JP4701485B2 - Melting furnace exhaust gas cooling method - Google Patents

Melting furnace exhaust gas cooling method Download PDF

Info

Publication number
JP4701485B2
JP4701485B2 JP2000272101A JP2000272101A JP4701485B2 JP 4701485 B2 JP4701485 B2 JP 4701485B2 JP 2000272101 A JP2000272101 A JP 2000272101A JP 2000272101 A JP2000272101 A JP 2000272101A JP 4701485 B2 JP4701485 B2 JP 4701485B2
Authority
JP
Japan
Prior art keywords
cooling
exhaust gas
water
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000272101A
Other languages
Japanese (ja)
Other versions
JP2002079029A (en
Inventor
進 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000272101A priority Critical patent/JP4701485B2/en
Publication of JP2002079029A publication Critical patent/JP2002079029A/en
Application granted granted Critical
Publication of JP4701485B2 publication Critical patent/JP4701485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chimneys And Flues (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、溶融炉排ガスの冷却方法に関し、更に詳細には、一般廃棄物等の焼却処理によって発生する焼却残渣である、焼却灰や焼却飛灰等の処理物の溶融処理を行なう溶融炉から発生する排ガスの冷却方法に関するものである。
【0002】
【従来の技術】
前記処理物の溶融処理は、処理物の減容化、無害化のために行なわれるものであるが、特に飛灰中に多く含まれるダイオキシン類を分解するためには、例えば800℃以上の高温で完全に燃焼させる必要がある。この場合に、溶融炉から発生した排ガスを処理する後処理設備としての集塵機のバグフィルタに、排ガスをそのまま導入することはできず、その温度を集塵機に導入可能な温度以下である200℃程度まで低下させることが必要である。そこで従来は、溶融炉から排出される排ガスに多量の冷却用空気を連続的に吹込む希釈冷却を行なうことで、該排ガスの温度を200℃程度まで低下させることが行なわれている。
【0003】
【発明が解決しようとする課題】
しかしながら、溶融炉からの排ガスを冷却用空気の希釈のみにより冷却する方法では、排ガス量が増大し、排ガスの後処理設備が大型化して、設備費や運転維持費等が高騰する問題がある。なお、前記排ガスを冷却水の噴霧により冷却する方法も提案されているが、低沸点の重金属類や高濃度の塩類等の揮発する成分を多く含む処理物を溶融処理したときに発生する排ガスを冷却水で急冷すると、その溶融過程で揮発した塩化物が液滴を経て固体として析出し、排ガスダクト内壁面に付着成長して該ダクトを閉塞させてしまう問題があり、使用できる処理物が限定されるものであった。
【0004】
【発明の目的】
この発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、排ガス量を低減して後処理設備の小型化を図り、設備費や運転維持費等を低減し得る溶融炉排ガスの冷却方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前述した課題を解決し、所期の目的を好適に達成するため、本発明に係る溶融炉排ガスの冷却方法は、
揮発する成分として塩類を含み、該揮発する成分を多く含む処理物を溶融炉で溶融処理した際に発生した排ガスを冷却する方法であって、
先ず、前記排ガスを冷却用空気で希釈することで、該排ガスの温度が前記塩類の融点以下になるよう1次空気冷却し、
次に、前記1次空気冷却された排ガスを、その温度が400℃〜250℃の範囲で、冷却水の噴霧により水冷却し、
更に、前記水冷却された排ガスを、冷却用空気で希釈することで2次空気冷却することを特徴とする。
【0007】
【発明の実施の形態】
次に、本発明に係る溶融炉排ガスの冷却方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
【0008】
図1は、実施例に係る溶融炉排ガスの冷却方法が好適に実施される冷却装置の概略構成を示すものであって、一般廃棄物等の焼却処理によって発生する焼却灰や焼却飛灰等の処理物を溶融処理する溶融炉10の排ガス出口に、1次冷却ダクト12の一端が連通接続されると共に、該冷却ダクト12の他端が冷却塔14の上部入口に連通接続されている。1次冷却ダクト12の適宜位置には、冷却用空気の空気吹込口が設けられ、該吹込口からダクト内に吹込まれる冷却用空気によって、溶融炉10から排出される排ガスを希釈して1次空気冷却するよう構成されている。この1次空気冷却では、約1100℃の排ガスを、400℃以下まで冷却するように、冷却用空気の吹込量が設定される。なお、1次冷却ダクト12から冷却塔14に吹込まれる排ガスの温度が、250℃以下とはならないようにも設定される。
【0009】
前記冷却塔14の上部には、前記1次冷却ダクト12から塔内に吹込まれる1次空気冷却後の排ガスを、冷却水により冷却するための2流体噴霧ノズル16が複数配設されている。この2流体噴霧ノズル16は、図2に示す如く、所定圧力(例えば0.5〜0.7MPa)で冷却水が流通する内筒18の外側を、外筒20で包囲して圧力流体としてのエアの流路を確保した2重筒構造を有し、内筒18から噴出供給される冷却水に所定圧力(例えば0.3〜0.5MPa)のエアを吹付けることで、該冷却水を噴霧化し、得られた平均粒径の小さな噴霧された水を用いて前記排ガスを冷却(水冷却)するよう構成される。
【0010】
前記冷却塔14の下部排気口に2次冷却ダクト22の一端が連通接続されると共に、該冷却ダクト22の他端は、排ガスの後処理設備としての集塵機24に連通接続される。2次冷却ダクト22の適宜位置には、前記1次冷却ダクト12と同様に、冷却用空気の空気吹込口が設けられ、該吹込口からダクト内に吹込まれる冷却用空気によって、冷却塔14で水冷却された排ガスを希釈して2次空気冷却するよう構成されている。この2次空気冷却では、排ガスの温度を、集塵機24に設けられるバグフィルタ(図示せず)に導入可能な導入上限温度以下である200℃程度まで低下させるように、冷却用空気の吹込量が設定される。
【0011】
次に、前記冷却塔14で排ガスを水冷却するのに適した排ガス温度の範囲について説明する。
【0012】
図3は、排ガス中における塩の状態を温度条件別に示すものであって、約500℃より高温は塩の融点以上となるため、500℃より高い高温の排ガスを水冷却すると、前述したように処理物の溶融過程で揮発した塩化物が液滴を経て固体として析出し、冷却塔やダクトの内壁面に付着成長する不都合を生ずるおそれがある。しかし約500℃以下の温度であれば、塩はダスト状となっているため、水冷却しても塩化物が付着成長することはなく、従って塩の状態に基づく条件による好適に水冷却を適用し得る温度範囲としては、約500℃以下が望ましいこととなる。
【0013】
図4は、空気希釈により排ガスを冷却した場合における排ガス中のダスト濃度を示すもので、該濃度としては50g/Nm3以下が望ましい。すなわち、温度が1100℃の排ガスを800℃の温度まで低下させるように、冷却用空気で排ガスを希釈することで、ダスト濃度は49g/Nm3となるから、ダスト濃度に基づく条件による好適に水冷却を適用し得る温度範囲としては、約800℃以下が望ましいこととなる。
【0014】
図5は、腐食性を温度条件別に示すものであって、水冷却に用いられる冷却塔14では、350℃より高温の排ガスに晒されることで高温腐食を生ずるおそれがあり、また150℃以下の低温の排ガスに晒される場合は、酸による低温腐食を生ずるおそれがある。従って、腐食性に基づく条件による好適に水冷却を適用し得る温度範囲としては、約350℃〜約150℃の範囲が望ましいこととなる。
【0015】
すなわち、水冷却により排ガスを冷却するのに適する温度は、前述した塩の状態、ダスト濃度および腐食性の各条件での評価を総合すると、400℃〜250℃の範囲が望ましいと判断される。
【0016】
【実施例の作用】
次に、前述した実施例に係る溶融炉排ガスの冷却方法の作用につき説明する。前記溶融炉10から排出された排ガスは、前記1次冷却ダクト12を流通する過程において、前記空気吹込口を介して吹込まれる冷却用空気により、排ガス温度が400℃以下となるよう希釈冷却される。そして、1次空気冷却された排ガスは、前記冷却塔14に吹込まれる。このとき、前記2流体噴霧ノズル16からエア噴霧される冷却水により、排ガスは、その温度が250℃より低下しないように水冷却される。この水冷却される排ガスの温度は、前述したように400℃〜250℃の範囲とされるから、塩化物が冷却塔14の内壁やダクト内壁に析出して成長し、冷却塔14の各ダクト12,22との接続部を閉塞する事態の発生は抑制され、また冷却塔14が高温腐食や低温腐食に晒されることもない。更に、ダスト濃度も適正な値(50g/Nm3以下)となっているから、多量のダストが冷却塔14から2次冷却ダクト22に流出してダクト閉塞を助長するのは防止される。
【0017】
なお、前記冷却塔14での水冷却に2流体噴霧ノズル16を用いることで、噴霧化される水の平均粒径を小さくすることができ、400℃〜250℃の低温であっても噴霧後の水分を完全に蒸発させることができる。従って、冷却塔14の内壁に水滴を生ずる等、悪影響の原因が発生するのを防止し得る。
【0018】
前記冷却塔14で水冷却された排ガスは、前記2次冷却ダクト22に流出し、該2次冷却ダクト22を流通する過程において、前記空気吹込口を介して吹込まれる冷却用空気により、排ガス温度が集塵機24に導入可能な200℃以下(導入上限温度以下)まで希釈冷却される。そして、冷却の完了した排ガスは、前記集塵機24を介して排気される。
【0019】
すなわち実施例では、溶融炉10から排出される約1100℃の排ガスを、集塵機24に導入し得る導入上限温度以下まで冷却するのに、空気冷却と水冷却とを併用したことで、集塵機24で処理する排ガス量を低減することができる。従って、集塵機24等の排ガスの後処理設備を小型化し、設備費や運転維持費等を低廉に抑えることができる。また排ガスを水冷却する前に、該排ガスを空気冷却により所定温度(400℃以下)まで予め低下させるので、高温の排ガスを直接水冷却することで生ずる問題の発生を防止し得る。更に、水冷却では所定温度(250℃)より低くならないように排ガスを冷却するので、低温の排ガスを水冷却することで生ずる問題の発生も防止することができる。
【0020】
【実験例】
溶融炉10から排出される1100℃の排ガスを、1次空気冷却により400℃まで冷却し、次に水冷却により250℃まで冷却した後、更に2次空気冷却により150℃(集塵機入口の排ガス温度)まで冷却した。この場合における2次空気冷却後の排ガス量(集塵機入口での排ガス量)は、図6に示す如く、湿ガスで28590Nm3/h、乾ガスで26510Nm3/hであった。これに対し、溶融炉10から排出される1100℃の排ガスを、空気冷却のみで150℃まで冷却した場合における集塵機入口での排ガス量は、湿ガスで43970Nm3/h、乾ガスで42830Nm3/hであった。すなわち、空気冷却と水冷却とを併用することで、排ガス量を約2/3に低減できた。
【0021】
なお、実施例では冷却塔での水冷却を、1次空気冷却された排ガスが冷却塔の上部から内部に吹込まれる構成の場合で説明したが、該排ガスを冷却塔の下部から内部に吹込む構成であってもよい。
【0022】
【発明の効果】
以上説明した如く、本発明に係る溶融炉排ガスの冷却方法によれば、空気冷却と水冷却とを併用することで、排ガス量を低減することができる。従って、排ガスの後処理設備の小型化を図ることができ、設備費や運転維持費等を低減することが可能となる。また排ガスを水冷却する温度範囲を、400℃〜250℃としたので、塩化物の析出による排ガス流路の閉塞を防ぎ、また高温腐食や低温腐食も防止し得る。更に、ダスト濃度が適正な値での水冷却が達成される。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る溶融炉排ガスの冷却方法を実施する冷却装置の概略構成図である。
【図2】実施例に係る2流体体噴霧ノズルを示す説明図である。
【図3】排ガス中における塩の状態を各温度条件に基づいて示す表図である。
【図4】ダスト濃度を示す表図である。
【図5】腐食性を各温度条件に基づいて示す表図である。
【図6】実験例に係る結果を示す表図である。
【符号の説明】
10 溶融炉
24 集塵機(後処理設備)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling a melting furnace exhaust gas, and more specifically, from a melting furnace that performs a melting treatment of a treatment product such as incineration ash or incineration fly ash, which is an incineration residue generated by incineration treatment of general waste or the like. The present invention relates to a method of cooling the generated exhaust gas.
[0002]
[Prior art]
The melt treatment of the processed material is performed for reducing the volume and detoxifying the processed material. In particular, in order to decompose dioxins contained in the fly ash in a large amount, for example, a high temperature of 800 ° C. or higher is used. It is necessary to burn completely. In this case, the exhaust gas cannot be introduced as it is into the bag filter of the dust collector as a post-processing facility for processing the exhaust gas generated from the melting furnace, and the temperature is about 200 ° C., which is lower than the temperature that can be introduced into the dust collector. It is necessary to reduce. Therefore, conventionally, the temperature of the exhaust gas is reduced to about 200 ° C. by performing dilution cooling in which a large amount of cooling air is continuously blown into the exhaust gas discharged from the melting furnace.
[0003]
[Problems to be solved by the invention]
However, in the method of cooling the exhaust gas from the melting furnace only by diluting the cooling air, there is a problem that the amount of exhaust gas increases, the exhaust gas post-processing equipment is enlarged, and the equipment cost, operation maintenance cost, etc. are increased. In addition, although a method of cooling the exhaust gas by spraying cooling water has been proposed, the exhaust gas generated when a processed product containing a large amount of volatile components such as low boiling point heavy metals and high concentration salts is melted. When cooled rapidly with cooling water, there is a problem in that chlorides volatilized in the melting process are deposited as solids via droplets, and adhere to and grow on the inner wall surface of the exhaust gas duct, closing the duct, and there are limitations on the treatments that can be used. It was to be done.
[0004]
OBJECT OF THE INVENTION
The present invention has been proposed in view of the above-mentioned problems inherent in the above-described conventional technology, and has been proposed to suitably solve this problem. It aims at providing the cooling method of melting furnace exhaust gas which can reduce an expense, an operation maintenance cost, etc.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the desired purpose suitably, the method for cooling the melting furnace exhaust gas according to the present invention is as follows.
Includes salts as volatilized components, a method of cooling the exhaust gas generated when the processing comprising many components of the volatilized melting treatment in a melting furnace,
First, the exhaust gas to dilute with cold却用air and primary air cooling so that the temperature of the exhaust gas is below the melting point of the salts,
Next, the primary air-cooled exhaust gas is water-cooled by spraying cooling water in a temperature range of 400 ° C. to 250 ° C.,
Further, the water-cooled exhaust gas is diluted with cooling air to cool the secondary air.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the melting furnace exhaust gas cooling method according to the present invention will be described below with reference to the accompanying drawings.
[0008]
FIG. 1 shows a schematic configuration of a cooling device in which a method for cooling an exhaust gas from a melting furnace according to an embodiment is suitably implemented. Incineration ash, incineration fly ash, etc. generated by incineration processing of general wastes and the like are shown. One end of the primary cooling duct 12 is connected to the exhaust gas outlet of the melting furnace 10 for melting the processed material, and the other end of the cooling duct 12 is connected to the upper inlet of the cooling tower 14. An air blowing port for cooling air is provided at an appropriate position of the primary cooling duct 12, and the exhaust gas discharged from the melting furnace 10 is diluted with cooling air blown into the duct from the blowing port. It is configured to cool the next air. In this primary air cooling, the amount of cooling air blown is set so that the exhaust gas at about 1100 ° C. is cooled to 400 ° C. or less. The temperature of the exhaust gas blown into the cooling tower 14 from the primary cooling duct 12 is also set so as not to be 250 ° C. or lower.
[0009]
In the upper part of the cooling tower 14, a plurality of two-fluid spray nozzles 16 for cooling the exhaust gas after the primary air cooling blown into the tower from the primary cooling duct 12 with cooling water are disposed. . As shown in FIG. 2, the two-fluid spray nozzle 16 surrounds the outside of the inner cylinder 18 through which cooling water flows at a predetermined pressure (for example, 0.5 to 0.7 MPa) with an outer cylinder 20 as a pressure fluid. It has a double cylinder structure that secures an air flow path, and blows air of a predetermined pressure (for example, 0.3 to 0.5 MPa) to the cooling water that is jetted and supplied from the inner cylinder 18, thereby The exhaust gas is atomized, and the obtained exhaust gas is cooled (water cooled) using the sprayed water having a small average particle diameter.
[0010]
One end of the secondary cooling duct 22 is connected to the lower exhaust port of the cooling tower 14 and the other end of the cooling duct 22 is connected to a dust collector 24 as exhaust gas aftertreatment equipment. Similar to the primary cooling duct 12, an air blowing port for cooling air is provided at an appropriate position of the secondary cooling duct 22, and the cooling tower 14 is cooled by cooling air blown into the duct from the blowing port. It is configured to dilute the water-cooled exhaust gas and cool the secondary air. In this secondary air cooling, the amount of cooling air blown is reduced so that the temperature of the exhaust gas is lowered to about 200 ° C., which is below the upper limit of introduction temperature that can be introduced into a bag filter (not shown) provided in the dust collector 24. Is set.
[0011]
Next, the exhaust gas temperature range suitable for water cooling the exhaust gas in the cooling tower 14 will be described.
[0012]
FIG. 3 shows the state of salt in the exhaust gas according to the temperature condition. Since the temperature higher than about 500 ° C. is higher than the melting point of the salt, if the exhaust gas having a temperature higher than 500 ° C. is water-cooled, as described above. There is a risk that the chloride volatilized in the process of melting the processed material will be deposited as a solid through droplets and adhere to and grow on the inner wall surface of the cooling tower or duct. However, if the temperature is about 500 ° C. or lower, the salt is in the form of dust, so that chloride does not grow and adhere even when cooled with water. Therefore, water cooling is suitably applied according to conditions based on the state of the salt. As a possible temperature range, about 500 ° C. or less is desirable.
[0013]
FIG. 4 shows the dust concentration in the exhaust gas when the exhaust gas is cooled by air dilution. The concentration is preferably 50 g / Nm 3 or less. That is, by diluting the exhaust gas with cooling air so that the exhaust gas with a temperature of 1100 ° C. is lowered to a temperature of 800 ° C., the dust concentration becomes 49 g / Nm 3. As a temperature range to which cooling can be applied, about 800 ° C. or less is desirable.
[0014]
FIG. 5 shows the corrosivity according to temperature conditions. In the cooling tower 14 used for water cooling, there is a possibility that high temperature corrosion may occur due to exposure to exhaust gas having a temperature higher than 350 ° C. When exposed to low temperature exhaust gas, there is a risk of low temperature corrosion due to acid. Therefore, a temperature range in which water cooling can be suitably applied under conditions based on corrosiveness is desirably in the range of about 350 ° C. to about 150 ° C.
[0015]
That is, it is judged that the temperature suitable for cooling the exhaust gas by water cooling is preferably in the range of 400 ° C. to 250 ° C. when the evaluations in the above-described conditions of salt state, dust concentration and corrosiveness are combined.
[0016]
[Effect of the embodiment]
Next, the operation of the melting furnace exhaust gas cooling method according to the above-described embodiment will be described. The exhaust gas discharged from the melting furnace 10 is diluted and cooled so that the exhaust gas temperature becomes 400 ° C. or less by the cooling air blown through the air blowing port in the process of flowing through the primary cooling duct 12. The The exhaust gas cooled by the primary air is blown into the cooling tower 14. At this time, the exhaust gas is water-cooled by the cooling water sprayed from the two-fluid spray nozzle 16 so that the temperature does not fall below 250 ° C. Since the temperature of the water-cooled exhaust gas is in the range of 400 ° C. to 250 ° C. as described above, chloride precipitates on the inner wall of the cooling tower 14 and the inner wall of the duct and grows. Generation | occurrence | production of the situation which obstruct | occludes the connection part with 12 and 22 is suppressed, and the cooling tower 14 is not exposed to high temperature corrosion or low temperature corrosion. Furthermore, since the dust concentration is also an appropriate value (50 g / Nm 3 or less), it is possible to prevent a large amount of dust from flowing out from the cooling tower 14 to the secondary cooling duct 22 and promoting the blockage of the duct.
[0017]
In addition, by using the two-fluid spray nozzle 16 for water cooling in the cooling tower 14, the average particle diameter of water to be atomized can be reduced, and even after spraying at a low temperature of 400 ° C to 250 ° C. Can completely evaporate the water. Therefore, it is possible to prevent the occurrence of adverse effects such as the formation of water droplets on the inner wall of the cooling tower 14.
[0018]
The exhaust gas water-cooled in the cooling tower 14 flows out into the secondary cooling duct 22, and in the process of flowing through the secondary cooling duct 22, the exhaust gas is exhausted by the cooling air that is blown through the air blowing port. Dilution cooling is performed until the temperature is 200 ° C. or less (up to the upper limit temperature of introduction) at which the dust collector 24 can be introduced. Then, the exhaust gas after cooling is exhausted through the dust collector 24.
[0019]
That is, in the embodiment, the exhaust gas having a temperature of about 1100 ° C. discharged from the melting furnace 10 is cooled to below the upper limit of the introduction temperature at which the dust collector 24 can be introduced. The amount of exhaust gas to be treated can be reduced. Accordingly, it is possible to downsize the exhaust gas post-processing equipment such as the dust collector 24, and to keep equipment costs, operation and maintenance costs, etc. low. Further, before the exhaust gas is water-cooled, the exhaust gas is lowered in advance to a predetermined temperature (400 ° C. or less) by air cooling, so that it is possible to prevent problems caused by directly water-cooling the high-temperature exhaust gas. Further, since the exhaust gas is cooled so that it does not become lower than a predetermined temperature (250 ° C.) in the water cooling, it is possible to prevent the occurrence of problems caused by water cooling of the low temperature exhaust gas.
[0020]
[Experimental example]
The exhaust gas at 1100 ° C. discharged from the melting furnace 10 is cooled to 400 ° C. by primary air cooling, then cooled to 250 ° C. by water cooling, and further 150 ° C. (exhaust gas temperature at the dust collector inlet) by secondary air cooling. ). Exhaust gas amount after the secondary air cooling in this case (the amount of exhaust gas in the precipitator inlet), as shown in FIG. 6 was 26510Nm 3 / h in a moist gas 28590Nm 3 / h, on a dry gas. In contrast, the 1100 ° C. in an exhaust gas discharged from the melting furnace 10, the amount of exhaust gas in the precipitator inlet when cooled to 0.99 ° C. only air cooling, 43970Nm a wet gas 3 / h, on a dry gas 42830Nm 3 / h. That is, the combined use of air cooling and water cooling reduced the amount of exhaust gas to about 2/3.
[0021]
In the embodiment, the water cooling in the cooling tower is described in the case where the exhaust gas cooled by the primary air is blown into the inside from the upper part of the cooling tower. However, the exhaust gas is blown into the inside from the lower part of the cooling tower. It is also possible to use a configuration.
[0022]
【The invention's effect】
As described above, according to the melting furnace exhaust gas cooling method of the present invention, the amount of exhaust gas can be reduced by using both air cooling and water cooling. Therefore, it is possible to reduce the size of the exhaust gas post-processing equipment, and it is possible to reduce equipment costs and operation and maintenance costs. Further, since the temperature range for cooling the exhaust gas with water is set to 400 ° C. to 250 ° C., blockage of the exhaust gas flow path due to precipitation of chloride can be prevented, and high temperature corrosion and low temperature corrosion can also be prevented. Further, water cooling with an appropriate dust concentration is achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cooling device for performing a method for cooling a melting furnace exhaust gas according to a preferred embodiment of the present invention.
FIG. 2 is an explanatory view showing a two-fluid spray nozzle according to an embodiment.
FIG. 3 is a table showing the state of salt in exhaust gas based on each temperature condition.
FIG. 4 is a table showing dust concentration.
FIG. 5 is a table showing corrosivity based on each temperature condition.
FIG. 6 is a table showing the results of an experimental example.
[Explanation of symbols]
10 Melting furnace
24 Dust collector (post-processing equipment)

Claims (2)

揮発する成分として塩類を含み、該揮発する成分を多く含む処理物を溶融炉で溶融処理した際に発生した排ガスを冷却する方法であって、
先ず、前記排ガスを冷却用空気で希釈することで、該排ガスの温度が前記塩類の融点以下になるよう1次空気冷却し、
次に、前記1次空気冷却された排ガスを、その温度が400℃〜250℃の範囲で、冷却水の噴霧により水冷却し、
更に、前記水冷却された排ガスを、冷却用空気で希釈することで2次空気冷却する
ことを特徴とする溶融炉排ガスの冷却方法。
Includes salts as volatilized components, a method of cooling the exhaust gas generated when the processing comprising many components of the volatilized melting treatment in a melting furnace,
First, the exhaust gas to dilute with cold却用air and primary air cooling so that the temperature of the exhaust gas is below the melting point of the salts,
Next, the primary air-cooled exhaust gas is water-cooled by spraying cooling water in a temperature range of 400 ° C. to 250 ° C.,
Furthermore, secondary water cooling is performed by diluting the water-cooled exhaust gas with cooling air.
前記水冷却は、所定圧力で供給される冷却水を、所定圧力で供給されるエアにより噴霧化した平均粒径の小さな噴霧された水を用いる請求項1記載の溶融炉排ガスの冷却方法。 2. The method for cooling an exhaust gas from a melting furnace according to claim 1, wherein the water cooling uses sprayed water having a small average particle diameter obtained by atomizing cooling water supplied at a predetermined pressure with air supplied at a predetermined pressure .
JP2000272101A 2000-09-07 2000-09-07 Melting furnace exhaust gas cooling method Expired - Fee Related JP4701485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272101A JP4701485B2 (en) 2000-09-07 2000-09-07 Melting furnace exhaust gas cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272101A JP4701485B2 (en) 2000-09-07 2000-09-07 Melting furnace exhaust gas cooling method

Publications (2)

Publication Number Publication Date
JP2002079029A JP2002079029A (en) 2002-03-19
JP4701485B2 true JP4701485B2 (en) 2011-06-15

Family

ID=18758281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272101A Expired - Fee Related JP4701485B2 (en) 2000-09-07 2000-09-07 Melting furnace exhaust gas cooling method

Country Status (1)

Country Link
JP (1) JP4701485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384509C (en) * 2006-03-27 2008-04-30 张锡麟 Low pressure double flow spray method and system for high temperature fume quenching and tempering and dust processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115234U (en) * 1991-03-11 1992-10-13 石川島播磨重工業株式会社 Garbage incinerator exhaust equipment
JP2000070663A (en) * 1998-09-03 2000-03-07 Okawara Mfg Co Ltd Exhaust gas cooling and harmful substance removing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219478A (en) * 1975-08-04 1977-02-14 Nippon Kokan Kk <Nkk> Apparatus for cooling waste gas from dust incinerating furnaces
JPH0445311A (en) * 1990-06-12 1992-02-14 Nkk Corp Device for treating combustion exhaust gas
JPH04256416A (en) * 1991-02-08 1992-09-11 Kenichi Nakagawa Treatment of exhaust gas
JPH10196931A (en) * 1997-01-14 1998-07-31 Kubota Corp Urban refuse incineration facility
JPH10244117A (en) * 1997-03-06 1998-09-14 Daido Steel Co Ltd Exhaust gas cooling device for waste product melting furnace
JPH10253040A (en) * 1997-03-14 1998-09-25 Daido Steel Co Ltd Melting facility of waste disposal residue
JPH11173538A (en) * 1997-12-09 1999-06-29 Hitachi Zosen Corp Method for cooling exhaust gas in ash melting facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115234U (en) * 1991-03-11 1992-10-13 石川島播磨重工業株式会社 Garbage incinerator exhaust equipment
JP2000070663A (en) * 1998-09-03 2000-03-07 Okawara Mfg Co Ltd Exhaust gas cooling and harmful substance removing method

Also Published As

Publication number Publication date
JP2002079029A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP3844941B2 (en) Temperature control device and temperature control method for high temperature exhaust gas
JP4102547B2 (en) Exhaust gas treatment equipment
CN104226479B (en) The high-efficient wet-type electric precipitation purifier and method of a kind of wet-method desulfurized fume
TW539829B (en) Processing method for high-temperature exhaust gas
KR19980080487A (en) Method and apparatus for treating exhaust gas in an incinerator
JP4701485B2 (en) Melting furnace exhaust gas cooling method
JP2000264609A (en) Process for recovering acid from metal-dissolved acid solution
JP2839028B2 (en) Desulfurization and denitrification method and desulfurization and denitrification equipment
JPS62121687A (en) Apparatus for treating waste water from wet wast gas desulfurizing method for forming gypsum as byproduct
CN111536534A (en) High-temperature plasma organic waste liquid treatment shelter and treatment method
JP2927217B2 (en) Sinter cooling device and cooling method
JP6740185B2 (en) Exhaust gas desulfurization method in pressurized fluidized-bed reactor system and pressurized fluidized-bed reactor system
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP3060441B2 (en) Exhaust gas treatment method and treatment device
CN109260873B (en) Plasma melting tail gas purification system and method thereof
JP3451957B2 (en) Melting furnace for incineration residues containing salts
JP2002136826A (en) Method of treating high temperature exhaust gas
JP4075667B2 (en) Exhaust gas boiler, exhaust gas cooling spray device, smelting equipment, and exhaust gas cooling method
JP3224355B2 (en) Method and apparatus for treating incinerator exhaust gas
JP3820093B2 (en) Waste incineration facility and exhaust gas cooling method
JP4037202B2 (en) Gas processing tower
JP2005049058A (en) Heat treatment equipment
JP3834347B2 (en) Method for preventing clogging of melting furnace exhaust gas duct and melting equipment
JP3176864B2 (en) Method and apparatus for cooling incinerator exhaust gas using special nozzle
JPH10267256A (en) Method and apparatus for cooling exhaust gas of incinerating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

LAPS Cancellation because of no payment of annual fees