JP4707208B2 - Winding type electrolytic capacitor - Google Patents

Winding type electrolytic capacitor Download PDF

Info

Publication number
JP4707208B2
JP4707208B2 JP2000153173A JP2000153173A JP4707208B2 JP 4707208 B2 JP4707208 B2 JP 4707208B2 JP 2000153173 A JP2000153173 A JP 2000153173A JP 2000153173 A JP2000153173 A JP 2000153173A JP 4707208 B2 JP4707208 B2 JP 4707208B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
fiber
separator
electrolyte
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000153173A
Other languages
Japanese (ja)
Other versions
JP2001332451A (en
Inventor
泰司 溝渕
正明 柳瀬
輝幸 秦泉寺
公三郎 大久保
誠 畑中
毅一 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kodoshi Corp
Nichicon Corp
Original Assignee
Nippon Kodoshi Corp
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kodoshi Corp, Nichicon Corp filed Critical Nippon Kodoshi Corp
Priority to JP2000153173A priority Critical patent/JP4707208B2/en
Publication of JP2001332451A publication Critical patent/JP2001332451A/en
Application granted granted Critical
Publication of JP4707208B2 publication Critical patent/JP4707208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は巻回型の電解コンデンサのセパレータに関するものであり、特に導電性高分子化合物よりなる電解質を保持させるのに適したセパレータに関するものである。
【0002】
【従来の技術】
従来から、電解コンデンサに、タンタル、アルミニウム等の弁作用金属箔の表面を粗面化すると共に陽極酸化層を形成した陽極箔と、表面を粗面化した弁作用金属箔よりなる陰極箔とを相互間に電解紙を挟んで巻回したコンデンサ素子に、電解質としてアジピン酸、マレイン酸、フタル酸等のカルボン酸や、ニトロ化合物、リン酸化合物等の溶質を水、エチレングリコール、γ−ブチロラクトン等の溶媒に溶解した駆動用電解液を含浸したものが存在している。
【0003】
しかし、このように電解質として駆動用電解液を使用した電解コンデンサは、高周波での等価直列抵抗を十分低くすることができなかった。近年、電子機器は、動作の高速化、省電力化が求められ、そのために等価直列抵抗を引下げることが要求されているが、上述の駆動用電解液を用いた電解コンデンサはこれに対応するのが困難であった。そこで近年は電解質に二酸化マンガンやTCNQ錯体を使用する電解コンデンサが開発された。
【0004】
電解質として二酸化マンガンを用いた電解コンデンサの場合は、硝酸マンガン等を含浸してから、これを300〜400℃に加熱して二酸化マンガンに変化させる熱処理工程が必要であるが、その際に電解紙が炭化してコンデンサ素子の形状が崩れ易くなり、またリード端子が変色する等の問題があった。
【0005】
電解質としてTCNQ錯体を使用した電解コンデンサは、温度が高くなるとTCNQ錯体の再溶融や熱分解が起こるため熱管理が難かしく、面実装の際の溶融はんだ温度を他の部品より低くしなければならなかった。
【0006】
【発明が解決しようとする課題】
上述した従来の電解コンデンサの電解質の欠点を改善するために、近年、ピロール、アニリン、チオフェン等の機能性高分子材料を電解質として使用する電解コンデンサが開発されている。機能性高分子材料を使用した電解コンデンサは、二酸化マンガンやTCNQ錯体を使用した従来の電解コンデンサに較べて、等価直列抵抗を引下げることが可能で、電解質の含浸工程で300℃以上の熱処理を行う必要がなく、耐熱性も260〜300℃と高い長所を有している。
【0007】
しかし、コンデンサ素子のセパレータとして通常の電解紙を使用すると、電解紙中のマニラ麻繊維等のセルロース繊維が機能性高分子材料の重合反応を阻害したり、コンデンサ素子内への電解質の浸透が困難なために含浸に長時間を要したりする。このようなセルロース繊維の影響を抑えるためにコンデンサ素子を熱処理して電解紙を炭化させると、含浸性は改善されるがコンデンサ素子の形状が崩れ易くなる。
【0008】
また、マニラ麻繊維の代わりにガラス繊維を混抄したセパレータを使用し、これに上述の機能性高分子材料を電解質として含浸させることが提案されているが、ガラス繊維の混抄紙は厚みを薄くできないことに加え、巻回し難い欠点がある。
【0009】
特開平10−340829号公報にはビニロン繊維を電解コンデンサのセパレータとして使用し、これに機能性高分子材料を電解質として含浸させることが示されているが、ビニロン繊維を抄紙する際に添加されるバインダーをコンデンサ素子に巻回後に除去しないと、電解質の保持が不十分なために充分な電気特性が得られず、また製品は耐熱性が不十分なために面実装に使用した場合にはんだ付けの温度で製品が膨張する欠点があった。
【0010】
従って、本発明は、電解質として上述の機能性高分子材料を使用する際に、セルロース繊維やガラス繊維やビニロン繊維をセパレータに用いたことに伴う諸問題を解決し、機能性高分子材料の持つ長所を十分発揮させようとするものである。
【0011】
【課題を解決するための手段】
本発明は、電解質としてポリピロール、ポリアニリン、ポリチオフェン、またはこれらの誘導体の少なくとも1種類を使用する巻回型の電解コンデンサにおいて、陽極箔と陰極箔との間に介在するセパレータとして50%以上のアクリル繊維を含有する不織布状シートを使用することを特徴とするものである。
【0012】
上記不織布状シートには、アクリル繊維以外の合成繊維を混抄することができるが、この合成繊維ははんだ付け温度である240℃に耐えることが必要である。この要件に適合する好ましい合成繊維としては、ポリエステル繊維、6−6ナイロン繊維、ポリフルオロエチレン繊維などが挙げられる。
【0013】
上述のアクリル繊維を始めとする耐熱性合成繊維を不織布状に結合するためにバインダーが添加されるが、最も望ましいバインダーはポバール(ポリビニールアルコール)であり、繊維状のものを使用する。セパレータへのポバール繊維の添加量は5〜50%であることが望ましい。
【0014】
上記ポリピロール誘導体としては、ピロール骨格を有し、その3位、3位と4位またはN位に、水酸基、アセチル基、カルボキシル基、アルキル基、アルコキシ基のうちの少なくとも1種を置換基として有するものを挙げることができる。
【0015】
上記ポリアニリン誘導体としては、アニリン骨格を有し、アルキル基、フェニル基、アルコキシ基、エステル基、チオエーテル基のうちの少なくとも1種を置換基として有するものを挙げることができる。
【0016】
また、ポリチオフェン誘導体としては、チオフェン骨格を有し、その3位、3位と4位またはS位に、水酸基、アセチル基、カルボキシル基、アルキル基、アルコキシ基のうちの少なくとも1種を置換基として有するポリチオフェン誘導体、またはポリ3、4−アルキレンジオキシチオフェンを挙げることができる。
【0017】
【発明の実施の形態】
アクリル繊維に必要に応じ他の耐熱性合成繊維を加え、バインダーとしてポバールの繊維を加えて抄紙し、加熱乾燥して不織布状のシートを得る。この間、ポバールの繊維は、乾燥過程の前半には熱水で軟化してアクリル繊維に粘着するが、乾燥過程の後半では水分を失ってアクリル繊維に接着したまま固化し耐熱性に富む不織布状のシートとなる。このシートははんだ付け温度に耐える耐熱性を有する。
【0018】
上述のようにして製造した厚さ40μmのシートを2.7mm×75mmの寸法に切断し、それぞれ2.2mm×75mmの陽極箔と陰極箔の間に挟んで巻回し、直径約6mmの巻回物を得た。陽極箔の切断端面には酸化膜が形成されていないので、この巻回物を60℃、10wt%のアジピン酸アンモニウム水溶液中で化成処理を行った。次に3、4−エチレンジオキシチオフェンとp−トルエンスルホン酸鉄(III)とをi−プロパノールに溶解した溶液(モノマー対酸化剤のモル比1:1.5)に浸漬後、100℃に60分間保持して化学重合によるポリエチレンジオキシチオフェン(PEDT)の固体電解質層を形成させた。このようにして得たコンデンサ素子をケースに入れ、開口部を封口部材で封止後、封口部材に面実装用の合成樹脂製座板を取付け、実施例1及び2と比較例1乃至3として表1に示す定格電圧4V、定格静電容量100μFの面実装型固体電解コンデンサを各100個製作した。
【0019】
【表1】

Figure 0004707208
【0020】
表1に示されているように、実施例及び比較例の各コンデンサについて初期の静電容量と100kHzにおける等価直列抵抗を測定した後、はんだ耐熱試験を行った。この試験は、試料コンデンサを240℃で10秒間加熱する操作を2回反覆して行うものであり、試験後に再び100kHzにおける等価直列抵抗を測定すると共に、外観を調べた。これらにより、実施例の試料コンデンサは比較例の試料コンデンサに較べて初期の静電容量が大きく、高周波における等価直列抵抗が小さく、はんだ耐熱試験による等価直列抵抗特性の劣化が少なく、外観にも変化がないことが確認できた。
【0021】
次に、実施例1に準ずる方法で、セパレータ中のアクリル繊維とポバール繊維の比率を表2に示すように変化させたコンデンサを実施例3、4及び比較例4として製作し、その初期特性を測定した。
【0022】
【表2】
Figure 0004707208
【0023】
表2に基づき、アクリル繊維含有量と等価直列抵抗の初期値との関係を図1に示し、ポバール繊維含有量と静電容量の初期値との関係を図2に示す。これらの図面から明らかなように、アクリル繊維の含有量は50%以上が好ましく、ポバール繊維の含有量は5〜50%の範囲が好ましいことが判明した。
【0024】
【発明の効果】
以上のように、本発明による巻回型電解コンデンサは、セパレータの強度、巻回性及び電解質の保持性が優れ、高周波での等価直列抵抗が低く、耐熱温度が高いために特に面実装に用いた場合に他の電子部品と同等の温度ではんだ付けが可能になる等の長所を有している。
【図面の簡単な説明】
【図1】 本発明におけるセパレータのアクリル繊維含有量と製品の高周波等価直列抵抗との関係を示す線図
【図2】 本発明におけるセパレータのポバール繊維含有量と製品の静電容量との関係を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a wound electrolytic capacitor, and more particularly to a separator suitable for holding an electrolyte made of a conductive polymer compound.
[0002]
[Prior art]
Conventionally, an electrolytic capacitor is provided with an anode foil having a roughened surface of a valve metal foil such as tantalum or aluminum and an anodized layer formed thereon, and a cathode foil made of a valve metal foil having a roughened surface. Capacitor elements wound with electrolytic paper sandwiched between them, carboxylic acids such as adipic acid, maleic acid, and phthalic acid as electrolytes, solutes such as nitro compounds and phosphoric acid compounds, water, ethylene glycol, γ-butyrolactone, etc. There are those impregnated with a driving electrolyte dissolved in the above solvent.
[0003]
However, the electrolytic capacitor using the driving electrolyte as the electrolyte as described above cannot sufficiently reduce the equivalent series resistance at a high frequency. In recent years, electronic devices are required to operate at higher speed and save power, and for that purpose, it is required to lower the equivalent series resistance. However, the electrolytic capacitors using the above-described driving electrolyte correspond to this. It was difficult. Therefore, in recent years, electrolytic capacitors using manganese dioxide or TCNQ complex as an electrolyte have been developed.
[0004]
In the case of an electrolytic capacitor using manganese dioxide as an electrolyte, a heat treatment step is required in which manganese nitrate is impregnated and then heated to 300 to 400 ° C. to change to manganese dioxide. Carbonized, the shape of the capacitor element was liable to collapse, and the lead terminals were discolored.
[0005]
An electrolytic capacitor using a TCNQ complex as an electrolyte is difficult to control heat because remelting and thermal decomposition of the TCNQ complex occurs at high temperatures, and the molten solder temperature during surface mounting must be lower than that of other components. There wasn't.
[0006]
[Problems to be solved by the invention]
In order to improve the above-described drawbacks of the electrolytes of conventional electrolytic capacitors, electrolytic capacitors using functional polymer materials such as pyrrole, aniline, and thiophene as electrolytes have been developed in recent years. Compared to conventional electrolytic capacitors using manganese dioxide or TCNQ complex, electrolytic capacitors using functional polymer materials can reduce the equivalent series resistance, and heat treatment at 300 ° C or higher in the electrolyte impregnation process. There is no need to carry out, and the heat resistance is as high as 260 to 300 ° C.
[0007]
However, when ordinary electrolytic paper is used as a capacitor element separator, cellulose fibers such as manila hemp fibers in the electrolytic paper inhibit the polymerization reaction of the functional polymer material, and it is difficult for the electrolyte to penetrate into the capacitor element. Therefore, it takes a long time for impregnation. When the capacitor element is heat-treated to suppress the influence of such cellulose fibers and the electrolytic paper is carbonized, the impregnation property is improved, but the shape of the capacitor element is liable to collapse.
[0008]
In addition, it has been proposed to use a separator mixed with glass fiber instead of Manila hemp fiber and impregnate the above functional polymer material as an electrolyte. However, the thickness of glass fiber mixed paper cannot be reduced. In addition, there is a drawback that it is difficult to wind.
[0009]
Japanese Patent Application Laid-Open No. 10-340829 discloses that vinylon fibers are used as separators for electrolytic capacitors, and that this is impregnated with a functional polymer material as an electrolyte, which is added when paper is made from vinylon fibers. If the binder is not removed after being wound around the capacitor element, sufficient electrical properties cannot be obtained due to insufficient retention of the electrolyte, and the product has insufficient heat resistance and must be soldered when used for surface mounting. There was a drawback that the product expanded at the temperature of.
[0010]
Therefore, the present invention solves various problems associated with the use of cellulose fiber, glass fiber, or vinylon fiber in the separator when the above-described functional polymer material is used as an electrolyte, and the functional polymer material has It is intended to make full use of its advantages.
[0011]
[Means for Solving the Problems]
The present invention relates to a wound electrolytic capacitor that uses at least one of polypyrrole, polyaniline, polythiophene, or derivatives thereof as an electrolyte, and 50% or more acrylic fiber as a separator interposed between an anode foil and a cathode foil It is characterized by using the nonwoven fabric-like sheet | seat containing.
[0012]
Synthetic fibers other than acrylic fibers can be mixed with the non-woven sheet, but the synthetic fibers need to withstand the soldering temperature of 240 ° C. Preferred synthetic fibers that meet this requirement include polyester fibers, 6-6 nylon fibers, polyfluoroethylene fibers, and the like.
[0013]
Although the binder a heat-resistant synthetic fibers, including the aforementioned acrylic fiber for coupling to the non-woven fabric is added, most preferably the binder is a PVA (polyvinyl alcohol), to use a fiber-like. The amount of poval fiber added to the separator is desirably 5 to 50%.
[0014]
The polypyrrole derivative has a pyrrole skeleton, and has at least one of a hydroxyl group, an acetyl group, a carboxyl group, an alkyl group and an alkoxy group as a substituent at the 3-position, 3-position and 4-position or N-position. Things can be mentioned.
[0015]
Examples of the polyaniline derivative include those having an aniline skeleton and having at least one of an alkyl group, a phenyl group, an alkoxy group, an ester group, and a thioether group as a substituent.
[0016]
Further, the polythiophene derivative has a thiophene skeleton, and at its 3-position, 3-position and 4-position or S-position, at least one of a hydroxyl group, an acetyl group, a carboxyl group, an alkyl group, and an alkoxy group is used as a substituent. And polythiophene derivatives having poly 3,4-alkylenedioxythiophene.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
It added other heat-resistant synthetic fiber needed to acrylic fibers, and paper by adding textiles of PVA as a binder, to obtain a nonwoven sheet by heating and drying. During this time, textiles of PVA is in the first half of the drying process you adhere to acrylic fibers is softened in hot water, the second half of the drying process loses moisture solidify adhered to acrylic fibers rich in heat-resistant nonwovens Sheet. This sheet is heat resistant to withstand the soldering temperature.
[0018]
The 40 μm-thick sheet produced as described above is cut into a size of 2.7 mm × 75 mm, wound between an anode foil and a cathode foil of 2.2 mm × 75 mm, and wound with a diameter of about 6 mm. I got a thing. Since no oxide film was formed on the cut end face of the anode foil, this wound product was subjected to chemical conversion treatment in an aqueous solution of ammonium adipate at 60 ° C. and 10 wt%. Next, after immersing in a solution of 3,4-ethylenedioxythiophene and iron (III) p-toluenesulfonate dissolved in i-propanol (monomer to oxidizer molar ratio 1: 1.5), the mixture was heated to 100 ° C. Holding for 60 minutes, a solid electrolyte layer of polyethylene dioxythiophene (PEDT) was formed by chemical polymerization. The capacitor element thus obtained was put in a case, the opening was sealed with a sealing member, and a synthetic resin seating plate for surface mounting was attached to the sealing member, and Examples 1 and 2 and Comparative Examples 1 to 3 were used. 100 surface mount type solid electrolytic capacitors each having a rated voltage of 4 V and a rated capacitance of 100 μF shown in Table 1 were manufactured.
[0019]
[Table 1]
Figure 0004707208
[0020]
As shown in Table 1, after measuring the initial capacitance and the equivalent series resistance at 100 kHz for each of the capacitors of Examples and Comparative Examples, a solder heat resistance test was performed. In this test, the operation of heating the sample capacitor at 240 ° C. for 10 seconds was repeated twice. After the test, the equivalent series resistance at 100 kHz was measured again and the appearance was examined. As a result, the sample capacitor of the example has a larger initial capacitance than the sample capacitor of the comparative example, the equivalent series resistance at high frequencies is small, the deterioration of the equivalent series resistance characteristics due to the solder heat resistance test is small, and the appearance also changes. It was confirmed that there was no.
[0021]
Next, capacitors in which the ratio of acrylic fiber to poval fiber in the separator was changed as shown in Table 2 by the method according to Example 1 were produced as Examples 3 and 4 and Comparative Example 4, and the initial characteristics were It was measured.
[0022]
[Table 2]
Figure 0004707208
[0023]
Based on Table 2, the relationship between the acrylic fiber content and the initial value of the equivalent series resistance is shown in FIG. 1, and the relationship between the Poval fiber content and the initial value of the capacitance is shown in FIG. As is clear from these drawings, it has been found that the acrylic fiber content is preferably 50% or more, and the poval fiber content is preferably in the range of 5 to 50%.
[0024]
【The invention's effect】
As described above, the wound electrolytic capacitor according to the present invention is particularly suitable for surface mounting because it has excellent separator strength, winding property and electrolyte retention, low equivalent series resistance at high frequencies, and high heat resistance. In this case, soldering can be performed at the same temperature as other electronic components.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the acrylic fiber content of a separator according to the present invention and the high-frequency equivalent series resistance of a product. FIG. 2 shows the relationship between the poval fiber content of a separator according to the present invention and the capacitance of a product. FIG.

Claims (3)

表面に陽極酸化膜が形成されている陽極箔と陰極箔とを相互間に不織布状のセパレータを挟んで巻回し、このセパレータにポリピロール、ポリアニリン、ポリチオフェンまたはこれらの誘導体の少なくとも1種類からなる機能性高分子化合物を保持させてなり、上記セパレータは50%以上のアクリル繊維とバインダーとしての5〜50%のポバール繊維とを混抄状態で含有していることを特徴とする巻回型電解コンデンサ。An anode foil and a cathode foil having an anodized film formed on the surface are wound with a non-woven separator interposed between them, and the separator is composed of at least one of polypyrrole, polyaniline, polythiophene, or a derivative thereof. A wound electrolytic capacitor characterized by holding a polymer compound, wherein the separator contains 50% or more acrylic fiber and 5 to 50% poval fiber as a binder in a mixed state . 上記アクリル繊維は断面の径が0.1〜30.0μmであることを特徴とする請求項1記載の巻回型電解コンデンサ。  2. The wound electrolytic capacitor according to claim 1, wherein the acrylic fiber has a cross-sectional diameter of 0.1 to 30.0 [mu] m. 上記アクリル繊維は繊維長が0.5〜15.0mmであることを特徴とする請求項1記載の巻回型電解コンデンサ。  The wound electrolytic capacitor according to claim 1, wherein the acrylic fiber has a fiber length of 0.5 to 15.0 mm.
JP2000153173A 2000-05-24 2000-05-24 Winding type electrolytic capacitor Expired - Lifetime JP4707208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153173A JP4707208B2 (en) 2000-05-24 2000-05-24 Winding type electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153173A JP4707208B2 (en) 2000-05-24 2000-05-24 Winding type electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001332451A JP2001332451A (en) 2001-11-30
JP4707208B2 true JP4707208B2 (en) 2011-06-22

Family

ID=18658491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153173A Expired - Lifetime JP4707208B2 (en) 2000-05-24 2000-05-24 Winding type electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4707208B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794914B2 (en) * 2005-06-08 2011-10-19 ニッポン高度紙工業株式会社 Electrolytic capacitor
JP4821818B2 (en) * 2008-08-11 2011-11-24 日本ケミコン株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2012114249A (en) * 2010-11-25 2012-06-14 Mitsubishi Rayon Co Ltd Solid electrolytic capacitor and manufacturing method thereof
CN109613365B (en) * 2018-12-20 2021-01-29 中南大学 Electrolytic capacitor state online evaluation method and system
JP6821071B2 (en) 2019-03-26 2021-01-27 三菱製紙株式会社 Separator for solid electrolytic capacitors
US11721492B2 (en) 2019-03-26 2023-08-08 Mitsubishi Paper Mills Limited Capacitor block having a spacer

Also Published As

Publication number Publication date
JP2001332451A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US6885547B2 (en) Electrolytic capacitor
US6058006A (en) Electrolytic capacitor
US20040105217A1 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
JP2009266926A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP4707208B2 (en) Winding type electrolytic capacitor
JP3878421B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor
JP4654637B2 (en) Manufacturing method of aluminum electrolytic capacitor
JP4726794B2 (en) Solid electrolytic capacitor
JP5215836B2 (en) Separator and solid electrolytic capacitor using the separator
JP3965871B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4870868B2 (en) Electrolytic capacitor
JP2002373832A (en) Manufacturing method for solid electrolytic capacitor
JP2010062312A (en) Solid electrolytic capacitor
JP4764152B2 (en) Method for producing solid electrolytic capacitor using conductive polymer electrolyte composition
JP4870899B2 (en) Solid electrolytic capacitor
JP2000058389A (en) Manufacture of solid electrolytic capacitor
JP3806503B2 (en) Solid electrolytic capacitor
JP4646462B2 (en) Electrolytic capacitor
JP2007129172A (en) Method of manufacturing solid electrolytic capacitor using conductive polymer electrolytic composition
JP4165066B2 (en) Manufacturing method of solid electrolytic capacitor
JP2886195B2 (en) Solid electrolytic capacitors
JP2010062311A (en) Separator for solid electrolytic capacitor
JP2004153217A (en) Solid-state electrolytic capacitor and its manufacturing method
JP2002110465A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP3304436B2 (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080408

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250