JP4698714B2 - Modulation method and demodulation method - Google Patents

Modulation method and demodulation method Download PDF

Info

Publication number
JP4698714B2
JP4698714B2 JP2008231797A JP2008231797A JP4698714B2 JP 4698714 B2 JP4698714 B2 JP 4698714B2 JP 2008231797 A JP2008231797 A JP 2008231797A JP 2008231797 A JP2008231797 A JP 2008231797A JP 4698714 B2 JP4698714 B2 JP 4698714B2
Authority
JP
Japan
Prior art keywords
positive
single sideband
negative
signal
frequency region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008231797A
Other languages
Japanese (ja)
Other versions
JP2010068177A (en
Inventor
英義 富永
現一郎 太田
Original Assignee
財団法人電磁応用研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人電磁応用研究所 filed Critical 財団法人電磁応用研究所
Priority to JP2008231797A priority Critical patent/JP4698714B2/en
Publication of JP2010068177A publication Critical patent/JP2010068177A/en
Application granted granted Critical
Publication of JP4698714B2 publication Critical patent/JP4698714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は変調方法および復調方法に関し、無線通信ならびに光通信等の電磁波を利用する分野における周波数利用効率向上を必要とするシステムを対象とする変復調方法に関する。   The present invention relates to a modulation method and a demodulation method, and more particularly to a modulation / demodulation method for a system that requires an improvement in frequency use efficiency in a field using electromagnetic waves such as wireless communication and optical communication.

現時点で最も高い周波数利用効率が得られる通信方式は、直交周波数多重化方式(OFDM:Orthogonal Frequency Division Multiplex)である。OFDMは、細分化された変調波から構成されるが、変調波の数が低下した場合には、周波数利用効率が大幅に低下する。また、一般のディジタル直交変調方式では、ベースバンド信号の周波数特性を支配するロールオフ率を急峻にすることにより周波数利用効率を向上できるが、OFDM方式ではロールオフ率を急峻にしても周波数利用効率の向上においては効果がほとんどない。   The communication method that can obtain the highest frequency utilization efficiency at present is the orthogonal frequency division multiplexing (OFDM). OFDM is composed of subdivided modulated waves, but when the number of modulated waves decreases, the frequency utilization efficiency decreases significantly. Also, in general digital quadrature modulation systems, the frequency utilization efficiency can be improved by making the roll-off rate that controls the frequency characteristics of the baseband signal steep, but in the OFDM system, the frequency utilization efficiency can be improved even if the roll-off rate is steep. There is almost no effect in improving.

また、周波数利用効率の向上を実現する技術として、送信信号の狭帯域化技術が挙げられる。この代表例がSSB(Single Side Band:単側帯波)方式である。SSB方式を用いた多重化の試みは、過去から進められている。最も早期に研究されたSyed Aon Mujtabaの方式(特許文献1または非特許文献1)における送信信号は、正の周波数領域の搬送波に正極性のUSB(Upper Side Band:上側帯波)を有し、負域の周波数領域の搬送波に正極性のLSB(Lower Side Band:下側帯波)を有するSSB成分と、正の周波数領域の搬送波に正極性のLSBを有し、負域の周波数領域の搬送波に負極性のUSBを持つSSB成分とから成る送信信号である。しかし、Syed Aon Mujtabaの方式では、全体の周波数帯域幅はQPSK等のシングルキャリア変調方式の周波数帯域幅と変わらず、周波数利用効率の向上につながっていない。   Further, as a technique for improving the frequency utilization efficiency, a transmission signal narrowing technique can be cited. A typical example is the SSB (Single Side Band) system. Multiplexing attempts using the SSB method have been made since the past. The transmission signal in the Syed Aon Mujtaba method (patent document 1 or non-patent document 1) studied earliest has a positive USB (Upper Side Band) on a positive frequency carrier. An SSB component having a positive LSB (Lower Side Band) in a negative frequency region carrier, a positive LSB in a positive frequency carrier, and a negative frequency region carrier in a negative frequency region This is a transmission signal composed of an SSB component having a negative polarity USB. However, in the Syed Aon Mujtaba system, the overall frequency bandwidth is not different from the frequency bandwidth of a single carrier modulation system such as QPSK, which does not improve the frequency utilization efficiency.

次に発表された生田氏の方式(非特許文献2および非特許文献3)では、送信側が4種類のSSB成分を有する送信信号を生成する。また、搬送波の片側にSSB成分を直交的に配置して、USBまたはLSBを直交変調することで周波数利用効率をQPSK方式シングルキャリア方式の2倍にする変調方式がある(特許文献2)。
米国特許第6091781号明細書 特開2006−203835号公報 Syed Aon Mujtaba, “A Novel Scheme for Transmitting QPSK as a Single-Sideband Signal”, IEEE Globalcomm 98,vol.1, pp.592-597, 1998 生田大輔,高畑文雄,“BPSK信号のSSB伝送に関する検討”,2001年電子情報通信学会総合大会講演論文集,B-5-177,2001年3月(Daisuke Ikuta, Fumio Takahata, "On SSB Transmission of BPSK Signal", Proceedings of the IEICE General Conference, B-5-177, Mar 2001) 生田大輔,高畑文雄,“QPSK信号のSSB伝送に関する検討”,2001年電子情報通信学会総合大会講演論文集,B-5-176,2001年3月(Daisuke Ikuta, Fumio Takahata, "On SSB Transmission of QPSK Signal", Proceedings of the IEICE General Conference, B-5-176, Mar 2001) 太田現一郎他,“周波数利用効率のための新たな変調方式の検討”,電子情報通信学会技術研究報告RCS2003-184,pp.189-194,2003年11月20日(Gen-ichiro Ohta, Mitsuru Uesugi, TakuroSato, Hideyoshi Tominaga, "Considerations on new Modulation Methods for Spectram Efficiency", Technical report of IEICE RCS,RCS2003-184,pp.189-194, Nov 2003)
In the method of Mr. Ikuta announced next (Non-Patent Document 2 and Non-Patent Document 3), the transmission side generates a transmission signal having four types of SSB components. In addition, there is a modulation method in which an SSB component is arranged orthogonally on one side of a carrier wave, and frequency utilization efficiency is doubled that of a QPSK single carrier method by orthogonally modulating USB or LSB (Patent Document 2).
US Pat. No. 6,091,781 JP 2006-203835 A Syed Aon Mujtaba, “A Novel Scheme for Transmitting QPSK as a Single-Sideband Signal”, IEEE Globalcomm 98, vol.1, pp.592-597, 1998 Daisuke Ikuta, Fumio Takahata, “Examination of SSB transmission of BPSK signals”, 2001 IEICE General Conference Proceedings, B-5-177, March 2001 (Daisuke Ikuta, Fumio Takahata, “On SSB Transmission of BPSK Signal ", Proceedings of the IEICE General Conference, B-5-177, Mar 2001) Daisuke Ikuta, Fumio Takahata, “Study on SSB transmission of QPSK signal”, 2001 IEICE General Conference Proceedings, B-5-176, March 2001 (Daisuke Ikuta, Fumio Takahata, “On SSB Transmission of QPSK Signal ", Proceedings of the IEICE General Conference, B-5-176, Mar 2001) Oichiro Genichiro et al., “Examination of New Modulation Scheme for Frequency Utilization Efficiency”, IEICE Technical Report RCS2003-184, pp.189-194, November 20, 2003 (Gen-ichiro Ohta, Mitsuru (Uesugi, TakuroSato, Hideyoshi Tominaga, "Considerations on new Modulation Methods for Spectram Efficiency", Technical report of IEICE RCS, RCS2003-184, pp.189-194, Nov 2003)

SSB技術を用いてOFDMが有する周波数利用効率に匹敵若しくは上回る変調方式を実現するためには、一つの搬送周波数に独立の情報を保持するUSBとLSBとを配置すること、さらに、USBとLSBとをそれぞれ直交変調させることが一つの解決策である。これにより、変調信号は、同一の搬送周波数を有する4種類のSSB要素により構成される。4種類のSSB要素は、周波数領域では互いに直交するものの、時間領域では互いに干渉してしまう。しかし、上述した従来文献には、これら4種類のSSB要素を受信側で分離する方法および伝送されるべき情報のみを抽出する方法のいずれも開示されていない。   In order to realize a modulation scheme comparable to or exceeding the frequency utilization efficiency of OFDM using SSB technology, it is necessary to arrange USB and LSB holding independent information on one carrier frequency, and further, USB and LSB One solution is to quadrature modulate each of the. Thereby, the modulation signal is composed of four types of SSB elements having the same carrier frequency. The four types of SSB elements are orthogonal to each other in the frequency domain, but interfere with each other in the time domain. However, the above-described conventional literature does not disclose either a method for separating these four types of SSB elements on the receiving side or a method for extracting only information to be transmitted.

例えば、非特許文献3には、4種類のSSB要素を伝送する技術が開示されているが、4種類のSSB要素は同一の搬送周波数を有していない。また、非特許文献3において、4種類のSSB要素が仮に同一の搬送周波数を有する場合でも、非特許文献3に示される受信回路は4種類のSSB成分の相互干渉が残留し、干渉成分の相殺作用と希望信号の抽出作用とが十分に発揮できないため、4種類のSSB要素を完全に復調できない。非特許文献3において、同一の搬送周波数を有する4種類のSSB要素を完全に復調するためには、搬送周波数とSSB成分との間に周波数帯域に相当するだけのガードバンドを加える必要がある。ガードバンドを加えた場合には、周波数帯域幅は2倍に増大するため、周波数利用効率の向上につながらない。   For example, Non-Patent Document 3 discloses a technique for transmitting four types of SSB elements, but the four types of SSB elements do not have the same carrier frequency. Further, in Non-Patent Document 3, even when the four types of SSB elements have the same carrier frequency, the reception circuit shown in Non-Patent Document 3 retains mutual interference of the four types of SSB components, and cancels out the interference components. Since the operation and the extraction operation of the desired signal cannot be sufficiently performed, the four types of SSB elements cannot be completely demodulated. In Non-Patent Document 3, in order to completely demodulate four types of SSB elements having the same carrier frequency, it is necessary to add a guard band corresponding to the frequency band between the carrier frequency and the SSB component. When a guard band is added, the frequency bandwidth is doubled, which does not lead to an improvement in frequency utilization efficiency.

また、特許文献2では、受信機の復調段階および復号段階のうち、復号段階においてのみ干渉成分の除去を行っている。特許文献2に開示されている受信機は復調段階の構成部として直交検波部、整合フィルタおよび合成器を構成するが、信号間の干渉成分はいずれの構成部でも除去できない。すなわち、特許文献2では、復調段階に続く復号段階で信号間の干渉成分除去および信号分離を行っている。また、特許文献2に開示されている受信機では、ターボ復号方式により信号間の干渉成分を除去する。ターボ復号方式は、干渉信号成分のレプリカを用いて巡回的に誤差除去を行う方式であり、SSB方式の特徴を活かした方式ではない。また、ターボ復号方式は多大の演算を必要とし、演算による大きな処理遅延が発生する。   Further, in Patent Document 2, interference components are removed only in the decoding stage among the demodulation stage and decoding stage of the receiver. The receiver disclosed in Patent Document 2 configures a quadrature detection unit, a matched filter, and a combiner as components at the demodulation stage, but interference components between signals cannot be removed by any component. That is, in Patent Document 2, interference component removal and signal separation between signals are performed in a decoding stage subsequent to the demodulation stage. In the receiver disclosed in Patent Document 2, interference components between signals are removed by a turbo decoding method. The turbo decoding method is a method for performing error removal cyclically by using a replica of an interference signal component, and is not a method utilizing the characteristics of the SSB method. Also, the turbo decoding method requires a large amount of computation, and a large processing delay is caused by the computation.

本発明は、かかる点に鑑みてなされたものであり、ディジタル信号をSSB化することで送信信号を狭帯域化して、無線通信の周波数利用効率を改善するにあたって、復調時における周波数領域での各信号間の相互干渉を抑制し得る変調方法および復調方法を提供することを目的とする。   The present invention has been made in view of the above points. In order to improve the frequency utilization efficiency of radio communication by narrowing the transmission signal by converting the digital signal into SSB, each frequency domain at the time of demodulation is provided. An object of the present invention is to provide a modulation method and a demodulation method capable of suppressing mutual interference between signals.

本発明の変調方法は、共通の搬送波周波数を有する2種類の単側帯波要素から成る変調信号を生成する変調方法であり、前記2種類の単側帯波要素は、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に正極性の下側単側帯波を有した第1の単側帯波要素と、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に負極性の下側単側帯波を有した第2の単側帯波要素とから構成され、あるいは、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に正極性の上側単側帯波を有した第3の単側帯波要素と、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に負極性の上側単側帯波を有した第4の単側帯波要素とから構成されるようにした。   The modulation method of the present invention is a modulation method for generating a modulation signal composed of two types of single sideband elements having a common carrier frequency, and the two types of single sideband elements are positive in the positive frequency region. A first single sideband element having an upper single sideband and having a positive lower singlesideband in the negative frequency region; and a positive upper singlesideband in the positive frequency region and in the negative frequency region Or a second single sideband element having a negative lower single sideband, or having a positive lower single sideband in the positive frequency region and a positive upper single in the negative frequency region. A third single-sideband element having a sideband and a fourth single-sideband having a positive lower single-sideband in the positive frequency domain and a negative upper single-sideband in the negative frequency domain It was made up of elements.

本発明の復調方法は、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に正極性の下側単側帯波を有した第1の単側帯波要素と、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に負極性の下側単側帯波を有した第2の単側帯波要素とから構成される2種類の単側帯波、あるいは、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に正極性の上側単側帯波を有した第3の単側帯波要素と、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に負極性の上側単側帯波を有した第4の単側帯波要素とから構成される2種類の単側帯波からなる変調信号であり、3値化2進数化された前記変調信号を受信し、前記変調信号のシンボルを、‘0’および‘1’を基調とする2進数に変換する2進数化処理を行うようにした。   The demodulation method of the present invention includes a first single sideband element having a positive upper single sideband in the positive frequency region and a positive lower single sideband in the negative frequency region, and a positive frequency region. Two types of single sidebands having a positive upper single sideband and a second single sideband element having a negative lower single sideband in the negative frequency region, or a positive frequency A third single sideband element having a positive lower single sideband in the region and a positive upper single sideband in the negative frequency region, and a positive lower single sideband in the positive frequency region. And a modulation signal composed of two types of single sidebands composed of a fourth single sideband element having a negative upper sideband in the negative frequency region, and is a ternary binary number A modulated signal is received, and the symbol of the modulated signal is based on '0' and '1'. And to perform binary processing for converting binary numbers to to.

本発明によれば、変調の基本要素である単側帯波からなる4種類の単側帯波要素を、共通の搬送周波数軸の周囲に直交的に配置することで、OFDM方式とほぼ同等、あるいはQPSK等のシングルキャリア変調方式の約2倍の周波数利用効率を実現することができる。さらに、シンボル信号のロールオフ率を急峻にすることにより、OFDM方式の約2倍の周波数利用効率を実現することができる。   According to the present invention, four types of single sideband elements consisting of single sidebands, which are the basic elements of modulation, are arranged orthogonally around a common carrier frequency axis, so that they are almost equivalent to the OFDM system or QPSK Thus, the frequency utilization efficiency about twice that of the single carrier modulation system such as the above can be realized. Furthermore, by making the roll-off rate of the symbol signal steep, it is possible to realize frequency use efficiency that is about twice that of the OFDM system.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明者が本願発明を着想するに到るまでのケース(ケース1およびケース2)について説明する。   First, cases (case 1 and case 2) until the inventor comes up with the idea of the present invention will be described.

(ケース1)
図1に、本ケースが目的とする変調信号、つまり、共通の搬送周波数を有する4つのSSB要素から成る変調信号を示す。4つのSSB要素は、図1に示すように、偶対称正極性回転SSBと、偶対称負極性回転SSBと、奇対称正極性回転SSBと、奇対称負極性回転SSBとから成る。それぞれの単側帯波要素は、正域および負域の周波数領域それぞれに偶対称な周波数成分または奇対称な周波数成分を有する。
(Case 1)
FIG. 1 shows a modulation signal intended by this case, that is, a modulation signal composed of four SSB elements having a common carrier frequency. As shown in FIG. 1, the four SSB elements are composed of an even symmetric positive polarity rotation SSB, an even symmetric negative polarity rotation SSB, an odd symmetric positive polarity rotation SSB, and an odd symmetric negative polarity rotation SSB. Each single sideband element has an even symmetric frequency component or an odd symmetric frequency component in each of the positive and negative frequency regions.

具体的には、偶対称正極性回転SSBは、正の周波数領域に正極性の上側単側帯波を有するとともに負の周波数領域に正極性の下側単側帯波を有し、奇対称正極性回転SSBは正の周波数領域に正極性の上側単側帯波を有するとともに負の周波数領域に負極性の下側単側帯波を有し、偶対称負極性回転SSBは、正の周波数領域に正極性の下側単側帯波を有するとともに負の周波数領域に正極性の上側単側帯波を有し、奇対称負極性回転SSBは正の周波数領域に正極性の下側単側帯波を有するとともに負の周波数領域に負極性の上側単側帯波を有する。   Specifically, the even symmetric positive rotation SSB has a positive upper single sideband in the positive frequency region and a positive lower single sideband in the negative frequency region. The SSB has a positive upper single sideband in the positive frequency region and a negative lower single sideband in the negative frequency region, and the even symmetric negative rotation SSB has a positive polarity in the positive frequency region. The lower single sideband has a positive upper singlesideband in the negative frequency region, and the odd-symmetric negative rotation SSB has a positive lower singlesideband in the positive frequency region and a negative frequency The region has a negative upper single sideband.

従って、周波数領域における正負の成分を考慮すると、変調信号のSSB要素は8個となる。なお、8個のSSB要素は、概念上のものであり、8個のSSB要素が物理的に単独で存在するものではない。例えば、角周波数ωの信号は、cosωtまたはsinωtである。しかし、SSB要素の概念を説明するためには、SSB要素を解析信号化することが必要となる。よって、cosωtを一例として説明すると、角周波数ωの信号は、cosωtの解析成分であるフェイサexp(jωt)およびexp(−jωt)を用いてオイラーの定理を用いて次のように表すことができる。

Figure 0004698714
ここで、フェイサとは、一方向の位相回転する基本要素であり、exp(jωt)は角周波数ωの位置で正方向に位相回転し、exp(−jωt)は角周波数−ωの位置で正方向に位相回転する。 Therefore, considering positive and negative components in the frequency domain, the number of SSB elements of the modulation signal is 8. Note that the eight SSB elements are conceptual, and the eight SSB elements do not physically exist alone. For example, the angular frequency omega 1 of the signal is cos .omega 1 t or sin .omega 1 t. However, in order to explain the concept of the SSB element, it is necessary to convert the SSB element into an analytic signal. Therefore, when described as an example cos .omega 1 t, an angular frequency omega 1 of the signal, using the Euler's theorem using an analysis component of cos .omega 1 t Feisa exp (jω 1 t) and exp (-jω 1 t) Can be expressed as follows.
Figure 0004698714
Here, the facer is a basic element that rotates in one direction, exp (jω 1 t) rotates in the positive direction at the position of the angular frequency ω 1 , and exp (−jω 1 t) has the angular frequency −. phase rotates in the forward direction at the position of the omega 1.

一方、情報を伝送するための帯域幅を有する信号は、情報信号の遷移により位相が正方向に増大したり、負方向に増大したりする。このとき、図1に示す周波数領域では、情報を伝送するための帯域幅を有する信号は、正方向に位相回転する場合にはUSB信号とし、負方向に位相回転する場合にはLSB信号とする。例えば、図1に示す偶対称正極性回転SSBでは、情報信号の遷移により位相が正方向に増大する場合には正の周波数領域のUSB成分を形成し、情報信号の遷移により位相が負方向に増大する場合には負域の周波数領域のLSB成分を形成する。すなわち、図1に示す偶対称正極性回転SSB、偶対称負極性回転SSB、奇対称正極性回転SSBおよび奇対称負極性回転SSBは、USB成分およびLSB成分をそれぞれが有するものの、時間領域ではUSB成分およびLSB成分のいずれか1つのみが存在する。   On the other hand, the phase of a signal having a bandwidth for transmitting information increases in the positive direction or increases in the negative direction due to the transition of the information signal. At this time, in the frequency domain shown in FIG. 1, a signal having a bandwidth for transmitting information is a USB signal when the phase is rotated in the positive direction, and an LSB signal when the phase is rotated in the negative direction. . For example, in the even symmetric positive polarity rotation SSB shown in FIG. 1, when the phase increases in the positive direction due to the transition of the information signal, a USB component in the positive frequency region is formed, and the phase shifts in the negative direction due to the transition of the information signal. When increasing, an LSB component in the negative frequency domain is formed. That is, even symmetric positive polarity rotation SSB, even symmetric negative polarity rotation SSB, odd symmetric positive polarity rotation SSB and odd symmetric negative polarity rotation SSB shown in FIG. 1 each have a USB component and an LSB component, but in the time domain, Only one of the component and the LSB component is present.

図1における4つのSSB要素は以下のように表される。ただし、USB型SSB−QPSKで搬送される情報をu(t),v(t)とし、LSB型SSB−QPSKで搬送される情報をp(t),r(t)とする。また、u(t),p(t)を同相(In-phase)成分とし、v(t),r(t)を直交(Quadratured-phase)成分とする。また、u(t),v(t),p(t),r(t)の搬送波上の信号をそれぞれU(t),V(t),P(t),R(t)とする。   The four SSB elements in FIG. 1 are expressed as follows: However, information carried by USB SSB-QPSK is u (t) and v (t), and information carried by LSB SSB-QPSK is p (t) and r (t). Further, u (t) and p (t) are in-phase components, and v (t) and r (t) are quadratured-phase components. Further, the signals on the carrier waves u (t), v (t), p (t), and r (t) are U (t), V (t), P (t), and R (t), respectively.

<1.偶対称正極性回転SSB>
信号u(t)が解析信号化されると、次式で表される。

Figure 0004698714
ただし、H[u(t)]はu(t)のヒルベルト変換処理を示す。 <1. Even Symmetric Positive Rotation SSB>
When the signal u (t) is converted into an analysis signal, it is expressed by the following equation.
Figure 0004698714
However, H [u (t)] represents the Hilbert transform process of u (t).

ここで、搬送波角周波数をωとすると、信号u(t)は次式に示すSSBとして搬送される。

Figure 0004698714
Here, if the carrier angular frequency is ω 1 , the signal u (t) is carried as SSB shown in the following equation.
Figure 0004698714

<2.奇対称正極性回転SSB>
式(2)と同様にしてv(t)が解析信号化されたvおよびvを用いると、信号v(t)は次式に示すSSBとして搬送される。

Figure 0004698714
<2. Odd Symmetric Positive Rotation SSB>
Using v + and v in which v (t) is converted into an analytic signal in the same manner as in equation (2), signal v (t) is carried as SSB shown in the following equation.
Figure 0004698714

<3.偶対称負極性回転SSB>
式(2)と同様にしてp(t)が解析信号化されたpおよびpを用いると、信号p(t)は次式に示すSSBとして搬送される。

Figure 0004698714
<3. Even Symmetric Negative Rotation SSB>
Using p + and p in which p (t) is converted into an analytic signal in the same manner as in equation (2), signal p (t) is carried as SSB shown in the following equation.
Figure 0004698714

<4.奇対称負極性回転SSB>
式(2)と同様にしてr(t)が解析信号化されたrおよびrを用いると、信号r(t)は次式に示すSSBとして搬送される。

Figure 0004698714
<4. Odd Symmetric Negative Rotation SSB>
Using r + and r in which r (t) is converted into an analytic signal in the same manner as in equation (2), signal r (t) is carried as SSB shown in the following equation.
Figure 0004698714

以上、4つのSSB要素について説明した。ここで、4つのSSB要素すべてを合成した変調信号をSSSB−QPSK(t)として次式で表すことが出来る。

Figure 0004698714
The four SSB elements have been described above. Here, a modulated signal obtained by synthesizing all four SSB elements can be expressed as S SSB-QPSK (t) by the following equation.
Figure 0004698714

図2に、本ケースに係る変調装置の構成を示す。   FIG. 2 shows the configuration of the modulation device according to this case.

図2に示す変調装置100において、送信データs(t)が直並列変換部(S/P変換部)101に入力される。S/P変換部101は、送信データs(t)を直並列変換して4系統の並列信号を生成する。そして、S/P変換部101は、直並列変換した4系統の並列信号をナイキストフィルタ102,103,104および105にそれぞれ出力する。   In the modulation device 100 shown in FIG. 2, the transmission data s (t) is input to the serial / parallel conversion unit (S / P conversion unit) 101. The S / P conversion unit 101 performs serial / parallel conversion on the transmission data s (t) to generate four parallel signals. Then, the S / P converter 101 outputs the four parallel signals subjected to serial / parallel conversion to the Nyquist filters 102, 103, 104, and 105, respectively.

ナイキストフィルタ102,103,104および105は、S/P変換部101から入力される信号にフィルタリング処理をそれぞれ施し、所望の帯域幅の信号u(t),v(t),p(t),r(t)を出力する。   The Nyquist filters 102, 103, 104, and 105 perform a filtering process on the signals input from the S / P converter 101, respectively, to obtain signals u (t), v (t), p (t), r (t) is output.

加算器106は、ナイキストフィルタ102の出力u(t)とナイキストフィルタ104の出力p(t)とを加算してu(t)+p(t)を得る。加算器107は、ナイキストフィルタ105の出力r(t)からナイキストフィルタ103の出力v(t)を減算してr(t)−v(t)を得る。   The adder 106 adds the output u (t) of the Nyquist filter 102 and the output p (t) of the Nyquist filter 104 to obtain u (t) + p (t). The adder 107 subtracts the output v (t) of the Nyquist filter 103 from the output r (t) of the Nyquist filter 105 to obtain r (t) −v (t).

ヒルベルト変換器108は、加算器107の出力(r(t)−v(t))をヒルベルト変換して、ヒルベルト変換後の信号H[r(t)−v(t)]を加算器109に出力する。   The Hilbert transformer 108 performs a Hilbert transform on the output (r (t) −v (t)) of the adder 107, and a signal H [r (t) −v (t)] after the Hilbert transform is sent to the adder 109. Output.

加算器109は、加算器106の出力(u(t)+p(t))とヒルベルト変換器108の出力H[r(t)−v(t)]とを加算して信号I(t)を生成する。加算器109で生成される信号I(t)を次式に示す。

Figure 0004698714
The adder 109 adds the output (u (t) + p (t)) of the adder 106 and the output H [r (t) −v (t)] of the Hilbert transformer 108 to obtain a signal I (t). Generate. The signal I (t) generated by the adder 109 is shown in the following equation.
Figure 0004698714

また、加算器110は、ナイキストフィルタ104の出力p(t)からナイキストフィルタ102の出力u(t)を減算してp(t)−u(t)を得る。加算器111は、ナイキストフィルタ103の出力v(t)とナイキストフィルタ105の出力r(t)とを負の方向に加算して−{r(t)+v(t)}を得る。   The adder 110 subtracts the output u (t) of the Nyquist filter 102 from the output p (t) of the Nyquist filter 104 to obtain p (t) −u (t). The adder 111 adds the output v (t) of the Nyquist filter 103 and the output r (t) of the Nyquist filter 105 in the negative direction to obtain − {r (t) + v (t)}.

ヒルベルト変換器112は、加算器110の出力(p(t)−u(t))をヒルベルト変換して、ヒルベルト変換後の信号H[p(t)−u(t)]を加算器113に出力する。   The Hilbert transformer 112 performs a Hilbert transform on the output (p (t) −u (t)) of the adder 110 and the signal H [p (t) −u (t)] after the Hilbert transform is sent to the adder 113. Output.

加算器113は、加算器111の出力(−{r(t)+v(t)})とヒルベルト変換器112の出力H[p(t)−u(t)]とを加算して信号Q(t)を生成する。加算器113で生成される信号Q(t)を次式に示す。

Figure 0004698714
The adder 113 adds the output (− {r (t) + v (t)}) of the adder 111 and the output H [p (t) −u (t)] of the Hilbert transformer 112 to add the signal Q ( t). The signal Q (t) generated by the adder 113 is shown in the following equation.
Figure 0004698714

乗算器114には搬送周波数信号発生器116で発生された搬送周波数信号(cosωt)が入力され、乗算器115には移相器117によって90°(π/2)だけ位相がシフトされた搬送周波数信号(sinωt)が入力される。これにより、乗算器114は信号I(t)を搬送周波数信号で乗算し、乗算器115は信号Q(t)を90°位相のずれた搬送周波数信号で乗算する。 The multiplier 114 receives the carrier frequency signal (cos ω 1 t) generated by the carrier frequency signal generator 116, and the phase of the multiplier 115 is shifted by 90 ° (π / 2) by the phase shifter 117. A carrier frequency signal (sin ω 1 t) is input. Thereby, the multiplier 114 multiplies the signal I (t) by the carrier frequency signal, and the multiplier 115 multiplies the signal Q (t) by the carrier frequency signal that is 90 ° out of phase.

加算器118は、乗算器114の出力と乗算器115の出力とを加算する。これにより2種類のUSB信号(u(t),v(t))および2種類のLSB信号(p(t),r(t))が直交多重されたSSB変調波SSSB−QPSK(t)が得られる。加算器118で生成されるSSB変調波SSSB−QPSK(t)を次式に示す。

Figure 0004698714
Adder 118 adds the output of multiplier 114 and the output of multiplier 115. As a result, two types of USB signals (u (t), v (t)) and two types of LSB signals (p (t), r (t)) are orthogonally multiplexed into an SSB modulated wave S SSB-QPSK (t). Is obtained. The SSB modulated wave S SSB-QPSK (t) generated by the adder 118 is represented by the following equation.
Figure 0004698714

ここで、式(7)および式(10)は等価である。よって、図2に示す構成により、本ケースが目的とする変調信号、つまり、4種類のSSB要素から成る変調信号を得ることができる。   Here, Formula (7) and Formula (10) are equivalent. Therefore, with the configuration shown in FIG. 2, it is possible to obtain a modulation signal intended by this case, that is, a modulation signal composed of four types of SSB elements.

次に、図3に、変調装置100から送信されたSSB変調波SSSB−QPSK(t)を受信し、復調および復号する復調復号装置の構成を示す。 Next, FIG. 3 shows a configuration of a demodulation / decoding apparatus that receives, demodulates and decodes the SSB modulated wave S SSB-QPSK (t) transmitted from the modulation apparatus 100.

図3に示す復調復号装置200において、SSB変調波SSSB−QPSK(t)は直交検波部201に入力される。直交検波部201は、SSB変調波SSSB−QPSK(t)にcosωtまたはsinωtを乗じて受信信号SSSB−QPSK(t)の同相成分および直交成分をナイキストフィルタ202,203にそれぞれ出力する。 In the demodulation and decoding apparatus 200 illustrated in FIG. 3, the SSB modulated wave S SSB-QPSK (t) is input to the quadrature detection unit 201. Quadrature detection unit 201, SSB modulated wave S SSB-QPSK (t) to cos .omega 1 t or sin .omega 1 respectively in-phase and quadrature components of multiplying the t received signal S SSB-QPSK (t) to the Nyquist filter 202, 203 Output.

ナイキストフィルタ202,203は、それぞれが有するローパスフィルタ作用によって、直交検波部201から入力されるSSSB−QPSK(t)の同相成分および直交成分の高域成分を除去して信号I(t),Q(t)を得る。 Each of the Nyquist filters 202 and 203 removes the in-phase component and the high-frequency component of the quadrature component of the S SSB-QPSK (t) input from the quadrature detection unit 201 by the low-pass filter action that each of the Nyquist filters 202 and 203 Q (t) is obtained.

ヒルベルト変換器204,205は、信号I(t),Q(t)をヒルベルト変換して、信号H[I(t)],H[Q(t)]を得る。   The Hilbert transformers 204 and 205 perform Hilbert transform on the signals I (t) and Q (t) to obtain signals H [I (t)] and H [Q (t)].

加算器206は、I(t)とH[Q(t)]とを加算し、加算器207は、I(t)からH[Q(t)]を減算し、加算器208は、Q(t)とH[I(t)]とを加算し、加算器209は、Q(t)からH[I(t)]を減算する。   The adder 206 adds I (t) and H [Q (t)], the adder 207 subtracts H [Q (t)] from I (t), and the adder 208 adds Q ( t) and H [I (t)] are added, and the adder 209 subtracts H [I (t)] from Q (t).

復号器210は、周波数直交する2つのUSB信号を分離して、分離したu(t)およびv(t)をパラレルシリアル変換部(P/S変換部)212に出力する。復号器211は、周波数直交する2つのLSB信号を分離して、分離したp(t)およびr(t)をP/S変換部212に出力する。   The decoder 210 separates two USB signals that are orthogonal to each other in frequency and outputs the separated u (t) and v (t) to the parallel-serial conversion unit (P / S conversion unit) 212. The decoder 211 separates two LSB signals that are orthogonal to each other in frequency, and outputs the separated p (t) and r (t) to the P / S converter 212.

P/S変換部212は、入力される4系統をパラレルシリアル変換することによって、1系統のデータ信号s(t)を得る。   The P / S converter 212 obtains one system data signal s (t) by performing parallel-serial conversion on the four systems input.

次に、本ケースの復調復号装置200の動作について説明する。   Next, the operation of the demodulation / decoding apparatus 200 in this case will be described.

まず、受信信号SSSB−QPSK(t)にcosωtを乗じて得られる、受信信号SSSB−QPSK(t)の同相成分を、ナイキストフィルタ202が有するローパスフィルタに通過させることで高域成分を除去すると次式の信号I(t)が得られる。

Figure 0004698714
First, the in-phase component of the received signal S SSB-QPSK (t) obtained by multiplying the received signal S SSB-QPSK (t) by cos ω 1 t is passed through a low-pass filter included in the Nyquist filter 202, thereby causing a high-frequency component. Is removed, a signal I (t) of the following formula is obtained.
Figure 0004698714

また、受信信号SSSB−QPSK(t)にsinωtを乗じて得られる、受信信号SSSB−QPSK(t)の直交成分を、ナイキストフィルタ203が有するローパスフィルタに通過させることで高域成分を除去すると次式の信号Q(t)が得られる。

Figure 0004698714
Further, the high-frequency component is obtained by passing the orthogonal component of the received signal S SSB-QPSK (t) obtained by multiplying the received signal S SSB-QPSK (t) by sin ω 1 t through the low-pass filter of the Nyquist filter 203. Is removed, a signal Q (t) of the following formula is obtained.
Figure 0004698714

ここで、式(11)および式(12)に示す信号には4種類の信号が含まれているため、2信号のためのSSB−QPSKの場合よりもさらに干渉成分が増加している。このままでは、4元連立方程式を式(11)および式(12)の2式で解かなければならない。しかし、4元連立方程式を2式で解くことは理論的に不可能である。   Here, since the signals shown in Expression (11) and Expression (12) include four types of signals, the interference component further increases compared to the case of SSB-QPSK for two signals. If this is the case, the quaternary simultaneous equations must be solved by two formulas (11) and (12). However, it is theoretically impossible to solve the quaternary simultaneous equations with two equations.

ここで、SSBの特徴である解析信号としての性質に着目することが重要である。すなわち、SSB信号は位相空間での回転方向が正負一方向に定まる。すなわち、SSB信号のうち、USBとLSBとでは位相回転の方向が異なるため、ヒルベルト変換を施しても位相回転方向は変わらない。そこで、ヒルベルト変換器204およびヒルベルト変換器205は、この性質を利用して、式(11)の信号I(t)および式(12)の信号Q(t)をヒルベルト変換して次式の信号を得る。

Figure 0004698714
Figure 0004698714
Here, it is important to pay attention to the characteristic of the SSB as an analysis signal. That is, the rotation direction in the phase space of the SSB signal is determined in one positive and negative direction. That is, among the SSB signals, the phase rotation direction is different between USB and LSB, and therefore the phase rotation direction does not change even when the Hilbert transform is performed. Therefore, the Hilbert transformer 204 and the Hilbert transformer 205 use this property to perform a Hilbert transform on the signal I (t) of the equation (11) and the signal Q (t) of the equation (12) to obtain a signal of the following equation: Get.
Figure 0004698714
Figure 0004698714

式(11)と式(14)とを比較すると、u(t)およびH[v(t)]は同符号であるが、p(t)およびH[r(t)]は異符号である。同様に、式(12)と式(13)とを比較すると、H[u(t)]およびv(t)は異符号であるが、H[p(t)]およびr(t)は同符号である。   Comparing equation (11) and equation (14), u (t) and H [v (t)] have the same sign, but p (t) and H [r (t)] have different signs. . Similarly, when Equation (12) and Equation (13) are compared, H [u (t)] and v (t) have different signs, but H [p (t)] and r (t) are identical. It is a sign.

そこで、加算器206,207は式(11)と式(14)とを加算および減算することにより以下の信号を得る。

Figure 0004698714
Figure 0004698714
Thus, the adders 206 and 207 obtain the following signals by adding and subtracting the equations (11) and (14).
Figure 0004698714
Figure 0004698714

同様に、加算器208,209は式(12)と式(13)とを加算および減算することにより以下の信号を得る。

Figure 0004698714
Figure 0004698714
Similarly, the adders 208 and 209 obtain the following signals by adding and subtracting the equations (12) and (13).
Figure 0004698714
Figure 0004698714

以上により、式(15)および式(18)はu(t)とv(t)との2元連立方程式となり、式(16)および式(17)はp(t)とr(t)との2元連立方程式となる。これにより、2式を用いて2元連立方程式を解けばよいため、各SSB信号を分離することが可能となる。   Thus, Equation (15) and Equation (18) become a binary simultaneous equation of u (t) and v (t), and Equation (16) and Equation (17) are expressed as p (t) and r (t) This is a binary simultaneous equation. As a result, it is only necessary to solve the binary simultaneous equations using the two equations, so that each SSB signal can be separated.

ただし、これらの2元連立方程式は、実際にはヒルベルト変換要素が含まれており、非常に強いシンボル干渉を引き起こす。図4にヒルベルト変換要素が引き起こすシンボル干渉の様子を示す。図4は、式(15)において、シンボル信号u(t)をナイキストロールオフ信号として用いる場合、すなわち、u(t)が式(19)で表され、そのヒルベルト変換が式(20)で表される場合の時間領域におけるシンボル間干渉を示す図である。

Figure 0004698714
Figure 0004698714
However, these binary simultaneous equations actually include a Hilbert transform element and cause very strong symbol interference. FIG. 4 shows symbol interference caused by the Hilbert transform element. FIG. 4 shows a case where the symbol signal u (t) is used as the Nyquist roll-off signal in the equation (15), that is, u (t) is represented by the equation (19), and its Hilbert transform is represented by the equation (20). It is a figure which shows the interference between symbols in the time domain in the case of being performed.
Figure 0004698714
Figure 0004698714

ここで、ωはシンボル信号の周期周波数で、シンボル周期Tによって次式で表される。

Figure 0004698714
Here, ω 0 is the periodic frequency of the symbol signal, and is represented by the following equation by the symbol period T.
Figure 0004698714

また、式(15)では、I軸における所望波u(t)に加え、直交成分である信号v(t)のヒルベルト変換成分H[v(t)]が共存する。例えば、図4では、連続する3シンボルu(t),u(t−T),u(t−2T)および直交成分であるシンボルv(t),v(t−T),v(t−2T)のそれぞれのヒルベルト変換成分H[v(t)],H[v(t−T)],H[v(t−2T)]を示す。なお、図4では、説明を簡略するために、すべてのシンボルの状態を“1”すなわち+1とする。   In Expression (15), in addition to the desired wave u (t) on the I axis, the Hilbert transform component H [v (t)] of the signal v (t), which is an orthogonal component, coexists. For example, in FIG. 4, three consecutive symbols u (t), u (t−T), u (t−2T), and symbols v (t), v (t−T), and v (t−) that are orthogonal components. 2H) represents the Hilbert transform components H [v (t)], H [v (t−T)], and H [v (t−2T)]. In FIG. 4, the state of all symbols is set to “1”, that is, +1 for the sake of simplicity.

図4において、例えば、時刻t=0に信号点を有するu(t)と同一時刻に信号点を有するH[v(t)]は、時刻t=0ではu(t)に干渉しない。一方、時刻t=0に信号点を有するシンボルに隣接するt=−Tおよびt=Tのシンボルでは、H[v(t)]は、それぞれの時刻で信号点を有するu(t+T)およびu(t−T)に干渉していることが明らかである。このことは、式(20)の奇対称性を考慮しても明らかである。   In FIG. 4, for example, H [v (t)] having a signal point at the same time as u (t) having a signal point at time t = 0 does not interfere with u (t) at time t = 0. On the other hand, for symbols of t = −T and t = T adjacent to symbols having signal points at time t = 0, H [v (t)] is u (t + T) and u having signal points at the respective times. It is clear that it interferes with (t−T). This is clear even considering the odd symmetry of equation (20).

この複雑な干渉状態がすべての信号点で発生するため、復調復号装置200では、受信信号から所望する情報信号を抽出することは容易ではない。このような干渉状態において所望する情報信号を抽出する方法として、ターボ復号器を用いた方法がある。しかし、この方法は、干渉成分のレプリカを生成して巡回的に干渉成分を除去するため、処理時間が長くなってしまう。また、符号拡散技術を用いた方法がある。しかし、この方法では、例えば、Gold符号等の拡散符号の中で利用できる範囲が限定されるため、拡散効率が低下してしまう。ヒルベルト変換成分の除去に関する根本的な解決は、その干渉成分の特徴を利用することが必要となるが、これまでそのような研究はない。   Since this complicated interference state occurs at all signal points, it is not easy for the demodulation and decoding apparatus 200 to extract a desired information signal from the received signal. As a method for extracting a desired information signal in such an interference state, there is a method using a turbo decoder. However, since this method generates a replica of the interference component and cyclically removes the interference component, the processing time becomes long. There is also a method using a code spreading technique. However, with this method, for example, the range that can be used in a spreading code such as a Gold code is limited, so that the spreading efficiency decreases. A fundamental solution for the removal of the Hilbert transform component requires the use of the features of the interference component, but no such work has been done so far.

そこで、本ケースでは、ヒルベルト変換成分が隣接するシンボルに干渉を与える点に着目し、干渉波を干渉波としてではなく所望波として捉え、復調復号装置は、Q軸を含めて所望波成分が通信フレーム内の3箇所に生成される点を利用して所望波を抽出する。   Therefore, in this case, paying attention to the fact that the Hilbert transform component interferes with adjacent symbols, the interference wave is regarded as a desired wave, not as an interference wave, and the demodulation / decoding device communicates the desired wave component including the Q axis. A desired wave is extracted using points generated at three locations in the frame.

図5に本ケースにおける所望波の抽出方法を示す。図5は図2に示す変調装置100のS/P変換部101が送出するシンボル列のフレームを示す。本ケースでは、このフレームの先頭またはフレームの最後尾にヌルシンボルを配置する。具体的には、図5に示すように、フレームの先頭であるTにヌルシンボルを配置し、フレームの最後尾であるT11にヌルシンボルを配置する。また、フレームの先頭および最後尾以外のシンボルには、図5に示すように、I軸およびQ軸に信号u(t)およびv(t)をそれぞれ配置する。 FIG. 5 shows a method for extracting a desired wave in this case. FIG. 5 shows a frame of a symbol string transmitted by the S / P converter 101 of the modulation apparatus 100 shown in FIG. In this case, a null symbol is placed at the beginning of this frame or at the end of the frame. Specifically, as shown in FIG. 5, a null symbol is arranged at T 0 which is the head of the frame, and a null symbol is arranged at T 11 which is the end of the frame. Further, as shown in FIG. 5, signals u (t) and v (t) are respectively arranged on the I axis and the Q axis for symbols other than the head and the tail of the frame.

図5に示すようにしてフレームの先頭および最後尾にヌルシンボルを配置した場合の効果を図6に示す。図6では、図5に示す時刻t=T〜T11のシンボルうち、時刻t=T〜TのI軸およびQ軸における6個の信号成分を示す。図6に示すように、時刻t=0にI軸で信号点を有するu(t)は、I軸に直交するQ軸上では、時刻t=−Tにおいてu(t)のヒルベルト変換成分H[u(t)]のみが単独で現れることが分かる。同様に、時刻t=0にQ軸上で信号点を有するv(t)は、Q軸に直交するI軸では、時刻t=−Tにおいてv(t)のヒルベルト変換成分H[v(t)]のみが単独で現れることが分かる。ここで、信号u(t),v(t)の振幅を正規化した場合、ヒルベルト変換成分の隣接シンボルとの干渉量は約0.63662である。 FIG. 6 shows the effect when null symbols are arranged at the beginning and end of the frame as shown in FIG. FIG. 6 shows six signal components on the I axis and the Q axis at times t = T 0 to T 5 among the symbols at times t = T 0 to T 11 shown in FIG. As shown in FIG. 6, u (t) having a signal point on the I axis at time t = 0 is Hilbert transform component H of u (t) at time t = −T on the Q axis orthogonal to the I axis. It can be seen that only [u (t)] appears alone. Similarly, v (t) having a signal point on the Q axis at time t = 0 is equal to the Hilbert transform component H [v (t) of v (t) at time t = −T on the I axis orthogonal to the Q axis. )] Alone appears. Here, when the amplitudes of the signals u (t) and v (t) are normalized, the amount of interference with the adjacent symbol of the Hilbert transform component is about 0.63662.

この結果、復調復号装置200は、時刻t=−Tでヒルベルト変換成分としてのu(t)とv(t)とを単独で抽出した後、時刻t=0におけるu(t)およびv(t)と次のシンボルからの干渉との合成出力に代入することができる。すなわち、I軸上では時刻t=0における信号成分はu(t)−H[v(t−T)]であるが、時刻t=−Tで既知となったu(t)を代入することで−H[v(t−T)]の値が算出される。同様に、Q軸上では時刻t=0における信号成分はv(t)+H[u(t−T)]であるが、時刻t=−Tで既知となったv(t)を代入することでH[u(t−T)]の値が算出される。これにより、時刻t=0までに、u(t),u(t−T),v(t)およびv(t−T)の値が求まる。   As a result, the demodulation and decoding apparatus 200 extracts u (t) and v (t) as Hilbert transform components independently at time t = −T, and then performs u (t) and v (t) at time t = 0. ) And the interference from the next symbol. That is, on the I axis, the signal component at time t = 0 is u (t) −H [v (t−T)], but u (t) that has become known at time t = −T is substituted. The value of -H [v (t-T)] is calculated. Similarly, on the Q axis, the signal component at time t = 0 is v (t) + H [u (t−T)], but v (t) that has become known at time t = −T is substituted. To calculate the value of H [u (t−T)]. Thereby, the values of u (t), u (t−T), v (t) and v (t−T) are obtained by time t = 0.

そして、時刻t=Tにおいても時刻t=0までに既知となった値を用いることで時刻t=Tにおける信号成分を分離することができる。具体的には、時刻t=Tでは、I軸上の信号成分はu(t−T)−H[v(t)]−H[v(t−2T)]であり、既知となったv(t),u(t−T)を代入することで−H[v(t−2T)]の値が算出される。同様に、Q軸上では時刻t=Tにおける信号成分はv(t−T)+H[u(t)]+H[u(t−2T)]であり、既知となったu(t),v(t−T)を代入することでH[u(t−2T)]の値が算出される。以降、同様にして、既知となったシンボルの値を用いることで、フレーム上のすべてのシンボル信号を抽出できることは明らかである。   The signal component at time t = T can be separated by using a value that has become known by time t = 0 even at time t = T. Specifically, at time t = T, the signal component on the I axis is u (t−T) −H [v (t)] − H [v (t−2T)], and v becomes known. By substituting (t) and u (t−T), the value of −H [v (t−2T)] is calculated. Similarly, on the Q axis, the signal component at time t = T is v (t−T) + H [u (t)] + H [u (t−2T)], and becomes u (t), v that has become known. By substituting (t−T), the value of H [u (t−2T)] is calculated. Thereafter, it is apparent that all symbol signals on the frame can be extracted in the same manner by using the known symbol values.

このように、復調復号装置200は、ヌルシンボルが配置されたフレームの先頭および最後尾で単独で抽出されるヒルベルト変換成分を用いて、フレームの先頭から順に、シンボル間干渉を引き起こすヒルベルト変換成分を除去することで、USB信号(u(t)およびv(t))をSSB要素毎の信号に分離する。すなわち、復調復号装置200では、ヌルシンボルが配置されるフレームの先頭または最後尾を、USB信号を2つのSSB要素に分離する分離処理の開始位置とする。   In this way, the demodulation and decoding apparatus 200 uses the Hilbert transform components that are independently extracted at the beginning and the end of the frame in which the null symbols are arranged, and sequentially converts the Hilbert transform components that cause intersymbol interference from the beginning of the frame. By removing, the USB signals (u (t) and v (t)) are separated into signals for each SSB element. That is, in the demodulation and decoding apparatus 200, the start or end of the frame in which the null symbol is arranged is set as the start position of the separation process that separates the USB signal into two SSB elements.

以上説明したように、本ケースによれば、復調復号装置は、ヒルベルト変換処理を行うことで4種類のSSB信号を、USB信号(2種類)とLSB信号(2種類の)とに分離する。さらに、変調装置がフレームの先頭またはフレームの最後尾にヌルシンボルを配置することで、時間領域において、復調時に非干渉部分を確保することができる。よって、復調復号装置はフレームの先頭またはフレームの最後尾で単独で抽出されるヒルベルト変換成分を用いて、フレームの先頭以降またはフレームの最後尾以前において直交する2つの成分を分離することができる。よって、復調復号装置は、干渉成分を除去できるようになるため、ディジタル信号をSSB化することで送信信号を狭帯域化して、無線通信の周波数利用効率を改善するにあたって、各信号間の相互干渉を抑制できるようになる。   As described above, according to this case, the demodulation / decoding apparatus separates the four types of SSB signals into the USB signal (two types) and the LSB signal (two types) by performing the Hilbert transform process. Furthermore, the modulation apparatus arranges a null symbol at the beginning of the frame or at the end of the frame, so that a non-interfering portion can be secured in the time domain during demodulation. Therefore, the demodulation / decoding apparatus can separate two orthogonal components after the head of the frame or before the tail of the frame by using the Hilbert transform component that is independently extracted at the head of the frame or the tail of the frame. Therefore, since the demodulation / decoding apparatus can remove the interference component, when the digital signal is converted to the SSB, the transmission signal is narrowed to improve the frequency utilization efficiency of wireless communication. Can be suppressed.

また、本ケースによれば、搬送周波数を同一とする4種類のSSB信号を用いることで周波数利用効率2bit/sec/Hzの変調方法を提供できることを明らかにした。また、図7に示すように、ロールオフ率(ナイキストロールオフ率)を十分に小さくして占有帯域幅を狭めた場合(図7B)には、帯域幅が、ロールオフ率が1の場合(図7A)の帯域幅の1/2に近づくので、周波数利用効率4bit/sec/Hzの変調方法を提供することが可能となる。   Also, according to this case, it has been clarified that a modulation method having a frequency utilization efficiency of 2 bits / sec / Hz can be provided by using four types of SSB signals having the same carrier frequency. In addition, as shown in FIG. 7, when the roll-off rate (Nyquist roll-off rate) is sufficiently reduced to narrow the occupied bandwidth (FIG. 7B), when the bandwidth is 1 and the roll-off rate is 1 ( Since it approaches ½ of the bandwidth of FIG. 7A), it is possible to provide a modulation method with a frequency utilization efficiency of 4 bits / sec / Hz.

(ケース2)
ケース1の図5に示したフレーム構成におけるシンボル信号抽出の手順を図8に示す。図8に示すように、例えば、時刻t=0のI軸では、時刻t=−TのQ軸で抽出した信号(H[u(t)])を用いる。また、時刻t=0のQ軸では、時刻t=−TのI軸で抽出した信号(−H[v(t)])を用いる。このように、図8に示すシンボル信号抽出の手順では、シンボル信号を抽出するために、過去に抽出された信号がI軸とQ軸とを交互に行き交うため(図8に示す点線矢印)、複雑な処理が発生してしまう。
(Case 2)
FIG. 8 shows a procedure of symbol signal extraction in the frame configuration shown in FIG. As shown in FIG. 8, for example, on the I axis at time t = 0, the signal (H [u (t)]) extracted on the Q axis at time t = −T is used. For the Q axis at time t = 0, the signal (−H [v (t)]) extracted from the I axis at time t = −T is used. As described above, in the symbol signal extraction procedure shown in FIG. 8, in order to extract the symbol signal, the signal extracted in the past alternates between the I axis and the Q axis (dotted arrow shown in FIG. 8). Complicated processing will occur.

また、ケース1におけるシンボル信号の抽出方法では、フレームの先頭から順に抽出したu(t)およびv(t)を順次使用して以降のシンボルを抽出するため、u(t)およびv(t)の数値誤差が遺伝的に継承される課題がある。このため、本質的には、リードソロモン(Reed-Solomon)符号等の誤り訂正符号を用いる必要があるが、図8に示すように信号がI軸とQ軸とを交互に行き交う状態での適用は複雑さが増大してしまう。   Further, in the symbol signal extraction method in Case 1, u (t) and v (t) extracted sequentially from the beginning of the frame are used in order to extract subsequent symbols, so that u (t) and v (t) There is a problem that the numerical error of is inherited genetically. For this reason, it is essential to use an error correction code such as a Reed-Solomon code. However, as shown in FIG. 8, it is applied in a state in which the signal alternates between the I axis and the Q axis. Increases complexity.

以下、本ケースについて具体的に説明する。図9に、本ケースにおけるシンボル配置を示す。図9に示すように、本ケースでは、u(t)およびv(t)のシンボル配置をI軸およびQ軸に1シンボル毎に交互に切り替える。つまり、変調装置100(図2)は、u(t)およびv(t)を、シンボル毎にI軸およびQ軸に交互に配置する。ただし、図9では、時刻t=T−1〜T10で1フレームが構成される。また、フレームの先頭および最後尾に配置されるシンボルは、ケース1と同様、ヌルシンボルである。具体的には、図9に示すように、時刻t=Tでは、I軸にuが配置され、Q軸にvが配置される。また、時刻t=Tでは、I軸にvが配置され、Q軸にuが配置される。同様に、時刻t=Tでは、I軸にuが配置され、Q軸にvが配置される。時刻t=時刻t=T〜Tについても同様である。 Hereinafter, this case will be specifically described. FIG. 9 shows the symbol arrangement in this case. As shown in FIG. 9, in this case, the symbol arrangement of u (t) and v (t) is alternately switched for each symbol on the I axis and the Q axis. That is, modulation apparatus 100 (FIG. 2) arranges u (t) and v (t) alternately on the I axis and the Q axis for each symbol. However, in FIG. 9, one frame is configured at time t = T −1 to T 10 . Further, the symbols arranged at the head and the tail of the frame are null symbols as in the case 1. Specifically, as shown in FIG. 9, at time t = T 0 , u 1 is arranged on the I axis and v 1 is arranged on the Q axis. At time t = T 1, v 2 are arranged in the I-axis, u 2 are arranged in the Q axis. Similarly, at time t = T 2 , u 3 is arranged on the I axis and v 3 is arranged on the Q axis. The same applies to time t = time t = T 3 to T 9 .

図10は、図9に示すシンボル配置を行うことで得られる効果を示す。図10に示すように、例えば、I軸において、時刻t=0では、u(t)が受ける干渉は、−H[u(t−T)]のみであり、時刻t=2Tでは、u(t−2T)が受ける干渉は、−H[u(t−T)]および−H[u(t−3T)]のみである。すなわち、I軸では、u(t)が受ける干渉は、異なる時刻に信号点を有するu(t)のヒルベルト変換成分のみである。換言すると、u(t)に対する干渉成分にv(t)は含まれない。同様に、図10に示すように、Q軸において、時刻t=0では、v(t)が受ける干渉は、H[v(t−T)]からのみであり、時刻t=2Tでは、v(t−2T)が受ける干渉は、H[v(t−T)]およびH[v(t−3T)]からのみである。すなわち、Q軸では、v(t)に対する干渉成分にu(t)は含まれない。   FIG. 10 shows the effect obtained by performing the symbol arrangement shown in FIG. As shown in FIG. 10, for example, on the I axis, the interference received by u (t) at time t = 0 is only −H [u (t−T)], and at time t = 2T, u (t) The only interference received by t-2T) is -H [u (t-T)] and -H [u (t-3T)]. That is, on the I axis, the interference received by u (t) is only the Hilbert transform component of u (t) having signal points at different times. In other words, v (t) is not included in the interference component for u (t). Similarly, as shown in FIG. 10, on the Q axis, the interference received by v (t) at time t = 0 is only from H [v (t−T)], and at time t = 2T, v The interference received by (t-2T) is only from H [v (t-T)] and H [v (t-3T)]. That is, on the Q axis, u (t) is not included in the interference component for v (t).

この結果、図9に示すシンボル配置によって、I軸およびQ軸それぞれにおける所望波のシンボル(I軸ではu(t)、Q軸ではv(t))による隣接シンボル間干渉のみを扱うため、ケース1と比較して干渉関係をより単純化することができる。これにより、本ケースに対して既存の誤差訂正符号を適用し易くなる。   As a result, the symbol arrangement shown in FIG. 9 handles only the inter-adjacent symbol interference due to the desired wave symbol (u (t) for the I axis and v (t) for the Q axis) on each of the I axis and Q axis. Compared with 1, the interference relationship can be further simplified. This makes it easier to apply an existing error correction code to this case.

さらに、干渉量は、sinc関数の場合、第1段階として次式で示すa値を用いて処理する。

Figure 0004698714
Further, in the case of a sinc function, the amount of interference is processed using the value a shown in the following equation as the first step.
Figure 0004698714

これにより、フレーム全体の連立方程式を次式のように記述することができる。

Figure 0004698714
Figure 0004698714
As a result, simultaneous equations for the entire frame can be described as:
Figure 0004698714
Figure 0004698714

当然のことながら、電波伝搬環境の擾乱状態においては、時々刻々、振幅が変動するため、aの値は等化処理等で安定化させた後に有効となるものである。また、式(23)は、I軸におけるシンボルu(t−kT) (k=0,1,2,…,9)に関するマトリクス方程式であり、式(24)は、Q軸におけるシンボルv(t−kT) (k=0,1,2,…,9)に関するマトリクス方程式である。なお、式(23)および式(24)のkの値は図9に示すシンボル配置を一例として挙げた場合であり、kの値を任意に定めることが可能である。   Naturally, in the disturbance state of the radio wave propagation environment, the amplitude fluctuates from moment to moment, so the value of a becomes effective after being stabilized by equalization processing or the like. Expression (23) is a matrix equation regarding the symbol u (t−kT) (k = 0, 1, 2,..., 9) on the I axis, and Expression (24) is the symbol v (t on the Q axis. −kT) (k = 0, 1, 2,..., 9). In addition, the value of k in Expression (23) and Expression (24) is a case where the symbol arrangement shown in FIG. 9 is given as an example, and the value of k can be arbitrarily determined.

このように、本ケースによれば、I軸およびQ軸に配置するシンボルを交互に切り替えることで、I軸およびQ軸における干渉成分をケース1と比較して、さらに単純化することができる。   As described above, according to the present case, by alternately switching the symbols arranged on the I axis and the Q axis, the interference components on the I axis and the Q axis can be further simplified as compared with the case 1.

(本発明の一実施の形態)
以下、本発明の一実施の形態について説明する。
(One embodiment of the present invention)
Hereinafter, an embodiment of the present invention will be described.

上述したケースで説明したように、共通の搬送周波数を有する4種類の単側帯波要素から成る変調信号を生成する変調方法として、上述した4種類の単側帯波要素を共通の搬送周波数軸の周囲に直交的に配置することで、OFDM方式とほぼ同等、あるいはQPSK等のシングルキャリア変調方式の約2倍の周波数利用効率を実現することが可能となる。   As described in the above-described case, as a modulation method for generating a modulation signal composed of four types of single sideband elements having a common carrier frequency, the above four types of single sideband elements are arranged around a common carrier frequency axis. By arranging them orthogonally to each other, it is possible to realize a frequency use efficiency that is almost the same as that of the OFDM system or about twice that of a single carrier modulation system such as QPSK.

しかしながら、共通の搬送周波数を有し、位相領域で直交する2種の上側単側帯波要素同士、または、下側4種の単側帯波要素同士では、復調時において互いのヒルベルト変換成分が隣接シンボル間干渉となる。   However, between two types of upper single sideband elements having a common carrier frequency and orthogonal in the phase domain, or between the lower four types of single sideband elements, the Hilbert transform components of each other are adjacent symbols at the time of demodulation. Interference occurs.

例えば、上述したケースで説明したように、図6では、時刻t=−Tに配置されたフレームの先頭におけるヌルシンボル区間において、後続するt=0に配置されたシンボルu(t)およびv(t)のヒルベルト変換成分が、直交する相手側に干渉成分としてそれぞれ現れることを利用して、シンボルu(t)およびv(t)の値をそれぞれ抽出することを示している。そして、式(23)および式(24)は、抽出したシンボルu(t)およびv(t)の値を用いた連立方程式により、後続するフレーム内のすべてのシンボルu(t−nT)、v(t−nT)(ただし、n=1,2,…,k)を抽出することを示している。   For example, as described in the above-described case, in FIG. 6, in the null symbol section at the beginning of the frame arranged at time t = −T, symbols u (t) and v ( It shows that the values of the symbols u (t) and v (t) are extracted using the fact that the Hilbert transform component of t) appears as an interference component on the orthogonal counterpart. Equations (23) and (24) are obtained by simultaneous equations using the values of extracted symbols u (t) and v (t), and all symbols u (t−nT), v (T−nT) (where n = 1, 2,..., K) is extracted.

しかし、式(23)および式(24)では、時刻t=−Tにおいて抽出したシンボルu(t)およびv(t)の値に含まれる誤差を継承することとなる。そのため、シンボルu(t−nT)、v(t−nT)を含むI,Qのサンプリング値の検出誤差、および、連立方程式により解かれるシンボルu(t−nT)、v(t−nT)の値に含まれる計算誤差は、フレームの最後尾に配置されたシンボルu(t−nT)、v(t−nT)ほど大きくなる。つまり、式(23)および式(24)を用いて抽出したシンボルu(t)およびv(t)に対して、遺伝的誤差の継承という弊害が生じる。   However, in Expression (23) and Expression (24), the error included in the values of the symbols u (t) and v (t) extracted at time t = −T is inherited. Therefore, detection errors of sampling values of I and Q including symbols u (t−nT) and v (t−nT), and symbols u (t−nT) and v (t−nT) solved by simultaneous equations The calculation error included in the value increases as the symbols u (t−nT) and v (t−nT) arranged at the end of the frame. That is, there is an adverse effect of inheriting a genetic error for the symbols u (t) and v (t) extracted using the equations (23) and (24).

そこで、本発明では、2種の上側単側帯波要素同士、または、下側4種の単側帯波要素同士による多重化単側帯波において、Q軸上でのシンボル配置を1シンボル毎の交互配置とし、さらに、シンボル系列を3値化2進数化する。また、受信側の復号部において、3値化2進数化されたシンボルから2進数データ(すなわち、‘0’および‘1’を基調とする2進数)に変換して戻す手段を提供し、データ通信システムとしての機能を完備する。   Therefore, in the present invention, symbol arrangement on the Q-axis is alternated for each symbol in the multiplexed single sideband wave between two types of upper single sideband elements or between the lower four types of single sideband elements. Furthermore, the symbol series is converted into a binary value. Further, the receiving side decoding unit provides a means for converting the ternary binary digitized symbol back into binary data (that is, binary number based on '0' and '1') and returning the data, Complete with functions as a communication system.

具体的には、2進数のビット列の数値的な値を変えることなく、‘1’となるビットが連続すること、つまり、ビット列における‘1’の連続性を除去する。ここで、一般の2進数では‘0’および‘1’の2つの要素を用いるのに対し、3値化2進数では‘−1’、‘0’および‘1’の3つの要素を用いる。要素が3つとなることで、数値の表現が多様化する。また、ディジタル通信の変調処理では、伝送すべき情報信号が一般の2進数(‘0’および‘1’)で表現された状態で入力されるものの、変調部において‘−1’および‘1’で表すための変換が一般に行なわれる。本発明の一本実施の形態では、このような状況を利用して、‘−1’および‘1’で表される変調用シンボル信号の連続性を除去する。   Specifically, without changing the numerical value of the binary bit string, the bit that becomes ‘1’ is continuous, that is, the continuity of ‘1’ in the bit string is removed. Here, two elements of “0” and “1” are used in a general binary number, whereas three elements of “−1”, “0”, and “1” are used in a ternary binary number. The expression of numerical values is diversified by having three elements. In the modulation processing of digital communication, although the information signal to be transmitted is input in a state expressed in general binary numbers ('0' and '1'), '-1' and '1' in the modulation unit Conversion to represent is generally performed. In one embodiment of the present invention, the continuity of modulation symbol signals represented by −1 and ‘1’ is removed by using such a situation.

以下、本発明の一本実施の形態の原理について説明する。   Hereinafter, the principle of one embodiment of the present invention will be described.

ここでは、式(25)に示すように、N個の‘1’が連続する2進数を用いる。また、式(25)に示すN個のビット列の両端のビットを‘0’とする。このとき、N桁のビット列の最下位ビット(‘1’)に、さらに‘1’を加えると、N+1桁目のビットが‘1’となり、N個の‘1’はすべて‘0’となる。

Figure 0004698714
Here, as shown in Expression (25), a binary number in which N “1” s are continuous is used. Also, the bits at both ends of the N bit strings shown in Expression (25) are set to “0”. At this time, if “1” is further added to the least significant bit (“1”) of the N-digit bit string, the bit in the (N + 1) -th digit becomes “1”, and all N “1” s become “0”. .
Figure 0004698714

一方、式(25)とは逆に、N個の‘0’が連続する2進数を用いて、N+1桁目のビットが‘1’である場合、N桁のビット列の最下位ビット(‘0’)から‘1’を減算すると、N個のビット列の両端が‘0’となり、N個の‘0’はすべて‘1’となる。   On the other hand, in contrast to the equation (25), when the N + 1 digit bit is' 1 'using a binary number in which N' 0's are consecutive, the least significant bit ('0') of the N digit bit string When “1” is subtracted from “)”, both ends of the N bit strings become “0”, and all the N “0” s become “1”.

そこで、本発明では、変調信号の同相成分および変調信号の直交成分のシンボル間干渉成分の発生を、変調信号の前後のシンボルの極性との関係に基づいて判断することにより、シンボル間干渉を除去する。図11Aおよび図11Bを用いて具体的に説明する。例えば、図11Aに示す9桁の2進数(2進符号)において、‘1’が連続する部分は、2,2,2,2および2,2である。よって、図11Aに示すように‘1’が連続する2,2,2,2は、3値化2進数化することにより、式(26)のように表され、‘1’が連続する2,2は、3値化2進数化することにより、式(27)のように表される。式(26)に示すように、‘1’が連続する2,2,2,2は、2=1から2において‘1’を減算した値と同一である。同様に、式(27)に示すように、‘1’が連続する2,2は、2=1から2において‘1’を減算した値と同一である。

Figure 0004698714
Figure 0004698714
Therefore, the present invention eliminates intersymbol interference by determining the occurrence of intersymbol interference components of the in-phase component of the modulation signal and the quadrature component of the modulation signal based on the relationship between the polarities of the symbols before and after the modulation signal. To do. This will be specifically described with reference to FIGS. 11A and 11B. For example, in the 9-digit binary number (binary code) shown in FIG. 11A, the portions where “1” continues are 2 0 , 2 1 , 2 2 , 2 3 and 2 6 , 2 7 . Therefore, as shown in FIG. 11A, 2 0 , 2 1 , 2 2 , and 2 3 in which “1” continues are expressed as shown in Expression (26) by being converted into a ternary binary number, and “1” 2 6 and 2 7 that are consecutive are represented by Expression (27) by being converted into a ternary binary number. As shown in Expression (26), 2 0 , 2 1 , 2 2 , and 2 3 in which “1” continues are the same as the value obtained by subtracting “1” from 2 4 = 1 to 2 0 . Similarly, as shown in Expression (27), 2 6 and 2 7 in which “1” continues are the same as the value obtained by subtracting “1” from 2 8 = 1 to 2 6 .
Figure 0004698714
Figure 0004698714

また、例えば、図11Bに示す8桁の2進数において、‘1’が連続する部分は、2,2,2,2および2,2である。よって、図11Bに示すように‘1’が連続する2,2,2,2は、3値化2進数化することにより、式(28)のように表され、‘1’が連続する2,2は、3値化2進数化することにより、式(29)のように表される。

Figure 0004698714
Figure 0004698714
Further, for example, in the 8-digit binary number shown in FIG. 11B, the portions where '1' continues are 2 0 , 2 1 , 2 2 , 2 3 and 2 5 , 2 6 . Therefore, as shown in FIG. 11B, 2 0 , 2 1 , 2 2 , and 2 3 in which “1” continues are expressed as Equation (28) by being converted into a ternary binary number, and “1” 2 5 , 2 6 , which are consecutive, are expressed as shown in Expression (29) by being converted into a ternary binary number.
Figure 0004698714
Figure 0004698714

ここで、図11Bに示すように、3値化2進数化後の符号(3値化2進数符号)の2は‘1’となり、2は‘−1’となる。すなわち、図11Bでは、3値化2進数化後の符号においても‘1’および‘−1’が連続する部分が新たに発生している。そこで、図11Bに示すように、‘1’および‘−1’が連続する2,2の2ビットは、さらに3値化2進数化することにより、式(30)に示すようにして1ビットで表される。

Figure 0004698714
Here, as shown in FIG. 11B, 2 4 is '1' next to the code after ternary binarized (3-valued binary code), 2 5 becomes "-1". That is, in FIG. 11B, a portion where “1” and “−1” continue is newly generated even in the code after ternarization and binary conversion. Therefore, as shown in FIG. 11B, the 2 bits of 2 5 and 2 6 in which “1” and “−1” are continuous are further converted into a ternary binary number to obtain a formula (30). It is represented by 1 bit.
Figure 0004698714

これにより、図11Bに示す8桁の2進数は、式(31)に示すように、全体として‘1’および‘−1’が連続する部分が無い表現にすることができる。

Figure 0004698714
As a result, the 8-digit binary number shown in FIG. 11B can be expressed without a portion where “1” and “−1” continue as a whole, as shown in Expression (31).
Figure 0004698714

なお、信号処理では、単一の操作で上記3値化2進数化の操作が行なわれることが望ましい。図12には、単一の操作を連続して行うことによって図11Aに示した3値化2進数化の変換が可能なことを示している。   In the signal processing, it is desirable that the ternarization / binarization operation is performed by a single operation. FIG. 12 shows that the conversion of the ternary binarization shown in FIG. 11A is possible by continuously performing a single operation.

具体的には、送信側の変調装置の3値化2進数化を行う処理部は、図12に示す2進符号中に‘1’がある場合、‘1’である桁を‘−1’とし、その桁の一つ上の桁の符号に‘1’を加算する操作を一義的に行う。図12では、2,2,2,2および2,2が‘1’であり、連続しているので、3値化2進数化を行う処理部は上記操作を6回行う。そして、3値化2進数化を行う処理部は、図12に示すように、6回の操作の結果を単純に加算することにより、図11Aと同一の3値化2進数符号を得ることができる、つまり、‘1’の連続性を除去することができる。 Specifically, the processing unit that performs ternary binarization of the modulation apparatus on the transmission side changes the digit that is “1” to “−1” when “1” is present in the binary code illustrated in FIG. 12. And “1” is uniquely added to the sign of the digit one digit above. In FIG. 12, since 2 0 , 2 1 , 2 2 , 2 3 and 2 6 , 2 7 are “1” and are continuous, the processing unit that performs ternary binary conversion performs the above operation six times. Do. Then, as shown in FIG. 12, the processing unit that performs ternary binary digitization can obtain the same ternary binary code as in FIG. 11A by simply adding the results of six operations. Yes, that is, continuity of '1' can be removed.

また、図13には、図12と同様にして、図11Bに示した3値化2進数化の変換が可能なことを示している。‘1’の連続性を除去する操作結果において、‘1’(または‘−1’)が連続する部分が新たに発生した場合でも、図12に示すようにして、‘1’である桁を‘−1’とし、その桁の一つ上の桁の符号に‘1’を加算する操作を繰り返し行えばよい。これにより、図12と同様、‘1’の連続性を除去することができる。   Further, FIG. 13 shows that the conversion of the ternary binarization shown in FIG. 11B is possible in the same manner as FIG. In the operation result of removing the continuity of “1”, even when a portion where “1” (or “−1”) continues is newly generated, as shown in FIG. It is sufficient to repeat the operation of setting “−1” and adding “1” to the sign of the digit one digit above. Thereby, the continuity of '1' can be removed as in FIG.

次に、送信側の変調装置における3値化2進数化処理のプロセスについて説明する。図14は、本発明における2進数の3値化2進数化を行うための信号処理のプロセスを示すフロー図の一例である。ここで、図14に示すkはビット列の桁位置を表し、最下位ビットの桁位置をk=1とし、最上位ビットの桁位置をk=Nとする。また、mは最下位ビットから最上位ビットまでの一巡において3値化2進数化処理が行われた処理回数を表す。   Next, the process of the ternary binarization process in the modulation apparatus on the transmission side will be described. FIG. 14 is an example of a flowchart showing a signal processing process for performing binarization and binarization in the present invention. Here, k shown in FIG. 14 represents the digit position of the bit string, the digit position of the least significant bit is k = 1, and the digit position of the most significant bit is k = N. Further, m represents the number of processings in which the ternary binary conversion processing is performed in one cycle from the least significant bit to the most significant bit.

ステップ(以下、STという)101では、kおよびmが初期化され、k=0およびm=0となる。   In step (hereinafter referred to as ST) 101, k and m are initialized, and k = 0 and m = 0.

ST102では、桁位置kに1が加算され、k=k+1となる。つまり、初回はk=1となり、桁位置が最下位ビットに設定される。   In ST102, 1 is added to the digit position k, so that k = k + 1. That is, the first time is k = 1, and the digit position is set to the least significant bit.

ST103では、桁位置kのビットであるBit(k)が‘1’であるか否かが判定される。Bit(k)が‘1’の場合(ST103:Yesの場合)、ST104では、Bit(k)を‘−1’とし、桁位置kの一つ上の桁(桁位置k+1)のビットであるBit(k+1)に1が加算される。ST105では、処理回数mに1が加算される。   In ST103, it is determined whether Bit (k), which is a bit at digit position k, is '1'. When Bit (k) is “1” (in the case of ST103: Yes), in ST104, Bit (k) is set to “−1”, and the bit is one digit higher than the digit position k (digit position k + 1). 1 is added to Bit (k + 1). In ST105, 1 is added to the processing count m.

ST106では、3値化2進数化処理を施したビットの桁位置が最上位であるか否か(すなわち、k=Nであるか否か)が判定される。3値化2進数化処理を施したビットの桁位置が最上位(k=N)に達していない場合(ST106:Noの場合)、ST102に戻る。また、3値化2進数化処理を施したビットの桁位置が最上位(k=N)である場合(ST106:Yesの場合)、すべてのビットに‘1’が含まれていないことを確認するためにST101に戻って初めから処理を行う。   In ST106, it is determined whether or not the digit position of the bit subjected to the ternary binary conversion processing is the most significant (that is, whether or not k = N). If the digit position of the bit subjected to the ternary binary conversion processing has not reached the most significant (k = N) (ST106: No), the process returns to ST102. In addition, when the digit position of the bit subjected to the ternary binary conversion processing is the most significant (k = N) (ST106: Yes), it is confirmed that “1” is not included in all the bits. In order to do this, the process returns to ST101 and starts from the beginning.

一方、ST103において、Bit(k)が‘1’ではない場合(ST103:Noの場合)、ST107では、桁位置kが最上位(k=N)であるか否か、および、3値化2進数化処理が一度も行われていないか(m=0であるか)が判定される。桁位置kが最上位ビットではない場合、または、3値化2進数化処理が一回以上行われている場合(ST107:No)、ST102に戻る。また、桁位置kが最上位ビットであり、3値化2進数化処理が一度も行われていない場合(ST107:Yes)、処理を終了する。なお、本発明では、図11Aに示すように、最上位ビットの更に1つ上のN+1桁目に‘1’が生じてもよい。   On the other hand, when Bit (k) is not “1” in ST103 (ST103: No), in ST107, whether or not the digit position k is the most significant (k = N), and ternary 2 It is determined whether the digitization process has never been performed (whether m = 0). When the digit position k is not the most significant bit, or when the ternary binary conversion process has been performed once or more (ST107: No), the process returns to ST102. Further, when the digit position k is the most significant bit and the ternary binary conversion process has never been performed (ST107: Yes), the process ends. In the present invention, as shown in FIG. 11A, ‘1’ may occur in the (N + 1) th digit that is one bit higher than the most significant bit.

図14に示すように、単純な処理を繰り返すことにより、2進数の3値化2進数化を簡便な処理で行なうことができる。   As shown in FIG. 14, by repeating a simple process, a binary ternarization and binary conversion can be performed by a simple process.

次に、受信側の復号復調装置が3値化2進数符号を2進数符号に戻す処理(2進数化処理)について説明する。   Next, a process (binarization process) in which the decoding / demodulation apparatus on the receiving side returns a ternary binary code to a binary code will be described.

具体的には、復号復調装置の2進数化を行う処理部は、3値化2進数符号中に‘−1’がある場合、‘−1’がある桁を‘1’とし、その桁の一つ上の桁の符号に‘−1’を加算する操作を一義的に行う。例えば、図11Aに示す3値化2進数化処理に対応する復号復調装置の処理を図15に示す。図15では、2,2が‘−1’であり、2,2が‘1’である。よって、‘−1’から始まり‘1’で終了する上記操作のプロセスとして、2から2までの4回の操作、および、2から2までの2回の操作がある。この6回の操作により、2から2までのすべての桁において‘−1’が含まれない符号、つまり、一般的な2進符号を得ることができ、2進数化が完了する。 Specifically, the processing unit that performs binarization of the decoding / demodulation apparatus sets a digit having “−1” to “1” when “−1” is present in the ternary binary code, The operation of adding “−1” to the sign of the digit one digit above is uniquely performed. For example, FIG. 15 shows a process of the decoding / demodulating apparatus corresponding to the ternary binary conversion process shown in FIG. 11A. In FIG. 15, 2 0 and 2 6 are “−1”, and 2 4 and 2 8 are “1”. Thus, - as a process of the operation for ending the '1' at the beginning '1', four operations from 2 0 to 2 4, and, there are two operations from 2 6 to 2 8. The six operation code does not contain the '-1' in all digits from 2 0 to 2 8, i.e., it is possible to obtain a general binary code, binarized is completed.

また、図15と同様にして、図11Bに示す3値化2進数化処理に対応する復号復調装置の処理を図16に示す。図16では、2,2が‘−1’であり、2が‘1’である。よって、‘−1’から始まり‘1’で終了する上記操作のプロセスとして、2から2までの4回の操作、および、2から2までの3回の操作がある。この7回の操作により、2から2までのすべての桁において一般的な2進符号を得ることができ、2進数化が完了する。 Similarly to FIG. 15, FIG. 16 shows the processing of the decoding / demodulating apparatus corresponding to the ternary binary processing shown in FIG. 11B. In FIG. 16, 2 0 and 2 4 are “−1”, and 2 7 is “1”. Thus, - as a process of the operation for ending the '1' at the beginning '1', four operations from 2 0 to 2 4, and, there are three operation from 2 4 to 2 7. The seven operations in all digits from 2 0 to 2 7 can obtain a general binary code, binarized is completed.

次に、受信側の復号復調装置における2進数化処理のプロセスについて説明する。図17は、本発明における3値化2進数符号の2進数化を行うための信号処理のプロセスを示すフロー図の一例である。ここで、図17に示すkはビット列の桁位置を表し、最下位ビットの桁位置をk=1とし、最上位ビットの桁位置をk=Nとする。また、mは最下位ビットから最上位ビットまでの一巡において、3値化2進数符号の2進数化処理が行われた処理回数を表す。   Next, the process of the binarization process in the decoding / demodulation apparatus on the receiving side will be described. FIG. 17 is an example of a flowchart showing a signal processing process for binarizing a ternary binary code according to the present invention. Here, k shown in FIG. 17 represents the digit position of the bit string, the digit position of the least significant bit is k = 1, and the digit position of the most significant bit is k = N. In addition, m represents the number of times that the binarization processing of the ternary binary code is performed in one round from the least significant bit to the most significant bit.

ST201では、kおよびmが初期化され、k=0およびm=0となる。   In ST201, k and m are initialized, and k = 0 and m = 0.

ST202では、桁位置kに1が加算され、k=k+1となる。つまり、初回はk=1となり、桁位置が最下位ビットに設定される。   In ST202, 1 is added to the digit position k, so that k = k + 1. That is, the first time is k = 1, and the digit position is set to the least significant bit.

ST203では、桁位置kのビットであるBit(k)が‘−1’であるか否かが判定される。Bit(k)が‘−1’の場合(ST203:Yesの場合)、ST204では、Bit(k)を‘1’とし、桁位置kの一つ上の桁(桁位置k+1)のビットであるBit(k+1)に−1が加算される。ST205では、処理回数mに1が加算される。   In ST203, it is determined whether or not Bit (k), which is a bit at digit position k, is “−1”. When Bit (k) is “−1” (in the case of ST203: Yes), in ST204, Bit (k) is set to “1”, and the bit is one digit higher than the digit position k (digit position k + 1). −1 is added to Bit (k + 1). In ST205, 1 is added to the processing count m.

ST206では、3値化2進数符号の2進数化処理を施したビットの桁位置が最上位であるか否か(すなわち、k=Nであるか否か)が判定される。3値化2進数符号の2進数化処理を施したビットの桁位置が最上位(k=N)に達していない場合(ST206:Noの場合)、ST202に戻る。また、3値化2進数符号の2進数化処理を施したビットの桁位置が最上位(k=N)である場合(ST206:Yesの場合)、すべてのビットに‘−1’が含まれていないことを確認するためにST201に戻って初めから処理を行う。   In ST206, it is determined whether or not the digit position of the bit subjected to the binarization processing of the ternary binary code is the most significant (that is, whether or not k = N). When the digit position of the bit subjected to the binarization processing of the ternary binary code has not reached the most significant (k = N) (ST206: No), the process returns to ST202. When the digit position of the bit subjected to the binarization processing of the ternary binary code is the most significant (k = N) (ST206: Yes), all bits include “−1”. In order to confirm that there is no error, the process returns to ST201 and processing is performed from the beginning.

一方、ST203において、Bit(k)が‘−1’ではない場合(ST203:Noの場合)、ST207では、桁位置kが最上位(k=N)であるか否か、および、3値化2進数符号の2進数化処理が一度も行われていないか(m=0であるか)が判定される。桁位置kが最上位ビットではない場合、または、3値化2進数符号の2進数化処理が一回以上行われている場合(ST207:No)、ST202に戻る。また、桁位置kが最上位ビットであり、3値化2進数化処理が一度も行われていない場合(ST207:Yes)、処理を終了する。   On the other hand, when Bit (k) is not “−1” in ST203 (ST203: No), in ST207, whether or not the digit position k is the most significant (k = N), and ternarization is performed. It is determined whether the binary code binarization process has never been performed (whether m = 0). When the digit position k is not the most significant bit, or when the binarization process of the ternary binary code has been performed one or more times (ST207: No), the process returns to ST202. Further, when the digit position k is the most significant bit and the ternary binarization process has not been performed (ST207: Yes), the process ends.

図17に示すように、図14と同様、単純な処理を繰り返すことにより、3値化2進数符号の2進数化を簡便な処理で行なうことができる。   As shown in FIG. 17, similarly to FIG. 14, the binary conversion of the ternary binary code can be performed by a simple process by repeating simple processing.

以上説明したように、本発明によれば、共通の搬送周波数を有し位相領域で直交する2種類の上側単側帯波要素同士、または、下側4種の単側帯波要素同士が復調時において、互いのシンボルのヒルベルト変換成分により引き起こされるシンボル間干渉を除去することにより、高い信頼性にて所望のシンボルの抽出が可能となる。さらに、2種類の上側単側帯波要素同士と下側4種の単側帯波要素同士とから構成され、搬送波周波数を共有する4種類の単側帯波要素を用いることで、OFDM方式とほぼ同等、あるいは、QPSK等のシングルキャリア変調方式の約2倍の周波数利用効率を確実に実現することができる。さらに、シンボル信号のロールオフ率を急峻にすることにより、OFDM方式の約2倍の周波数利用効率を実現することを可能とする。   As described above, according to the present invention, two types of upper single sideband elements having a common carrier frequency and orthogonal in the phase region, or the lower four types of single sideband elements are demodulated. By removing the inter-symbol interference caused by the Hilbert transform component of each symbol, it is possible to extract a desired symbol with high reliability. Furthermore, it is composed of two types of upper single sideband elements and lower four types of single sideband elements, and by using four types of single sideband elements sharing the carrier frequency, it is almost equivalent to the OFDM system. Alternatively, it is possible to reliably realize about twice the frequency utilization efficiency of a single carrier modulation method such as QPSK. Further, by making the roll-off rate of the symbol signal steep, it is possible to realize frequency use efficiency that is about twice that of the OFDM system.

本発明は、ディジタル信号をSSB化することで送信信号を狭帯域化して、無線通信の周波数利用効率を改善するにあたって、各信号間の相互干渉を抑制し得、種々の無線機器に広く適用できる。   INDUSTRIAL APPLICABILITY The present invention narrows a transmission signal by converting a digital signal into an SSB and improves the frequency utilization efficiency of wireless communication, can suppress mutual interference between signals and can be widely applied to various wireless devices. .

ケース1の4種類のSSB要素を示す図The figure which shows four types of SSB elements of Case 1 ケース1の変調装置の構成を示すブロック図The block diagram which shows the structure of the modulation apparatus of case 1 ケース1の復調復号装置の構成を示すブロック図The block diagram which shows the structure of the demodulation decoding apparatus of case 1 ケース1のSSB信号におけるシンボル干渉を示す図The figure which shows the symbol interference in the SSB signal of case 1 ケース1のSSB信号のフレーム構成を示す図The figure which shows the frame structure of the SSB signal of case 1 ケース1の各シンボルにおけるI軸およびQ軸の干渉状況を示す図The figure which shows the interference condition of the I-axis and the Q-axis in each symbol of case 1 ケース1のロールオフ率を小さくした場合に周波数利用効率が向上することを示す図The figure which shows that frequency utilization efficiency improves when the roll-off rate of case 1 is made small. ケース1の信号抽出の手順を示す図The figure which shows the procedure of signal extraction of case 1 ケース2のシンボル配置を示す図Diagram showing the symbol arrangement for case 2 ケース2の各シンボルにおけるI軸およびQ軸の干渉状況を示す図The figure which shows the interference condition of I-axis and Q-axis in each symbol of case 2 本発明の一実施の形態に係る3値化2進数の原理を示す図The figure which shows the principle of the ternary binary number which concerns on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数の原理を示す図The figure which shows the principle of the ternary binary number which concerns on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数化処理を示す図The figure which shows the ternary binarization process based on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数化処理を示す図The figure which shows the ternary binarization process based on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数化のプロセスを示すフロー図The flowchart which shows the process of the ternary binarization based on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数符号の2進数化処理を示す図The figure which shows the binarization process of the ternary binary code which concerns on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数符号の2進数化処理を示す図The figure which shows the binarization process of the ternary binary code which concerns on one embodiment of this invention 本発明の一実施の形態に係る3値化2進数符号の2進数化のプロセスを示すフロー図The flowchart which shows the process of binarization of the ternary binary code which concerns on one embodiment of this invention

符号の説明Explanation of symbols

100 変調装置
101 S/P変換部
102,103,104,105,202,203 ナイキストフィルタ
106,107,109,110,111,113,118,206,207,208,209 加算器
108,112,204,205 ヒルベルト変換器
114,115 乗算器
116 搬送周波数信号発生器
117 移相器
200 復調復号装置
201 直交検波部
210,211 復号器
212 P/S変換部
DESCRIPTION OF SYMBOLS 100 Modulator 101 S / P converter 102,103,104,105,202,203 Nyquist filter 106,107,109,110,111,113,118,206,207,208,209 Adder 108,112,204 , 205 Hilbert transformer 114, 115 multiplier 116 carrier frequency signal generator 117 phase shifter 200 demodulation decoding device 201 quadrature detection unit 210, 211 decoder 212 P / S conversion unit

Claims (4)

共通の搬送波周波数を有する2種類の単側帯波要素から成る変調信号を生成する変調方法であり、
前記2種類の単側帯波要素は、
正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に正極性の下側単側帯波を有した第1の単側帯波要素と、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に負極性の下側単側帯波を有した第2の単側帯波要素とから構成され、あるいは、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に正極性の上側単側帯波を有した第3の単側帯波要素と、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に負極性の上側単側帯波を有した第4の単側帯波要素とから構成される、
変調方法。
A modulation method for generating a modulation signal composed of two types of single sideband elements having a common carrier frequency,
The two types of single sideband elements are:
A first single sideband element having a positive upper single sideband in the positive frequency region and a positive lower single sideband in the negative frequency region; and a positive upper single sideband in the positive frequency region And a second single sideband element having a negative single-sideband in the negative frequency region and a negative single-sideband in the positive frequency region and negative A third single sideband element having a positive upper single sideband in the frequency domain, a positive lower single sideband in the positive frequency domain and a negative upper singleband in the negative frequency domain. A fourth single sideband element having
Modulation method.
前記変調信号のシンボルが配置される通信フレームにおいて、前記変調信号の同相成分および前記変調信号の直交成分を、3値化2進数化することにより前記シンボルの連続性を除去するとともに、前記シンボル毎にI軸およびQ軸にそれぞれ交互に配置する、
請求項1記載の変調方法。
In the communication frame in which the symbols of the modulation signal are arranged, the in-phase component of the modulation signal and the quadrature component of the modulation signal are ternarized and binary to remove the continuity of the symbols, and for each symbol Are alternately arranged on the I axis and the Q axis,
The modulation method according to claim 1.
正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に正極性の下側単側帯波を有した第1の単側帯波要素と、正の周波数領域に正極性の上側単側帯波を有するとともに負周波数領域に負極性の下側単側帯波を有した第2の単側帯波要素とから構成される2種類の単側帯波、あるいは、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に正極性の上側単側帯波を有した第3の単側帯波要素と、正の周波数領域に正極性の下側単側帯波を有するとともに負周波数領域に負極性の上側単側帯波を有した第4の単側帯波要素とから構成される2種類の単側帯波からなる変調信号であり、3値化2進数化された前記変調信号を受信し、
前記変調信号のシンボルを、‘0’および‘1’を基調とする2進数に変換する2進数化処理を行う、
復調方法。
A first single sideband element having a positive upper single sideband in the positive frequency region and a positive lower single sideband in the negative frequency region; and a positive upper single sideband in the positive frequency region Two types of single sidebands comprising a second single sideband element having a wave and a negative single sideband in the negative frequency region, or a positive lower side in the positive frequency region A third single sideband element having a single sideband wave and having a positive upper single sideband wave in the negative frequency region; and a negative single sideband wave having a positive lower sideband wave in the positive frequency region and a negative electrode in the negative frequency region A modulated signal composed of two types of single sidebands composed of a fourth single sideband element having an upper single sideband having a characteristic, and receiving the modulated signal converted into a binary value,
A binary conversion process is performed for converting the symbol of the modulation signal into a binary number based on '0' and '1';
Demodulation method.
前記変調信号の同相成分および前記変調信号の直交成分の隣接シンボル間干渉成分の発生を、前後のシンボルの極性との関係に基づいて判断することにより、前記隣接シンボル間干渉成分を除去する、
請求項3記載の復調方法。
Determining the occurrence of inter-adjacent symbol interference components of the in-phase component of the modulation signal and the quadrature component of the modulation signal based on the relationship with the polarity of the preceding and following symbols, thereby removing the inter-adjacent symbol interference component;
The demodulation method according to claim 3.
JP2008231797A 2008-09-10 2008-09-10 Modulation method and demodulation method Active JP4698714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231797A JP4698714B2 (en) 2008-09-10 2008-09-10 Modulation method and demodulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231797A JP4698714B2 (en) 2008-09-10 2008-09-10 Modulation method and demodulation method

Publications (2)

Publication Number Publication Date
JP2010068177A JP2010068177A (en) 2010-03-25
JP4698714B2 true JP4698714B2 (en) 2011-06-08

Family

ID=42193375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231797A Active JP4698714B2 (en) 2008-09-10 2008-09-10 Modulation method and demodulation method

Country Status (1)

Country Link
JP (1) JP4698714B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105331B2 (en) * 2008-06-25 2012-12-26 パナソニック株式会社 Modulation method and demodulation method
JP5846601B2 (en) * 2011-10-14 2016-01-20 学校法人早稲田大学 Receiving apparatus and receiving method
WO2015125957A1 (en) * 2014-02-21 2015-08-27 学校法人早稲田大学 Modulation/demodulation method, modulation device, and demodulation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134069A (en) * 2001-10-24 2003-05-09 Nippon Hoso Kyokai <Nhk> Radio communication system, its transmission circuit and receiving circuit
WO2005011223A1 (en) * 2003-07-25 2005-02-03 Matsushita Electric Industrial Co., Ltd. Modulation device, demodulation device, modulation method, and demodulation method
JP2008258918A (en) * 2007-04-04 2008-10-23 Matsushita Electric Ind Co Ltd Ssb signal forming method and radio transmitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777370B2 (en) * 1989-02-16 1995-08-16 松下電器産業株式会社 Modulator
US6091781A (en) * 1997-11-14 2000-07-18 Lucent Technologies Inc. Single sideband transmission of QPSK, QAM and other signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134069A (en) * 2001-10-24 2003-05-09 Nippon Hoso Kyokai <Nhk> Radio communication system, its transmission circuit and receiving circuit
WO2005011223A1 (en) * 2003-07-25 2005-02-03 Matsushita Electric Industrial Co., Ltd. Modulation device, demodulation device, modulation method, and demodulation method
JP2008258918A (en) * 2007-04-04 2008-10-23 Matsushita Electric Ind Co Ltd Ssb signal forming method and radio transmitter

Also Published As

Publication number Publication date
JP2010068177A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP2004515935A (en) Spread spectrum digital communication method using Golay complementary sequence modulation, transmitter and receiver
EP3785407B1 (en) Matched filter bank
JP4698714B2 (en) Modulation method and demodulation method
JP2823192B2 (en) Receiver
TW201724765A (en) Communication receiving apparatus, signal receiving method thereof, signal processing method, and signal transmitting method
KR101243753B1 (en) Demodulation circuit and demodulation method
JPWO2008129610A1 (en) Transmitting apparatus and SSB signal forming method
JP4938770B2 (en) Application of quadrature amplitude modulation signal transmission / reception method, quadrature amplitude modulation signal transmission / reception system, computer-readable recording medium, synchronous reception method of amplitude modulation signal
JP5105331B2 (en) Modulation method and demodulation method
KR20180133163A (en) A TRANSMITTER AND RECEIVER OF SUPPORTING A LOW PAPR(Peak-to-Average Power Ratio) AND METHOD FOR THE SAME
JP4940222B2 (en) Signal receiving apparatus and method
JP4928603B2 (en) Transmitting apparatus and SSB signal forming method
JP2842867B2 (en) Receiving apparatus and method
JP4408446B2 (en) Method for transmitting and receiving QAM signals with low signal-to-noise ratio
WO2020095986A1 (en) Optical transmission system
JP5846601B2 (en) Receiving apparatus and receiving method
EP1267534A1 (en) Digital modulation system, radio communication system, radio communication device
JP6255083B2 (en) Modulation / demodulation method, modulation apparatus and demodulation apparatus
JP2014036279A (en) Minimum shift modulation method and minimum shift modulation reception method
WO2022064546A1 (en) Coherent optical reception device and coherent optical reception method
JP6465391B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
CN111865853A (en) Demodulation method and device for small modulation index continuous phase signal
JP2008085921A (en) Radio transmission apparatus and radio receiving apparatus
EP2651086A1 (en) Parallel difference-encoding circuits
JP2004364244A (en) Modulating method, modulating apparatus, demodulating apparatus and radio communication system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250