the other hand, although the phosphor bronze does not have such a problem, it does not reach the strength of beryllium copper, so that it is not satisfactory as a stable spring material that requires sag resistance.

このような事情から、ベリリウム銅に代わる高強度、高導電性で、かつ、有害な元素を含まない銅合金材料が要望されており、このような特性を有する銅合金材料としては、例えば、Niを2.0〜4.8重量%、Siを0.2〜1.4重量%、Mgを0.05〜1.5重量%含有する銅合金において、その中に存在する析出物乃至介在物を特定したもの(特許文献1)、あるいは、Cuに4〜32原子%のAgを配合して鋳込んだ後に、急冷し、次いで冷間加工を行ったもの(特許文献2)などが提案されている。
特開平11−222641号公報 特開2000−199042号公報
Under such circumstances, there has been a demand for a copper alloy material having high strength, high conductivity, and no harmful elements in place of beryllium copper. As a copper alloy material having such characteristics, for example, Ni In a copper alloy containing 2.0 to 4.8% by weight, 0.2 to 1.4% by weight of Si, and 0.05 to 1.5% by weight of Mg, precipitates or inclusions present therein (Patent Document 1), or Cu containing 4 to 32 atomic% of Ag is cast, quenched, and then cold worked (Patent Document 2). ing.
Japanese Patent Application Laid-Open No. 11-222641 JP 2000-199042 A

しかしながら、前者はその強度(引張強さ)が700〜1000MPa程度に留まるものあり、導電性ばね用の材料としては到底満足できるものではなかった。また、後者の特許文献2についても、前者の特許文献1より高い強度(引張強さ)のものが示され、用途として、種々ケーブルや巻線、その他シャフト用補強材などの用途を示しているが、特にばね用製品では、単に強度が大きいだけでは不十分であって、例えば弾性特性や疲労特性、耐へたり性など種々特性を備えることが必要であり、特に耐へたり性については、ばね製品における寿命の面から重要であるものの、同文献はこの点について何ら示唆していない。   However, the former has a strength (tensile strength) of about 700 to 1000 MPa, which is not satisfactory as a material for the conductive spring. The latter patent document 2 also has a higher strength (tensile strength) than the former patent document 1, and shows applications such as various cables, windings, and other shaft reinforcing materials. However, in particular for spring products, it is not sufficient that the strength is simply high. For example, it is necessary to provide various characteristics such as elastic characteristics, fatigue characteristics, and sag resistance. Although important in terms of life in spring products, the document does not suggest anything about this point.

このように、近年、ベリリウム銅に代わる安全性の高い導電性ばね用の銅合金材料として、強度および導電性とともに、特に耐へたり性に優れたものが要望されているが、未だそのような要求に応え得るものは得られていない。そこで、本発明はこのような従来技術の課題に対処すべく鋭意研究の結果、特許文献2による銅銀合金にさらに所定量のNi、Siを複合添加することで、組織内にCuとAgとの共晶相粒子およびNiとSiとのNiSi相粒子を複合して含有することが有効との結論に至り本発明を完成した。 Thus, in recent years, as a copper alloy material for a highly safe conductive spring that replaces beryllium copper, a material that is particularly excellent in sag resistance as well as strength and conductivity has been demanded. No one can meet the demand. Therefore, as a result of earnest research to deal with such problems of the prior art, the present invention adds Cu and Ag in the structure by adding a predetermined amount of Ni and Si to the copper-silver alloy according to Patent Document 2 in combination. The present invention has been completed with the conclusion that it is effective to combine the eutectic phase particles of Ni and the Ni 2 Si phase particles of Ni and Si.

すなわち、本発明は、Beのような有害な元素を含まず、しかも、導電性ばね材料の用途に要求される十分な強度、耐へたり性および導電性を有する銅合金材料およびその製造方法の提供を目的とするものである。   That is, the present invention provides a copper alloy material that does not contain a harmful element such as Be and has sufficient strength, sag resistance, and conductivity required for the use of the conductive spring material, and a method for producing the same. It is for the purpose of provision.

前記目的を達成するため、本願の請求項1に記載の発明は、質量で、5.0〜16.0%のAg、1.0〜5.0%のNiおよび0.2〜1.2%のSiを含有し、残部がCuおよび不可避的不純物からなり、前記Ag、NiおよびSiの含有量をそれぞれa(質量%)、b(質量%)およびc(質量%)とするとき、8.0≦{(1/4)×a+b}/c≦14.0の関係にあり、組織内にCuとAgとの共晶相およびNiSi粒子を複合して含有し、次式で求められるへたり率(γ)が1.2%以下であることを特徴とする耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料である。
γ(%)=[(L −L )/L ]×100
(ここで、L およびL は、当該材料から作製した線材または成形品にその0.2%耐力の40%に相当する応力を3分間負荷した後、除荷した時の自由長および当初自由長である)
In order to achieve the object, the invention according to claim 1 of the present application is, by mass, 5.0 to 16.0% Ag, 1.0 to 5.0% Ni, and 0.2 to 1.2. % Si, the balance is Cu and inevitable impurities, and the contents of Ag, Ni and Si are a (mass%), b (mass%) and c (mass%), respectively. .0 ≦ have a relationship of {(1/4) × a + b } /c≦14.0, the eutectic phase and Ni 2 Si particles between Cu and Ag contained in the composite in a tissue, by the following equation It is a high-strength copper alloy material for precision conductive springs with excellent sag resistance, characterized in that the sag rate (γ) is 1.2% or less.
γ (%) = [(L 0 −L 1 ) / L 0 ] × 100
(Here, L 1 and L 0 are the free length when the load or the molded product made from the material is loaded for 3 minutes with the stress corresponding to 40% of its 0.2% proof stress, and the initial length when unloaded. Free length)

請求項2に記載の発明は、請求項1記載の銅合金材料において、前記合金組成は、さらに0.2〜1.0質量%のSnおよび/または0.3〜1.2質量%のZnを含有することを特徴とするものである。   The invention according to claim 2 is the copper alloy material according to claim 1, wherein the alloy composition further includes 0.2 to 1.0 mass% of Sn and / or 0.3 to 1.2 mass% of Zn. It is characterized by containing.

請求項に記載の発明は、請求項1または2記載の銅合金材料において、0.2%耐力が900MPa以上で、かつ、導電率が25%IACS以上であることを特徴とするものである。 The invention according to claim 3 is the copper alloy material according to claim 1 or 2, wherein the 0.2% proof stress is 900 MPa or more and the conductivity is 25% IACS or more. .

また、請求項に記載の発明は、質量で、5.0〜16.0%のAg、1.0〜5.0%のNiおよび0.2〜1.2%のSi含有し、残部がCuおよび不可避的不純物からなり、前記Ag、NiおよびSiの含有量をそれぞれa(質量%)、b(質量%)およびc(質量%)とするとき、8.0≦{(1/4)×a+b}/c≦14.0の関係にある銅合金材料に、温度300〜600℃で1〜100時間の1次熱処理を施した後、加工率50%以上で冷間加工を行い、前記冷間加工後に、前記1次熱処理温度以下の温度で所定時間熱処理する2次熱処理を施すことを特徴とする耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料の製造方法である。 The invention described in Claim 4 is the mass, containing 5.0 to 16.0% of Ag, 1.0 to 5.0 percent of Ni and 0.2 to 1.2% of Si, balance Ri Do Cu and inevitable impurities, wherein Ag, Ni and Si content, respectively a (mass%), when and b (wt%) and c (mass%), 8.0 ≦ {(1 a near Ru copper alloy material relation /4)×Atasub}/c≦14.0, cold working after subjected to primary heat treatment 1-100 hours at a temperature 300 to 600 ° C., working ratio of 50% or more gastric row, the later cold working, the first heat treatment temperature below the temperature at predetermined time heat treatment to second heat treatment sexual excellent electric and electronic parts precision conductive spring for high sag resistance, characterized in that applying It is a manufacturing method of a strength copper alloy material.

上記組成の銅合金材料に1次熱処理を施すことで、材料組織内にCuとAgとの共晶相(CuAg相)およびNiSi相粒子とが複合化した形で形成される。そして加工率50%以上で冷間加工を行うことで、組織が繊維化され、高い強度と耐へたり性が得られる。 By subjecting the copper alloy material having the above composition to a primary heat treatment, a Cu / Ag eutectic phase (CuAg phase) and Ni 2 Si phase particles are formed in a composite form in the material structure. And by carrying out cold working at a working rate of 50% or more, the structure is fibrillated, and high strength and sag resistance are obtained.

次熱処理は、銅合金材料がばねとしての製品形状に成形された後に施されることが望ましい。2次熱処理を行うことで、さらにNiSi相粒子が析出し、耐へたり性が向上することとなる。 The secondary heat treatment is desirably performed after the copper alloy material is formed into a product shape as a spring. By performing the secondary heat treatment, Ni 2 Si phase particles are further precipitated and the sag resistance is improved.

ここで、1次熱処理は、もっぱらCuAg相の析出を主眼とし、NiSi相粒子の析出は副次的であるのに対し、2次熱処理は、NiSi相粒子の析出を主眼としている。CuAg相は冷間加工性に優れ、析出後に冷間加工を施すことで繊維化し高い強度が得られる。一方、NiSi相粒子は金属間化合物であり、塑性加工性に乏しく、過度に析出させると加工性に悪影響を与える反面、NiSi相粒子が多く析出することで塑性変形が生じにくくなり、耐へたり性が向上する。そこで、1次熱処理では比較的高い温度で熱処理を行い、CuAg相を多く析出させる。その後、冷間加工を行い、ばねとしての製品形状に成形された後に、比較的低い温度で2次熱処理を行い、NiSi相粒子の析出を図り、加工性と耐へたり性の両立を図っている。2次熱処理の温度が高すぎると再結晶が起こり、CuAg相による繊維強化の効果が失われてしまうこととなる。 Here, primary heat treatment mainly focuses on precipitation of CuAg phase, and precipitation of Ni 2 Si phase particles is secondary, whereas secondary heat treatment mainly focuses on precipitation of Ni 2 Si phase particles. . The CuAg phase is excellent in cold workability, and is fiberized by applying cold work after precipitation to obtain high strength. On the other hand, Ni 2 Si phase particles are an intermetallic compound and have poor plastic workability. If they are excessively precipitated, the workability is adversely affected. On the other hand, a large amount of Ni 2 Si phase particles precipitate, so that plastic deformation hardly occurs. Improves sag resistance. Therefore, in the first heat treatment by heat at relatively high temperatures, thereby often precipitate CuAg phase. After that, after cold working and forming into a product shape as a spring, secondary heat treatment is performed at a relatively low temperature, Ni 2 Si phase particles are precipitated, and both workability and sag resistance are achieved. I am trying. If the temperature of the secondary heat treatment is too high, recrystallization occurs and the effect of fiber reinforcement by the CuAg phase is lost.

本発明によれば、環境上の問題がなく、しかも、CuAg相粒子とNiSi相粒子とを複合生成させた微細粒子によって、高強度で高導電性を有し、また、耐へたり性を改善した銅合金材料を得ることができ、また、これを用いて、耐へたり性に優れ、長寿命の導電性ばね材料を得ることができる。 According to the present invention, there is no environmental problem, and the fine particles obtained by complex formation of CuAg phase particles and Ni 2 Si phase particles have high strength and high conductivity, and are also resistant to sag. A copper alloy material having improved resistance can be obtained, and by using this, a conductive spring material having excellent sag resistance and a long life can be obtained.

以下、本発明の実施形態について説明するが、各構成元素の含有量の単位「%」は「質量%」を示す。   Hereinafter, although embodiment of this invention is described, the unit "%" of content of each structural element shows "mass%".

本発明の銅合金材料は、Cuに、5.0〜16.0%のAgを含有させることにより、CuとAgの共晶相を晶出させて、良好な導電性を維持しつつ強度を増大させ、さらに、1.0〜5.0%のNiおよび0.2〜1.2%のSiを含有させることによって、Cu母材中にさらにNiとSiの化合物粒子(NiSi相)を析出させ、これらの共晶相とNiSi粒子との複合生成によって、導電性の低下を抑制しながら、強度のいっそうの増大を図るとともに、前記ばね用として用いる場合における耐へたり性の向上を図るものである。 The copper alloy material of the present invention contains 5.0 to 16.0% Ag in Cu, thereby crystallizing a eutectic phase of Cu and Ag, and maintaining strength while maintaining good conductivity. By increasing and further containing 1.0 to 5.0% Ni and 0.2 to 1.2% Si, further compound particles of Ni and Si (Ni 2 Si phase) in the Cu base material In addition, the composite formation of these eutectic phases and Ni 2 Si particles is intended to further increase the strength while suppressing the decrease in conductivity, and to improve the sag resistance when used for the spring. It is intended to improve.

ここで「へたり性」とは、例えば「ばね技術研究会会報」p.2828(2001年10月発行)にも説明されているように、「弾性限度内の低い応力下において、塑性歪みが発生する現象」で、一般的には「弾性領域で、歪みを繰り返して与えたり、長時間歪みを与えたままにすると、実際に加えられた歪みより大きい歪みが加えられたときと同じ挙動を示し、除荷しても戻らない歪みが生じる現象」をいう。   Here, “sagging” means, for example, “Spring Technology Workshop Bulletin” p. 2828 (issued in October 2001), “Phenomenon in which plastic strain occurs under low stress within the elastic limit”. Generally, “strain is repeatedly applied in the elastic region. If the strain is applied for a long period of time, it means the same phenomenon as when a strain larger than the strain actually applied is applied and a strain that does not return even when unloaded is generated.

そして、その測定は、例えば所定形状を有する試験線材に、その線材の弾性領域内での応力を負荷して所定時間放置した後に開放したときの歪みについて、応力負荷前と応力除去後の形状乃至寸法変化の比率で示されるものであって、本願発明では、負荷応力として対象線材またはその成形品の0.2%耐力値の40%に相当する応力を3分間負荷した後、除荷した時の残留歪み量として[(L−L)/L]×100の計算式から求めることができる。なお、この場合、線材がトーションばねのような曲げ応力が加わる状態で使用されるものでは、前記40%相当応力を加え、除荷した後の線材の弦長比について前記式から求められる。 The measurement is performed, for example, on a test wire having a predetermined shape by applying a stress in the elastic region of the wire and leaving it for a predetermined time, and then releasing the strain before or after stress loading. In the present invention, when a load corresponding to 40% of the 0.2% proof stress value of the target wire or its molded product is loaded for 3 minutes and then unloaded. The residual strain amount of [(L 0 −L 1 ) / L 0 ] × 100 can be obtained from the calculation formula. In this case, when the wire is used in a state where a bending stress such as a torsion spring is applied, the chord length ratio of the wire after unloading by applying the 40% equivalent stress is obtained from the above formula.

また、圧縮コイルばねなどの成形品の場合についても、例えば以下の要領でへたり率を求めることができる。すなわち、そのばねについて、予め応力負荷した応力−歪み線図を求め、その線図のなかで0.2%耐力に相当する応力の40%を加えた状態で所定時間放置し、除荷した時の自由長(L)と当初自由長(L)との変化を前記式に入れて求めるものである。これらの関係から明らかなように、値の小さいほど耐へたり性に優れていることを意味する。前記用途光ピックアップ用ばねやその他精密機器用ばねに用いるものでは、より好ましい耐へたり性は1.2%以下である。 Moreover, also in the case of molded articles, such as a compression coil spring, a sag rate can be calculated | required in the following ways, for example. That is, when a stress-strain diagram pre-stressed with respect to the spring is obtained, and left unloaded for a predetermined time in a state where 40% of the stress corresponding to 0.2% proof stress is added in the diagram. The change between the free length (L 1 ) and the initial free length (L 0 ) is calculated in the above equation. As is clear from these relationships, the smaller the value, the better the sag resistance. For those used for the optical pickup spring and other precision device springs, the more preferred sag resistance is 1.2% or less.

したがって、本発明では、こうした現象を改善するためには、線の高強度化とともに弾性限度内での変形挙動に耐え得る形態にするのが有効との判断から、前記CuAg共晶相およびNiSi化合物を複合して生成させることとしたまた、そのなかで、これら共晶相および化合物がその長手方向に沿って連続的に点在配置した分布状態乃至繊維状に引き伸ばされた状態で複合させることで、たわみ応力などに対して大きな抵抗を有するものとなる。 Therefore, in the present invention, in order to improve such a phenomenon, it is effective to make a form that can withstand the deformation behavior within the elastic limit as well as increasing the strength of the wire, so that the CuAg eutectic phase and Ni 2 are effective. It was decided to form a composite of Si compounds . Among these, by combining these eutectic phases and compounds in a distributed state in which the eutectic phase and the compound are continuously arranged along the longitudinal direction or in a state of being stretched into a fiber shape, a large resistance to a bending stress or the like is obtained. It will have.

こうした析出物の発生を図る観点から、本発明では各元素の含有量を前述の範囲にするものとした。すなわち、Ag含有量が5.0%に満たないと、強度が不十分となり、16.0%を超えると、強度が高くなりすぎ冷間加工(伸線加工)が困難になる。好ましいAg含有量は8.0〜14.0%の範囲であり、より好ましくは9.5〜12.0%の範囲である。また、Ni含有量が1.0%に満たないと、上記Ni Siの形成が少なくなり、強度を十分に向上させることができない。また、5.0%を超えると、強度は高くなるものの冷間加工が困難になる。好ましいNi含有量は1.5〜3.2%の範囲である。 From the viewpoint of generating such precipitates, in the present invention, the content of each element is set to the above-described range. That is, if the Ag content is less than 5.0%, the strength is insufficient, and if it exceeds 16.0%, the strength becomes too high and cold working (drawing) becomes difficult. The preferable Ag content is in the range of 8.0 to 14.0%, more preferably in the range of 9.5 to 12.0%. On the other hand, if the Ni content is less than 1.0%, the formation of the Ni 2 Si is reduced and the strength cannot be sufficiently improved. On the other hand, if it exceeds 5.0%, the strength increases, but cold working becomes difficult. A preferable Ni content is in the range of 1.5 to 3.2%.

さらに、Siは、Niとの金属間化合物、NiSiを生成させるものであるため、Ni含有量が決まると最適なSi含有量も決まってくる。すなわち、Si含有量が0.2%に満たないと、NiSiの析出量が少なくなり、強度を十分に向上させることができない。また、1.2%を超えると、強度は変わらず、導電性が低下する。好ましいSi含有量は0.3〜0.8%の範囲である。 Furthermore, since Si is an intermetallic compound with Ni and produces Ni 2 Si, the optimum Si content is determined when the Ni content is determined. That is, when the Si content is less than 0.2%, the amount of Ni 2 Si deposited decreases, and the strength cannot be sufficiently improved. On the other hand, if it exceeds 1.2%, the strength does not change and the conductivity is lowered. A preferable Si content is in the range of 0.3 to 0.8%.

また、本発明においては、Ag、NiおよびSiの含有量をそれぞれa(%)、b(%)およびc(%)としたとき、8.0≦{(1/4)×a+b}/c≦14.0となるようにすることが好ましい。これは、Ag、NiおよびSiの各含有量のバランスをとることにより、冷間加工や析出処理などを行う場合に、加工硬化、析出硬化を促進して、強度を増大させることができ、かつ、良好な導電性も維持することができるという知見に基づくものである。 In the present invention, when the contents of Ag, Ni, and Si are a (%), b (%), and c (%), respectively, 8.0 ≦ {(1/4) × a + b} / c It is preferable to satisfy ≦ 14.0 . It is possible to increase the strength by promoting work hardening and precipitation hardening when performing cold working and precipitation treatment by balancing the contents of Ag, Ni and Si, and Based on the knowledge that good conductivity can be maintained.

すなわち、図1は、Ag、NiおよびSiのそれぞれの含有量を前述した範囲で種々変化させ、[{(1/4)×a+b}/c]値(A値)と、強度(耐力、引張強さ)および導電率の関係を調べた結果を示したもので、[{(1/4)×a+b}/c]値と強度は正の比例関係にあり、また、[{(1/4)×a+b}/c]値と導電率は負の比例関係にあり、[{(1/4)×a+b}/c]値を特定することにより、安定した特性が得られることを示している。
[(1/4a+b)/c]値が8.0未満では、強度を十分に増大させることができず、一方、[(1/4a+b)/c]値が14.0を超えると、十分な耐へたり性が得られない。
That is, FIG. 1 shows various changes in the contents of Ag, Ni and Si within the above-mentioned range, and [{(1/4) × a + b} / c] value (A value) and strength (proof strength, tensile strength). The relationship between the strength and the conductivity is shown. [{(1/4) × a + b} / c] value and the strength are in a positive proportional relationship, and [{(1/4) ) × a + b} / c] value and conductivity are in a negative proportional relationship, and specifying the [{(1/4) × a + b} / c] value indicates that stable characteristics can be obtained. .
If the [(1 / 4a + b) / c] value is less than 8.0, the strength cannot be increased sufficiently. On the other hand, if the [(1 / 4a + b) / c] value exceeds 14.0, the strength is sufficient. sag resistance is not be obtained.

本発明の銅合金には、耐へたり性をさらに向上させるため、必要に応じてSnおよび/またはZnを含有させることができる。その含有量は、Snが0.2〜1.0%、Znが0.3〜1.2%の範囲が好ましい。Snが0.2%未満では、添加による効果が得られず、1.0%を超えると加工性が低下する。また、Znが0.3%未満では、添加による効果が得られず、1.2%を超えるとSnの場合と同様に加工性が低下する。   In order to further improve the sag resistance, the copper alloy of the present invention can contain Sn and / or Zn as necessary. The content of Sn is preferably in the range of 0.2 to 1.0% and Zn in the range of 0.3 to 1.2%. If Sn is less than 0.2%, the effect of addition cannot be obtained, and if it exceeds 1.0%, the workability decreases. Moreover, if Zn is less than 0.3%, the effect by addition cannot be obtained, and if it exceeds 1.2%, the workability deteriorates as in the case of Sn.

また、本発明の銅合金には、例えば合計3%以下の不可避的不純物が含まれていてもよい。不可避的不純物としては、Mg、Mn、Cr、Co、Ti、Al、Sb、As、Pb、Bi、O、P、S、Se、Teなどが挙げられる。   The copper alloy of the present invention may contain, for example, 3% or less of inevitable impurities in total. Inevitable impurities include Mg, Mn, Cr, Co, Ti, Al, Sb, As, Pb, Bi, O, P, S, Se, Te, and the like.

本発明の銅合金は、0.2%耐力が900MPa以上であり、導電率が25%IACS以上であることが好ましく、0.2%耐力が900MPa未満では、ばね用材料としての強度が十分でなく、また、導電率が25%IACS未満では、導電材料としたときの損失が大きくなる。より好ましくは、0.2%耐力が1000〜1500MPa程度で、導電率が30%IACS以上である。   The copper alloy of the present invention preferably has a 0.2% yield strength of 900 MPa or more and an electrical conductivity of 25% IACS or more. If the 0.2% yield strength is less than 900 MPa, the strength as a spring material is sufficient. In addition, when the conductivity is less than 25% IACS, the loss when the conductive material is used increases. More preferably, the 0.2% proof stress is about 1000 to 1500 MPa, and the conductivity is 30% IACS or more.

ここで、0.2%耐力は、JIS Z 2241「金属材料引張試験法」に準拠して引張試験を行った場合の、0.2%の永久歪みを生ずるときの応力をいい、また、導電率は、JIS C 3002に準拠して、20℃の恒温槽中での4端子法(試料長さ100mm)により測定することができる。特に耐力は硬質線材において、弾性特性が向上してより大きな応力に耐えることができ、用途の拡大を図ることができる。   Here, 0.2% proof stress refers to the stress when a permanent strain of 0.2% is produced when a tensile test is performed in accordance with JIS Z 2241 “Metal Material Tensile Test Method”. The rate can be measured by a four-terminal method (sample length: 100 mm) in a constant temperature bath at 20 ° C. in accordance with JIS C 3002. In particular, in the case of a hard wire, the elastic characteristics are improved, and it is possible to withstand a greater stress, and the application can be expanded.

本発明の銅合金材料は、このような特性とともに、組織内に前記析出物を複合し、また、該析出物は硬質かつ微細であることから、分散強化または繊維強化特性を備えるものとなり、それによって耐へたり性を高めることができる。特に、これら析出物をその長手方向に沿って方向性を持って配置した場合により顕著となる。なお、このような析出物によって導電性は若干低下する場合があるものの、本発明ではなお25%IACS以上の導電性を有することから実質的な影響はない。   The copper alloy material of the present invention combines the above precipitates in the structure with such characteristics, and since the precipitates are hard and fine, they have dispersion strengthening or fiber reinforced characteristics. Can improve the sag resistance. In particular, it becomes more prominent when these precipitates are arranged with directionality along the longitudinal direction. Although the conductivity may be slightly lowered by such a precipitate, the present invention has no substantial influence since it has a conductivity of 25% IACS or more.

上記のような銅合金材料は、次のような方法で製造することが好ましい。   The copper alloy material as described above is preferably manufactured by the following method.

すなわち、質量で、5.0〜16.0%のAg、1.0〜5.0%のNiおよび0.2〜1.2%のSiと、必要に応じて0.2〜1.0%のSnおよび/または0.3〜1.2%のZnを含有し、残部がCuおよび不可避的不純物からなる銅合金材料に、温度300〜600℃で1〜100時間の1次熱処理を施すことで、組織内にCuとAgとの共晶相(CuAg相)およびNiSi相粒子とを複合形成させ、その後、加工率50%以上で冷間加工を行うものである。冷間加工は、最終形状に応じて、伸線、圧延またはその他の加工方法が採用される。 That is, by mass, 5.0 to 16.0% Ag, 1.0 to 5.0% Ni and 0.2 to 1.2% Si, and 0.2 to 1.0 if necessary. A copper alloy material containing 1% Sn and / or 0.3 to 1.2% Zn, the balance being Cu and inevitable impurities, is subjected to a primary heat treatment at a temperature of 300 to 600 ° C. for 1 to 100 hours. Thus, the eutectic phase (CuAg phase) of Cu and Ag and Ni 2 Si phase particles are formed in the structure in a composite, and then cold working is performed at a working rate of 50% or more. For cold working, wire drawing, rolling, or other processing methods are employed depending on the final shape.

前記1次熱処理によって、Cuマトリックス中に積極的にAgとCuからなる共晶相(CuAg相)を析出することを第一の特徴とする。このCuAg相は、母相Cuよりは硬質であるものの比較的延性を有し、その後の冷間加工によって、例えばその長手方向に沿って微細に伸びる繊維構造を有するものとする。なお、この場合、前記共晶相とともにNiSi粒子を析出させることができる。熱処理温度が300℃未満であるかもしくは熱処理時間が1時間に満たない場合は、前記析出が十分に行われず、逆に、熱処理温度が600℃を超えるかもしくは熱処理時間が100時間を越えると、CuAg相の固溶およびNiSi粒子の粗大化が生じる。この析出熱処理は、より好ましくは350〜450℃の温度で5〜20時間行う。 The first feature is that a eutectic phase (CuAg phase) composed of Ag and Cu is positively precipitated in the Cu matrix by the primary heat treatment. Although this CuAg phase is harder than the parent phase Cu, it has relatively ductility, and has a fiber structure that extends finely, for example, along its longitudinal direction by subsequent cold working. In this case, Ni 2 Si particles can be precipitated together with the eutectic phase. When the heat treatment temperature is less than 300 ° C. or the heat treatment time is less than 1 hour, the precipitation is not sufficiently performed. Conversely, when the heat treatment temperature exceeds 600 ° C. or the heat treatment time exceeds 100 hours, Solid solution of CuAg phase and coarsening of Ni 2 Si particles occur. This precipitation heat treatment is more preferably performed at a temperature of 350 to 450 ° C. for 5 to 20 hours.

CuAg相は、このような1次熱処理工程の後の冷間加工において、繊維状に引き伸ばされ、NiSi粒子の析出とともに銅合金材料の強度を向上させる。 In the cold working after such a primary heat treatment step, the CuAg phase is stretched into a fiber shape and improves the strength of the copper alloy material together with the precipitation of Ni 2 Si particles.

本発明においては、このような冷間加工の途中で少なくとも1回の中間熱処理工程を行ってもよい。その際の熱処理条件としては、例えば真空中またはアルゴンもしくは窒素雰囲気中で、300〜600℃の温度で1分〜1時間未満程度が好ましく、400〜580℃の温度で3〜30分がより好ましい。このような中間熱処理を施すことにより、高い加工度で加工することが可能となる。温度が300℃未満であるかもしくは時間が1分に満たないと加工性を十分に改善することができず、逆に、温度が600℃を超えるかもしくは時間が10時間を越えると、再結晶のために所定の強度が得られなくなる。   In the present invention, at least one intermediate heat treatment step may be performed during such cold working. As heat treatment conditions at that time, for example, in a vacuum or in an argon or nitrogen atmosphere, a temperature of 300 to 600 ° C. is preferably about 1 minute to less than 1 hour, and a temperature of 400 to 580 ° C. is more preferably 3 to 30 minutes. . By performing such an intermediate heat treatment, it is possible to perform processing with a high degree of processing. If the temperature is less than 300 ° C. or the time is less than 1 minute, the workability cannot be improved sufficiently. Conversely, if the temperature exceeds 600 ° C. or the time exceeds 10 hours, recrystallization occurs. Therefore, a predetermined strength cannot be obtained.

このようにして得られた銅合金材料を、その後、所定の製品形状に切断乃至加工することにより導電性ばね成形品が得られる。導電性ばね成形品の製品形状は、特に限定されるものではなく、コイル状(コイルばね)であっても、直線状(直線ばね)であっても、また、板状(板ばね)であってもよい。本発明においては、所定の製品形状に切断乃至加工した後、前記1次熱処理より低い温度、好ましくは150〜400℃、より好ましくは200〜350℃の2次熱処理を施すことが好ましい。このような2次熱処理を行うことにより、導電性ばね材料として用いる際の耐へたり性をさらに改善することができる。これは、主としてNiSi粒子が析出したことによるものと推測される。2次熱処理温度が1次熱処理温度を超える温度条件では、再結晶が起こり、強度が低下することとなる。なお、この2次熱処理の時間は、熱処理温度に応じて耐へたり性の改善に必要な時間とされ、例えば大気中で、1分〜5時間、好ましくは3分〜1時間、より好ましくは5〜30分間行われる。 The copper alloy material thus obtained is then cut or processed into a predetermined product shape to obtain a conductive spring molded product. The product shape of the conductive spring molded product is not particularly limited, and may be a coil shape (coil spring), a linear shape (linear spring), or a plate shape (leaf spring). May be. In the present invention, after cutting or processing into a predetermined product shape, it is preferable to perform a secondary heat treatment at a temperature lower than the primary heat treatment, preferably 150 to 400 ° C., more preferably 200 to 350 ° C. By performing such secondary heat treatment, it is possible to further improve the sag resistance when used as a conductive spring material. This is presumably due to the precipitation of Ni 2 Si particles. Under a temperature condition in which the secondary heat treatment temperature exceeds the primary heat treatment temperature, recrystallization occurs and the strength decreases. The time for the secondary heat treatment is a time required for improving the sag resistance according to the heat treatment temperature, and is, for example, 1 minute to 5 hours, preferably 3 minutes to 1 hour, more preferably in the air. 5 to 30 minutes.

本発明による銅合金材料は、高強度、高導電性で、かつ、耐へたり性に優れており、光ピックアップ用サスペンションワイヤ、LSI検査用導電性ばね材など、かかる特性が要求される各種電気・電子部品の精密導電性ばね材として有用である。   The copper alloy material according to the present invention has high strength, high electrical conductivity, and excellent sag resistance. Various electrical properties such as suspension wires for optical pickups and conductive spring materials for LSI inspection are required. -Useful as a precision conductive spring material for electronic parts.

次に、本発明の実施例を記載するが、本発明は以下の実施例に何ら限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

実施例・比較例
外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機を用いて、表1に示すような種々の組成を有する線径9.5mmの鋳造ロッドを鋳造した。次いで、これらの鋳造ロッドに、表1に示した各種条件で熱処理および冷間加工を行い、線径0.7mmの銅合金線材を得た。
Examples and Comparative Examples Using a horizontal continuous casting machine having a graphite mold provided with a water cooling jacket on the outer periphery, casting rods having various compositions as shown in Table 1 and having a wire diameter of 9.5 mm were cast. Next, these cast rods were heat-treated and cold worked under various conditions shown in Table 1 to obtain copper alloy wires having a wire diameter of 0.7 mm.

すなわち、比較例11−1、実施例11−2では、鋳造ロッドに450℃で10時間の1次熱処理を窒素雰囲気中で施した後、冷間加工した。冷間加工の途中、線径が3.0mmまで伸線されたところで、450℃で6分の中間熱処理をアルゴン雰囲気中で行った。 That is, in Comparative Example 11-1 and Example 11-2 , the cast rod was subjected to primary heat treatment at 450 ° C. for 10 hours in a nitrogen atmosphere, and then cold worked. During the cold working, when the wire diameter was drawn to 3.0 mm, an intermediate heat treatment was performed at 450 ° C. for 6 minutes in an argon atmosphere.

比較例11−3、実施例11−4、比較例12−1、実施例12−2、比較例13−1および実施例13−2では、鋳造ロッドに450℃で10時間の1次熱処理を施した後、冷間加工した。冷間加工の途中、線径が3.0mmまで伸線されたところで、550℃で6分の中間熱処理を行った。 In Comparative Example 11-3, Example 11-4, Comparative Example 12-1, Example 12-2, Comparative Example 13-1, and Example 13-2 , the cast rod was subjected to primary heat treatment at 450 ° C. for 10 hours. After applying, it was cold worked. During the cold working, when the wire diameter was drawn to 3.0 mm, an intermediate heat treatment was performed at 550 ° C. for 6 minutes.

比較例14−1、比較例14−2では、鋳造ロッドに熱処理を施すことなく冷間加工した。冷間加工の途中、線径が3.0mmまで伸線されたところで、500℃で6分の中間熱処理を行った。 In Comparative Example 14-1 and Comparative Example 14-2 , the cast rod was cold worked without being subjected to heat treatment. During the cold working, when the wire diameter was drawn to 3.0 mm, an intermediate heat treatment was performed at 500 ° C. for 6 minutes.

比較例14−3、実施例14−4では、鋳造ロッドに350℃で10時間の1次熱処理を施した後、冷間加工した。冷間加工の途中、線径が3.0mmまで伸線されたところで、550℃で6分の中間熱処理を行った。 In Comparative Example 14-3 and Example 14-4 , the cast rod was subjected to primary heat treatment at 350 ° C. for 10 hours and then cold worked. During the cold working, when the wire diameter was drawn to 3.0 mm, an intermediate heat treatment was performed at 550 ° C. for 6 minutes.

比較例14−5、実施例14−6では、鋳造ロッドに400℃で10時間の1次熱処理を施した後、冷間加工した。冷間加工の途中、線径が3.0mmまで伸線されたところで、550℃で6分の中間熱処理を行った。 In Comparative Example 14-5 and Example 14-6 , the cast rod was subjected to a primary heat treatment at 400 ° C. for 10 hours and then cold worked. During the cold working, when the wire diameter was drawn to 3.0 mm, an intermediate heat treatment was performed at 550 ° C. for 6 minutes.

なお、これらの各実施例・比較例の1次熱処理を施したものについては、CuAg共晶相とともに少量のNiSi粒子が確認された。 A small amount of Ni 2 Si particles was confirmed together with the CuAg eutectic phase for those subjected to the primary heat treatment of each of the examples and comparative examples .

この後、得られた線径0.7mmの銅合金線材をコイル状に加工して圧縮コイルばね(コイル外径:7.70mm、コイル平均径:7.00mm、自由長(L):13.5mm、総巻数:6.5巻、有効巻数:4.5巻)を作製した。実施例11−2、実施例11−4、実施例12−2、実施例13−2、比較例14−2、実施例14−4、実施例14−6ではコイル状に加工後に、250℃で1時間の2次熱処理を行った。 Thereafter, the obtained copper alloy wire material having a wire diameter of 0.7 mm was processed into a coil shape, and a compression coil spring (coil outer diameter: 7.70 mm, coil average diameter: 7.00 mm, free length (L 0 ): 13 0.5 mm, total number of turns: 6.5, effective number of turns: 4.5). In Example 11-2, Example 11-4, Example 12-2, Example 13-2, Comparative Example 14-2, Example 14-4, and Example 14-6, after processing into a coil shape, 250 ° C. A secondary heat treatment was performed for 1 hour.

比較例21−1、21−2
10.0質量%のAgと残部がCuからなる銅合金を、実施例と同様の水平連続鋳造機を用いて、線径9.5mmの鋳造ロッドを鋳造し、次いで、この鋳造ロッドを冷間加工して、線径0.7mmの銅合金線材を得た。この後、得られた線径0.7mmの銅合金線材をコイル状に加工して実施例と同形状、同寸法の圧縮コイルばねを作製した。比較例21−2ではコイル状に加工後に、260℃で30分間の熱処理を行った。
Comparative Examples 21-1 and 21-2
A copper alloy composed of 10.0% by mass of Ag and the balance of Cu is cast using a horizontal continuous casting machine similar to that of the example to cast a casting rod having a wire diameter of 9.5 mm. Processing was performed to obtain a copper alloy wire having a wire diameter of 0.7 mm. Thereafter, the obtained copper alloy wire having a wire diameter of 0.7 mm was processed into a coil shape to produce a compression coil spring having the same shape and the same dimensions as those of the example. In Comparative Example 21-2 , heat treatment was performed at 260 ° C. for 30 minutes after processing into a coil shape.

比較例22−1、22−2
2質量%のBeと残部がCuからなる線径0.7mmの銅合金線材を、コイル状に加工して実施例と同形状、同寸法の圧縮コイルばねを作製した。なお、比較例22−1ではコイル状に加工後に、260℃で30分間の熱処理を行った。また、比較例22−2ではコイル状に加工後に、300℃で1時間の熱処理を行った。
Comparative Examples 22-1 and 22-2
A copper alloy wire rod having a wire diameter of 0.7 mm made of 2 mass% Be and the balance Cu was processed into a coil shape to produce a compression coil spring having the same shape and the same dimensions as those of the example. In Comparative Example 22-1 , heat treatment was performed at 260 ° C. for 30 minutes after processing into a coil shape. Further, in Comparative Example 22-2 , heat treatment was performed at 300 ° C. for 1 hour after processing into a coil shape.

比較例23−1、23−2
3.0質量%のAgと残部がCuからなる銅合金を、実施例と同様の水平連続鋳造機を用いて、線径9.5mmの鋳造ロッドを鋳造し、次いで、この鋳造ロッドを冷間加工して、線径0.7mmの銅合金線材を得た。この後、得られた線径0.7mmの銅合金線材をコイル状に加工して実施例と同形状、同寸法の圧縮コイルばねを作製した。比較例23−2ではコイル状に加工後に、260℃で30分間の熱処理を行った。
Comparative Examples 23-1 and 23-2
A copper alloy composed of 3.0% by mass of Ag and the balance of Cu is cast using a horizontal continuous casting machine similar to that of the example to cast a casting rod having a wire diameter of 9.5 mm. Processing was performed to obtain a copper alloy wire having a wire diameter of 0.7 mm. Thereafter, the obtained copper alloy wire having a wire diameter of 0.7 mm was processed into a coil shape to produce a compression coil spring having the same shape and the same dimensions as those of the example. In Comparative Example 23-2 , heat treatment was performed at 260 ° C. for 30 minutes after processing into a coil shape.

上記各実施例および各比較例で得られた圧縮コイルばねについて、へたり率(γ)を測定するとともに、同条件の処理を施した線材について0.2%耐力、引張強さおよび導電率を測定した。これらの結果を、冷間加工前に採取したサンプルについて測定した引張強さおよび導電率とともに表2に示す。なお、へたり率(γ)は、圧縮コイルばねに、ばね長さ12mm、8mmとする荷重を10回繰り返して負荷した後の自由長(L10)を測定し、次式より算出した。
γ(%)=[(L−L10)/L]×100
また、0.2%耐力および引張強さはJIS Z 2241に準拠し、導電率はJIS C 3002に準拠して測定した。
For the compression coil springs obtained in each of the above Examples and Comparative Examples, the sag rate (γ) was measured, and 0.2% proof stress , tensile strength, and electrical conductivity were measured for the wire that had been processed under the same conditions. It was measured. These results are shown in Table 2 together with the tensile strength and conductivity measured for the samples taken before cold working. The sag rate (γ) was calculated from the following equation by measuring the free length (L 10 ) after a compression coil spring was loaded 10 times with a load having a spring length of 12 mm and 8 mm.
γ (%) = [(L 0 −L 10 ) / L 0 ] × 100
Further, 0.2% proof stress and tensile strength were measured according to JIS Z 2241, and conductivity was measured according to JIS C 3002.

Figure 0004708833
Figure 0004708833

Figure 0004708833
* 太字で示した例(11-2,11-4,12-2,13-2,14-4,14-6)は実施例、その他は比較例
Figure 0004708833
* Examples shown in bold (11-2,11-4,12-2,13-2,14-4,14-6) are examples, others are comparative examples

表1および表2に示すように、実施例で得られた導電性ばねは、高強度、高導電性で、かつ、優れた耐へたり性を有するものである。比較例21−1、21−2のCu−Ag合金は導電率は70%IACS以上と良好であるものの、へたりが約3.9%、約1.8%と大きく、ばね材料としては必ずしも十分ではない。一方、本発明の実施例はいずれもへたりが小さい。特に、2次熱処理を施した実施例では、へたりは1%以下となっており、比較例22−1、22−2のベリリウム銅合金と同等の耐へたり性を有し、かつ、導電率においてはそれらに勝るものとなっている。 As shown in Table 1 and Table 2, the conductive springs obtained in the examples have high strength, high conductivity, and excellent sag resistance. Although the Cu-Ag alloys of Comparative Examples 21-1 and 21-2 have good electrical conductivity of 70% IACS or higher, the sag ratio is large at about 3.9% and about 1.8%, and as a spring material, Not always enough. On the other hand, all of the embodiments of the present invention have a low settling rate . In particular, in the examples subjected to the secondary heat treatment, the sag rate is 1% or less, and has the same sag resistance as the beryllium copper alloys of Comparative Examples 22-1 and 22-2 , and In terms of conductivity, they are superior to them.

これらの測定結果から、本発明の銅合金材料は、ばね成形用として十分な特性を有することが確認された。したがって、導電性ばね材料の用途、特に精密分野において使用されるものとして、有害物質を含むベリリウム銅合金の代替材料として十分な性能を持つものである。   From these measurement results, it was confirmed that the copper alloy material of the present invention has sufficient characteristics for spring forming. Therefore, it has sufficient performance as a substitute material for beryllium copper alloys containing harmful substances as a conductive spring material, particularly in the precision field.

{(1/4)×a+b}/c]値と、強度および導電率との関係を示すグラフである。It is a graph which shows the relationship between [ {(1/4) * a + b} / c ] value, intensity | strength, and electrical conductivity.

Claims (6)

質量で、5.0〜16.0%のAg、1.0〜5.0%のNiおよび0.2〜1.2%のSiを含有し、残部がCuおよび不可避的不純物からなり、前記Ag、NiおよびSiの含有量をそれぞれa(質量%)、b(質量%)およびc(質量%)とするとき、8.0≦{(1/4)×a+b}/c≦14.0の関係にあり、組織内にCuとAgとの共晶相およびNiSi粒子を複合して含有し、次式で求められるへたり率(γ)が1.2%以下であることを特徴とする耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料。
γ(%)=[(L −L )/L ]×100
(ここで、L およびL は、当該材料から作製した線材または成形品にその0.2%耐力の40%に相当する応力を3分間負荷した後、除荷した時の自由長および当初自由長である)
Containing 5.0 to 16.0% Ag, 1.0 to 5.0% Ni and 0.2 to 1.2% Si by mass, with the balance consisting of Cu and inevitable impurities, When the contents of Ag, Ni and Si are a (mass%), b (mass%) and c (mass%), respectively, 8.0 ≦ {(1/4) × a + b} /c≦14.0 It is characterized by the fact that the structure contains a eutectic phase of Cu and Ag and Ni 2 Si particles in a composite, and the sag rate (γ) determined by the following formula is 1.2% or less. High strength copper alloy material for precision conductive springs with excellent sag resistance.
γ (%) = [(L 0 −L 1 ) / L 0 ] × 100
(Here, L 1 and L 0 are the free length when the load or the molded product made from the material is loaded for 3 minutes with the stress corresponding to 40% of its 0.2% proof stress, and the initial length when unloaded. Free length)
前記合金組成は、さらに0.2〜1.0質量%のSnおよび/または0.3〜1.2質量%のZnを含有することを特徴とする請求項1記載の電気・電子部品精密導電性ばね用高強度銅合金材料。   2. The electrical / electronic component precision conductive according to claim 1, wherein the alloy composition further contains 0.2 to 1.0 mass% of Sn and / or 0.3 to 1.2 mass% of Zn. High strength copper alloy material for spring. 0.2%耐力が900MPa以上で、かつ、導電率が25%IACS以上であることを特徴とする請求項1または2記載の電気・電子部品精密導電性ばね用高強度銅合金材料。   The high-strength copper alloy material for precision conductive springs according to claim 1 or 2, wherein the 0.2% proof stress is 900 MPa or more and the electrical conductivity is 25% IACS or more. 質量で、5.0〜16.0%のAg、1.0〜5.0%のNiおよび0.2〜1.2%のSiを含有し、残部がCuおよび不可避的不純物からなり、前記Ag、NiおよびSiの含有量をそれぞれa(質量%)、b(質量%)およびc(質量%)とするとき、8.0≦{(1/4)×a+b}/c≦14.0の関係にある銅合金材料に、温度300〜600℃で1〜100時間の1次熱処理を施した後、加工率50%以上で冷間加工を行い、前記冷間加工後に、前記1次熱処理温度以下の温度で所定時間熱処理する2次熱処理を施すことを特徴とする耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料の製造方法。   Containing 5.0 to 16.0% Ag, 1.0 to 5.0% Ni and 0.2 to 1.2% Si by mass, with the balance consisting of Cu and inevitable impurities, When the contents of Ag, Ni and Si are a (mass%), b (mass%) and c (mass%), respectively, 8.0 ≦ {(1/4) × a + b} /c≦14.0 The copper alloy material having the following relationship is subjected to a primary heat treatment at a temperature of 300 to 600 ° C. for 1 to 100 hours, followed by cold working at a processing rate of 50% or more, and after the cold working, the primary heat treatment A method for producing a high-strength copper alloy material for precision conductive springs having excellent sag resistance, characterized by performing a secondary heat treatment for a predetermined time at a temperature below the temperature. 前記冷間加工の途中で、温度300〜600℃で1分〜1時間未満の中間熱処理を施すことを特徴とする請求項4記載の耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料の製造方法。   5. An electric / electronic component precision conductive spring with excellent sag resistance according to claim 4, wherein an intermediate heat treatment is performed at a temperature of 300 to 600 [deg.] C. for 1 minute to less than 1 hour during the cold working. For producing high-strength copper alloy materials for use. 前記銅合金材料は、0.2〜1.0質量%のSnおよび/または0.3〜1.2質量%のZnをさらに含有することを特徴とする請求項4または5記載の耐へたり性に優れた電気・電子部品精密導電性ばね用高強度銅合金材料の製造方法。   6. The sag resistance according to claim 4, wherein the copper alloy material further contains 0.2 to 1.0 mass% of Sn and / or 0.3 to 1.2 mass% of Zn. A high-strength copper alloy material for precision conductive springs with excellent electrical and electronic parts.
JP2005112190A 2005-04-08 2005-04-08 High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method Active JP4708833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112190A JP4708833B2 (en) 2005-04-08 2005-04-08 High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112190A JP4708833B2 (en) 2005-04-08 2005-04-08 High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006291271A JP2006291271A (en) 2006-10-26
JP4708833B2 true JP4708833B2 (en) 2011-06-22

Family

ID=37412155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112190A Active JP4708833B2 (en) 2005-04-08 2005-04-08 High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4708833B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009849B2 (en) * 2008-03-31 2012-08-22 日本精線株式会社 Copper alloy wire for high strength spring and copper alloy spring using the copper alloy wire
JP2011219840A (en) * 2010-04-14 2011-11-04 Totoku Electric Co Ltd Suspension wire
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
JP6728057B2 (en) * 2015-03-31 2020-07-22 日本発條株式会社 Alloy materials, contact probes and connection terminals
JP6686293B2 (en) * 2015-04-21 2020-04-22 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy stranded wire, coated wire and wire harness
CN107086063A (en) * 2017-03-22 2017-08-22 合肥浦尔菲电线科技有限公司 A kind of novel conductive wire and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693399A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy conductor
JPH0693398A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy wire
JPH06145930A (en) * 1992-11-02 1994-05-27 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693399A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy conductor
JPH0693398A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy wire
JPH06145930A (en) * 1992-11-02 1994-05-27 Furukawa Electric Co Ltd:The Production of precipitation type copper alloy
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production

Also Published As

Publication number Publication date
JP2006291271A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
CN114645165B (en) Aluminum alloy material, and fastening member, structural member, spring member, conductive member, and battery member each made of the same
US7648601B2 (en) High-strength, high-conductivity copper alloy wire excellent in resistance to stress relaxation
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6126791B2 (en) Cu-Ni-Si copper alloy
CN111566240B (en) Aluminum alloy material, and conductive member, battery member, fastening member, spring member, and structural member using same
WO2006106939A1 (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCTION THEREOF
WO2007066697A1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
JP4708833B2 (en) High strength copper alloy material for precision conductive spring with excellent sag resistance and its manufacturing method
JP6858311B2 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2011508081A (en) Copper-nickel-silicon alloy
JP5107093B2 (en) Copper alloy with high strength and high conductivity
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP4386236B2 (en) Cu-Ni-Si alloy
JP5009849B2 (en) Copper alloy wire for high strength spring and copper alloy spring using the copper alloy wire
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2004256902A (en) Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP6858310B2 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
JP6210573B1 (en) Copper alloy wire rod and method for producing the same
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same
JP2021127495A (en) Copper alloy bar wire rod, component for electronic/electrical instrument, terminal and coil spring
JP2009280919A (en) Cu-Ni-Si ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350