JP4706244B2 - FRP hollow structure molding method - Google Patents

FRP hollow structure molding method Download PDF

Info

Publication number
JP4706244B2
JP4706244B2 JP2004350543A JP2004350543A JP4706244B2 JP 4706244 B2 JP4706244 B2 JP 4706244B2 JP 2004350543 A JP2004350543 A JP 2004350543A JP 2004350543 A JP2004350543 A JP 2004350543A JP 4706244 B2 JP4706244 B2 JP 4706244B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
fiber base
core
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004350543A
Other languages
Japanese (ja)
Other versions
JP2006159457A (en
Inventor
俊英 関戸
秀博 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004350543A priority Critical patent/JP4706244B2/en
Publication of JP2006159457A publication Critical patent/JP2006159457A/en
Application granted granted Critical
Publication of JP4706244B2 publication Critical patent/JP4706244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、FRP(繊維強化樹脂)中空構造体の成形方法に関し、とくに、膨縮可能な中空中子を用いたFRP中空構造体の成形方法に関する。   The present invention relates to a method for forming an FRP (fiber reinforced resin) hollow structure, and more particularly to a method for forming an FRP hollow structure using a hollow core that can be expanded and contracted.

従来から、生産性に優れたFRP構造体の成形方法としては、例えばレジン・トランスファー・モールディング成形法(以下、RTM法と記す。)等の注入成形法が知られている(例えば特許文献1や非特許文献1)。かかるRTM法では、マトリックス樹脂が予備含浸されていない(ドライな)強化繊維基材を成形型のキャビティ内に配置して、液状(低粘度)のマトリックス樹脂を注入することにより強化繊維基材中にマトリックス樹脂を含浸させて成形する。このような方法において、中空構造を有するFRP中空構造体を成形する場合には、一般に、中子の外周全てに強化繊維基材を被覆し、成形型のキャビティ内に配置した後、その1辺または1点より樹脂を加圧注入するようにしている。   Conventionally, injection molding methods such as a resin transfer molding method (hereinafter referred to as RTM method) are known as a method for forming an FRP structure excellent in productivity (for example, Patent Document 1 and Non-patent document 1). In such an RTM method, a (dry) reinforcing fiber base not pre-impregnated with a matrix resin is placed in a cavity of a mold, and a liquid (low viscosity) matrix resin is injected into the reinforcing fiber base. Is impregnated with a matrix resin and molded. In such a method, when molding an FRP hollow structure having a hollow structure, generally, a reinforcing fiber base material is coated on the entire outer periphery of the core, placed in the cavity of the molding die, and then one side thereof. Alternatively, the resin is injected under pressure from one point.

ところが、このような従来技術においては、注入された樹脂が均等に流れず、各方向に流動斑が生じることがある。樹脂流れの遅いところではガス溜まりができて、樹脂の充填(含浸)不良、即ちボイドとなる可能性もある。この理由は、以下のように考えられる。(1)中子の全周に強化繊維基材を配置すると、三次元形状を有する中子の端部などで基材のオーバーラップや皺などが生じ、他の部分に比べて基材の充填密度が異なったり、基材の無い微少な隙間が生じたりすることがある。
(2)基材密度が異なると、樹脂流動抵抗の違いが生じ、そのために樹脂流速に差が生じる。当然低密度部分は流速は速く、高密度部分は流速が遅く、場合によっては流れないこともある。
(3)また、(1)項に記載したような微少でも隙間が生じると、その隙間部分の流動抵抗が周囲よりも極端に低くなるため、加圧注入された樹脂は選択的にその部分へと流れていくことになり、樹脂流れや樹脂含浸に大きな斑が生じることがある。
However, in such a conventional technique, the injected resin does not flow evenly, and flow spots may occur in each direction. There is a possibility that a gas pool is formed at a place where the resin flow is slow, resulting in poor filling (impregnation) of the resin, that is, a void. The reason is considered as follows. (1) When a reinforcing fiber base material is arranged around the entire circumference of the core, the base material overlaps or wrinkles occur at the end of the core having a three-dimensional shape, and the base material is filled compared to other parts. The density may be different, or a minute gap without a substrate may occur.
(2) When the base material density is different, a difference in resin flow resistance occurs, and thus a difference occurs in the resin flow rate. Of course, the low-density part has a high flow rate, and the high-density part has a low flow rate and may not flow in some cases.
(3) Further, if a gap is generated even as small as described in (1), the flow resistance of the gap becomes extremely lower than that of the surroundings, so that the resin injected under pressure is selectively transferred to that part. The resin flow and resin impregnation may cause large spots.

このような不具合の発生のおそれは安定したFRP構造体の成形を阻害するとともに、このような不具合が生じると、ボイド発生部分や樹脂含浸不十分な部分の補修などの仕上げ加工に大きな負担を生じることになり、成形収率を低下させるばかりか、成形サイクルが長くなり、生産性を低下させることになる。
特開平7−60765号公報 「わかりやすい実践FRP成形」(1998年2月20日発行、株式会社工業調査会
The possibility of occurrence of such a defect hinders the formation of a stable FRP structure, and when such a problem occurs, a large burden is imposed on finishing processing such as repair of a void-generated part or a part where resin impregnation is insufficient. As a result, not only the molding yield is reduced, but the molding cycle is lengthened, and the productivity is lowered.
Japanese Patent Laid-Open No. 7-60765 "Easy-to-understand practical FRP molding" (issued February 20, 1998, Industrial Research Co., Ltd.)

そこで本発明の課題は、膨縮可能な中空中子を用いてFRP中空構造体を安定して成形でき、ボイドレス成形による成形収率の向上、補修などの仕上げ加工の不要化あるいはその負担軽減が可能な、FRP中空構造体の成形方法を提供することにある。   Therefore, the object of the present invention is to stably form an FRP hollow structure using a hollow core that can be expanded and contracted, to improve the molding yield by voidless molding, and to eliminate the need for finishing processing such as repair or reduce the burden. An object of the present invention is to provide a method for forming an FRP hollow structure.

上記課題を解決するために、本発明に係るFRP中空構造体の成形方法は、外周に強化繊維基材を配置した中空中子を、複数の型からなる成形型のキャビティ内に配設し、型締めした後、中子内を加圧しながら成形型内に樹脂を注入して成形するFRP中空構造体の成形方法において、前記中空中子として、端部に流体による加圧を行うための流体注入口を有するものを用い、前記キャビティ内に、前記中空中子の端部に対し強化繊維基材非配置部分を設け、該中空中子の強化繊維基材非配置部分を、中子内の加圧により成形型のキャビティ面に圧接することを特徴とする方法からなる。 In order to solve the above-mentioned problem, a method for molding an FRP hollow structure according to the present invention includes a hollow core having a reinforcing fiber base disposed on the outer periphery thereof in a cavity of a molding die composed of a plurality of dies. In the molding method of the FRP hollow structure in which a resin is injected into a molding die while pressurizing the inside of the core after the mold is clamped, a fluid for pressurizing the end with a fluid as the hollow core In the cavity, a reinforcing fiber substrate non-arranged portion is provided in the cavity with respect to the end of the hollow core, and the reinforcing fiber substrate non-arranged portion of the hollow core is disposed in the core. It consists of a method characterized by pressing against the cavity surface of the mold by pressurization .

また、上記中空中子がブロー成形品からなり、端部に流体注入口を有している構成であると、本発明に係る成形方法をより容易に実施できる。   In addition, the molding method according to the present invention can be more easily carried out when the hollow core is made of a blow molded product and has a fluid injection port at the end.

また、上記強化繊維基材として、その最外層だけ独立した構成を有しているものを使用することができ、それによって成形されたFRP中空構造体の表面の意匠性の向上をはかることができる。強化繊維基材としては、とくに限定しないが、炭素繊維織物からなる強化繊維基材を用いると、高強度のFRP中空構造体を得ることができる。上記最外層の強化繊維基材と内層の強化繊維基材との間に該強化繊維基材より低目付のガラス繊維マットを配置する構成を採用することもできる。ガラス繊維マットにより内層側の凹凸を緩和すると共に、強化繊維基材より低目付のガラス繊維マットを用いることによって、最外層に残ったガスが該マット側に抜け易くなり、最外層の強化繊維基材と樹脂とのFRP表面層によって形成される表面が、平滑性の向上とピンホール発生の抑制によって意匠性の向上をはかることができる。   Moreover, what has the independent structure only as the outermost layer can be used as said reinforced fiber base material, and the designability of the surface of the FRP hollow structure shape | molded by it can be aimed at. . Although it does not specifically limit as a reinforced fiber base material, A high intensity | strength FRP hollow structure can be obtained when the reinforced fiber base material which consists of carbon fiber fabrics is used. It is also possible to employ a configuration in which a glass fiber mat having a lower basis weight than the reinforcing fiber substrate is disposed between the outermost reinforcing fiber substrate and the inner reinforcing fiber substrate. By using the glass fiber mat to reduce irregularities on the inner layer side and using a glass fiber mat having a lower basis weight than the reinforcing fiber base material, the gas remaining in the outermost layer can easily escape to the mat side, and the reinforcing fiber base of the outermost layer The surface formed by the FRP surface layer of the material and the resin can improve the design by improving the smoothness and suppressing the generation of pinholes.

このような本発明に係るFRP中空構造体の成形方法は、次のような技術思想に基づいて完成されたものである。すなわち、樹脂を一様に流し、流れが遅いところを作らないこと、つまり、流れが他の部分より先回りして流れる部分を作らないようにする。その為には、樹脂が流れ易い成形型のキャビティ面と強化繊維基材や中子との間に隙間を作らない為に基材をオーバーラップさせたりせず、三次元形状中子の端部などに発生し易い基材の皺を作らないようにする。   Such a method for forming an FRP hollow structure according to the present invention has been completed based on the following technical idea. That is, the resin is allowed to flow uniformly, so that a portion where the flow is slow is not formed, that is, a portion where the flow flows ahead of other portions is not formed. For this purpose, the end of the three-dimensional core is not overlapped because there is no gap between the cavity surface of the mold where the resin can easily flow and the reinforcing fiber base or core. Avoid making substrate wrinkles that tend to occur.

このような技術思想を実現するために、本発明では、上記の如く、中空中子の外周に強化繊維基材を配置するものの、キャビティ内に位置される中空中子の全体を覆うのではなく、一部分でも基材を配置しない強化繊維基材非配置部分、即ち中子を露出させる部分を設ける(とくに本発明では、後述の実施の形態にも示すように、中空中子の端部に対し強化繊維基材非配置部分を設ける)。そして、一部に強化繊維基材が配置されていない部分を有するプリフォームを成形型のキャビティ内に配置し、型を閉じた後に中子に流体(圧空等)を注入して中子を加圧し、基材を配置していない中子の部分を膨張させて該部分をキャビティ面に張り付かせる(好ましくは、圧接させる)。それによって、中子の強化繊維基材非配置部分へは樹脂は流れず、基材の存在する部分だけに樹脂が流動することになる。従って、強化繊維基材の配置部分(オーバーラップ等がない)では流動抵抗が均一になり、強化繊維基材非配置部分では中子が成形型キャビティ面に張り付いて樹脂は流れないことから、基材配置部分を流れる樹脂は均一でかつ一様流れが可能になる。その結果、ボイドレス成形が可能になり、また、均一な樹脂含浸が可能になる。 In order to realize such a technical idea, in the present invention, as described above, the reinforcing fiber base is disposed on the outer periphery of the hollow core, but does not cover the entire hollow core positioned in the cavity. In addition, a reinforcing fiber substrate non-arranged part where a substrate is not arranged even in part, that is, a part that exposes the core is provided (especially in the present invention, as shown in the embodiments described later, with respect to the end of the hollow core A reinforcing fiber base non-arranged part is provided). Then, a preform having a portion where the reinforcing fiber base material is not disposed in part is placed in the cavity of the mold, and after closing the mold, fluid (pressure air etc.) is injected into the core to add the core. The core portion where the base material is not disposed is expanded and the portion is adhered to the cavity surface (preferably, pressed). As a result, the resin does not flow to the core reinforcing fiber base non-arranged portion, and the resin flows only to the portion where the base exists. Therefore, the flow resistance becomes uniform in the arrangement part of the reinforcing fiber base (there is no overlap or the like), and the core sticks to the mold cavity surface in the non-arrangement part of the reinforcing fiber base, and the resin does not flow. The resin flowing through the substrate arrangement portion is uniform and can flow uniformly. As a result, voidless molding becomes possible and uniform resin impregnation becomes possible.

本発明に係るFRP中空構造体の成形方法によれば、中空中子を用いたFRP中空構造体の良好な成形を安定して迅速に行うことができるようになり、ボイドレス成形により成形収率を向上でき、補修などの仕上げ加工の不要化あるいはその負担軽減が可能になり、総合的に生産性を大幅に向上することができる。   According to the FRP hollow structure molding method according to the present invention, it becomes possible to stably and quickly perform good molding of an FRP hollow structure using a hollow core, and the molding yield can be improved by voidless molding. This makes it possible to eliminate the need for finishing work such as repairs or to reduce the burden thereof, and to greatly improve productivity overall.

以下に、本発明の望ましい実施の形態を、図面を参照しながら具体的に説明する。
本発明において、FRPとは、強化繊維により強化されている樹脂を指し、強化繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維等の無機繊維、あるいはアラミド繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる強化繊維が挙げられる。中でも炭素繊維を使用すると、高強度・高弾性の中空FRP構造体を成形できる。FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂、ポリプロピレン樹脂等の熱可塑性樹脂も使用可能である。
Preferred embodiments of the present invention will be specifically described below with reference to the drawings.
In the present invention, FRP refers to a resin reinforced with reinforcing fibers. Examples of reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and metal fibers, or aramid fibers, polyethylene fibers, and polyamide fibers. Reinforcing fibers made of organic fibers can be mentioned. Among these, when carbon fiber is used, a hollow FRP structure having high strength and high elasticity can be formed. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenol resins. Furthermore, polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethane resins, Thermoplastic resins such as polypropylene resin can also be used.

本発明に係る成形方法で使用する樹脂としては、とくにRTM成形法で使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化製樹脂または熱可塑性樹脂を形成するRIM(Reaction Injection Molding)用モノマーが好適であり、その中でもFRP成形体の熱収縮を低減させ、クラックの発生を抑えるという点から、ビニルエステル樹脂、エポキシ樹脂または熱可塑性樹脂やゴム成分などを配合した変性エポキシ樹脂、ナイロン樹脂、ジシクロペンタジエン樹脂がより適している。   As the resin used in the molding method according to the present invention, particularly as the resin used in the RTM molding method, RIM (Reaction Injection) which forms a thermosetting resin or a thermoplastic resin that has a low viscosity and can be easily impregnated into a reinforcing fiber. (Molding) monomer is suitable, and among them, modified epoxy resin containing vinyl ester resin, epoxy resin, thermoplastic resin, rubber component, etc. from the viewpoint of reducing thermal shrinkage of FRP molded product and suppressing the occurrence of cracks Nylon resin and dicyclopentadiene resin are more suitable.

本発明で使用する強化繊維基材は、例えば樹脂の含浸されていない強化繊維からなる基材を指し、その強化繊維の織物やチョップドファイバー、マット、ニット材料、さらにこれらとインサート部品との組み合わせ等が挙げられ、その用途により使い分けられる。前記インサート部品とは、例えばスチールやアルミニウムなどの金属板や、金属柱、金属ボルト、ナット、ヒンジなどの接合用の金属、アルミハニカムコア、あるいはポリウレタン、ポリスチレン、ポリイミド、塩化ビニル、フェノール、アクリルなどの高分子材料からなるフォーム材やゴム質材、木質材等が挙げられ、主として、釘が効くことや、ネジが立てられる等の接合を目的としたインサート部品、中空構造で軽量化を目的としたインサート部品、振動の減衰を目的としたインサート部品などが多く用いられる。   The reinforcing fiber substrate used in the present invention refers to a substrate made of reinforcing fibers not impregnated with resin, for example, the reinforcing fiber fabric, chopped fibers, mats, knit materials, and combinations of these with insert parts, etc. Can be used properly depending on the application. Examples of the insert parts include metal plates such as steel and aluminum, metals for joining such as metal columns, metal bolts, nuts, and hinges, aluminum honeycomb cores, polyurethane, polystyrene, polyimide, vinyl chloride, phenol, acrylic, and the like. Foam materials, rubber materials, wood materials, etc. composed of the above polymer materials are mainly used, and insert parts intended for joining such as nails and screws can be raised, with a hollow structure for the purpose of weight reduction Insert parts that are used for the purpose of damping vibration are often used.

本発明のFRP中空構造体の成形に用いる膨縮可能な中空中子としては、特に規定されないが、ブロー成形や回転成形で成形された中空中子やフィルムを融着して袋状にした中空中子,ディッピングにより風船状の形状を有した中空中子等が挙げられ、その材質としては、ポリプロピレンやポリエチレン,ナイロン,各種ゴム類等が挙げられる。   The hollow core that can be expanded / contracted used for molding the FRP hollow structure of the present invention is not particularly defined, but a hollow core or film molded by blow molding or rotational molding is fused to form a bag. An air core, a hollow core having a balloon-like shape by dipping, and the like can be used, and examples of the material include polypropylene, polyethylene, nylon, and various rubbers.

なお、中空中子にかける圧力範囲としては、中子の形状,材質にもよるが、圧力の下限として0.3MPa以上が、中子の一部をキャビティ面に圧接させる観点から好ましく、上限として、1MPa以下が、成形体への変形ダメージを防止する観点から好ましい。より好ましくは、下限としては0.5MPa以上、また上限としては1.5MPa以下である。   The pressure range applied to the hollow core is preferably 0.3 MPa or more as the lower limit of the pressure from the viewpoint of pressing a part of the core against the cavity surface, although it depends on the shape and material of the core. 1 MPa or less is preferable from the viewpoint of preventing deformation damage to the molded body. More preferably, the lower limit is 0.5 MPa or more, and the upper limit is 1.5 MPa or less.

本発明で使用する成形型は、例えば上型と下型とからなる成形金型からなり、例えば上型が金型昇降装置に取り付けられる。下型には強化繊維基材と中子を設置する。この強化繊維基材は、事前に成形型に納まりやすいように強化繊維基材を製品形状に賦形することを目的とした賦形型により作成する。成形型の材質としてはFRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳などが挙げられる。量産には、剛性、耐熱性、作業性の面から構造用炭素鋼が好適である。   The molding die used in the present invention is composed of, for example, a molding die composed of an upper die and a lower die. For example, the upper die is attached to a die lifting device. Reinforcing fiber base and core are installed in the lower mold. This reinforcing fiber base is prepared by a shaping mold for the purpose of shaping the reinforcing fiber base into a product shape so that it can be easily accommodated in the mold in advance. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance, and workability.

本発明に係るFRP中空構造体の成形方法の具体的な実施の形態を、以下に図面を参照しながら説明する。以下の実施態様は、FRP中空構造体として例えば、自動車のリアスポイラーの水平ウィングや風車翼などを成形する方法について説明する。   Specific embodiments of the method for forming an FRP hollow structure according to the present invention will be described below with reference to the drawings. In the following embodiments, a method for forming, for example, a horizontal wing of an automobile rear spoiler or a wind turbine blade as an FRP hollow structure will be described.

図1は、樹脂製又はゴム製の中空中子1を示している。樹脂製の中空中子1とする場合、例えば、熱可塑性樹脂からなり、ポリプロピレン、ポリエチレン、ナイロン、ABS等の樹脂を使用できる。このような中空中子1の製造方法として最も好適な方法はブロー成形方法である。但し、長さが2m以上の比較的大きい場合には回転成形が良い。ブロー成形体の中子としての厚みは0.5 〜3mmが好適である。また、場合によっては数百ミクロンの樹脂フィルムで袋状のものを形成することもできる。ゴム製の中空中子1とする場合には、クロロプレン、ポリイソプレン、ブタジエン、シリコーン等のゴムを使用できる。このような中空中子1の片側には、流体(例えば、圧空)による加圧を行うための流体注入口2を設ける。   FIG. 1 shows a hollow core 1 made of resin or rubber. When the resin hollow core 1 is used, it is made of, for example, a thermoplastic resin, and resins such as polypropylene, polyethylene, nylon, and ABS can be used. The most suitable method for producing such a hollow core 1 is a blow molding method. However, when the length is relatively large, such as 2 m or more, rotational molding is good. The thickness of the core of the blow molded product is preferably 0.5 to 3 mm. Moreover, depending on the case, a bag-like thing can also be formed with a resin film of several hundred microns. When the rubber hollow core 1 is used, rubbers such as chloroprene, polyisoprene, butadiene, and silicone can be used. On one side of such a hollow core 1, a fluid inlet 2 for performing pressurization with a fluid (for example, compressed air) is provided.

図2に示すように、中空中子1の外周に強化繊維基材3を配置する。図2に示す例では強化繊維基材3を巻き付けている。強化繊維基材3を配置する際、中空中子1に対して強化繊維基材非配置部分11を設ける。本例では、中空中子1の端部を残して強化繊維基材3を配置している。   As shown in FIG. 2, the reinforcing fiber base 3 is disposed on the outer periphery of the hollow core 1. In the example shown in FIG. 2, the reinforcing fiber base 3 is wound. When the reinforcing fiber base 3 is disposed, the reinforcing fiber base non-arranged portion 11 is provided for the hollow core 1. In this example, the reinforcing fiber base 3 is disposed leaving the end of the hollow core 1.

次に図3に示すように、上型4と下型5からなるRTM成形型(例えば、金属製金型)の下型5のキャビティ12部に、強化繊維基材3を配置した中空中子1をセットし、上型4を閉じる。但し、下型5には樹脂注入ランナー6に通じる樹脂注入口8と余剰樹脂と共に型内に残存するガスを排出する樹脂排出ランナー7に通じる樹脂排出口9が設けてある。それらを囲み、樹脂や空気をシールするO−リング(図示略)が配置されている。中空中子1の流体注入口2は金型より飛び出しており、圧空等を供給する流体配管又はチューブ(図示略)と連結される。金型は樹脂を加熱硬化するために電熱器又は温水を用いて加熱される。   Next, as shown in FIG. 3, a hollow core in which a reinforcing fiber base 3 is arranged in a cavity 12 part of a lower mold 5 of an RTM mold (for example, a metal mold) composed of an upper mold 4 and a lower mold 5. 1 is set and the upper mold 4 is closed. However, the lower mold 5 is provided with a resin injection port 8 that leads to a resin injection runner 6 and a resin discharge port 9 that leads to a resin discharge runner 7 that discharges gas remaining in the mold together with excess resin. An O-ring (not shown) that surrounds them and seals resin and air is disposed. The fluid inlet 2 of the hollow core 1 protrudes from the mold and is connected to a fluid pipe or tube (not shown) for supplying pressurized air or the like. The mold is heated using an electric heater or hot water to heat and cure the resin.

図4に示すように、上型4が閉じられた状態(型閉めした状態)で中空中子1の流体注入口2より加圧された流体を注入し(C)、中子1を膨張させて、強化繊維基材3および中空中子1の強化繊維基材非配置部分11を金型のキャビティ面に押し当てる。   As shown in FIG. 4, a pressurized fluid is injected from the fluid inlet 2 of the hollow core 1 in a state where the upper mold 4 is closed (closed state) (C), and the core 1 is expanded. Then, the reinforcing fiber base 3 and the reinforcing fiber base non-arranged portion 11 of the hollow core 1 are pressed against the cavity surface of the mold.

その状態の変化を、金型を縦中央で切断した断面図である図5に示す。即ち、金型キャビティ12部に配置されただけの状態では、図5(1)の状態図に示すように、中空中子1の強化繊維基材非配置部分11とキャビティ12面との間には、実質的に強化繊維基材3の厚み相当分の隙間10が生じる。その状態で中空中子1に流体注入口2より圧空等の加圧流体を注入した結果が図5(2)の状態図である。即ち、中空中子1の強化繊維基材非配置部分11がキャビティ12面に圧接され、樹脂の流動を完全に抑制可能な状態になる。この状態で樹脂注入口8より熱硬化性樹脂等のFRPマトリックス樹脂を加圧注入する(図4のA)。樹脂は、図3に示した樹脂注入ランナー6に充填された後、該ランナー6から幅方向に一様に樹脂排出ランナー7に向かって流動する。そして、その間に強化繊維基材3に樹脂が含浸されていく。樹脂は金型内の残存ガスと共に、樹脂排出ランナー7に一旦は充填されるが、やがて樹脂排出口9を通して金型外に排出される(図4のB)。また、金型は充填樹脂が所定の硬化時間で硬化するように、所定の温度で加熱されており、樹脂硬化により、所定のFRP中空構造体が成形される。   The change in the state is shown in FIG. 5 which is a cross-sectional view of the mold cut at the longitudinal center. That is, in the state where it is only disposed in the mold cavity 12 part, as shown in the state diagram of FIG. 5 (1), the reinforcing fiber substrate non-arranged portion 11 of the hollow core 1 and the surface of the cavity 12 are interposed. The gap 10 corresponding to the thickness of the reinforcing fiber base 3 substantially occurs. The result of injecting a pressurized fluid such as compressed air into the hollow core 1 from the fluid injection port 2 in this state is the state diagram of FIG. That is, the reinforcing fiber base non-arranged portion 11 of the hollow core 1 is pressed against the surface of the cavity 12, and the resin flow can be completely suppressed. In this state, FRP matrix resin such as thermosetting resin is injected under pressure from the resin injection port 8 (A in FIG. 4). After the resin is filled in the resin injection runner 6 shown in FIG. 3, the resin flows uniformly from the runner 6 toward the resin discharge runner 7 in the width direction. In the meantime, the reinforcing fiber base 3 is impregnated with resin. The resin is once filled in the resin discharge runner 7 together with the residual gas in the mold, but is eventually discharged out of the mold through the resin discharge port 9 (B in FIG. 4). The mold is heated at a predetermined temperature so that the filling resin is cured in a predetermined curing time, and a predetermined FRP hollow structure is formed by resin curing.

そして、樹脂が硬化した後、図6に示すように、上型4を開放し、上型4の開放前に中空中子1の流体注入口2から流体を排出して減圧する(D)。中空中子1(例えば樹脂製)は金型で加熱されているので軟化状態にあり、減圧によって容易に収縮する(凹んだ状態になる)。   Then, after the resin is cured, as shown in FIG. 6, the upper die 4 is opened, and the fluid is discharged from the fluid inlet 2 of the hollow core 1 and decompressed before the upper die 4 is opened (D). Since the hollow core 1 (for example, resin) is heated by the mold, it is in a softened state and easily contracts (becomes indented) due to reduced pressure.

図7に示すように、成形品としてのFRP中空構造体20を金型から脱型した後、減圧により収縮した(凹んだ状態になった)中空中子1を成形品20内から抜き取る。抜き取られた成形品20は図8に示すように所定形状のFRP中空構造体となる。抜き取られた中空中子1は、場合によっては再利用も可能である。特に、ゴム製の場合は再利用できる可能性が高い。   As shown in FIG. 7, after the FRP hollow structure 20 as a molded product is removed from the mold, the hollow core 1 contracted (reduced) by decompression is extracted from the molded product 20. The molded product 20 that has been extracted becomes an FRP hollow structure having a predetermined shape as shown in FIG. The extracted hollow core 1 can be reused in some cases. In particular, in the case of rubber, there is a high possibility that it can be reused.

長さ1m、翼弦長250mm、翼高(最高部)30mm、平均厚み1.5mmの水平ウィングを成形した例について説明する。金型は上型4、下型5共に厚さ200mm、長さ1400mm、幅400mmのものを用いた。この金型には、温調のために、幅方向へ100mmピッチで温水流路(直径10mm)が形成されている。中空中子1にはポリプロピレン製で長さ1100mm、翼弦長247mm、翼高(最高部)27mm、平均厚さ2.0mmのものを用いた。   An example in which a horizontal wing having a length of 1 m, a chord length of 250 mm, a blade height (maximum part) of 30 mm, and an average thickness of 1.5 mm will be described. As the mold, both the upper mold 4 and the lower mold 5 were 200 mm thick, 1400 mm long and 400 mm wide. In this mold, warm water flow paths (diameter 10 mm) are formed at a pitch of 100 mm in the width direction for temperature control. The hollow core 1 was made of polypropylene and had a length of 1100 mm, a chord length of 247 mm, a blade height (maximum part) of 27 mm, and an average thickness of 2.0 mm.

上記中空中子1に、強化繊維基材、即ち東レ(株)製”トレカ”T300平織物(目付;200 g/m2 )を6ply 、平均張力8kg/ mで巻き付けた。下型5に強化繊維基材を巻き付けた中空中子1をセットし、上型4を閉じた。金型は、温水によって上下型共に約95℃に加熱されている。この状態で中空中子1の流体注入口2より約0.6Mpaの圧縮空気を注入した。その後、樹脂注入口8よりエポキシ樹脂〔主剤;”エピコート”828(油化シェルエポキシ社製エポキシ樹脂)、硬化剤;東レ(株)製ブレンドTR−C35H(イミダゾール誘導体)〕を樹脂圧0.5MPaで注入した。約3分後に樹脂排出ランナー7を介して、樹脂排出口9からガスを含んだエポキシ樹脂が排出されてきた。その後約1分間樹脂を排出し続け、排出樹脂の中のガスが無くなったことを確認した後、樹脂排出口9のバルブを閉鎖した。その後30秒間樹脂注入口8側からの樹脂を加圧しながら保持した後、樹脂注入口8側のバルブも閉鎖した(但し、各バルブは図示略)。全バルブ閉鎖後、約15分間金型での樹脂の硬化時間を持った。 The hollow core 1 was wound with a reinforcing fiber base, that is, “Torayca” T300 plain woven fabric (weight per unit: 200 g / m 2 ) manufactured by Toray Industries, Inc. at 6 ply and an average tension of 8 kg / m. A hollow core 1 in which a reinforcing fiber base material was wound around the lower mold 5 was set, and the upper mold 4 was closed. The upper and lower molds are heated to about 95 ° C. by warm water. In this state, compressed air of about 0.6 MPa was injected from the fluid inlet 2 of the hollow core 1. Thereafter, an epoxy resin [main agent; “Epicoat” 828 (epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.), a curing agent; blend TR-C35H (imidazole derivative) manufactured by Toray Industries, Inc.] is applied at a resin pressure of 0.5 MPa from the resin injection port 8. Injected. About 3 minutes later, the epoxy resin containing gas was discharged from the resin discharge port 9 through the resin discharge runner 7. Thereafter, the resin was continuously discharged for about 1 minute, and after confirming that the gas in the discharged resin was exhausted, the valve of the resin discharge port 9 was closed. Thereafter, the resin from the resin inlet 8 side was held while being pressurized for 30 seconds, and then the valves on the resin inlet 8 side were also closed (however, the valves are not shown). After all the valves were closed, the resin had a curing time in the mold for about 15 minutes.

その後、中空中子1の加圧を止め、流体注入口2に真空吸引ホースを接続し、約10秒間吸引して中空中子1内を減圧した。上型4を開放し、中空中子1と成形品20を金型から脱型した。その後、成形品20から中空中子1を引き抜いた。中空中子1は減圧により凹んだ状態にあり、その為比較的簡単に引き抜くことができた。中空中子1が引き抜かれたCFRP(炭素繊維強化樹脂)成形品として、その全周のどこにもボイドや歪みのない翼形状をした水平ウィングの良品が得られた。   Thereafter, the pressurization of the hollow core 1 was stopped, a vacuum suction hose was connected to the fluid injection port 2, and the interior of the hollow core 1 was decompressed by suction for about 10 seconds. The upper mold 4 was opened, and the hollow core 1 and the molded product 20 were removed from the mold. Thereafter, the hollow core 1 was pulled out from the molded product 20. The hollow core 1 was in a depressed state due to the reduced pressure, so that it could be pulled out relatively easily. As a CFRP (carbon fiber reinforced resin) molded product from which the hollow core 1 was pulled out, a good product of horizontal wing having a wing shape with no voids or distortion anywhere on the entire circumference was obtained.

上記実施例1と同様の強化繊維基材、樹脂を用い、成形条件(温度や諸圧力)も全く同一とするが、中空中子1に強化繊維基材を5ply 巻き付けた後に、その上にガラス繊維マット(目付:70g/m2)を1ply 巻き付け、更にその上に強化繊維基材を1ply 巻き付けた。但し、5ply までは、平均張力は同様の8kg/mとし、マットは殆ど無張力で皺がないように配置し、最表層の強化繊維基材1ply は約2kg/mの張力で、平織物の織り模様が乱れないように巻き付けた。 The same reinforcing fiber base material and resin as in Example 1 above were used, and the molding conditions (temperature and various pressures) were exactly the same, but after winding the reinforcing fiber base material 5ply around the hollow core 1, glass was placed on it. A fiber mat (weight per unit area: 70 g / m 2 ) was wound 1 ply, and a reinforcing fiber substrate was further wound 1 ply thereon. However, up to 5 ply, the average tension is the same 8 kg / m, the mat is almost tensionless and has no wrinkles, and the outermost reinforcing fiber substrate 1ply has a tension of about 2 kg / m. Wound so that the weaving pattern is not disturbed.

上記プリフォームを金型に配置して、実施例1と同様のRTM成形を行った結果、実施例1の成形品よりも外表面(意匠面)は、より平滑でピンホールが殆ど無い高品位のCFRP製水平ウィングが得られた。   As a result of arranging the preform in a mold and performing RTM molding similar to that of Example 1, the outer surface (design surface) is smoother than the molded product of Example 1, and has high quality with almost no pinholes. A horizontal wing made of CFRP was obtained.

本発明に係る成形方法は、中空構造を有するあらゆるFRP構造体の成形に適用でき、中でも、自動車部材などの大量生産されるFRP中空構造体や、風車翼などの比較的大型のFRP中空構造体の成形に好適である。   The molding method according to the present invention can be applied to molding of any FRP structure having a hollow structure. Among them, FRP hollow structures that are mass-produced such as automobile members, and relatively large FRP hollow structures such as wind turbine blades. It is suitable for molding.

本発明の一実施態様に係るFRP中空構造体の成形方法を実施する様子を示す中空中子の斜視図である。It is a perspective view of the hollow core which shows a mode that the shaping | molding method of the FRP hollow structure which concerns on one embodiment of this invention is implemented. 図1の中空中子の外周に強化繊維基材を配置する様子を示す中空中子と強化繊維基材の斜視図である。It is a perspective view of a hollow core and a reinforced fiber base material which shows a mode that a reinforced fiber base material is arrange | positioned on the outer periphery of the hollow core of FIG. 図2の強化繊維基材が配置された中空中子を成形型にセットする様子を示す成形型の分解斜視図である。It is a disassembled perspective view of a shaping | molding die which shows a mode that the hollow core in which the reinforced fiber base material of FIG. 2 is arrange | positioned is set to a shaping | molding die. 図3の成形型を閉じた様子を示す成形型の斜視図である。It is a perspective view of the shaping | molding die which shows a mode that the shaping | molding die of FIG. 3 was closed. 図4に示した状態で中空中子内の加圧前(1)と加圧後(2)の状態を示す成形型の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the shaping | molding die which shows the state before pressurization (1) in a hollow core in the state shown in FIG. 4, and the state after pressurization (2). 樹脂硬化後の成形型の型開きの様子を示す成形型の分解斜視図である。It is a disassembled perspective view of the shaping | molding die which shows the mode of the mold opening of the shaping | molding die after resin hardening. 脱型されたFRP中空構造体から中空中子を抜き出す様子を示す中空中子とFRP中空構造体の斜視図である。It is a perspective view of the hollow core and FRP hollow structure which show a mode that a hollow core is extracted from the demolded FRP hollow structure. 成形されたFRP中空構造体の斜視図である。It is a perspective view of the shape | molded FRP hollow structure.

符号の説明Explanation of symbols

1 中空中子
2 流体注入口
3 強化繊維基材
4 上型
5 下型
6 樹脂注入ランナー
7 樹脂排出ランナー
8 樹脂注入口
9 樹脂排出口
10 隙間
11 強化繊維基材非配置部分
12 キャビティ
20 成形品(FRP中空構造体)
DESCRIPTION OF SYMBOLS 1 Hollow core 2 Fluid injection port 3 Reinforcement fiber base material 4 Upper mold | type 5 Lower mold | type 6 Resin injection runner 7 Resin discharge runner 8 Resin injection port 9 Resin discharge port 10 Crevice 11 Reinforcement fiber base material non-arrangement part 12 Cavity 20 Molded article (FRP hollow structure)

Claims (5)

外周に強化繊維基材を配置した中空中子を、複数の型からなる成形型のキャビティ内に配設し、型締めした後、中子内を加圧しながら成形型内に樹脂を注入して成形するFRP中空構造体の成形方法において、前記中空中子として、端部に流体による加圧を行うための流体注入口を有するものを用い、前記キャビティ内に、前記中空中子の端部に対し強化繊維基材非配置部分を設け、該中空中子の強化繊維基材非配置部分を、中子内の加圧により成形型のキャビティ面に圧接することを特徴とするFRP中空構造体の成形方法。 A hollow core having a reinforcing fiber base disposed on the outer periphery is disposed in a cavity of a mold composed of a plurality of molds, and after clamping, a resin is injected into the mold while pressurizing the core. In the molding method of the FRP hollow structure to be molded, the hollow core having a fluid inlet for pressurization with a fluid at the end is used, and the end of the hollow core is formed in the cavity. A reinforcing fiber base non-arranged part is provided , and the reinforcing fiber base non-arranged part of the hollow core is pressed against the cavity surface of the molding die by pressurization in the core. Molding method. 前記中空中子がブロー成形品からなる、請求項のFRP中空構造体の成形方法。 Wherein in Kuchuko is ing from blow-molded article, the molding method of the FRP hollow structure according to claim 1. 前記強化繊維基材が、その最外層だけ独立した構成を有している、請求項1または2のFRP中空構造体の成形方法。 The method for forming an FRP hollow structure according to claim 1 or 2 , wherein the reinforcing fiber base has an independent structure only in the outermost layer. 前記強化繊維基材が炭素繊維織物からなる、請求項1〜のいずれかに記載のFRP中空構造体の成形方法。 The method for forming an FRP hollow structure according to any one of claims 1 to 3 , wherein the reinforcing fiber base is made of a carbon fiber fabric. 前記最外層の強化繊維基材と内層の強化繊維基材との間に該強化繊維基材より低目付のガラス繊維マットを配置する、請求項のFRP中空構造体の成形方法。 4. The method for forming an FRP hollow structure according to claim 3 , wherein a glass fiber mat having a lower basis weight than the reinforcing fiber base is disposed between the outermost reinforcing fiber base and the inner reinforcing fiber base.
JP2004350543A 2004-12-03 2004-12-03 FRP hollow structure molding method Active JP4706244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350543A JP4706244B2 (en) 2004-12-03 2004-12-03 FRP hollow structure molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350543A JP4706244B2 (en) 2004-12-03 2004-12-03 FRP hollow structure molding method

Publications (2)

Publication Number Publication Date
JP2006159457A JP2006159457A (en) 2006-06-22
JP4706244B2 true JP4706244B2 (en) 2011-06-22

Family

ID=36661996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350543A Active JP4706244B2 (en) 2004-12-03 2004-12-03 FRP hollow structure molding method

Country Status (1)

Country Link
JP (1) JP4706244B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0607568A2 (en) 2005-05-03 2010-04-06 Stork Sp Aerospace B V method for making a fiber-reinforced hollow structural member, and fiber-reinforced hollow structural member
US8753469B2 (en) 2007-03-20 2014-06-17 Toray Industries, Inc. Method of vacuum-assisted RTM
JP4429341B2 (en) 2007-08-01 2010-03-10 トヨタ自動車株式会社 Fiber reinforced plastic hollow parts with flange
JP4384221B2 (en) * 2007-12-17 2009-12-16 トヨタ自動車株式会社 Method for molding fiber reinforced resin hollow parts
US9205634B2 (en) * 2013-05-16 2015-12-08 The Boeing Company Composite structure and method
JP6591191B2 (en) * 2015-04-24 2019-10-16 東レエンジニアリング株式会社 Impregnation test equipment
JP6763625B1 (en) 2019-08-26 2020-09-30 株式会社グラファイトデザイン Structure manufacturing method and structure
KR102365711B1 (en) * 2020-11-27 2022-02-21 재단법인 한국탄소산업진흥원 Carbon fiber composite manufacturing mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568231A (en) * 1979-07-03 1981-01-28 Hitachi Chem Co Ltd Preparation of fiber-reinforced compound material
JPH04355105A (en) * 1991-05-31 1992-12-09 Isuzu Motors Ltd Method of molding plastic hollow structural member
JP2002154484A (en) * 2000-11-17 2002-05-28 Toyota Motor Corp Frp structure
JP2003094449A (en) * 2001-09-26 2003-04-03 Toray Ind Inc Manufacturing method for frp structure
JP2003094448A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Manufacturing method for frp hollow structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568231A (en) * 1979-07-03 1981-01-28 Hitachi Chem Co Ltd Preparation of fiber-reinforced compound material
JPH04355105A (en) * 1991-05-31 1992-12-09 Isuzu Motors Ltd Method of molding plastic hollow structural member
JP2002154484A (en) * 2000-11-17 2002-05-28 Toyota Motor Corp Frp structure
JP2003094448A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Manufacturing method for frp hollow structure
JP2003094449A (en) * 2001-09-26 2003-04-03 Toray Ind Inc Manufacturing method for frp structure

Also Published As

Publication number Publication date
JP2006159457A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR101151966B1 (en) Rtm molding method and device
US8834782B2 (en) Composite structures and methods of making same
KR101995529B1 (en) Fibre reinforced composite moulding
US20140374950A1 (en) Process for the rapid fabrication of composite gas cylinders and related shapes
US20020004115A1 (en) Resin transfer molding process
CN103180123A (en) Methods and systems for forming integral composite parts with a smp apparatus
WO2010039547A2 (en) Reinforced internal composite structures
JP4706244B2 (en) FRP hollow structure molding method
JP2005193587A (en) Resin transfer molding method
SE509503C2 (en) Arrangement, procedure and hollow body when forming plastic parts
JP2008073876A (en) Manufacturing method of hollow frp
KR101219397B1 (en) Method for manufacturing composite hollow structure
JP2008272959A (en) Method for manufacturing fiber-reinforced resin
JP4370917B2 (en) Manufacturing method of fiber reinforced resin outer plate member
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP2006095727A (en) Rtm molding machine and rtm molding method
CN205112423U (en) Automobile -used carbon -fibre composite shape for hat roof beam preparation mould
JP3792359B2 (en) Manufacturing apparatus for hollow fiber reinforced resin molded body and manufacturing method thereof
CN111113954B (en) Preparation method of low-density heat-proof composite material revolving body part
JP2007090810A (en) Method for manufacturing hollow frp
JP2006159420A (en) Manufacturing method of frp molded product
JP2011224939A (en) Fiber-reinforced resin molded article and manufacturing method therefor
JPH04246510A (en) Forming method of fiber reinforced resin formed body
RU159248U1 (en) EQUIPMENT FOR THE MANUFACTURE OF THE AERODYNAMIC CONTROL BODY OF THE AIRCRAFT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151