JP2009280919A - Cu-Ni-Si ALLOY - Google Patents

Cu-Ni-Si ALLOY Download PDF

Info

Publication number
JP2009280919A
JP2009280919A JP2009199738A JP2009199738A JP2009280919A JP 2009280919 A JP2009280919 A JP 2009280919A JP 2009199738 A JP2009199738 A JP 2009199738A JP 2009199738 A JP2009199738 A JP 2009199738A JP 2009280919 A JP2009280919 A JP 2009280919A
Authority
JP
Japan
Prior art keywords
alloy
mass
less
oxide film
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199738A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishikawa
泰靖 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009199738A priority Critical patent/JP2009280919A/en
Publication of JP2009280919A publication Critical patent/JP2009280919A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ni-Si alloy which simultaneously achieves spring property and solder wettability at a high level. <P>SOLUTION: The Cu-Ni-Si alloy is a copper-based alloy which contains 1.0-4.5 mass% Ni, 0.3-1.5 mass% Si, and 0.05-0.3 mass% Mg and further contains 0.05-2.0 mass% in total of at least one kind of elements selected from among Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, and Be, the balance being Cu and unavoidable impurities. The alloy has a 0.2% proof strength of 500 MPa or higher, a difference between the 0.2% proof strength and its spring limit value of 100 MPa or smaller, and an oxide film thickness of 10 nm or smaller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種端子、コネクタ、リレー又はスイッチ等の電子部品の製造に使用するCu−Ni−Si合金に関し、特に、ばね性とはんだ濡れ性とを高いレベルで同時に実現したCu−Ni−Si合金に関するものである。   The present invention relates to a Cu-Ni-Si alloy used for manufacturing electronic parts such as various terminals, connectors, relays, and switches, and more particularly, Cu-Ni-Si that simultaneously realizes spring property and solder wettability at a high level. It relates to alloys.

従来、電子機器の各種端子、コネクタ、リレー又はスイッチ等の電気伝導性及びばね性が必要な材料においては、製造コストを重視する用途には低廉な黄銅が適用されていた。また、ばね性が重視される用途にはりん青銅が適用されていた。更に、ばね性及び耐食性が重視される用途には洋白が適用されていた。しかしながら、近年における電子機器類及びその部品の軽量化、薄肉化及び小型化に伴い、これらの材料を使用したのでは必要強度を十分に満足することができないのが現状である。   Conventionally, inexpensive materials such as various terminals, connectors, relays, and switches of electronic devices that are required to have electrical conductivity and springiness have been applied to inexpensive brass. Also, phosphor bronze has been applied to applications where springiness is important. Furthermore, white is used for applications where springiness and corrosion resistance are important. However, with the recent reduction in weight, thickness, and size of electronic devices and their components, the use of these materials does not sufficiently satisfy the required strength.

近年電子機器の各種端子、コネクタ、リレー又はスイッチ等の電気伝導性及びばね性が必要な材料においては、従来のりん青銅、黄銅等に代表される固溶強化型合金に代わり、高強度及び高導電性の観点から、時効硬化型の銅合金の使用量が増加している。時効硬化型の銅合金は、溶体化処理された過飽和固溶体を時効処理することにより、微細粒子が均一に析出して耐力又はばね限界値等の強度特性の向上と共に固溶元素量が減少し導電率の向上に寄与する。   In recent years, materials that require electrical conductivity and springiness, such as various terminals, connectors, relays, and switches of electronic devices, have been replaced with conventional solid solution strengthened alloys such as phosphor bronze and brass. From the viewpoint of conductivity, the amount of age-hardening type copper alloys used is increasing. Age-hardened copper alloys are made by subjecting a supersaturated solid solution that has undergone solution treatment to fine precipitation of fine particles to improve strength characteristics such as proof stress or spring limit value, and to reduce the amount of solid solution elements. It contributes to the improvement of the rate.

従って、益々厳しくなる電子機器類及びその部品の軽量化、材料の高強度化の要求を満足する材料として、時効硬化型の銅合金が使用されている。時効硬化型銅合金のうち、Cu−Ni−Si合金は高強度と高導電率とを併せ持つ代表的な銅合金であり、電子機器の各種端子、コネクタ、リレー又はスイッチ等の材料として実用化されている(特許文献1、2)。Cu−Ni−Si合金のSiは活性な元素であり、更に合金の特性を改良する目的で活性金属を更に添加する場合もある。この銅合金では、微細なNi−Si系金属間化合物粒子が析出して、強度及び導電率が上昇し、曲げ加工性及び応力緩和特性に優れた材料が得られる。   Accordingly, age-hardening type copper alloys are used as materials that satisfy increasingly demanding requirements for electronic devices and their components that are lighter and stronger. Of the age-hardening copper alloys, Cu-Ni-Si alloy is a representative copper alloy that has both high strength and high conductivity, and has been put into practical use as a material for various terminals, connectors, relays, and switches of electronic equipment. (Patent Documents 1 and 2). Si in the Cu—Ni—Si alloy is an active element, and an active metal may be further added for the purpose of improving the properties of the alloy. In this copper alloy, fine Ni—Si intermetallic particles are precipitated, the strength and conductivity are increased, and a material excellent in bending workability and stress relaxation characteristics can be obtained.

一方、Cu−Ni−Si合金は活性な元素Siを含有するため、最終工程の時効処理において強固な酸化膜が生成される。このため、はんだ濡れ性が著しく低下するという問題がある。この問題を回避するためには、時効後に化学研磨・機械研磨を実施して酸化膜を除去する必要がある。本明細書における化学研磨は下述するような酸洗のこととする。   On the other hand, since the Cu—Ni—Si alloy contains the active element Si, a strong oxide film is generated in the aging treatment in the final process. For this reason, there exists a problem that solder wettability falls remarkably. In order to avoid this problem, it is necessary to remove the oxide film by performing chemical polishing and mechanical polishing after aging. The chemical polishing in this specification is pickling as described below.

この化学研磨・機械研磨工程では、まず化学研磨を行なう。SiOを含有するCu−Ni−Si合金の酸化膜は酸に対して非常に安定である。このため化学研磨には、弗酸又は硫酸に過酸化水素を混合した溶液等の極めて腐食力の高い化学研磨液を用いる必要がある。このように、極めて強い腐食力を有する化学研磨液を用いることで、酸化膜だけでなく未酸化部分も腐食されることがあり、化学研磨後の表面には不均一な凹凸及び変色が生じるおそれがある。また、腐食が均一に進行せず、酸化膜が局部的に残留するおそれもある。そこで、表面の凹凸、変色及び残留酸化膜を除去するため、上記化学研磨を施した後に例えばバフ等を用いて機械研磨が施される。 In this chemical polishing / mechanical polishing step, first, chemical polishing is performed. The oxide film of Cu—Ni—Si alloy containing SiO 2 is very stable against acid. For this reason, in chemical polishing, it is necessary to use a chemical polishing solution having extremely high corrosive power, such as a solution in which hydrogen peroxide is mixed with hydrofluoric acid or sulfuric acid. In this way, by using a chemical polishing liquid having an extremely strong corrosive force, not only an oxide film but also an unoxidized portion may be corroded, and uneven unevenness and discoloration may occur on the surface after chemical polishing. There is. Further, the corrosion does not proceed uniformly, and the oxide film may remain locally. Therefore, in order to remove surface irregularities, discoloration, and residual oxide film, mechanical polishing is performed using, for example, a buff after the chemical polishing.

特開2001−181759号公報JP 2001-181759 A 特開2001−207229号公報JP 2001-207229 A

しかしながら、この化学研磨・機械研磨を順次施したCu−Ni−Si合金には、耐力(試料を引張った場合に永久変形を生じさせる応力)は変化しないものの、ばね限界値(試料を曲げた場合に永久変形を生じさせる応力)が低下するという問題点がある。これは、時効処理で上昇したばね限界値が、化学研磨・機械研磨で再び低下することに起因する。従って、従来の電子部品には、耐力と比較してばね限界値が著しく低いCu−Ni−Si合金、又は、耐力レベルのばね限界値を有するとしても酸化膜が厚いCu−Ni−Si合金が使用されていた。   However, the Cu-Ni-Si alloy that has been subjected to chemical polishing and mechanical polishing in sequence does not change the yield strength (stress that causes permanent deformation when the sample is pulled), but the spring limit value (when the sample is bent) There is a problem in that the stress that causes permanent deformation is reduced. This is because the spring limit value increased by the aging treatment is lowered again by the chemical polishing / mechanical polishing. Therefore, in the conventional electronic component, there is a Cu—Ni—Si alloy whose spring limit value is significantly lower than the proof stress, or a Cu—Ni—Si alloy with a thick oxide film even if it has a spring limit value of the proof stress level. It was used.

ばね限界値が低い素材を用いてコネクタ、リレー又はスイッチ等のばね部品を製造した場合には、コネクタを挿入する際又は引き抜く際に、可動部に永久変形(へたり)が発生し易いという不具合があった。へたりが発生すると、電気接点での接圧が低下し、接点部での電気抵抗が増大する。一方、酸化膜が厚い素材を用いてばね部品を製造した場合には、Cu−Ni−Si合金の酸化膜は特に強固であるため、はんだ濡れ性が著しく劣化するという不具合があった。従って、上記へたりを生じ得ない高いばね限界値を有することで優れたばね性を実現し、しかもはんだ濡れ性にも優れたCu−Ni−Si合金の開発が要請されていた。   When spring parts such as connectors, relays, or switches are manufactured using a material with a low spring limit value, it is easy for permanent deformation (sagging) to occur in the movable part when the connector is inserted or pulled out. was there. When the sagging occurs, the contact pressure at the electrical contact decreases and the electrical resistance at the contact increases. On the other hand, when a spring component is manufactured using a material having a thick oxide film, the oxide film of the Cu—Ni—Si alloy is particularly strong, so that there is a problem that the solder wettability deteriorates remarkably. Accordingly, there has been a demand for the development of a Cu—Ni—Si alloy that realizes excellent spring properties by having a high spring limit value that does not cause the above-described sag and also has excellent solder wettability.

よって本発明は、以上のような要請に鑑みてなされたものであり、ばね性とはんだ濡れ性とを高いレベルで同時に実現したCu−Ni−Si合金を提供することを目的としている。   Therefore, the present invention has been made in view of the above demands, and an object of the present invention is to provide a Cu—Ni—Si alloy that simultaneously realizes spring properties and solder wettability at a high level.

本発明のCu−Ni−Si合金は、Niを1.0〜4.5質量%、Siを0.3〜1.5質量%、Mgを0.05〜0.3質量%を含有し、更にZn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeのうち1種類以上を総量で0.05〜2.0質量%含有し、残部がCu及び不可避的不純物からなる銅基合金であって、0.2%耐力が500MPa以上、0.2%耐力とばね限界値との差が100MPa以下であり、酸化膜厚が10nm以下であることを特徴としている。
これにより近年における電子機器類及びその部品に対する軽量化等の要請の下においても十分な強度を満足することができる。また本発明のCu−Ni−Si合金は、0.2%耐力が500MPa以上であり、しかも0.2%耐力とばね限界値との差が100MPa以下である。このため電子機器類等に使用するのに十分な耐力を具備した上で、従来の化学研磨・機械研磨を順次施したCu−Ni−Si合金のように、耐力に対してばね限界値が著しく低下せず、高いばね限界値を有することで優れたばね性を実現することができる。更に本発明のCu−Ni−Si合金は、酸化膜厚を10nm以下としたことで、優れたはんだ濡れ性を実現することができる。
The Cu—Ni—Si alloy of the present invention contains 1.0 to 4.5% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.05 to 0.3% by mass of Mg, Furthermore, it contains 0.05 to 2.0% by mass of one or more of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be, with the balance being Cu and inevitable impurities. The 0.2% proof stress is 500 MPa or more, the difference between the 0.2% proof stress and the spring limit value is 100 MPa or less, and the oxide film thickness is 10 nm or less.
As a result, sufficient strength can be satisfied even under recent demands for weight reduction of electronic devices and their components. The Cu—Ni—Si alloy of the present invention has a 0.2% yield strength of 500 MPa or more, and a difference between the 0.2% yield strength and the spring limit value is 100 MPa or less. For this reason, the spring limit value for the proof stress is remarkably high, as in the case of Cu-Ni-Si alloys that have been subjected to sequential chemical polishing and mechanical polishing after having sufficient proof strength to be used in electronic devices, etc. The spring property which was excellent by having a high spring limit value is not reduced. Furthermore, the Cu-Ni-Si alloy of this invention can implement | achieve the outstanding solder wettability because the oxide film thickness was 10 nm or less.

また本発明の他のCu−Ni−Si合金は、Niを1.0〜4.5質量%、Siを0.3〜1.5質量%、Mgを0.05〜0.3質量%を含有し、更にZn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeのうち1種類以上を総量で0.05〜2.0質量%含有し、残部がCu及び不可避的不純物からなる銅基合金であって、表面の残留応力の絶対値が100MPa以下であり、酸化膜厚が10nm以下であることを特徴としている。
本発明のCu−Ni−Si合金は、上述したとおり、Niを1.0〜4.5質量%,Siを0.3〜1.5質量%含有することで十分な強度を満足することができるとともに、酸化膜厚を10nm以下としたことで優れたはんだ濡れ性を実現することができる。ところで、本発明者らは、時効後の化学研磨・機械研磨工程でCu−Ni−Si合金のばね限界値が低下する原因を調査した結果、化学研磨後の機械研磨によって材料の最表層に残留応力が生じ、この残留応力の作用によりばね限界値が低下するとの知見を得た。この知見に基づき、本発明のCu−Ni−Si合金では、表面の残留応力の絶対値を100MPa以下としている。従って、本発明によれば、電子機器類等に使用するのに好適なばね性を実現することができる。
Further, another Cu-Ni-Si alloy of the present invention contains 1.0 to 4.5 mass% of Ni, 0.3 to 1.5 mass% of Si, and 0.05 to 0.3 mass% of Mg. And further containing one or more of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be in a total amount of 0.05 to 2.0 mass% with the balance being Cu and A copper-based alloy composed of inevitable impurities, characterized in that the absolute value of the residual stress on the surface is 100 MPa or less and the oxide film thickness is 10 nm or less.
As described above, the Cu—Ni—Si alloy of the present invention can satisfy sufficient strength by containing 1.0 to 4.5 mass% of Ni and 0.3 to 1.5 mass% of Si. In addition, excellent solder wettability can be realized by setting the oxide film thickness to 10 nm or less. By the way, as a result of investigating the cause of the decrease in the spring limit value of the Cu—Ni—Si alloy in the chemical polishing / mechanical polishing step after aging, the present inventors have found that the material remains on the outermost layer of the material by mechanical polishing after chemical polishing It was found that stress is generated and the spring limit value is lowered by the action of this residual stress. Based on this knowledge, in the Cu—Ni—Si alloy of the present invention, the absolute value of the residual stress on the surface is set to 100 MPa or less. Therefore, according to the present invention, it is possible to realize a spring property suitable for use in electronic devices and the like.

本発明のCu−Ni−Si合金によれば、ばね性とはんだ濡れ性とを高いレベルで同時に実現することができる。よって本発明は、近年における軽量化、薄肉化及び小型化の要請に十分対応することができる各種電子部品の製造に好適なCu−Ni−Si合金の製造が可能となる点で極めて有望である。   According to the Cu—Ni—Si alloy of the present invention, the spring property and the solder wettability can be simultaneously realized at a high level. Therefore, the present invention is extremely promising in that it is possible to manufacture a Cu—Ni—Si alloy suitable for manufacturing various electronic components that can sufficiently meet the recent demands for weight reduction, thickness reduction, and size reduction. .

残留応力の測定原理を示す図である。It is a figure which shows the measurement principle of a residual stress. スパッタリング時間と酸素の検出強度との関係を示すグラフである。It is a graph which shows the relationship between sputtering time and the detection intensity of oxygen. たわみ試験方法を示す図である。It is a figure which shows the bending test method. (0.2%耐力−ばね限界値)と残留応力との関係を示すグラフである。It is a graph which shows the relationship between (0.2% yield strength-spring limit value) and residual stress. 永久変形量と(0.2%耐力−ばね限界値)との関係を示すグラフである。It is a graph which shows the relationship between a permanent deformation amount and (0.2% yield strength-spring limit value).

本発明者らは、上記したとおり、ばね限界値の低下原因が化学研磨後の機械研磨による残留応力の発生であるとの知見を得た。次に本発明者らはこの知見により、時効時にCu−Ni−Si合金表面において酸化膜の形成を防止して機械研磨を省略することによって、時効後に残留応力が低い状態を実現できるとの知見を得た。また、化学研磨・機械研磨工程で一旦残留応力が増大しても、その後の工程で残留応力を低減する処理を行うことによっても、残留応力が低い状態を実現できるとの知見も得た。そこで本発明者らは以上のような知見に基づき、更に鋭意研究を重ねた結果、Cu−Ni−Si合金の具体的な製造方法として、
(1)水素を多量に含有する雰囲気下で露点(水蒸気濃度)、温度及び保持時間を適当に選択して時効処理を行ない、時効時にCu−Ni−Si合金表面において酸化膜の形成を防止する態様、
(2)高真空雰囲気下で温度及び保持時間を適当に選択して時効処理を行ない、時効時にCu−Ni−Si合金表面において酸化膜の形成を防止する態様、
(3)Cu−Ni−Si合金表面にCuめっきを施した後、温度及び保持時間を適当に選択して時効処理を行ない、その後化学研磨によってCuめっき層(Cuめっきの表面酸化層を含む)を除去する態様、
(4)温度及び保持時間を適当に選択して時効処理を行ない、その後化学研磨・機械研磨工程により酸化膜を除去し、次いで水素を多量に含有する雰囲気下で露点(水蒸気濃度)、温度及び保持時間を適当に選択して後、残留応力を除去するための歪取り焼鈍を行なう態様
をそれぞれ採用することが有効であることを見出した。以下、本発明のCu−Ni−Si合金の製造方法を上記(1)〜(4)のそれぞれについて説明する。
As described above, the present inventors have found that the cause of the decrease in the spring limit value is the generation of residual stress due to mechanical polishing after chemical polishing. Next, based on this finding, the present inventors have found that a state of low residual stress after aging can be realized by preventing formation of an oxide film on the surface of the Cu-Ni-Si alloy during aging and omitting mechanical polishing. Got. Moreover, even if the residual stress once increased in the chemical polishing / mechanical polishing process, it was also found that a state in which the residual stress is low can be realized by performing a process for reducing the residual stress in the subsequent process. Therefore, as a result of further diligent research based on the above knowledge, the present inventors, as a specific manufacturing method of Cu-Ni-Si alloy,
(1) An aging treatment is performed by appropriately selecting the dew point (water vapor concentration), temperature and holding time in an atmosphere containing a large amount of hydrogen, and the formation of an oxide film on the Cu-Ni-Si alloy surface is prevented during aging. Embodiment,
(2) A mode in which an aging treatment is performed by appropriately selecting a temperature and a holding time in a high vacuum atmosphere, and an oxide film is prevented from being formed on the surface of the Cu-Ni-Si alloy during aging,
(3) After Cu plating is applied to the surface of the Cu-Ni-Si alloy, an aging treatment is performed by appropriately selecting the temperature and holding time, and then a Cu plating layer (including a surface oxide layer of Cu plating) is obtained by chemical polishing. An aspect of removing
(4) An aging treatment is performed by appropriately selecting a temperature and a holding time, and then an oxide film is removed by a chemical polishing / mechanical polishing process. Then, a dew point (water vapor concentration), a temperature, and an atmosphere containing a large amount of hydrogen It has been found that it is effective to appropriately select a holding time and then adopt a mode in which strain relief annealing is performed to remove residual stress. Hereinafter, the manufacturing method of the Cu-Ni-Si alloy of this invention is demonstrated about each of said (1)-(4).

本発明のCu−Ni−Si合金の製造方法は、溶体化処理後に冷間圧延を行ない、水素濃度が50vol%以上で残部が不活性ガスから成り、露点が−40℃以下で、350〜650℃で10秒〜15時間保持することにより時効処理を施すことを特徴としている。本発明は上記(1)の態様を具現化したものである。本発明のCu−Ni−Si合金の製造方法では、機械研磨を施さない。このため、従来の化学研磨・機械研磨を順次施したCu−Ni−Si合金のように、機械研磨による残留応力の発生に起因してばね限界値が低くなることはなく、高いばね限界値を有することで優れたばね性を実現することができる。また、本発明のCu−Ni−Si合金の製造方法では、水素を多量に含有する雰囲気下で露点(水蒸気濃度)、温度及び保持時間を適当に選択して時効を行う。このため、時効時にCu−Ni−Si合金表面において酸化膜の形成が防止され、優れたはんだ濡れ性を実現することができる。   In the method for producing a Cu—Ni—Si alloy of the present invention, cold rolling is performed after the solution treatment, the hydrogen concentration is 50 vol% or more, the balance is made of an inert gas, the dew point is −40 ° C. or less, and 350 to 650 An aging treatment is performed by holding at 10 ° C. for 10 seconds to 15 hours. The present invention embodies the above aspect (1). In the manufacturing method of the Cu-Ni-Si alloy of the present invention, mechanical polishing is not performed. For this reason, unlike conventional Cu-Ni-Si alloys that have been sequentially subjected to chemical polishing and mechanical polishing, the spring limit value is not lowered due to the occurrence of residual stress due to mechanical polishing, and a high spring limit value is obtained. By having it, an excellent spring property can be realized. Moreover, in the manufacturing method of the Cu-Ni-Si alloy of this invention, aging is performed by selecting an appropriate dew point (water vapor concentration), temperature, and holding time in an atmosphere containing a large amount of hydrogen. For this reason, formation of an oxide film on the surface of the Cu—Ni—Si alloy is prevented during aging, and excellent solder wettability can be realized.

本発明のCu−Ni−Si合金の他の製造方法は、溶体化処理後に冷間圧延を行ない、圧力が10−2Pa以下で、300〜650℃で10秒〜15時間保持することにより時効処理を施すことを特徴としている。本発明は上記(2)の態様を具現化したものである。本発明のCu−Ni−Si合金の製造方法では、機械研磨を施さないので上記したとおり優れたばね性を実現することができる。また、本発明のCu−Ni−Si合金の製造方法では、高真空雰囲気下で温度及び保持時間を適当に選択して時効処理を行なう。このため、時効時にCu−Ni−Si合金表面において酸化膜の形成が防止され、優れたはんだ濡れ性を実現することができる。 Another manufacturing method of the Cu-Ni-Si-alloys of the present invention performs a cold rolling after the solution treatment, at a pressure of 10 -2 Pa or less, the aging by holding 10 seconds to 15 hours at 300 to 650 ° C. It is characterized by processing. The present invention embodies the above aspect (2). In the manufacturing method of the Cu-Ni-Si alloy of this invention, since mechanical polishing is not given, the outstanding spring property is realizable as above-mentioned. Moreover, in the manufacturing method of the Cu-Ni-Si alloy of this invention, aging treatment is performed by appropriately selecting the temperature and holding time in a high vacuum atmosphere. For this reason, formation of an oxide film on the surface of the Cu—Ni—Si alloy is prevented during aging, and excellent solder wettability can be realized.

本発明のCu−Ni−Si合金の他の製造方法は、溶体化処理後に冷間圧延を行ない、表面に厚さが0.5〜10μmのCuめっきを施した後、300〜650℃で10秒〜15時間保持することにより時効処理を施し、次いで化学研磨によってCuめっき層を除去することを特徴としている。本発明は上記(3)の態様を具現化したものである。本発明のCu−Ni−Si合金の製造方法では、機械研磨を施さないので上記したとおり優れたばね性を実現することができる。また本発明のCu−Ni−Si合金の製造方法では、Cu−Ni−Si合金表面に後の工程で除去し易い厚さのCuめっきを施した後、温度及び保持時間を適当に選択して時効処理を行ない、その後化学研磨によってCuめっき層(Cuめっきの表面酸化層を含む)を除去する。このため、時効処理においてCuめっき層上に酸化膜が形成されても、その後Cuめっき層を化学研磨によって除去することにより、上記酸化膜をも確実に除去することができる。このように、時効後にCu−Ni−Si合金表面において酸化膜の除去がなされるため、優れたはんだ濡れ性を実現することができる。   Another method for producing the Cu—Ni—Si alloy of the present invention is to perform cold rolling after the solution treatment, apply Cu plating with a thickness of 0.5 to 10 μm on the surface, and then apply 10 to 300 to 650 ° C. An aging treatment is performed by holding for 2 seconds to 15 hours, and then the Cu plating layer is removed by chemical polishing. The present invention embodies the above aspect (3). In the manufacturing method of the Cu-Ni-Si alloy of this invention, since mechanical polishing is not given, the outstanding spring property is realizable as above-mentioned. Moreover, in the manufacturing method of the Cu-Ni-Si alloy of the present invention, the Cu-Ni-Si alloy surface is subjected to Cu plating having a thickness that can be easily removed in a later step, and then the temperature and holding time are appropriately selected. An aging treatment is performed, and then the Cu plating layer (including the surface oxide layer of Cu plating) is removed by chemical polishing. For this reason, even if an oxide film is formed on the Cu plating layer in the aging treatment, the oxide film can also be reliably removed by removing the Cu plating layer by chemical polishing thereafter. Thus, since the oxide film is removed on the Cu—Ni—Si alloy surface after aging, excellent solder wettability can be realized.

本発明のCu−Ni−Si合金の他の製造方法は、溶体化処理後に冷間圧延を行ない、300〜650℃で10秒〜15時間保持することにより時効処理を施し、次いで時効処理の際に生じた表面酸化層を化学研磨及び機械研磨によって除去し、更にH濃度が50vol%以上、露点が−40℃以下、400〜650℃で5秒〜2分間保持することにより歪取り焼鈍を施すことを特徴としている。本発明は上記(4)の態様を具現化したものである。本発明のCu−Ni−Si合金の製造方法では、温度及び保持時間を適当に選択して時効処理を行ない、その後化学研磨及び機械研磨を行うことで酸化膜を除去している。この機械研磨によって材料の最表層に残留応力が生じ、この残留応力の作用によりばね限界値が低下する。そこで、機械研磨後に残留応力を除去するための歪取り焼鈍を行なっている。このように、化学研磨・機械研磨工程で一旦残留応力が増大しても、その後の工程で残留応力を低減する処理を行うことによって残留応力が低い状態を実現することができる。従って、高いばね限界値を有することで優れたばね性を実現することができる。更に、この歪取り焼鈍を水素を、多量に含有する雰囲気下で露点(水蒸気濃度)、温度及び保持時間を適当に選択して行なうことにより、歪取り焼鈍の際のCu−Ni−Si合金表面の酸化を抑制し、優れたはんだ濡れ性を得ることができる。 Another method for producing the Cu-Ni-Si alloy of the present invention is to perform cold rolling after the solution treatment, apply an aging treatment by holding at 300 to 650 ° C for 10 seconds to 15 hours, and then perform the aging treatment. Is removed by chemical polishing and mechanical polishing, and further, H 2 concentration is 50 vol% or more, dew point is −40 ° C. or less, and held at 400 to 650 ° C. for 5 seconds to 2 minutes to remove strain annealing. It is characterized by giving. The present invention embodies the above aspect (4). In the method for producing a Cu—Ni—Si alloy of the present invention, an aging treatment is performed by appropriately selecting a temperature and a holding time, and then an oxide film is removed by performing chemical polishing and mechanical polishing. This mechanical polishing generates a residual stress in the outermost layer of the material, and the spring limit value is lowered by the action of the residual stress. Therefore, strain relief annealing is performed to remove residual stress after mechanical polishing. Thus, even if the residual stress once increases in the chemical polishing / mechanical polishing step, a state in which the residual stress is low can be realized by performing a process for reducing the residual stress in the subsequent steps. Therefore, excellent spring properties can be realized by having a high spring limit value. Furthermore, the surface of the Cu-Ni-Si alloy during strain relief annealing is performed by appropriately selecting the dew point (water vapor concentration), temperature and holding time in an atmosphere containing a large amount of hydrogen. It is possible to suppress the oxidation of the solder and to obtain excellent solder wettability.

次に、本発明の成分組成及び製造条件の限定理由を具体的に説明する。
Ni及びSi濃度
Ni及びSiは、時効処理を行う事によりNiとSiとが相互に微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる一方、電気的伝導度も高く維持する。ただし、Ni含有量が1.0質量%未満及びSi含有量が0.3質量%未満の場合は、他方の成分を添加しても所望の強度が得られず、また、Ni含有量が4.5質量%を超え又はSi含有量が1.5質量%を超える場合は十分な強度が得られるものの、所望とする電気伝導性が低くなってしまい、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性及びめっき性の低下を招く。よって、Niの含有量を1.0〜4.5質量%、Si含有量を0.3〜1.5質量%と定めた。
Next, the reasons for limiting the component composition and production conditions of the present invention will be specifically described.
Ni and Si concentrations Ni and Si are formed by aging treatment, whereby Ni and Si form fine intermetallic compound precipitates mainly composed of Ni 2 Si, while significantly increasing the strength of the alloy. Maintain high electrical conductivity. However, when the Ni content is less than 1.0 mass% and the Si content is less than 0.3 mass%, the desired strength cannot be obtained even when the other component is added, and the Ni content is 4%. When the amount exceeds 5 mass% or the Si content exceeds 1.5 mass%, sufficient strength can be obtained, but the desired electrical conductivity is lowered, and further, it does not contribute to the improvement of strength. Ni—Si-based particles (crystallized substances and precipitates) are generated in the matrix phase, and bending workability, etching properties and plating properties are reduced. Therefore, the Ni content was determined to be 1.0 to 4.5 mass%, and the Si content was determined to be 0.3 to 1.5 mass%.

Mg濃度
Mgは応力緩和特性を大幅に改善する効果及び熱間加工性を改善する効果があるが、0.05質量%未満ではその効果が得られず、0.3質量%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下するためMgの含有量を0.05〜0.3質量%と定めた。
Mg concentration Mg has the effect of greatly improving the stress relaxation properties and the hot workability, but if it is less than 0.05% by mass, the effect cannot be obtained, and if it exceeds 0.3% by mass, the castability is increased. (Deterioration of casting surface quality) Since hot workability and plating heat-resistant peelability are reduced, the Mg content is determined to be 0.05 to 0.3% by mass.

Zn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBe
Zn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeには、Cu−Ni−Si合金の強度及び耐熱性を改善する作用がある。また、これらの中でZnには、半田接合の耐熱性を改善する効果もあり、Feには組織を微細化する効果もある。更にTi,Zr,Al及びMnは熱間圧延性を改善する効果を有する。この理由は、これらの元素が硫黄との親和性が強いため硫黄と化合物を形成し、熱間圧延割れの原因であるインゴット粒界への硫黄の偏析を軽減するためである。Zn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeの含有量が総量で0.05質量%未満であると上記の効果は得られず、相含有量が2.0質量%を越えると電気伝導性が著しく低下する。そこで、これらの含有量を総量で0.05〜2.0質量%と定める。
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be has an effect of improving the strength and heat resistance of the Cu—Ni—Si alloy. Of these, Zn also has an effect of improving the heat resistance of the solder joint, and Fe has an effect of refining the structure. Further, Ti, Zr, Al, and Mn have an effect of improving the hot rolling property. This is because these elements have a strong affinity with sulfur and form a compound with sulfur, thereby reducing the segregation of sulfur to the ingot grain boundaries, which is the cause of hot rolling cracks. If the total content of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be is less than 0.05% by mass, the above effect cannot be obtained, and the phase content is 2 If it exceeds 0.0% by mass, the electrical conductivity is remarkably lowered. Therefore, these contents are set to 0.05 to 2.0% by mass in total.

酸化膜厚
酸化膜厚が10nmを超えると、はんだ濡れ性が低下する。そこで、酸化膜厚は10nm以下に限定した。
When the oxide film thickness exceeds 10 nm, the solder wettability decreases. Therefore, the oxide film thickness is limited to 10 nm or less.

0.2%耐力
0.2%耐力はコネクタの設計において500MPa以上とする必要がある。なお、十分なばね強度を得るためには、600MPa以上が望ましい。
0.2% proof stress 0.2% proof stress is required to be 500 MPa or more in the connector design. In order to obtain sufficient spring strength, 600 MPa or more is desirable.

ばね限界値
合金の0.2%耐力に見合ったばね特性を得るためには、ばね限界値を(0.2%耐力−100)MPa以上とする必要がある。コネクタの設計は素材の耐力に基づいて行われるため、ばね限界値が(0.2%耐力−100)MPaを下回ると上記へたりが生じ、所望の接圧が得られない。なお、発明品においては、ばね限界値が(0.2%耐力+100)MPaを大幅に上回るケースはない。
In order to obtain spring characteristics commensurate with the 0.2% yield strength of the spring limit value alloy, the spring limit value needs to be (0.2% yield strength−100) MPa or more. Since the connector is designed based on the proof stress of the material, if the spring limit value is less than (0.2% proof stress−100) MPa, the above sag occurs, and a desired contact pressure cannot be obtained. In the invention, there is no case where the spring limit value greatly exceeds (0.2% proof stress + 100) MPa.

残留応力
(0.2%耐力−100)MPa以上のばね限界値を得るためには、表面の残留応力の絶対値を100MPa以下にする必要がある。
In order to obtain a spring limit value of residual stress (0.2% yield strength−100) MPa or more, the absolute value of the residual stress on the surface needs to be 100 MPa or less.

溶体化処理
溶体化処理条件は特に限定していないが、時効処理で高強度の材料を得るためにはNi−Siを十分に固溶させることが必要であり、そのためにはNi−SiがCu中に完全に溶解する温度で加熱することが望ましい。この温度は、750℃〜850℃である。また、より高い強度を得るためには、加熱の際に結晶粒を粗大化させないことが肝要である。更に、溶体化処理後の冷却方法については、冷却過程においてNi−Siが析出しないように、冷却速度が十分に大きい空冷又は水ミスト噴霧冷却を採用することが望ましい。
Solution treatment conditions The solution treatment conditions are not particularly limited. In order to obtain a high-strength material by aging treatment, it is necessary to sufficiently dissolve Ni—Si. It is desirable to heat at a temperature that completely dissolves therein. This temperature is 750 ° C to 850 ° C. In order to obtain higher strength, it is important not to make the crystal grains coarse during heating. Furthermore, as a cooling method after the solution treatment, it is desirable to employ air cooling or water mist spray cooling with a sufficiently high cooling rate so that Ni—Si does not precipitate in the cooling process.

冷間圧延
溶体化処理と時効処理との間に行う冷間圧延は、より高い強度を得るために施される。冷間圧延での加工度については特に限定しないが、加工度が高くなると、強度が上昇する反面、曲げ性が低下するので、用途に応じた加工度設計を行う必要がある。Cu−Ni−Si合金において工業的に用いられる通常の加工度は、10〜70%の範囲である。なお、加工度(R)は次式で定義される。
R=(t−t)/t×100(%)(t:圧延前の厚み、t:圧延後の厚み)
Cold rolling performed between the cold rolling solution treatment and the aging treatment is performed in order to obtain higher strength. The degree of work in cold rolling is not particularly limited, but as the degree of work increases, the strength increases, but the bendability decreases, so it is necessary to design the degree of work according to the application. The normal workability used industrially in Cu-Ni-Si alloys is in the range of 10-70%. The degree of processing (R) is defined by the following equation.
R = (t 0 −t) / t 0 × 100 (%) (t 0 : thickness before rolling, t: thickness after rolling)

時効温度及び時効時間
強度及び導電性を向上させるために、300〜650℃の温度範囲において、10秒から15時間の時効処理を行なうことが肝要である。なお、時効温度とは加熱炉内部の雰囲気温度であり、時効時間とは加熱炉中に材料が滞留する時間である。Cu中のNi−Si固溶量は温度が低いほど減少するため、低温で時効するほどNi−Si粒の析出量が増大し、より高い強度と導電率を得ることができる。ただし、時効処理に必要な時間が長くなるので、製造コストが割高になる。一方、Ni−Si粒の析出速度は温度が高いほど大きくなるため、高温で時効するほど、より短時間で所定の導電率と強度を得ることができる。ただし導電率及び強度の到達値が低くなるおそれがある。従って、上記製造コスト及び目標とする特性によって時効温度及び時効時間を適宜選択することが望ましい。
In order to improve the aging temperature, the aging time strength, and the conductivity, it is important to perform an aging treatment for 10 seconds to 15 hours in a temperature range of 300 to 650 ° C. The aging temperature is the atmospheric temperature inside the heating furnace, and the aging time is the time that the material stays in the heating furnace. Since the Ni—Si solid solution amount in Cu decreases as the temperature decreases, the precipitation amount of Ni—Si grains increases as aging at a low temperature, and higher strength and conductivity can be obtained. However, since the time required for the aging treatment becomes longer, the manufacturing cost becomes higher. On the other hand, since the deposition rate of Ni—Si grains increases as the temperature increases, the predetermined conductivity and strength can be obtained in a shorter time as the temperature increases. However, there is a risk that the reached values of conductivity and strength are lowered. Therefore, it is desirable to appropriately select the aging temperature and aging time according to the manufacturing cost and the target characteristics.

時効温度が300℃未満では、時効処理に極めて長い時間がかかり製造経済上好ましくない。一方、時効温度が650℃を超えると、Ni−Si粒の析出量が減少し、強度及び導電性がほとんど向上しないので好ましくない。時効時間が10秒未満では、Ni−Si粒が十分に析出せず、強度及び導電性が向上しないので好ましくない。一方、時効時間が15時間を超えると、製造コストが割高になるだけでなく、比較的高い時効温度を選択した場合には析出物が粗大化し強度が低下するので好ましくない。以下に、バッチ焼鈍炉を用いる場合について好適な時効条件を示す。
バッチ焼鈍炉:400℃〜500℃、1時間〜15時間
If the aging temperature is less than 300 ° C., the aging treatment takes an extremely long time, which is not preferable in terms of production economy. On the other hand, when the aging temperature exceeds 650 ° C., the amount of Ni—Si grains precipitated decreases, and the strength and conductivity are hardly improved, which is not preferable. An aging time of less than 10 seconds is not preferable because Ni—Si grains are not sufficiently precipitated and strength and conductivity are not improved. On the other hand, if the aging time exceeds 15 hours, not only is the production cost high, but when a relatively high aging temperature is selected, the precipitates become coarse and the strength decreases, which is not preferable. Below, the aging conditions suitable about the case where a batch annealing furnace is used are shown.
Batch annealing furnace: 400 ° C to 500 ° C, 1 hour to 15 hours

酸化膜の形成を抑制する手段
酸化膜厚を10nm以下とする手段を以下の(1)〜(4)の場合に分類して詳細に説明する。
Means for Suppressing Formation of Oxide Film Means for setting the oxide film thickness to 10 nm or less will be described in detail in the following cases (1) to (4).

(1)時効処理を、水素を混合した不活性ガス中で行なう。酸化膜厚を10nm以下に制御するためには、水素濃度を50vol%以上とすること、及び露点を−40℃以下にすることが必要である。不活性ガスには窒素又はアルゴンを用いることができる。ガスの圧力については限定していないが、通常は大気圧より若干高い圧力が採用される。   (1) An aging treatment is performed in an inert gas mixed with hydrogen. In order to control the oxide film thickness to 10 nm or less, it is necessary to set the hydrogen concentration to 50 vol% or more and to set the dew point to −40 ° C. or less. Nitrogen or argon can be used as the inert gas. The gas pressure is not limited, but usually a pressure slightly higher than atmospheric pressure is employed.

(2)高真空雰囲気中で時効を行なう。酸化膜厚を10nm以下に制御するためには、圧力を10−2Pa以下にする必要がある。 (2) Aging is performed in a high vacuum atmosphere. In order to control the oxide film thickness to 10 nm or less, the pressure needs to be 10 −2 Pa or less.

(3)時効前の材料表面にCuめっきを施す。CuはCu−Ni−Si合金と比較すると酸化しにくく、またその酸化膜はめっきされたCu自身と共に化学研磨で容易に除去することができる。Cuめっき後、不活性ガス等の従来の雰囲気下で時効処理を施し、最後に化学研磨でCuめっき上に生成した酸化膜を、Cuめっき層とともに溶解・除去する。Cuめっきは、硫酸銅等の浴を用いて一般的な製造条件下で行うことができる。ただし、めっきの厚みは0.5〜10μmに制御する必要がある。めっき厚が0.5μm未満の場合には、母材であるCu−Ni−Si合金に酸化膜が形成されるおそれがある。この酸化膜を除去するまで化学研磨を行なうと表面に凹凸及び変色が生じ易く、機械研磨を省略することができない。一方、Cuめっきの厚みが10μmを超える場合には、製造コストが割高となるだけでなく、化学研磨でCuめっき層を除去することが困難である。なお、化学研磨液としては、例えば硫酸に少量の過酸化水素を混合した溶液を用いることができる。   (3) Cu plating is applied to the material surface before aging. Cu is less likely to be oxidized than Cu-Ni-Si alloys, and the oxide film can be easily removed by chemical polishing together with the plated Cu itself. After Cu plating, an aging treatment is performed in a conventional atmosphere such as an inert gas, and finally an oxide film formed on the Cu plating by chemical polishing is dissolved and removed together with the Cu plating layer. Cu plating can be performed under general production conditions using a bath of copper sulfate or the like. However, the thickness of the plating needs to be controlled to 0.5 to 10 μm. When the plating thickness is less than 0.5 μm, an oxide film may be formed on the base material of the Cu—Ni—Si alloy. If chemical polishing is performed until the oxide film is removed, unevenness and discoloration are likely to occur on the surface, and mechanical polishing cannot be omitted. On the other hand, when the thickness of the Cu plating exceeds 10 μm, the manufacturing cost is not only high, but it is difficult to remove the Cu plating layer by chemical polishing. As the chemical polishing liquid, for example, a solution obtained by mixing a small amount of hydrogen peroxide with sulfuric acid can be used.

(4)不活性ガス等の従来の雰囲気下で時効処理を施した後、時効で生成した酸化膜を化学研磨・機械研磨により除去する。これらの研磨工程のうち、機械研磨工程で材料の最表層に残留応力が生じ、この残留応力の作用によりばね限界値が低下する。しかしながら、次工程で歪取り焼鈍を行い、残留応力を除去してばね限界値を向上させる。歪取り焼鈍は連続焼鈍を採用し、400〜650℃の温度で5秒から2分間行う。温度が400℃未満では残留応力が除去されず、650℃を超えると強度及び導電率が著しく低下する。また、時間が5秒未満では残留応力が除去されず、2分間を超えると0.2%耐力が著しく低下する。歪取り焼鈍で生成する酸化膜厚を10nm以下に制御するためには、水素濃度を50vol%以上にすること、及び露点を−40℃以下にすることが必要である。不活性ガスには窒素又はアルゴンを用いることができる。ガスの圧力は限定していないが、通常は大気圧より若干高い圧力を採用することができる。   (4) After performing an aging treatment in a conventional atmosphere such as an inert gas, the oxide film formed by the aging is removed by chemical polishing and mechanical polishing. Among these polishing processes, residual stress is generated in the outermost layer of the material in the mechanical polishing process, and the spring limit value is lowered by the action of the residual stress. However, the strain relief annealing is performed in the next process to remove the residual stress and improve the spring limit value. The strain relief annealing is performed by continuous annealing at a temperature of 400 to 650 ° C. for 5 seconds to 2 minutes. If the temperature is less than 400 ° C., the residual stress is not removed, and if it exceeds 650 ° C., the strength and conductivity are remarkably lowered. Further, if the time is less than 5 seconds, the residual stress is not removed, and if it exceeds 2 minutes, the 0.2% proof stress is remarkably lowered. In order to control the oxide film thickness generated by strain relief annealing to 10 nm or less, it is necessary to set the hydrogen concentration to 50 vol% or more and the dew point to −40 ° C. or less. Nitrogen or argon can be used as the inert gas. The pressure of the gas is not limited, but usually a pressure slightly higher than atmospheric pressure can be employed.

次に、本発明の実施例について説明する。
電気銅又は無酸素銅を原料とし、高周波真空溶解炉を用いてNi濃度が2.5質量%、Si濃度を0.55質量%、Mg濃度を0.16質量%のCu−Ni−Si合金インゴット(厚さ150mm)を製造した。このインゴットを熱間圧延により10mmまで加工し、冷間圧延と焼鈍を繰り返し、最終冷間圧延により厚さ0.2mmまで更に加工した。その後、780℃で溶体化処理を行って結晶粒径を約10μmに仕上げ、次いで冷間圧延により厚さ0.15mmまで加工した。この0.15mmの材料を用いて、種々の条件で時効処理を行い、残留応力、酸化膜厚、はんだ濡れ性及びばね限界値(ばね性)を評価した。更にばね限界値とはんだ濡れ性とが共に優れた結果を示すか否かの総合評価を行った。それぞれの評価方法を以下に示す。
Next, examples of the present invention will be described.
A Cu—Ni—Si alloy having an Ni concentration of 2.5% by mass, an Si concentration of 0.55% by mass and an Mg concentration of 0.16% by mass using electrolytic copper or oxygen-free copper as a raw material and using a high-frequency vacuum melting furnace An ingot (thickness 150 mm) was produced. This ingot was processed to 10 mm by hot rolling, repeated cold rolling and annealing, and further processed to a thickness of 0.2 mm by final cold rolling. Thereafter, a solution treatment was performed at 780 ° C. to finish the crystal grain size to about 10 μm, and then processed to a thickness of 0.15 mm by cold rolling. Using this 0.15 mm material, an aging treatment was performed under various conditions, and the residual stress, oxide film thickness, solder wettability, and spring limit value (spring property) were evaluated. Further, a comprehensive evaluation was conducted as to whether or not both the spring limit value and the solder wettability showed excellent results. Each evaluation method is shown below.

残留応力
X線回折法により(113)面に対し、圧延方向と平行な方向に生じている残留応力を求めた。応力測定の原理及び計算式を以下に示す。
The residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane was determined by the residual stress X-ray diffraction method. The principle and calculation formula of stress measurement are shown below.

・残留応力測定原理
図1のように、試料面法線Nと格子面法線N'とのなす角度ψを変化させてその回折角度(2θ)の変化を調査すると、次式によって残留応力σを求めることができる。
・ Residual Stress Measurement Principle As shown in FIG. 1, when the angle ψ between the sample surface normal N and the lattice surface normal N ′ is changed and the change in the diffraction angle (2θ) is investigated, the residual stress σ is expressed by the following equation: Can be requested.

Figure 2009280919
Figure 2009280919

上式において、K(応力定数)は材料及び回折角度により決定される定数である。測定値から2θ/sinψの線図を書き、次いで最小二乗法で勾配を求め、Kを乗じて残留応力を得る。 In the above equation, K (stress constant) is a constant determined by the material and the diffraction angle. A 2θ / sin 2 ψ diagram is drawn from the measured value, then the gradient is obtained by the least square method, and K is multiplied to obtain the residual stress.

酸化膜厚
オージェ電子分光法により酸化膜厚を測定した。酸素強度の測定と表面のArスパッタリングを交互に行ない、図2に示すグラフを得た。同図において、酸素の検出強度が表面での最大値と非酸化部での値との中間の値になるときのスパッタリング時間を求め、この時間を酸化膜のスパッタリングに要した時間とみなした。酸化膜厚は、上記時間にSiO皮膜のスパッタリング速度を乗じて得た。
Oxide film thickness The oxide film thickness was measured by Auger electron spectroscopy. Oxygen intensity measurement and surface Ar sputtering were performed alternately to obtain the graph shown in FIG. In this figure, the sputtering time when the detected oxygen intensity is an intermediate value between the maximum value on the surface and the value at the non-oxidized part was determined, and this time was regarded as the time required for sputtering of the oxide film. The oxide film thickness was obtained by multiplying the above time by the sputtering rate of the SiO 2 film.

はんだ濡れ性
JIS−0053(1996年)に準じ、メニスコグラフ法により、濡れが始まる時間を測定した。測定条件は以下のとおりである。試料の前処理としてアセトンを用いて脱脂した。次に10vol%硫酸水溶液を用いて化学研磨を施した。はんだには60%Pb−40%Snを用い、測定温度は235℃とした。フラックスには(株)アサヒ化学研究所製GX5を使用した。また、浸漬深さを2mm、浸漬時間を10秒、浸漬速度を15mm/秒、試料の幅を10mmとした。評価基準は、濡れが始まるまでの時間が1秒以下のものを良好(○)とし、1秒を越えるものを不良(×)とした。
Solder wettability In accordance with JIS-0053 (1996), the time at which wetting begins was measured by the meniscograph method. The measurement conditions are as follows. The sample was degreased using acetone as a pretreatment. Next, chemical polishing was performed using a 10 vol% sulfuric acid aqueous solution. The solder used was 60% Pb-40% Sn, and the measurement temperature was 235 ° C. GX5 manufactured by Asahi Chemical Laboratory was used for the flux. The immersion depth was 2 mm, the immersion time was 10 seconds, the immersion speed was 15 mm / second, and the sample width was 10 mm. Evaluation criteria were good (◯) when the time until wetting started was 1 second or less, and bad (x) when it exceeded 1 second.

0.2%耐力及びばね限界値
引張試験機により圧延方向と平行な方向における耐力を測定した。またJIS−H3130に規定されているモーメント式試験により圧延方向と平行な方向のばね限界値を測定した。ばね性の評価基準は、ばね限界値が(耐力−100(MPa))以上のものを良好(○)とし、(耐力−100(MPa))未満のものを不良(×)とした。
The yield strength in the direction parallel to the rolling direction was measured by a 0.2% yield strength and spring limit value tensile tester. Further, the spring limit value in the direction parallel to the rolling direction was measured by a moment type test specified in JIS-H3130. As the evaluation criteria for the spring property, those having a spring limit value of (yield strength −100 (MPa)) or more were evaluated as good (◯), and those less than (yield strength −100 (MPa)) were evaluated as poor (×).

たわみ試験
電子部品素材としての性能を評価するために、図3に示すように、試験片の一端を固定し、この固定端から距離lの位置に荷重Pを付加してたわみfを与えた。荷重を除去した後、試料の永久変形量δを測定した。試料の幅Wは10mmとし、試料の長手方向が圧延方向と平行になるように試料を作成した。また、l=10mm、f=5mmとした。このときの試料表面に生じる応力を片持ちはりの式
σ=6P・l/(W・t) (t:試料の厚み)
を用いて計算したところ、約550MPaであった。
In order to evaluate the performance as a deflection test electronic component material, as shown in FIG. 3, one end of a test piece was fixed, and a load f was applied to a position at a distance l from the fixed end to give a deflection f. After removing the load, the amount of permanent deformation δ of the sample was measured. The sample was prepared so that the width W of the sample was 10 mm and the longitudinal direction of the sample was parallel to the rolling direction. Further, l = 10 mm and f = 5 mm. The stress generated on the sample surface at this time is expressed by the cantilever equation σ = 6P · l / (W · t 2 ) (t: thickness of the sample)
It was about 550 MPa when it calculated using.

以下、実際に発明者が検討した事項について説明する。
[従来の製造方法についての検討]
露点−10℃のArガス雰囲気中において、430℃で8時間の時効処理を行った後、表面に機械研磨を施した。この研磨では研磨量を種々変化させた。研磨後に0.2%耐力、ばね限界値、表面の残留応力、酸化膜厚及びはんだ濡れ性を測定した。また、図3の方法で試料に所定のたわみを与えたときの永久変形量を測定した。これらの結果を表1に示す。
The items actually examined by the inventors will be described below.
[Examination of conventional manufacturing methods]
After an aging treatment at 430 ° C. for 8 hours in an Ar gas atmosphere having a dew point of −10 ° C., the surface was mechanically polished. In this polishing, the polishing amount was variously changed. After polishing, 0.2% yield strength, spring limit value, surface residual stress, oxide film thickness and solder wettability were measured. Further, the amount of permanent deformation when a predetermined deflection was given to the sample by the method of FIG. 3 was measured. These results are shown in Table 1.

Figure 2009280919
Figure 2009280919

同表中、番号の大きい試料ほど機械研磨量を多くしたものである。機械研磨を多く行うほど、試料表面に生ずる圧縮残留応力が大きくなることが判る。図4に示すように、残留応力が増加するとばね限界値が低下して次第にばね性が劣化し、残留応力が100MPaを超えると0.2%耐力とばね限界値との差が100MPaを超える。また、図5に示すように、0.2%耐力とばね限界値との差が100MPaを超えると、試料に所定のたわみを与えたときに永久変形が生じる。この永久変形量は、0.2%耐力とばね限界値との差が大きくなるほど増大する。このような永久変形は、コネクタ接点における接触圧の低下を引き起こすため好ましくない。   In the table, the larger the number, the greater the amount of mechanical polishing. It can be seen that the greater the mechanical polishing, the greater the compressive residual stress generated on the sample surface. As shown in FIG. 4, when the residual stress increases, the spring limit value decreases and the spring property gradually deteriorates. When the residual stress exceeds 100 MPa, the difference between the 0.2% proof stress and the spring limit value exceeds 100 MPa. As shown in FIG. 5, when the difference between the 0.2% proof stress and the spring limit value exceeds 100 MPa, permanent deformation occurs when a predetermined deflection is applied to the sample. The amount of permanent deformation increases as the difference between the 0.2% proof stress and the spring limit value increases. Such permanent deformation is not preferable because it causes a decrease in contact pressure at the connector contact.

一方、機械研磨量を多くするほど、酸化膜厚は減少し、酸化膜厚が10nm以下になると良好なはんだ濡れ性が実現されたが、酸化膜厚が10nmを越えるものについては良好なはんだ濡れ性が実現されなかった。以上から表1に示す従来例1〜9は、ばね限界値とはんだ濡れ性とが高いレベルで両立されておらず、総合評価において優れた結果が得られていない。   On the other hand, the greater the amount of mechanical polishing, the smaller the oxide film thickness. When the oxide film thickness was 10 nm or less, good solder wettability was achieved. Sex was not realized. From the above, Conventional Examples 1 to 9 shown in Table 1 are not compatible with a high level of spring limit value and solder wettability, and excellent results are not obtained in comprehensive evaluation.

[本発明の請求項3に記載の製造方法についての検討]
本発明の請求項3に記載の製造方法に関する発明例について説明する。発明例10〜12及び比較例13〜15のそれぞれについて表2に示す時効処理条件の下、表3に示す結果を得た。なお、各発明例及び各比較例については、時効後に化学研磨及び機械研磨等の表面処理は施していない。
[Study on the production method according to claim 3 of the present invention]
An invention example relating to the manufacturing method according to claim 3 of the present invention will be described. For each of Invention Examples 10 to 12 and Comparative Examples 13 to 15, the results shown in Table 3 were obtained under the aging treatment conditions shown in Table 2. In addition, about each invention example and each comparative example, surface treatments, such as chemical polishing and mechanical polishing, are not performed after aging.

Figure 2009280919
Figure 2009280919

Figure 2009280919
Figure 2009280919

表2に示すように、発明例10〜12については、焼鈍炉内の露点を−40℃以下にして時効処理を行なっている。表3から明らかなように、発明例10〜12については、表面が酸化を起こさず良好なはんだ濡れ性を実現し、ばね性も良好であった。従って各発明例については総合評価において優れた結果が得られた。一方、比較例13〜15は焼鈍炉内の露点を−40℃より高くして時効処理を行なったものである。比較例13〜15については高いばね限界値が得らたことからばね性は良好であったものの、表面が酸化したため良好なはんだ濡れ性が得られなかった。従って各比較例については総合評価において優れた結果が得られなかった。   As shown in Table 2, for Invention Examples 10 to 12, the dew point in the annealing furnace was set to -40 ° C. or lower, and an aging treatment was performed. As apparent from Table 3, the invention examples 10 to 12 did not oxidize on the surface, achieved good solder wettability, and had good spring properties. Therefore, excellent results were obtained in the comprehensive evaluation for each of the inventive examples. On the other hand, Comparative Examples 13-15 performed the aging process by making the dew point in an annealing furnace higher than -40 degreeC. About Comparative Examples 13-15, although the spring property was favorable from having obtained the high spring limit value, since the surface oxidized, favorable solder wettability was not obtained. Therefore, excellent results were not obtained in the comprehensive evaluation for each comparative example.

[本発明の請求項4に記載の製造方法についての検討]
本発明の請求項4に記載の製造方法に関する実施例について説明する。発明例16〜18及び比較例19〜21のそれぞれについて表4に示す時効処理条件の下、表5に示す結果を得た。なお各発明例及び各比較例については、時効後に化学研磨及び機械研磨等の表面処理は施していない。
[Study on the production method according to claim 4 of the present invention]
The Example regarding the manufacturing method of Claim 4 of this invention is demonstrated. The results shown in Table 5 were obtained under the aging treatment conditions shown in Table 4 for each of Invention Examples 16 to 18 and Comparative Examples 19 to 21. In addition, about each invention example and each comparative example, surface treatments, such as chemical polishing and mechanical polishing, are not given after aging.

Figure 2009280919
Figure 2009280919

Figure 2009280919
Figure 2009280919

表4に示すように、発明例16〜18は焼鈍炉内の真空度を10−2Pa以下にして時効処理を行なったものである。表5から明らかなように、発明例16はわずかに表面酸化を起こしているものの発明例17,18とともに良好なはんだ濡れ性を実現し、しかもばね性も良好であった。従って各発明例については総合評価において優れた結果が得られた。一方、比較例19〜21は、焼鈍炉内の真空度を10−2Paより高くして時効焼鈍を行なったものである。比較例19〜21は、ばね性は良好であったものの表面が酸化したため良好なはんだ濡れ性を実現することはできなかった。従って各比較例については総合評価において優れた結果が得られなかった。 As shown in Table 4, Invention Examples 16 to 18 are obtained by performing an aging treatment with the degree of vacuum in the annealing furnace being 10 −2 Pa or less. As can be seen from Table 5, Invention Example 16 exhibited good solder wettability with Invention Examples 17 and 18 although it caused slight surface oxidation, and also had good spring properties. Therefore, excellent results were obtained in the comprehensive evaluation for each of the inventive examples. On the other hand, Comparative Examples 19-21 perform aging annealing by making the vacuum degree in an annealing furnace higher than 10 <-2 > Pa. In Comparative Examples 19 to 21, although the spring property was good, the surface was oxidized, so that good solder wettability could not be realized. Therefore, excellent results were not obtained in the comprehensive evaluation for each comparative example.

[本発明の請求項5に記載の製造方法についての検討]
本発明の請求項5に記載の製造方法に関する実施例について説明する。発明例22〜24及び比較例25,26のそれぞれについて、表6に示すめっき処理条件、時効処理条件及び表面処理条件の下、表7に示す結果を得た。
[Study on the production method according to claim 5 of the present invention]
The Example regarding the manufacturing method of Claim 5 of this invention is demonstrated. For each of Invention Examples 22 to 24 and Comparative Examples 25 and 26, the results shown in Table 7 were obtained under the plating treatment conditions, aging treatment conditions, and surface treatment conditions shown in Table 6.

Figure 2009280919
Figure 2009280919

Figure 2009280919
Figure 2009280919

表6に示すように、発明例22〜24は、最終圧延材にCuめっきを施した後に、時効処理を行ない、最後に表面のCuめっきを化学研磨により除去したものである。このため、表7から明らかなように、良好なばね性及びはんだ濡れ性を実現することができた。従って各発明例については総合評価において優れた結果が得られた。一方、比較例25は0.2μmのCuめっきを施したもので、Cuめっき層が薄いため母材表面が酸化し、良好なはんだ濡れ性を実現することはできなかった。また、比較例26は現行の製造方法を採用した態様であり、時効焼鈍後に材料表面に機械研磨を施したことから高いばね限界値が得らないため、良好なばね性が実現されなかった。従って各比較例については総合評価において優れた結果が得られなかった。   As shown in Table 6, Invention Examples 22 to 24 are obtained by performing aging treatment after applying Cu plating to the final rolled material, and finally removing Cu plating on the surface by chemical polishing. For this reason, as can be seen from Table 7, good spring properties and solder wettability could be realized. Therefore, excellent results were obtained in the comprehensive evaluation for each of the inventive examples. On the other hand, Comparative Example 25 was subjected to 0.2 μm Cu plating, and since the Cu plating layer was thin, the surface of the base material was oxidized, and good solder wettability could not be realized. Further, Comparative Example 26 is an aspect in which the current manufacturing method is adopted, and since a high spring limit value is not obtained because the material surface is mechanically polished after aging annealing, a good spring property was not realized. Therefore, excellent results were not obtained in the comprehensive evaluation for each comparative example.

[本発明の請求項6に記載の製造方法についての検討]
本発明の請求項6に記載の製造方法に関する実施例について説明する。発明例27〜29及び比較例30〜32のそれぞれについて表8に示す時効処理条件、表面処理条件及び歪取り焼鈍条件の下、表9に示す結果を得た。
[Examination of the production method according to claim 6 of the present invention]
The Example regarding the manufacturing method of Claim 6 of this invention is demonstrated. For each of Invention Examples 27 to 29 and Comparative Examples 30 to 32, the results shown in Table 9 were obtained under the aging treatment conditions, surface treatment conditions and strain relief annealing conditions shown in Table 8.

Figure 2009280919
Figure 2009280919

Figure 2009280919
Figure 2009280919

表8に示すように、発明例27〜29は、時効焼鈍後化学研磨・機械研磨を施し、次いで歪取り焼鈍を施したものである。表9から明らかなように、発明例27〜29では、機械研磨によって材料の最表層に生じた残留応力を除去することによりばね限界値が回復したため、良好なばね性が実現された。またこれらの発明例27〜29については、化学研磨により材料の表面酸化膜が除去されていることから、良好なはんだ濡れ性を実現することもできた。従って各発明例については総合評価において優れた結果が得られた。一方、比較例30は、炉内滞留時間が短いため表面に残留応力が残り、ばね限界値が回復せず、優れたばね性を得ることができなかった。また、比較例31は炉内滞留時間が長いため、ばね限界値は耐力レベルにまで回復したものの、耐力自体が低下した。更に、比較例32は現行の製造方法を採用した態様であり、時効焼鈍後に材料表面に機械研磨を施したことから高いばね限界値が得られないため、良好なばね性が実現されなかった。従って各比較例については総合評価において優れた結果が得られなかった。   As shown in Table 8, Invention Examples 27 to 29 are obtained by performing chemical polishing / mechanical polishing after aging annealing and then performing strain relief annealing. As is apparent from Table 9, in Invention Examples 27 to 29, the spring limit value was recovered by removing the residual stress generated in the outermost layer of the material by mechanical polishing, so that good spring properties were realized. Further, in these inventive examples 27 to 29, since the surface oxide film of the material was removed by chemical polishing, good solder wettability could also be realized. Therefore, excellent results were obtained in the comprehensive evaluation for each of the inventive examples. On the other hand, in Comparative Example 30, since the residence time in the furnace was short, residual stress remained on the surface, the spring limit value was not recovered, and excellent spring properties could not be obtained. In Comparative Example 31, the residence time in the furnace was long, so the spring limit value recovered to the proof stress level, but the proof stress itself decreased. Further, Comparative Example 32 is an aspect in which the current manufacturing method is adopted, and a high spring limit value cannot be obtained because the material surface is subjected to mechanical polishing after aging annealing, so that good spring properties were not realized. Therefore, excellent results were not obtained in the comprehensive evaluation for each comparative example.

Claims (6)

Niを1.0〜4.5質量%、Siを0.3〜1.5質量%、Mgを0.05〜0.3質量%を含有し、更にZn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeのうち1種類以上を総量で0.05〜2.0質量%含有し、残部がCu及び不可避的不純物からなる銅基合金であって、0.2%耐力が500MPa以上、0.2%耐力とばね限界値との差が100MPa以下であり、酸化膜厚が10nm以下であることを特徴とするCu−Ni−Si合金。 Ni 1.0-4.5 mass%, Si 0.3-1.5 mass%, Mg 0.05-0.3 mass%, Zn, Sn, Fe, Ti, Zr, A copper-based alloy containing 0.05 to 2.0% by mass in total of one or more of Cr, Al, P, Mn, Ag, or Be, with the balance being Cu and inevitable impurities. A Cu-Ni-Si alloy having a 2% yield strength of 500 MPa or more, a difference between a 0.2% yield strength and a spring limit value of 100 MPa or less, and an oxide film thickness of 10 nm or less. Niを1.0〜4.5質量%、Siを0.3〜1.5質量%、Mgを0.05〜0.3質量%を含有し、更にZn,Sn,Fe,Ti,Zr,Cr,Al,P,Mn,Ag,又はBeのうち1種類以上を総量で0.05〜2.0質量%含有し、残部がCu及び不可避的不純物からなる銅基合金であって、0.2%耐力が500MPa以上、表面の残留応力の絶対値が100MPa以下であり、酸化膜厚が10nm以下であることを特徴とするCu−Ni−Si合金。 Ni 1.0-4.5 mass%, Si 0.3-1.5 mass%, Mg 0.05-0.3 mass%, Zn, Sn, Fe, Ti, Zr, A copper-based alloy containing 0.05 to 2.0% by mass in total of one or more of Cr, Al, P, Mn, Ag, or Be, with the balance being Cu and inevitable impurities. A Cu-Ni-Si alloy having a 2% proof stress of 500 MPa or more, an absolute value of residual stress on the surface of 100 MPa or less, and an oxide film thickness of 10 nm or less. 溶体化処理後に冷間圧延を行ない、水素濃度が50vol%以上で残部が不活性ガスから成り、露点が−40℃以下で、350〜650℃である雰囲気中に10秒〜15時間保持することにより時効処理を施すことを特徴とする請求項1又は2に記載のCu−Ni−Si合金。 Cold rolling after solution treatment is performed, and the hydrogen concentration is 50 vol% or more, the balance is made of inert gas, the dew point is -40 ° C. or less, and it is held for 10 seconds to 15 hours in an atmosphere of 350 to 650 ° C. The Cu-Ni-Si alloy according to claim 1 or 2, wherein an aging treatment is performed by the method. 溶体化処理後に冷間圧延を行ない、圧力が10−2Pa以下で、300〜650℃である雰囲気中に10秒〜15時間保持することにより時効処理を施すことを特徴とする請求項1又は2に記載のCu−Ni−Si合金。 Subjected to cold rolling after solution heat treatment, a pressure is 10 -2 Pa or less, according to claim 1 or characterized by applying aging treatment by holding for 10 seconds to 15 hours in an atmosphere is 300 to 650 ° C. 2. Cu—Ni—Si alloy according to 2. 溶体化処理後に冷間圧延を行ない、表面に厚さが0.5〜10μmのCuめっきを施した後、300〜650℃である雰囲気中に10秒〜15時間保持することにより時効処理を施し、次いで化学研磨によってCuめっき層を除去することを特徴とする請求項1又は2に記載のCu−Ni−Si合金。 After the solution treatment, cold rolling is performed, Cu plating with a thickness of 0.5 to 10 μm is applied to the surface, and then an aging treatment is performed by holding in an atmosphere of 300 to 650 ° C. for 10 seconds to 15 hours. The Cu-plated layer is then removed by chemical polishing, and the Cu-Ni-Si alloy according to claim 1 or 2. 溶体化処理後に冷間圧延を行ない、300〜650℃で10秒〜15時間保持することにより時効処理を施し、次いで時効処理の際に生じた表面酸化層を化学研磨及び機械研磨によって除去し、さらにH濃度が50vol%以上、露点が−40℃以下、400〜650℃である雰囲気中に5秒〜2分間保持することにより歪取り焼鈍を施すことを特徴とする請求項1又は2に記載のCu−Ni−Si合金。 Cold rolling after solution treatment, aging treatment is performed by holding at 300 to 650 ° C. for 10 seconds to 15 hours, and then the surface oxide layer generated during the aging treatment is removed by chemical polishing and mechanical polishing, Furthermore, strain relief annealing is performed by holding for 5 seconds to 2 minutes in an atmosphere having an H 2 concentration of 50 vol% or more, a dew point of -40 ° C or less, and 400 to 650 ° C. Cu-Ni-Si alloy as described.
JP2009199738A 2009-08-31 2009-08-31 Cu-Ni-Si ALLOY Pending JP2009280919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199738A JP2009280919A (en) 2009-08-31 2009-08-31 Cu-Ni-Si ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199738A JP2009280919A (en) 2009-08-31 2009-08-31 Cu-Ni-Si ALLOY

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002299676A Division JP4386236B2 (en) 2002-10-11 2002-10-11 Cu-Ni-Si alloy

Publications (1)

Publication Number Publication Date
JP2009280919A true JP2009280919A (en) 2009-12-03

Family

ID=41451659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199738A Pending JP2009280919A (en) 2009-08-31 2009-08-31 Cu-Ni-Si ALLOY

Country Status (1)

Country Link
JP (1) JP2009280919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622190C1 (en) * 2016-10-10 2017-06-13 Юлия Алексеевна Щепочкина Copper-based alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622190C1 (en) * 2016-10-10 2017-06-13 Юлия Алексеевна Щепочкина Copper-based alloy

Similar Documents

Publication Publication Date Title
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4809602B2 (en) Copper alloy
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
WO2006106939A1 (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCTION THEREOF
WO2011118400A1 (en) High-strength copper titanium plate and production method therefor
JPWO2010013790A1 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP5619389B2 (en) Copper alloy material
WO2012132937A1 (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
JP4386236B2 (en) Cu-Ni-Si alloy
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
KR101777987B1 (en) Copper alloy sheet and process producing copper alloy sheet
WO2011039875A1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP4068413B2 (en) Cu-Ti alloy and method for producing the same
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
WO2013145824A1 (en) Corson alloy and method for producing same
JP2004256902A (en) Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP4364174B2 (en) Titanium copper with excellent spring characteristics and conductivity
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP6391618B2 (en) Titanium copper foil and manufacturing method thereof
JP2009280919A (en) Cu-Ni-Si ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A711 Notification of change in applicant

Effective date: 20110527

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A521 Written amendment

Effective date: 20120928

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618