JP4706028B2 - Blood glucose level measuring apparatus and method - Google Patents

Blood glucose level measuring apparatus and method Download PDF

Info

Publication number
JP4706028B2
JP4706028B2 JP2007534393A JP2007534393A JP4706028B2 JP 4706028 B2 JP4706028 B2 JP 4706028B2 JP 2007534393 A JP2007534393 A JP 2007534393A JP 2007534393 A JP2007534393 A JP 2007534393A JP 4706028 B2 JP4706028 B2 JP 4706028B2
Authority
JP
Japan
Prior art keywords
light
blood glucose
peak
polarized light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007534393A
Other languages
Japanese (ja)
Other versions
JPWO2007029652A1 (en
Inventor
文武 伊藤
浩 桜井
伸一 古沢
勝昌 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2007534393A priority Critical patent/JP4706028B2/en
Publication of JPWO2007029652A1 publication Critical patent/JPWO2007029652A1/en
Application granted granted Critical
Publication of JP4706028B2 publication Critical patent/JP4706028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism

Description

本発明は、血糖値測定装置及び方法にかかり、特に、円二色性スペクトルを用いて無侵襲で血糖値を測定することができる血糖値測定装置及び方法に関する。   The present invention relates to a blood glucose level measuring apparatus and method, and more particularly, to a blood glucose level measuring apparatus and method that can measure a blood glucose level non-invasively using a circular dichroism spectrum.

無侵襲血糖値測定装置は、これまで多くの研究機関や企業から様々提案されている。提案されている装置は、主として光学的計測法を用いた装置であり、近赤外分光法(透過法、反射法、及び多重散乱法を含む)、可視光を用いたラマン分光法、旋光度分光法、屈折率を用いた方法(干渉法、散乱強度法)、または蛍光法等が知られている。   Various non-invasive blood sugar level measuring devices have been proposed by many research institutions and companies. The proposed devices are mainly devices that use optical measurement methods, including near-infrared spectroscopy (including transmission, reflection, and multiple scattering methods), Raman spectroscopy using visible light, and optical rotation. A spectroscopic method, a method using a refractive index (interference method, scattering intensity method), a fluorescence method, or the like is known.

近赤外光を用いた装置としては、光源から互いに波長が異なる3つの近赤外光を生体被測定部位に照射し、生体を透過した3つの光の透過強度を同時に検出し、これらの透過強度から生体被測定部位による近赤外光の吸光度二次微分値を算出し、吸光度二次微分値の変動幅から検量線データに基づいて生体中の血糖値を求める装置が知られている(特許文献1)
特開2000−189404号
As an apparatus using near-infrared light, a living body measurement site is irradiated with three near-infrared lights having different wavelengths from a light source, and the transmission intensities of the three lights transmitted through the living body are detected at the same time. An apparatus is known that calculates a second-order absorbance value of near-infrared light from a site to be measured from the intensity, and calculates a blood glucose level in the living body based on calibration curve data from the fluctuation range of the second-order absorbance value ( Patent Document 1)
JP 2000-189404 A

しかしながら、従来の血糖値測定装置では、可視光または近赤外光を用いているため、可視光または近赤外光に対してグルコースと同様の透過性を示す他の物質と、グルコースとを区別するのが困難であることから、充分な測定精度が得られない、という問題があった。   However, since the conventional blood glucose level measurement device uses visible light or near infrared light, it distinguishes glucose from other substances that show the same permeability as glucose for visible light or near infrared light. Since it is difficult to do this, there is a problem that sufficient measurement accuracy cannot be obtained.

本発明は、上記問題点を解消すべく、グルコース濃度の特性波長が紫外領域に存在し、その特性波長の酢ペクトラムは他の物質には見られないグルコース固有のものであり、特性波長のピーク位置及びピーク強度がグルコース濃度と相関を持つ点に着目してなされたもので、精度良く血糖値を測定することができる血糖値測定装置及びを提供することを目的とする。   In order to solve the above problems, the present invention has a characteristic wavelength of glucose concentration in the ultraviolet region, and a vinegar pectin of the characteristic wavelength is unique to glucose not found in other substances, and has a characteristic wavelength peak. An object of the present invention is to provide a blood sugar level measuring apparatus that can measure a blood sugar level with high accuracy, and has been made paying attention to the fact that the position and the peak intensity have a correlation with the glucose concentration.

上記目的を達成するために本発明の血糖値測定装置は、紫外波長域の光を照射する光源と、前記光源から照射された光を相互に逆向きの回転方向を有する2種類の円偏光に変換する円偏光変換手段と、前記円偏光変換手段で変換され、かつ被検体を透過した2種類の透過円偏光の吸収スペクトルを検出する検出手段と、前記検出手段で検出された吸収スペクトルから得られる差分スペクトルの強度であって、血糖値が正常な被検体を透過した透過円偏光の吸収スペクトルから得られる差分スペクトルに対応する強度に基づいて、血糖値を算出する算出手段と、を含んで構成したものである。   In order to achieve the above object, a blood glucose level measuring apparatus according to the present invention comprises a light source for irradiating light in the ultraviolet wavelength region, and two types of circularly polarized light having rotation directions opposite to each other. Obtained from the circularly polarized light converting means for conversion, the detecting means for detecting the absorption spectrum of two kinds of transmitted circularly polarized light that has been converted by the circularly polarized light converting means and transmitted through the subject, and the absorption spectrum detected by the detecting means A calculation means for calculating a blood sugar level based on an intensity corresponding to a difference spectrum obtained from an absorption spectrum of transmitted circularly polarized light transmitted through a subject having a normal blood sugar level. It is composed.

また、本発明の血糖値測定方法は、紫外波長域の光を照射する光源から照射された光を相互に逆向きの回転方向を有する2種類の円偏光に変換して被検体に照射し、前記被検体を透過した2種類の透過円偏光の吸収スペクトルから得られる差分スペクトルの強度であって、血糖値が正常な被検体を透過した透過円偏光の吸収スペクトルから得られる差分スペクトルの複数のピークに対応する強度に基づいて、血糖値を算出することを特徴とする。   Moreover, the blood glucose level measuring method of the present invention irradiates a subject by converting light irradiated from a light source that irradiates light in an ultraviolet wavelength region into two types of circularly polarized light having mutually opposite rotation directions, The intensity of the difference spectrum obtained from the absorption spectra of the two types of transmitted circularly polarized light that has passed through the subject, and a plurality of difference spectra obtained from the absorption spectrum of the transmitted circularly polarized light that has passed through the subject having a normal blood glucose level The blood glucose level is calculated based on the intensity corresponding to the peak.

本発明では、紫外領域の特性波長スペクトラムにおけるピーク位置及びピーク相対強度を用いるため、被検体における減衰効果からあまり影響されずに血糖値に対応するグルコース濃度を直接検出することができる。紫外域の光は、グルコース濃度の測定に関して可視光または近赤外光と比較して高感度であり、グルコース固有の特性波長における強度測定であるので、グルコースに類似する他の脂肪、たんぱく質、または電解質と識別して測定することができるので、高精度の測定を行うことができる。   In the present invention, since the peak position and the peak relative intensity in the characteristic wavelength spectrum in the ultraviolet region are used, the glucose concentration corresponding to the blood glucose level can be directly detected without much influence from the attenuation effect in the subject. Ultraviolet light is more sensitive than visible or near-infrared light for measuring glucose concentration, and is an intensity measurement at the characteristic wavelength of glucose, so other fats, proteins similar to glucose, or Since it can distinguish and measure from an electrolyte, a highly accurate measurement can be performed.

本発明では、差分スペクトルの特性波長ピークの強度自体を用いて血糖値を測定することもできるが、差分スペクトルの特性波長のピーク位置がグルコース濃度と相関性を持つことから、この関係から血糖値を算出することが効果的である。   In the present invention, the blood glucose level can also be measured using the intensity of the characteristic wavelength peak of the difference spectrum itself, but since the peak position of the characteristic wavelength of the difference spectrum has a correlation with the glucose concentration, the blood glucose level is It is effective to calculate

また、差分スペクトルにおけるグルコースに対応する特性波長ピークは180nmから185nm近傍の波長であるのが好ましい。   Further, the characteristic wavelength peak corresponding to glucose in the difference spectrum is preferably a wavelength in the vicinity of 180 nm to 185 nm.

以上説明したように本発明によれば、グルコース濃度の特性波長が紫外領域に存在する点に着目して血糖値を測定するようにしたので、精度良く血糖値を測定することができる、という効果が得られる。   As described above, according to the present invention, since the blood glucose level is measured by paying attention to the fact that the characteristic wavelength of the glucose concentration exists in the ultraviolet region, the blood glucose level can be accurately measured. Is obtained.

本発明の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. グルコース濃度が異なる水溶液の円二色性のスペクトルの波長と分子楕円率との関係を示す線図である。It is a diagram which shows the relationship between the wavelength of the circular dichroism spectrum of the aqueous solution from which glucose concentration differs, and a molecular ellipticity. 実施例1における、CDスペクトルのピーク位置とその強度のグルコース濃度依存性を示す線図である。In Example 1, it is a diagram which shows the peak position of CD spectrum, and the glucose concentration dependence of the intensity | strength. 実施例1における、血糖値を演算するルーチンを示す流れ図である。3 is a flowchart illustrating a routine for calculating a blood glucose level in the first embodiment. 実施例2における、グルコース以外の光学活性分子のCDスペクトルのピーク位置とその強度を示す線図である。In Example 2, it is a diagram which shows the peak position and intensity | strength of CD spectrum of optically active molecules other than glucose. 実施例2における、血糖値を演算するルーチンを示す流れ図であ。9 is a flowchart showing a routine for calculating a blood sugar level in the second embodiment.

以下、図面を参照して本発明の実施の形態を詳細に説明する。本実施の形態には、図1に示すように、紫外波長域の光として、例えば、160〜200nmの波長域の光を出射する紫外光源10が設けられている。紫外光源10の光出射側には、入射された紫外波長域の光を、印加された大きさが異なる2つの電圧に応じて、相互に逆向きの回転方向を有する2種類の円偏光に変換する円偏光変換光学装置であるポッケルスセル12が配置されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, as shown in FIG. 1, an ultraviolet light source 10 that emits light in a wavelength region of 160 to 200 nm, for example, is provided as light in the ultraviolet wavelength region. On the light emitting side of the ultraviolet light source 10, incident light in the ultraviolet wavelength region is converted into two types of circularly polarized light having rotation directions opposite to each other according to two applied voltages having different magnitudes. A Pockels cell 12 that is a circular polarization conversion optical device is disposed.

また、ポッケルスセル12には、ポッケルスセルに電圧を印加するための駆動回路14が接続されている。   The Pockels cell 12 is connected to a drive circuit 14 for applying a voltage to the Pockels cell.

なお、ポッケルスセルに代えて、ピエゾ効果の原理に基づいて石英に歪みを加え、その歪みで円偏光を作り出す素子を用いても良い。   Instead of the Pockels cell, an element that applies distortion to quartz based on the principle of the piezoelectric effect and generates circularly polarized light by the distortion may be used.

ポッケルスセル12の円偏光出射側には、被検体16が配置されている。被検体としては、人間の手の指間または耳たぶ等生体の薄い皮膚層の部位が想定される。また、被検体は、人体から無侵襲で抽出した細胞間液、歯肉溝液または尿等であっても良い。   A subject 16 is disposed on the circularly polarized light emission side of the Pockels cell 12. As a subject, a part of a thin skin layer of a living body such as a finger or earlobe of a human hand is assumed. The subject may be an intercellular fluid, gingival crevicular fluid, urine, or the like extracted non-invasively from the human body.

被検体16の光透過側には、透過光の吸収スペクトルを検出する分光器18が配置されている。分光器18には、コンピュータ20が接続れており、該コンピュータ20には、グリコース濃度と特性波長のピーク位置及びピーク強度割合との関係を示す検量線(検量線データ)が予め記憶されると共に、分光器18で検出された吸収スペクトル及び記憶された検量線から血糖値を算出するプログラムが記憶されている。   A spectroscope 18 for detecting an absorption spectrum of transmitted light is disposed on the light transmission side of the subject 16. A computer 20 is connected to the spectroscope 18, and a calibration curve (calibration curve data) indicating the relationship between the glucose concentration, the peak position of the characteristic wavelength, and the peak intensity ratio is stored in advance in the computer 20. A program for calculating a blood glucose level from the absorption spectrum detected by the spectroscope 18 and the stored calibration curve is stored.

次に、コンピュータ20に記憶されている検量線について説明する。本願発明では、コンピュータ20に記憶されている検量線の内容毎に異なるいくつかの実施例が考えられることに留意されたい。以下では実施例1として、図2に示した検量線を用いる場合を説明する。
図2にグルコース濃度が異なる4種類の水溶液に対して、波長175〜500nmの光を左右円偏光に変換して被検体に照射し、被検体を透過した2種類の透過円偏光の吸収スペクトルを検出した場合における吸収スペクトルの差分スペクトル(円二色性:Circular Dichroism)の分子楕円率を演算した実験結果を示す。実験は、グルコース濃度が121mg/dl、242mg/dl、485mg/dl、970mg/dlの水溶液に対して行った。
Next, the calibration curve stored in the computer 20 will be described. It should be noted that in the present invention, several embodiments that differ depending on the contents of the calibration curve stored in the computer 20 can be considered. Hereinafter, as Example 1, a case where the calibration curve shown in FIG. 2 is used will be described.
FIG. 2 shows the absorption spectra of two types of transmitted circularly polarized light that are transmitted through the subject by converting light of wavelength 175 to 500 nm into left and right circularly polarized light and irradiating the subject with four types of aqueous solutions having different glucose concentrations. The experimental result which computed the molecular ellipticity of the difference spectrum (Circular Dichroism: Circular Dichroism) of the absorption spectrum in the case of detecting is shown. The experiment was performed on aqueous solutions having glucose concentrations of 121 mg / dl, 242 mg / dl, 485 mg / dl, and 970 mg / dl.

図2から理解されるように、差分スペクトル、すなわち円二色性のスペクトルのピーク値は、グルコース濃度が121mg/dlから970mg/dlへ増加するにつれて長波長側へシフトしている。また、ピーク近傍におけるスペクトル高度もグルコース濃度が増加するにつれて増大している。   As understood from FIG. 2, the peak value of the difference spectrum, that is, the circular dichroism spectrum is shifted to the longer wavelength side as the glucose concentration increases from 121 mg / dl to 970 mg / dl. The spectral height near the peak also increases as the glucose concentration increases.

図3は、グルコース濃度におけるCDスペクトルのピーク位置とその強度のグルコース濃度依存性を示す図である。図3から分かるように、ピーク波長の位置、及びCD強度はグルコース濃度に対して単調関数である。従って、血液中のCDスペクトルの測定によるピーク波長の位置及び強度から血液中のグルコース濃度を定量的に算出することができる。   FIG. 3 is a graph showing the dependence of the peak position of the CD spectrum on the glucose concentration and its intensity on the glucose concentration. As can be seen from FIG. 3, the position of the peak wavelength and the CD intensity are monotonic functions with respect to the glucose concentration. Therefore, the glucose concentration in the blood can be quantitatively calculated from the position and intensity of the peak wavelength obtained by measuring the CD spectrum in the blood.

次に、図4に示したフローチャートを参照し、コンピュータに記憶されたプログラムに従って実行される血糖値測定ルーチンについて説明する。   Next, a blood glucose level measurement routine executed according to a program stored in the computer will be described with reference to the flowchart shown in FIG.

紫外光源10から紫外波長域の光を出射させた状態で、ステップ100においてポッケルスセルから右偏光及び左偏光が交互に出射されるように駆動回路14を制御し、ポッケルスセルに電圧を印加する。これによって、被検体には右偏光及び左偏光が交互に照射され、被検体を透過した透過右偏光及び透過左偏光が交互に分光器18に入射され、分光器18によって透過右偏光及び透過左偏光の各吸収スペクトルが交互に検出される。   In a state in which light in the ultraviolet wavelength region is emitted from the ultraviolet light source 10, the drive circuit 14 is controlled so that right polarized light and left polarized light are alternately emitted from the Pockels cell in step 100, and a voltage is applied to the Pockels cell. As a result, the right polarized light and the left polarized light are alternately irradiated on the subject, and the transmitted right polarized light and the transmitted left polarized light transmitted through the subject are alternately incident on the spectroscope 18. Each absorption spectrum of polarized light is detected alternately.

ステップ102では、分光器18によって検出された吸収スペクトルをA/D変換(アナログ/デジタル変換)して取り込む。ステップ104において透過右偏光の吸収スペクトルと透過左偏光の吸収スペクトルとの差分を表す差分スペクトルを演算する。ステップ106では、差分スペクトルに基づいて各波長における分子楕円率を演算する。   In step 102, the absorption spectrum detected by the spectroscope 18 is captured by A / D conversion (analog / digital conversion). In step 104, a difference spectrum representing the difference between the absorption spectrum of the transmission right polarization and the absorption spectrum of the transmission left polarization is calculated. In step 106, the molecular ellipticity at each wavelength is calculated based on the difference spectrum.

ステップ108では、CDスペクトルの実測値から、波長200nm以下の波長領域でのグルコース起因のスペクトルのピーク位置を求める。そして、ステップ112で、ピーク位置と図3の検量線から血糖値を演算する。   In step 108, the peak position of the spectrum caused by glucose in the wavelength region of a wavelength of 200 nm or less is obtained from the measured value of the CD spectrum. In step 112, the blood glucose level is calculated from the peak position and the calibration curve in FIG.

次に、実施例2について述べる。実施例2では、血液中に存在するグルコース以外の主要な光学活性分子であるアルブミン、グロブリン及びアスコルビン酸による成分を総スペクトにからフィッティング分離し、これらの各主要な光学活性分子のCD強度とグルコースのCD強度との相対強度からグルコース濃度を定量的に求めることを特徴とする。   Next, Example 2 will be described. In Example 2, components from albumin, globulin, and ascorbic acid, which are major optically active molecules other than glucose present in blood, are fitted and separated from the total spectrum, and the CD intensity and glucose of each of these major optically active molecules are determined. The glucose concentration is quantitatively determined from the relative intensity to the CD intensity.

具体的には、図5から分かるように、グルコース以外の上記光学活性分子のCDスペクトルのピーク位置はグルコースのピーク位置とは異なる位置に存在する。   Specifically, as can be seen from FIG. 5, the peak position of the CD spectrum of the optically active molecule other than glucose exists at a position different from the peak position of glucose.

また、一般に、アルブミン、グロブリン及びアスコルビン酸は、時間的に一定の数値を示すことが知られている。   In general, albumin, globulin and ascorbic acid are known to show constant values over time.

従って、アルブミン、グロブリン及びアスコルビン酸のCD強度とグルコースのCD強度との相対強度を計測することで、グルコース濃度を定量的に随時求めることが可能である。   Therefore, it is possible to quantitatively determine the glucose concentration at any time by measuring the relative intensity of albumin, globulin and ascorbic acid CD intensity and glucose CD intensity.

次に、図6に示したフローチャートを参照し、実施例2において、コンピュータに記憶されたプログラムに従って実行される血糖値測定ルーチンについて説明する。   Next, a blood glucose level measurement routine executed in accordance with a program stored in the computer in the second embodiment will be described with reference to the flowchart shown in FIG.

図6のフローチャートのステップ200、202、204、206での処理は、図4のフローチャートのステップ100、102、104、106での処理と同様であるので説明を省略する。
図4の実施例1と異なり、ステップ208では、CDスペクトルをグルコース、アルブミン、グロブリン及びアスコルビン酸の各スペクトルにフィッティング分離し、各々の成分によるCD強度を求め、ステップ212では、グルコース成分によるCD強度と、アルブミン、グロブリン及びアスコルビン酸の各々のCD強度の比と図5の検量線から血糖値を演算する。
The processing in steps 200, 202, 204, and 206 in the flowchart in FIG. 6 is the same as the processing in steps 100, 102, 104, and 106 in the flowchart in FIG.
Unlike Example 1 of FIG. 4, in step 208, the CD spectrum is fitted and separated into glucose, albumin, globulin, and ascorbic acid spectra, and the CD intensity by each component is obtained. In step 212, the CD intensity by the glucose component is obtained. Then, the blood glucose level is calculated from the ratio of the CD intensities of albumin, globulin and ascorbic acid and the calibration curve of FIG.

符号の説明Explanation of symbols

10 紫外光源
12 ポッケルスセル
14 駆動回路
16 被検体
18 分光器
20 コンピュータ
DESCRIPTION OF SYMBOLS 10 Ultraviolet light source 12 Pockels cell 14 Drive circuit 16 Subject 18 Spectrometer 20 Computer

Claims (4)

紫外波長域の光を出射する光源と、
前記光源から出射された光を相互に逆向きの回転方向を有する2種類の円偏光に変換する円偏光変換手段と、
前記円偏光変換手段で変換され、かつ被験体を透過した2種類の透過円偏光の吸収スペクトルを検出する検出手段と、
前記検出手段で検出された吸収スペクトルから得られる差分スペクトルのピークの強度および前記ピークの波長とグルコース濃度との関係にもとづいて、血糖値を算出する算出手段と、
を含む血糖値測定装置。
A light source that emits light in the ultraviolet wavelength region;
Circularly polarized light conversion means for converting light emitted from the light source into two types of circularly polarized light having rotation directions opposite to each other;
Detecting means for detecting absorption spectra of two kinds of transmitted circularly polarized light converted by the circularly polarized light converting means and transmitted through the subject;
Calculation means for calculating a blood glucose level based on the intensity of the peak of the difference spectrum obtained from the absorption spectrum detected by the detection means and the relationship between the wavelength of the peak and the glucose concentration;
A blood glucose level measuring device including
前記ピークの波長に対応する波長は180nm〜190nmの波長である請求項1に記載の血糖値測定装置。The blood glucose level measuring apparatus according to claim 1, wherein a wavelength corresponding to the peak wavelength is 180 nm to 190 nm. 紫外波長域の光を出射し、
出射された前記光を相互に逆向きの回転方向を有する2種類の円偏光に変換し、
前記変換され、かつ被験体を透過した2種類の透過円偏光の吸収スペクトルを検出し、
検出された前記吸収スペクトルから得られる差分スペクトルのピークの強度および前記ピークの波長とグルコース濃度との関係にもとづいて、血糖値を算出する、
血糖値測定方法。
Emits light in the ultraviolet wavelength region,
The emitted light is converted into two types of circularly polarized light having rotation directions opposite to each other,
Detecting the absorption spectrum of the two types of circularly polarized light that has been converted and transmitted through the subject;
Calculating the blood glucose level based on the intensity of the peak of the difference spectrum obtained from the detected absorption spectrum and the relationship between the wavelength of the peak and the glucose concentration;
Blood glucose measurement method.
前記ピークの波長に対応する波長は180nm〜190nmの波長である請求項3に記載の血糖値測定方法。  The blood sugar level measuring method according to claim 3, wherein a wavelength corresponding to the peak wavelength is 180 nm to 190 nm.
JP2007534393A 2005-09-06 2006-09-04 Blood glucose level measuring apparatus and method Active JP4706028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534393A JP4706028B2 (en) 2005-09-06 2006-09-04 Blood glucose level measuring apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005257649 2005-09-06
JP2005257649 2005-09-06
PCT/JP2006/317470 WO2007029652A1 (en) 2005-09-06 2006-09-04 Blood-sugar measuring apparatus and method
JP2007534393A JP4706028B2 (en) 2005-09-06 2006-09-04 Blood glucose level measuring apparatus and method

Publications (2)

Publication Number Publication Date
JPWO2007029652A1 JPWO2007029652A1 (en) 2009-03-19
JP4706028B2 true JP4706028B2 (en) 2011-06-22

Family

ID=37835771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534393A Active JP4706028B2 (en) 2005-09-06 2006-09-04 Blood glucose level measuring apparatus and method

Country Status (2)

Country Link
JP (1) JP4706028B2 (en)
WO (1) WO2007029652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126509A (en) * 2011-12-19 2013-06-27 Sony Corp Measuring apparatus, measuring method, program, and recording medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141300A1 (en) * 2011-04-15 2012-10-18 株式会社グローバルファイバオプティックス Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method
JP2013036792A (en) 2011-08-05 2013-02-21 Seiko Epson Corp Apparatus and method for measuring polarization state
WO2022070420A1 (en) * 2020-10-02 2022-04-07 Look Tec株式会社 Glucose amount calculation method
WO2022070421A1 (en) * 2020-10-02 2022-04-07 Look Tec株式会社 Blood measurement device
CN117091997B (en) * 2023-10-13 2023-12-22 四川省生态环境科学研究院 Method and device for directly measuring longitudinal dynamic dispersion coefficient of river colloid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506039A (en) * 1992-12-10 1995-07-06 サンシャイン メディカル インスツルメンツ インコーポレイテッド Non-invasive blood glucose measurement
JP2005017094A (en) * 2003-06-25 2005-01-20 Fuji Photo Film Co Ltd Target detector, target detecting method and target detecting reagent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69729121D1 (en) * 1996-09-09 2004-06-17 Xoetronics Llc MOLECULAR LIGHT SENSOR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506039A (en) * 1992-12-10 1995-07-06 サンシャイン メディカル インスツルメンツ インコーポレイテッド Non-invasive blood glucose measurement
JP2005017094A (en) * 2003-06-25 2005-01-20 Fuji Photo Film Co Ltd Target detector, target detecting method and target detecting reagent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126509A (en) * 2011-12-19 2013-06-27 Sony Corp Measuring apparatus, measuring method, program, and recording medium
WO2013094362A1 (en) * 2011-12-19 2013-06-27 ソニー株式会社 Measurement device, measurement method, program, and recording medium
US9867559B2 (en) 2011-12-19 2018-01-16 Sony Corporation Measurement device, measurement method, program and recording medium

Also Published As

Publication number Publication date
WO2007029652A1 (en) 2007-03-15
JPWO2007029652A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US5481113A (en) Apparatus and method for measuring concentrations of components with light scattering
EP3037805B1 (en) Method for measuring a spectral sample response
EP1738689A2 (en) System and method for non-invasive glucose monitoring
JP4706028B2 (en) Blood glucose level measuring apparatus and method
US9068891B2 (en) Method and apparatus for measuring concentration of biogenic substance
US20070203405A1 (en) Instrument For Noninvasively Measuring Blood Sugar Level
EP2551661B1 (en) Analysis device
JP2004230000A (en) Instrument for measuring concentration of light absorptive substance in blood
JP2015519556A5 (en)
JP4361822B2 (en) Method and apparatus for measuring component concentration of target object
CA2661952A1 (en) Non-invasive methods of using spectral information in determining analyte concentrations
WO2014097965A1 (en) Oxygen saturation-measuring device and oxygen saturation-calculating method
JPH11183377A (en) Optical content meter
JP4329360B2 (en) Glucose concentration determination device
WO2000028302A1 (en) Method and device for measuring internal information of scattering absorber
US20090198113A1 (en) Dedicated spectral illumination spectroscopy
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
JP2010082246A (en) Method for processing measurement data of biological spectrum
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
Saptari A spectroscopic system for near infrared glucose measurement
Shih et al. Noninvasive glucose sensing with Raman spectroscopy
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
EP4175538A1 (en) Device for non-invasive blood glucose concentration measurement
JP2020513572A (en) NDIR glucose detection in liquids

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20080305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215