JP3834347B2 - Method for preventing clogging of melting furnace exhaust gas duct and melting equipment - Google Patents

Method for preventing clogging of melting furnace exhaust gas duct and melting equipment Download PDF

Info

Publication number
JP3834347B2
JP3834347B2 JP25462495A JP25462495A JP3834347B2 JP 3834347 B2 JP3834347 B2 JP 3834347B2 JP 25462495 A JP25462495 A JP 25462495A JP 25462495 A JP25462495 A JP 25462495A JP 3834347 B2 JP3834347 B2 JP 3834347B2
Authority
JP
Japan
Prior art keywords
exhaust gas
cooling
melting
melting furnace
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25462495A
Other languages
Japanese (ja)
Other versions
JPH0972518A (en
Inventor
貴洋 久野
富雄 鈴木
康夫 東
由章 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP25462495A priority Critical patent/JP3834347B2/en
Publication of JPH0972518A publication Critical patent/JPH0972518A/en
Application granted granted Critical
Publication of JP3834347B2 publication Critical patent/JP3834347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融炉排ガスダクトの閉塞防止方法及び溶融設備に関し、特に都市ゴミ焼却灰等の各種産業廃棄物を高温で溶融固化する設備に適した溶融炉排ガスダクトの閉塞防止方法及び溶融設備に関するものである。
【0002】
【従来の技術】
都市ゴミ、下水汚泥、その他の廃棄物を焼却することによって発生する焼却灰は、大部分が埋立処理されている。しかし、埋立地の確保が年々困難になっているため、埋め立てられる焼却灰の容積をできるだけ小さくすること、即ち減容化処理が要望されている。
【0003】
また、焼却灰をそのままの状態で埋立てた場合には、焼却灰自体に含まれる種々の重金属等の有害物質が雨水や地下水等に溶け出し、いわゆる二次公害を引き起こすおそれがある。このため、埋め立てる前の段階で焼却灰を無公害処理化することも強く望まれている。このような状況の下、焼却灰の減容,無害化処理を実現すべく高温で溶融固化する方法が採用されつつあり、その方法の実施には、一般に溶融炉が使用されている。
【0004】
ところで、溶融炉の出口付近の排ガス中には、飛散灰や低沸点のガス状物質(以下「溶融飛灰」と総称する)が含まれている。このため、炉出口排ガスの温度及び流速条件によっては、溶融飛灰が排ガスダクトの内壁に付着,堆積し、ついには排ガスダクトが閉塞するという事態にまで至ることがある。
【0005】
そこで、排ガスダクトの閉塞を防止するための技術の開発が急がれており、これまでにも提案例がある。即ち、図8に示すように排ガスダクトの構成として、排ガスダクト1の内側に、発砲セラミック等の耐熱性多孔体2を配置し、多孔体2と排ガスダクト1との間に風室3を設けると共に、排ガスダクト1に気体供給ノズル4を取付け、そのノズル4から風室3内に空気等の気体9を送り、この気体9を多孔体2からダクト内側へ噴射させるようにしたものである。
【0006】
そして、この気体の噴射によって、多孔体2近傍の低沸点ガス状物質を速やかに冷却,固化してパージするのみならず、排ガス中の飛散灰をパージし、これら溶融飛灰を排ガスダクトに直接付着,堆積させないようにしたものである。
【0007】
【発明が解決しようとする課題】
しかし、上記提案による排ガスダクトの閉塞防止技術にも問題点がある。即ち、図7は温度上昇とともに溶融飛灰が揮散し重量減少していく様子を示したものである。
【0008】
この図から明らかなように温度が約1000°Cを下回った時点で早くも急速に凝縮が進んでおり、溶融飛灰が液化する温度領域は非常に広範囲であることが分かる。溶融飛灰は、揮散した気体の状態から凝縮したときに煙道である排ガスダクトの内壁に付着すると考えられ、従って、そのような付着現象が生じる温度領域も広範囲であるといえる。
【0009】
一方、溶融炉から排出された直後の排ガスは約1200°C前後の高温状態にあり、煙道を通過する間に冷却されていく。従って、上記の如く溶融飛灰が凝縮点以下となる温度領域が広範囲な分だけ、溶融飛灰が付着する煙道内の排ガス流路面積及び流路長も大きくなってしまう。このため、提案例の閉塞防止技術では、溶融飛灰の捕集効率を高めようとする限り、排ガスダクトは、勢い長大なものにならざるを得ない。
【0010】
また、溶融炉からの排ガス中では、300〜400°C付近の領域で有害なダイオキシンが発生することが多い。この対策として、一般的には煙道に接続して設けられる排ガス後処理工程内のバグフィルターでダイオキシンの除去を行っているが、バグフィルターによる処理の前に排ガスをダイオキシンの発生しやすい温度以下にまで冷却するための冷却工程を設けることにより、ダイオキシンの除去効率を高めることができる。
【0011】
そこで、本発明のうち第1の発明の目的とするところは、排ガスダクトの長大化を避け、排ガス出口近くのより小さな空間内で溶融飛灰の付着,堆積防止策を施すと共に、この防止策にダイオキシン発生抑制効果をも併有させうるものとして、排ガス後処理工程までの煙道部の構造を簡素化し、また従来の排ガス冷却工程からバグフィルターにつながる排ガス後処理装置の規模の縮小化を図り、溶融炉ひいては焼却・溶融設備全体としての設備コストの大幅な低減化に寄与できるような溶融炉排ガスダクトの閉塞防止方法を提供する点にある。
【0012】
また、第2の発明の目的は、第1の発明の目的に加えて、排ガスの冷却部位以後の、排ガスダクト分岐部のような排ガス流れの停滞しやすい部位への溶融飛灰の付着,堆積の防止を可能として溶融炉の安定した連続運転を確実に確保できるような溶融炉排ガスダクトの閉塞防止方法を提供する点にある。
【0013】
また、第3の発明の目的は、第1の発明の目的を有効に実現できる溶融設備を提供する点にある。
【0014】
【課題を解決するための手段】
上述の目的を達成するために、本発明のうちで第1の発明は、溶融炉出口の排ガスに対し、該排ガス中に含まれる溶融飛灰が液化を始める前に冷却ガスを吹き付けることを特徴としたものである。また、第2の発明は、上記排ガスの冷却部位以後の排ガスダクトであって排ガスの流れ方向が変わる部位に相当する排ガスダクトの内壁に、熱伝導率の大きい耐火物であって排ガス流路側の表面温度が300°C以下となるような厚みに加工されたものを張りつけたことを特徴としたものである。
【0015】
ここで、「溶融炉出口の排ガス」とは、出滓口を通り過ぎた空間内にある液化前の高温排ガスを意味する。溶融飛灰が液化を始める前に、排ガスへ冷却ガスを吹き付けることとしたのは、溶融飛灰を排ガス出口直後のより小さな空間内で積極的に凝縮、凝固,さらに飛散させ、出滓口から後に続く排ガスダクトの内壁に溶融飛灰が付着し、堆積するのを最大限防止するためである。
【0016】
また、出滓口直後から排ガス冷却部までの空間内の排ガスの温度は1000〜1200°Cの高温状態にあるが、この温度を保持することが好ましい。これは、出滓口でのスラグによる閉塞を防ぐためである。図7に示すように1000〜1200°Cの高温領域では溶融飛灰は気化しているため、耐火物表面への付着が問題となることはない。
【0017】
なお、前述したように、溶融炉からの排ガス内で発生するダイオキシンの除去はすべてバグフィルターにより行っているが、バグフィルターでの除去効率を高めるためには、排ガスがバグフィルターに至る前の段階で排ガス温度を大規模に水冷制御する必要がある。
【0018】
本発明では、溶融飛灰が液化する前に施す冷却ガスの排ガスへの吹き付け手段に、従来の水冷温度制御と同様の役目をも併有させている。即ち、溶融飛灰の付着,堆積防止効果に加えてダイオキシン発生抑制効果をも発揮させるために、排ガス冷却部では、約1000°Cの高温ガスを200°C程度まで急冷する。
【0019】
これは、溶融飛灰の排ガスダクト内壁への付着防止だけを企図するのであれば、図7から分かるように600°C程度までの冷却で十分であるが、ダイオキシンが形成されやすい温度領域は300〜400°C付近にあるため、200°C程度まで一挙に冷却を行うのがダイオキシンの発生を抑制する上で効果的だからである。
【0020】
また、排ガス冷却部以後では、冷却ガスの吹き付けによる排ガス温度制御が不安定となる場合もあることを予想して対策を立てておくべきである。即ち、排ガス温度制御が不安定になると、溶融飛灰が排ガスダクト内壁に付着する温度雰囲気になることもある。特に排ガス冷却部以降でダクトの向きが変わりガス流の停滞が発生しやすいような部位、例えは排ガスダクトの分岐部や曲がり部では溶融飛灰が堆積しやすい。
【0021】
この点に鑑み、本発明者等は、耐火物の施工内容につき種々実験したところ、熱伝導率の大きい耐火物を薄めに加工し、排ガス流路側の耐火物表面温度ができるだけ低くなるようにすれば、溶融飛灰の付着はほとんど発生しないことを確認することができた。そこで、第2の発明として、排ガス冷却部以降では排ガスダクトの内壁に、熱伝導率の大きい耐火物であって排ガス流路側の表面温度が300°C以下となるような厚みに加工されたものを張りつけるとの特有の解決手段を採用し得たものである。これにより、溶融炉の安定した連続運転を確実に確保することができる。
【0022】
また、第3の発明は、被溶融物を溶融する溶融炉の下部に溶融スラグ及び排ガスを同時に出滓する出滓部が設けられた溶融設備において、前記出滓部の直後に出滓部から下方に向かう排ガスダクトを連設すると共に、前記排ガスダクト壁面を貫く冷却ガス吹き出しノズルを前記出滓部における出滓口の高さより低い位置に設け、さらに前記冷却ガス吹き出しノズルに冷却ガスを供給する冷却ガス供給手段を設けたことを特徴とする。
【0023】
ここで、「出滓口の高さより低い位置に設け」とは、ダクト内の温度が1000〜1200°C程度の高温状態にある中で冷却ガスを吹き出せるように冷却ガス吹き出しノズルを設けることを意味する。例えば、排ガスダクト内が0.3〜0.5m2 程度の断面積を有する筒状空間である場合は、出滓口の高さ位置から下方(排ガス流れ方向)へ垂直距離にして0.5〜1.0m程度の範囲内に冷却ガス吹き出しノズルを設けることが望ましい。
【0024】
上記の構成により、溶融炉のガス出口付近のより小さな空間内に溶融飛灰の付着,堆積防止策が施された溶融設備とすることができる。また、その防止策はダイオキシン発生抑制効果をも発揮させうるものである。従って、ガス後処理工程までの煙道部の構造を簡素化し、また従来のガス後処理装置の規模の縮小化を図り、溶融炉の安定した連続運転を確保しうる経済的な溶融設備とすることができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しつつ説明する。
図1は、本発明の閉塞防止方法及び溶融設備を、プラズマ溶融炉の排ガスダクトに適用した例を示す概略説明図である。プラズマ溶融炉1の出滓口2からは、溶融スラグと共に溶融飛灰の混じった排ガスが排出される。溶融炉1の炉内ガス温度は1200°C以上の高温であるためスラグは完全に液状であるが、出滓口2を流下するときの温度低下による溶融スラグの固化による閉塞を防ぐため出滓口2に向けて都市ガスEを供給できる構造として、出滓口2出口付近のダクト内温度を、1000〜1200°C程度の高温に保持できるようにしている。
【0026】
排ガス冷却部においては、冷却ガス供給手段9より吹き出しノズル7を経て供給される冷却ガスAの吹き付けにより約1000°Cの高温ガスを一挙に200°C程度まで急冷するが、ダクト内壁の耐火物4には、図2(排ガスダクト部のみを拡大した図)に示すように冷却ガスAの吹出ノズル7周辺の排ガス流の停滞部分に、斜線で示すように溶融飛灰がわずかづつではあるがつらら状に堆積,成長する。しかし、溶融飛灰のある程度以上の堆積,成長は防ぐことができ、溶融飛灰はスラグ水砕槽6へ落下する。
【0027】
ここで問題となるのは、冷却ガスAの吹き出しノズル7周辺での溶融飛灰の堆積,成長を確実に抑制できるかどうかということであり、かつその条件を把握しておくことである。溶融飛灰がある程度堆積,成長して自重又は冷却ガスの吹き付けにより落下するときの条件は、冷却ガスAの吹き出し流速や吹き込み角度、または冷却ガス吹き出しノズル7の配設ピッチといったパラメータに支配される。
【0028】
図3及び図4によりそれらパラメータの適用範囲を明らかにする。図中の○印は、溶融飛灰の堆積,成長が溶融炉の安定連続運転に何ら影響を与えない程度に収束した場合を示し、×印は溶融飛灰の堆積,成長が収束しても堆積量が大きいために、あるいはほとんど閉塞状態となったため、溶融炉の連続運転に悪影響が出た場合を示している。
【0029】
図3は、冷却ガス吹き出しノズル7を一方向側に3点設けて吹き出し角度αを変化させることにより、冷却ガス吹き出し流速と吹き出し角度が溶融飛灰の堆積,成長に及ぼす影響を調べた結果を示す図である。この図から明らかなように、排ガス流に垂直な方向と冷却ガスの吹き出し方向とのなす角度αが大きい程、冷却ガスAの吹き出し速度を大きくしなければならないことが分かる。
【0030】
吹き出し角度α=0°の場合が吹き出し速度が最小となり理想的だと考えられるが、実際の溶融炉設備で使用する場合、冷却ガスの流量によっては排ガスが溶融炉方向へ逆流し、溶融炉の運転に悪影響を及ぼすことがあるので好ましくない。
【0031】
図4は、冷却ガス吹き出し角度αを30°に設定し吹き出しノズル7の配設ピッチを変化させた場合の溶融飛灰の堆積,成長に及ぼす影響を調べた結果を示す図である。吹き出し口が少ないほどその間に溶融飛灰が付着,成長しやすくなり、冷却ガスの吹き出し速度を大きくしなければならないことが分かる。
【0032】
排ガス冷却部以後には排ガス処理設備が設置される。図1において、排ガスダクトの分岐部周辺、即ち、排ガス処理設備へ通ずる煙道8と排ガス冷却部との接続部周辺の、排ガス流が停滞しやすいがために溶融飛灰が付着しやすい箇所(図中一点鎖線で示す部分)に対しては、ダクト内壁に、熱伝導率の大きい耐火物
であって排ガス流路側の表面温度が300°C以下となるような厚みに加工されたものを張りつけて、溶融飛灰の堆積,成長が起こりにくくしている。
【0033】
なお、凝固した溶融飛灰については、通常のバグフィルター等を使用してその捕集を行う。このようにして、溶融飛灰の付着,堆積による排ガスダクトの閉塞を防ぎ、溶融炉の安定した連続運転を可能としている。
【0034】
なお、図5は、他の実施形態を示す概略説明図であり、排ガス冷却部の内壁構造として、上述した煙道8との接続部周辺の内壁構造と同様に、熱伝導率の大きい耐火物を薄く施工した例を示している。このように水冷による耐火物表面の冷却効果により、冷却ガス吹き出しノズル7周辺への溶融飛灰の付着を一層抑制し、溶融飛灰の堆積防止効果を一層高めるようにすることも可能である。
【0035】
また、図6は、さらに他の実施形態を示す概略説明図である。図1,図5に示す排ガスダクトの構成は、いずれも溶融スラグと排ガスが同一の排出ラインをたどるものであるが、このような構成では、排ガス中の有害成分(塩化水素等)や溶融飛灰がスラグ搬出槽6中に混入するため、固化スラグの品質やスラグ搬出槽6を水砕槽とした場合の水質を低下させるおそれもある。
【0036】
そこで、図6に示すように、出滓口付近で出滓ライン9と排ガスライン10を別々に構成し、排ガスライン10の方に本発明の排ガスダクト閉塞防止方法を適用することにより、かかる事態に対処することも可能である。なお、この形態の場合は、出滓ライン9と排ガスライン10との接合空間部をできるだけ小さくするように構成することが、出滓口出口周辺の高温を保持する上で好ましい。
【0037】
【発明の効果】
以上説明したように、本発明のうち第1の発明は、排ガスダクトの長大化を避け、排ガス出口近くのより小さな空間内で溶融飛灰の付着,堆積を防止できるようにすると共に、この防止策にダイオキシン発生抑制効果をも併有させうるものとして、排ガス後処理工程までの煙道部の構造を簡素化し、また従来の排ガス冷却部からバグフィルターにつながる排ガス後処理装置の規模縮小化を図り、溶融炉ひいては焼却・溶融設備全体としての設備コストの大幅な低減化を可能とした。
【0038】
また、第2の発明は、第1の発明の効果に加えて、排ガス冷却部位以後の、排ガスダクトの分岐部や曲がり部のような排ガス流の停滞しやすい部位への溶融飛灰の付着,堆積の防止を可能として溶融炉の安定した連続運転を確保できるようにした。
【0039】
さらに、第3の発明は、要するに溶融設備における溶融炉のガス出口直後の煙道部の構成を、溶融飛灰の付着,堆積の防止及びダイオキシンの発生抑制を可能とするものとしたので、ガス後処理工程までの煙道部の構造を簡素化し、また従来のガス後処理装置の規模の縮小化を図り、溶融炉の安定した連続運転を確保しうる経済的な溶融設備とすることができた。
【図面の簡単な説明】
【図1】本発明の実施形態を示す概略説明図である。
【図2】排ガスダクト部分のみを拡大した図である。
【図3】冷却ガス吹き出し流速と吹き出し角度が溶融飛灰の堆積,成長に及ぼす影響を調べた結果を示す図である。
【図4】冷却ガス吹き出し流速と吹き出し口の配設ピッチが溶融飛灰の堆積,成長に及ぼす影響を調べた結果を示す図である。
【図5】本発明の他の実施形態を示す概略説明図である。
【図6】本発明の他の実施形態を示す概略説明図である。
【図7】溶融飛灰について温度変化に伴う重量減少の様子を示すグラフである。
【図8】従来の溶融炉ガスダクトの閉塞防止構造を示す要部断面模式図である。
【符号の説明】
1 プラズマ溶融炉
2 出滓口
3 都市ガス供給口
4 耐火物
5 水冷鉄皮
6 スラグ搬出槽
7 冷却ガス吹き出しノズル
8 煙道
A 冷却ガス
E 都市ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a melting furnace exhaust gas duct blockage prevention method and melting equipment, and more particularly to a melting furnace exhaust gas duct blockage prevention method and melting equipment suitable for equipment for melting and solidifying various industrial wastes such as municipal waste incineration ash at high temperatures. Is.
[0002]
[Prior art]
Incineration ash generated from incineration of municipal waste, sewage sludge, and other waste is mostly landfilled. However, since securing landfill sites has become difficult year by year, there is a demand for reducing the volume of incinerated ash to be reclaimed as much as possible, that is, volume reduction processing.
[0003]
In addition, when the incineration ash is landfilled as it is, harmful substances such as various heavy metals contained in the incineration ash itself may be dissolved in rainwater or groundwater, which may cause so-called secondary pollution. For this reason, it is strongly desired that the incinerated ash be made pollution-free before the landfill. Under such circumstances, a method of melting and solidifying at a high temperature is being adopted in order to realize the volume reduction and detoxification treatment of incinerated ash, and a melting furnace is generally used for implementing the method.
[0004]
By the way, the exhaust gas in the vicinity of the outlet of the melting furnace contains fly ash and low-boiling gaseous substances (hereinafter collectively referred to as “molten fly ash”). For this reason, depending on the temperature and flow rate conditions of the exhaust gas at the furnace outlet, molten fly ash may adhere to and accumulate on the inner wall of the exhaust gas duct, and eventually the exhaust gas duct may be blocked.
[0005]
Therefore, development of a technique for preventing the clogging of the exhaust gas duct has been urgently performed, and there have been proposal examples so far. That is, as shown in FIG. 8, as a configuration of the exhaust gas duct, a heat-resistant porous body 2 such as a fired ceramic is disposed inside the exhaust gas duct 1, and an air chamber 3 is provided between the porous body 2 and the exhaust gas duct 1. At the same time, a gas supply nozzle 4 is attached to the exhaust gas duct 1, a gas 9 such as air is sent from the nozzle 4 into the wind chamber 3, and the gas 9 is jetted from the porous body 2 to the inside of the duct.
[0006]
This gas injection not only quickly cools, solidifies and purges the low boiling point gaseous substance in the vicinity of the porous body 2, but also purges the scattered ash in the exhaust gas, and directly sends these molten fly ash to the exhaust gas duct. It is designed not to adhere and accumulate.
[0007]
[Problems to be solved by the invention]
However, there is a problem with the above-mentioned proposal for preventing the exhaust gas duct from being blocked. That is, FIG. 7 shows how the molten fly ash evaporates and the weight decreases as the temperature rises.
[0008]
As can be seen from this figure, condensation rapidly proceeds as soon as the temperature falls below about 1000 ° C., and it can be seen that the temperature range where the molten fly ash liquefies is very wide. The molten fly ash is considered to adhere to the inner wall of the flue gas duct, which is a flue when condensed from the vaporized gas state, and therefore, it can be said that the temperature range in which such an adhesion phenomenon occurs is wide.
[0009]
On the other hand, the exhaust gas immediately after being discharged from the melting furnace is in a high temperature state of about 1200 ° C. and is cooled while passing through the flue. Therefore, as described above, the exhaust gas passage area and the passage length in the flue to which the molten fly ash adheres are increased by the wide range of the temperature range where the molten fly ash is below the condensation point. For this reason, in the proposed blocking prevention technology, the exhaust gas duct has to be very long as long as it is intended to increase the collection efficiency of molten fly ash.
[0010]
Further, in the exhaust gas from the melting furnace, harmful dioxins are often generated in the region near 300 to 400 ° C. As a countermeasure, dioxins are generally removed with a bag filter in the exhaust gas aftertreatment process that is connected to the flue, but before the treatment with the bag filter, the exhaust gas is below the temperature at which dioxins are likely to be generated. By providing a cooling step for cooling to a minimum, the dioxin removal efficiency can be increased.
[0011]
Therefore, the object of the first invention of the present invention is to avoid the enlargement of the exhaust gas duct and to take measures to prevent the adhesion and accumulation of molten fly ash in a smaller space near the exhaust gas outlet. In addition to simplifying the structure of the flue section up to the exhaust gas aftertreatment process, and reducing the scale of the exhaust gas aftertreatment device leading to the bag filter from the conventional exhaust gas cooling process. Therefore, the present invention is to provide a method for preventing the melting furnace exhaust gas duct from being blocked, which can contribute to a significant reduction in the equipment cost of the melting furnace, and thus the entire incineration / melting equipment.
[0012]
In addition to the object of the first invention, the object of the second invention is the adhesion and deposition of molten fly ash on the part where the exhaust gas flow is likely to stagnate after the exhaust gas cooling part, such as the branch part of the exhaust gas duct. Therefore, it is possible to prevent the clogging of the melting furnace exhaust gas duct so as to ensure the stable continuous operation of the melting furnace.
[0013]
In addition, an object of the third invention is to provide a melting facility capable of effectively realizing the object of the first invention.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the first invention of the present invention is characterized in that a cooling gas is sprayed on the exhaust gas at the outlet of the melting furnace before the molten fly ash contained in the exhaust gas starts to liquefy. It is what. Further, the second invention is an exhaust gas duct after the exhaust gas cooling part, which is a refractory having a high thermal conductivity on the inner wall of the exhaust gas duct corresponding to the part where the flow direction of the exhaust gas changes, It is characterized by sticking a material processed to a thickness such that the surface temperature is 300 ° C. or less.
[0015]
Here, the “exhaust gas at the melting furnace outlet” means high-temperature exhaust gas before liquefaction in the space passing through the outlet. Before the molten fly ash began to liquefy, the cooling gas was blown into the exhaust gas because the molten fly ash was positively condensed, solidified and further scattered in a smaller space immediately after the exhaust gas outlet. This is to prevent molten fly ash from adhering to the inner wall of the exhaust gas duct that follows and depositing to the maximum extent.
[0016]
Moreover, although the temperature of the exhaust gas in the space immediately after the tap outlet to the exhaust gas cooling unit is in a high temperature state of 1000 to 1200 ° C., it is preferable to maintain this temperature. This is to prevent blockage due to slag at the tap. As shown in FIG. 7, since the molten fly ash is vaporized in a high temperature region of 1000 to 1200 ° C., adhesion to the refractory surface does not become a problem.
[0017]
As mentioned above, all removal of dioxins generated in the flue gas from the melting furnace is done with a bag filter, but in order to improve the removal efficiency with the bag filter, the stage before the exhaust gas reaches the bag filter. Therefore, it is necessary to control the exhaust gas temperature on a large scale.
[0018]
In the present invention, the means for spraying the cooling gas to the exhaust gas applied before the molten fly ash is liquefied also has the same role as the conventional water cooling temperature control. That is, in order to exhibit the dioxin generation suppressing effect in addition to the effect of preventing the adhesion and accumulation of molten fly ash, the exhaust gas cooling section rapidly cools a high-temperature gas of about 1000 ° C. to about 200 ° C.
[0019]
If only the prevention of adhesion of molten fly ash to the inner wall of the exhaust gas duct is intended, cooling to about 600 ° C. is sufficient as can be seen from FIG. 7, but the temperature range where dioxins are likely to be formed is 300. Because it is in the vicinity of ˜400 ° C., cooling to about 200 ° C. at a stroke is effective in suppressing the generation of dioxins.
[0020]
Further, after the exhaust gas cooling section, measures should be taken in anticipation that the exhaust gas temperature control by the blowing of the cooling gas may become unstable. That is, if the exhaust gas temperature control becomes unstable, a temperature atmosphere in which the molten fly ash adheres to the inner wall of the exhaust gas duct may occur. In particular, the molten fly ash is likely to accumulate at a portion where the direction of the duct changes after the exhaust gas cooling section and the gas flow is likely to stagnate, for example, at a branching portion or a bent portion of the exhaust gas duct.
[0021]
In view of this point, the present inventors conducted various experiments on the construction contents of the refractory, and as a result, processed the refractory having a high thermal conductivity into a thin film so that the surface temperature of the refractory on the side of the exhaust gas flow path becomes as low as possible. As a result, it was confirmed that adhesion of molten fly ash hardly occurred. Therefore, as a second invention, after the exhaust gas cooling section, the inner wall of the exhaust gas duct is a refractory having a high thermal conductivity and processed to a thickness such that the surface temperature on the exhaust gas flow path side is 300 ° C. or lower. It is possible to adopt a peculiar solution to sticking. Thereby, the stable continuous operation | movement of a melting furnace can be ensured reliably.
[0022]
Further, the third invention is a melting facility provided with a tapping part for simultaneously tapping molten slag and exhaust gas at the lower part of the melting furnace for melting the material to be melted, from the tapping part immediately after the tapping part. An exhaust gas duct that extends downward is continuously provided, and a cooling gas blowing nozzle that penetrates the wall surface of the exhaust gas duct is provided at a position lower than the height of the outlet at the outlet, and further, the cooling gas is supplied to the cooling gas outlet nozzle. A cooling gas supply means is provided.
[0023]
Here, “providing at a position lower than the height of the outlet” means providing a cooling gas blowing nozzle so that the cooling gas can be blown out while the temperature in the duct is in a high temperature state of about 1000 to 1200 ° C. Means. For example, if the flue gas duct is a cylindrical space having a cross sectional area of about 0.3~0.5M 2 is in the vertical distance from the height position of the tapping opening downward (exhaust gas flow direction) 0.5 It is desirable to provide a cooling gas blowing nozzle within a range of about ~ 1.0 m.
[0024]
With the above configuration, it is possible to more small space adhesion of molten fly ash into the deposition prevention is applied molten facilities near the exhaust gas outlet of the melting furnace. Moreover, the preventive measure can also exhibit the dioxin generation | occurrence | production suppression effect. Therefore, exhaust gas post-treatment to simplify the structure of the smoke path unit to process, also aims to scale reduction of the conventional exhaust gas aftertreatment device, the melting furnace stable continuous operation economic melt equipment can keep the It can be.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view showing an example in which the blocking prevention method and the melting equipment of the present invention are applied to an exhaust gas duct of a plasma melting furnace. From the outlet 2 of the plasma melting furnace 1, exhaust gas mixed with molten slag and molten fly ash is discharged. Since the furnace gas temperature of the melting furnace 1 is a high temperature of 1200 ° C. or higher, the slag is completely liquid, but in order to prevent clogging due to solidification of the molten slag due to the temperature drop when flowing down the tap outlet 2 As a structure that can supply the city gas E toward the port 2, the temperature in the duct near the exit of the tap port 2 can be maintained at a high temperature of about 1000 to 1200 ° C.
[0026]
In the exhaust gas cooling section, a high temperature gas of about 1000 ° C. is rapidly cooled to about 200 ° C. by blowing the cooling gas A supplied from the cooling gas supply means 9 through the blowing nozzle 7. 4, as shown in FIG. 2 (enlarged view of only the exhaust gas duct), in the stagnated portion of the exhaust gas flow around the blowout nozzle 7 of the cooling gas A, the molten fly ash is slightly icicle-shaped as shown by the oblique lines. Deposit and grow. However, the accumulation and growth of molten fly ash exceeding a certain level can be prevented, and the molten fly ash falls into the slag granulating tank 6.
[0027]
The problem here is whether or not the accumulation and growth of molten fly ash around the blowing nozzle 7 of the cooling gas A can be reliably suppressed, and it is necessary to grasp the conditions. The conditions under which molten fly ash accumulates and grows to some extent and falls due to its own weight or cooling gas blowing are governed by parameters such as the blowing velocity and blowing angle of the cooling gas A, or the arrangement pitch of the cooling gas blowing nozzles 7. .
[0028]
The application range of these parameters is clarified with reference to FIGS. The ○ mark in the figure indicates the case where the accumulation and growth of molten fly ash has converged to such an extent that it does not affect the stable continuous operation of the melting furnace, and the × mark indicates that the accumulation and growth of molten fly ash has converged. This shows the case where the continuous operation of the melting furnace is adversely affected because the amount of deposition is large or almost closed.
[0029]
FIG. 3 shows the results of examining the influence of the cooling gas blowing flow rate and the blowing angle on the deposition and growth of molten fly ash by providing three cooling gas blowing nozzles 7 on one side and changing the blowing angle α. FIG. As is clear from this figure, it can be seen that the larger the angle α formed between the direction perpendicular to the exhaust gas flow and the cooling gas blowing direction, the larger the cooling gas A blowing speed must be.
[0030]
The blowout angle α = 0 ° is considered to be ideal because the blowout speed is minimum, but when used in actual melting furnace equipment, depending on the flow rate of the cooling gas, the exhaust gas may flow backward toward the melting furnace. Since it may adversely affect driving, it is not preferable.
[0031]
FIG. 4 is a diagram showing the results of examining the influence on the accumulation and growth of molten fly ash when the cooling gas blowing angle α is set to 30 ° and the arrangement pitch of the blowing nozzles 7 is changed. It can be seen that the smaller the number of outlets, the more easily the molten fly ash adheres and grows in the meantime, and the cooling gas outlet speed must be increased.
[0032]
An exhaust gas treatment facility is installed after the exhaust gas cooling section. In FIG. 1, the location where the molten fly ash is likely to adhere because the exhaust gas flow tends to stagnate around the branch portion of the exhaust gas duct, that is, around the connection portion between the flue 8 leading to the exhaust gas treatment facility and the exhaust gas cooling unit ( For the part indicated by the alternate long and short dash line in the figure, a refractory having a high thermal conductivity and processed to a thickness such that the surface temperature on the exhaust gas flow path side is 300 ° C. or less is attached to the duct inner wall. Therefore, the accumulation and growth of molten fly ash are less likely to occur.
[0033]
The solidified molten fly ash is collected using a normal bag filter or the like. In this way, blockage of the exhaust gas duct due to adhesion and accumulation of molten fly ash is prevented, and stable continuous operation of the melting furnace is enabled.
[0034]
FIG. 5 is a schematic explanatory view showing another embodiment, and as an inner wall structure of the exhaust gas cooling section, a refractory having a high thermal conductivity, like the inner wall structure around the connection portion with the flue 8 described above. Shows an example of thinly constructed. Thus, by the cooling effect of the refractory surface by water cooling, it is possible to further suppress the adhesion of the molten fly ash to the periphery of the cooling gas blowing nozzle 7 and further enhance the effect of preventing the accumulation of molten fly ash.
[0035]
FIG. 6 is a schematic explanatory view showing still another embodiment. The configurations of the exhaust gas ducts shown in FIGS. 1 and 5 are such that the molten slag and the exhaust gas follow the same discharge line. In such a configuration, harmful components (hydrogen chloride, etc.) in the exhaust gas and Since ash is mixed into the slag carry-out tank 6, there is a possibility that the quality of the solidified slag and the water quality when the slag carry-out tank 6 is used as a granulation tank are deteriorated.
[0036]
Therefore, as shown in FIG. 6, such a situation can be obtained by separately configuring the tap line 9 and the exhaust gas line 10 in the vicinity of the tap port and applying the exhaust gas duct blockage prevention method of the present invention to the exhaust gas line 10. It is also possible to deal with. In the case of this form, it is preferable to keep the joining space portion between the tap line 9 and the exhaust gas line 10 as small as possible in order to maintain the high temperature around the tap port outlet.
[0037]
【The invention's effect】
As described above, according to the first invention of the present invention, the length of the exhaust gas duct is avoided, and adhesion and accumulation of molten fly ash can be prevented in a smaller space near the exhaust gas outlet, and this prevention is also achieved. In order to have a dioxin generation inhibitory effect together with the measures, the structure of the flue section up to the exhaust gas aftertreatment process is simplified, and the scale of the exhaust gas aftertreatment device leading to the bag filter from the conventional exhaust gas cooling section is reduced. As a result, the melting furnace and thus the incineration / melting equipment as a whole can be significantly reduced in equipment costs.
[0038]
Further, in addition to the effects of the first invention, the second invention is the addition of molten fly ash to a portion where the exhaust gas flow is likely to stagnate, such as a branch portion or a bent portion of the exhaust gas duct, after the exhaust gas cooling portion. It was possible to prevent deposition and ensure stable continuous operation of the melting furnace.
[0039]
Furthermore, a third invention, in short the exhaust gas outlet of the smoke path unit after configuration of the melting furnace in the melting equipment, deposition of molten fly ash, since it is assumed that enables prevention and suppressing generation of dioxin deposition, simplifying the structure of the smoke path unit to exhaust gas aftertreatment step, also aims to scale reduction of the conventional exhaust gas after-treatment device, and economical melting equipment capable of ensuring a stable continuous operation of the melting furnace I was able to.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an embodiment of the present invention.
FIG. 2 is an enlarged view of only an exhaust gas duct portion.
FIG. 3 is a diagram showing the results of examining the influence of the cooling gas blowing speed and the blowing angle on the deposition and growth of molten fly ash.
FIG. 4 is a diagram showing the results of examining the influence of the cooling gas blowing speed and the pitch of the blowing holes on the deposition and growth of molten fly ash.
FIG. 5 is a schematic explanatory view showing another embodiment of the present invention.
FIG. 6 is a schematic explanatory view showing another embodiment of the present invention.
FIG. 7 is a graph showing a state of weight reduction with temperature change for molten fly ash.
FIG. 8 is a schematic cross-sectional view of a relevant part showing a conventional structure for preventing clogging of a melting furnace exhaust gas duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma melting furnace 2 Outlet 3 City gas supply port 4 Refractory 5 Water-cooled iron skin 6 Slag carry-out tank 7 Cooling gas blowing nozzle 8 Flue A Cooling gas E City gas

Claims (2)

溶融炉出口の排ガスに対し、該排ガス中に含まれる溶融飛灰が液化を始める前に冷却ガスを吹き付け、
前記排ガスの冷却部位以後の排ガスダクトであって排ガスの流れ方向が変わる部位に相当する排ガスダクトの内壁に、熱伝導率の大きい耐火物であって排ガス流路側の表面温度が300°C以下となるような厚みに加工されたものを張りつけたことを特徴とする溶融炉排ガスダクトの閉塞防止方法。
Before the molten fly ash contained in the exhaust gas starts to liquefy, the cooling gas is blown against the exhaust gas at the exit of the melting furnace,
On the inner wall of the exhaust gas duct, which corresponds to the exhaust gas duct after the exhaust gas cooling part and corresponding to the part where the flow direction of the exhaust gas changes, is a refractory having a high thermal conductivity and the surface temperature on the exhaust gas channel side is 300 ° C. or lower. What is claimed is: 1. A method for preventing clogging of a melting furnace exhaust gas duct, characterized by sticking a material processed to such a thickness.
被溶融物を溶融する溶融炉の下部に溶融スラグ及び排ガスを同時に出滓する出滓部が設けられた溶融設備において、前記出滓部の直後に出滓部から下方に向かう排ガスダクトを連設すると共に、前記排ガスダクト壁面を貫く冷却ガス吹き出しノズルを前記出滓部における出滓口の高さより低い位置に設け、さらに前記冷却ガス吹き出しノズルに冷却ガスを供給する冷却ガス供給手段を設けたことを特徴とする溶融設備。  In a melting facility provided with a tapping part for simultaneously discharging molten slag and exhaust gas at the lower part of the melting furnace for melting the material to be melted, an exhaust gas duct directed downward from the tapping part is connected immediately after the tapping part In addition, a cooling gas blowing nozzle penetrating the wall surface of the exhaust gas duct is provided at a position lower than the height of the outlet in the outlet portion, and further a cooling gas supply means for supplying cooling gas to the cooling gas outlet nozzle is provided. Melting equipment characterized by.
JP25462495A 1995-09-05 1995-09-05 Method for preventing clogging of melting furnace exhaust gas duct and melting equipment Expired - Fee Related JP3834347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25462495A JP3834347B2 (en) 1995-09-05 1995-09-05 Method for preventing clogging of melting furnace exhaust gas duct and melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25462495A JP3834347B2 (en) 1995-09-05 1995-09-05 Method for preventing clogging of melting furnace exhaust gas duct and melting equipment

Publications (2)

Publication Number Publication Date
JPH0972518A JPH0972518A (en) 1997-03-18
JP3834347B2 true JP3834347B2 (en) 2006-10-18

Family

ID=17267620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25462495A Expired - Fee Related JP3834347B2 (en) 1995-09-05 1995-09-05 Method for preventing clogging of melting furnace exhaust gas duct and melting equipment

Country Status (1)

Country Link
JP (1) JP3834347B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643766B2 (en) * 2000-10-16 2005-04-27 三菱重工業株式会社 Exhaust duct blockage prevention device
JP2007330942A (en) * 2006-06-19 2007-12-27 Yokohama Rubber Co Ltd:The Recovery method and device of sticky fine powder
CN107726337B (en) * 2017-11-17 2019-09-10 林庆樵 A kind of smoke processing system of garbage disposal furnace
CN112594700B (en) * 2020-11-30 2023-07-28 重庆商勤禹水环境科技有限公司 Top blast type waste salt melting furnace

Also Published As

Publication number Publication date
JPH0972518A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
JP3844941B2 (en) Temperature control device and temperature control method for high temperature exhaust gas
US6521171B2 (en) Processing method for high-temperature exhaust gas
JP3834347B2 (en) Method for preventing clogging of melting furnace exhaust gas duct and melting equipment
JP3871509B2 (en) Dust adhesion prevention device
JP4340337B2 (en) Manufacturing equipment for cement and cement-based solidified material
JP3787853B2 (en) Waste gas cooling equipment for waste melting furnace
JP3643766B2 (en) Exhaust duct blockage prevention device
JP4022216B2 (en) Method for preventing clogging of tap outlet duct and ash melting furnace
JP2001172712A (en) Method and device for preventing deposition of metal on water-cooled lance for refining
JP3783261B2 (en) Unmelted ash spill prevention device
MXPA01011687A (en) Method for cooling the gas flow in a smelting furnace.
JP3761053B2 (en) Exhaust gas duct and dust adhesion prevention method
JP4197289B2 (en) Ash processing equipment
JPH06265129A (en) Ash melting and solidifying apparatus
JP2004061009A (en) High temperature exhaust gas treatment method and its device
JP3872471B2 (en) Melt processing equipment
JP2625338B2 (en) Ash melting and solidification equipment
JP3380127B2 (en) Cooling method and cooling device for wall of exhaust gas channel in waste treatment facility
CN215810228U (en) Overflow slag-tapping anti-blocking device of plasma melting furnace
JPH0462312A (en) Device and method for fusion-setting disposal of ash
JP3809039B2 (en) Method of granulating molten metal in melting furnace
JP2002349839A (en) Melt discharge port of melting furnace
JP2002098323A (en) Slag removing device for melting furnace
JPH10332132A (en) Equipment and method for melting and solidification of ash
JP3066289B2 (en) Outlet cooling structure of melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees