JP4697992B2 - Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus - Google Patents

Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus Download PDF

Info

Publication number
JP4697992B2
JP4697992B2 JP32457199A JP32457199A JP4697992B2 JP 4697992 B2 JP4697992 B2 JP 4697992B2 JP 32457199 A JP32457199 A JP 32457199A JP 32457199 A JP32457199 A JP 32457199A JP 4697992 B2 JP4697992 B2 JP 4697992B2
Authority
JP
Japan
Prior art keywords
inert gas
container
oxygen concentration
tool
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32457199A
Other languages
Japanese (ja)
Other versions
JP2001137738A (en
Inventor
利男 佐野
正春 高橋
眞三 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shibaura Machine Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toshiba Machine Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP32457199A priority Critical patent/JP4697992B2/en
Publication of JP2001137738A publication Critical patent/JP2001137738A/en
Application granted granted Critical
Publication of JP4697992B2 publication Critical patent/JP4697992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、粉体製造装置および粉体製造装置のパージング制御方法に関し、特に、マグネシウム等の金属の微細粉体(粉末材料)を製造する粉体製造装置および粉体製造装置のパージング制御方法に関するものである。
【0002 】
【従来の技術】
ダイキャストや圧粉成形等で使用するマグネシウム等の金属の粉末材料を製造するために、金属を粉末化する技術としては、溶湯状態の金属を極細ノズルより噴出する噴霧法によるものがよく知られており、噴霧法では、良質の微細粉体を安定して生産することができる。
【0003 】
【発明が解決しようとする課題】
しかしながら、噴霧法による粉体製造は、製造装置が高価であることに加えて、ノズルの損耗が激しく、得られた粉体が高価なものになり、粉体の利用範囲が狭められることなる。
【0004 】
特に、マグネシウムは、実用構造材料中、最も軽量であるため、アルミニウムに代わる次世代の軽量材料として期待されており、マグネシウムの粉末材料の低コストが重要な課題になっている。
【0005】
この発明は、上述の如き課題に鑑みてなされたもので、マグネシウム等の金属の粉末材料を低コストで製造する粉体製造装置および粉体製造装置のパージング制御方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、内部雰囲気を不活性ガスと置換可能で、開閉可能な密閉容器と、前記密閉容器内に設けられ、マグネシウム等の金属の粉体製造用の回転切削工具を取り付けられる工具主軸と、前記密閉容器外に設けられ、前記工具主軸を回転駆動する主軸モータと、前記密閉容器内に設けられ、加工素材を取り付けられ、前記工具主軸に取り付けられる回転切削工具に対して切り込みを与える方向に直線移動可能な加工素材送り台と、前記密閉容器内に設けられ、前記加工素材送り台を切り込み方向に移動させる送りねじ機構と、前記密閉容器外に設けられ、前記送りねじ機構を回転駆動する送りモータとを有し、前記回転切削工具は、均一微細な切粉の粉体を生成するために、ドラム状の工具本体の外周面に、微細波形の切り刃を有する複数個の切り刃チップが複列に、周方向に位相をずらせて設けられている工具である粉体製造装置である。
【0007】
請求項2に記載に発明は、前記密閉容器は、内部で前記加工素材を切削する切削室容器と内部に前記加工素材を収容する加工素材室容器室との連結体を要しており、前記切削室容器は、軸受によって左右一対の前記工具主軸を回転可能に支持しており、前記切削室容器で画定された切削室内で、前記ドラム状の工具本体とこの工具本体の軸の延伸方向における前記工具本体の両側で前記工具本体から離れて前記工具本体に設けられている一対のフランジ部とを備えて構成されている前記回転切削工具が、前記工具主軸に両持ち状態で前記フランジ部を用いたフランジ結合により交換可能に取り付けられている請求項1記載の粉体製造装置である。
また、請求項3に記載に発明は、前記密閉容器の下部に切削物回収ダクトおよび切削物回収容器が気密に接続されている請求項1または請求項2に記載の粉体製造装置である。
【0008】
請求項4に記載の発明は、前記密閉容器には不活性ガス注入口と絞り効果がある排気口とが設けられ、前記不活性ガス注入口より不活性ガスを注入され、容器内気体を前記排気口より排出することにより、前記密閉容器内がパージングされる請求項1〜請求項3のいずれか1項に記載の粉体製造装置である。
【0009】
請求項5に記載の発明は、前記密閉容器内の酸素濃度を検出する酸素濃度検出器を有し、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下するまでは不活性ガスを大流量で前記不活性ガス注入口より前記密閉容器内に注入して高速パージを行い、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下すれば、不活性ガスを小流量で前記不活性ガス注入口より前記密閉容器内に注入して低速パージを行う請求項4に記載の粉体製造装置である。
【0010】
請求項6に記載の発明は、請求項4に記載の粉体製造装置のパージング制御方法において、前記密閉容器内の酸素濃度を酸素濃度検出器より検出し、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下するまでは不活性ガスを大流量で前記不活性ガス注入口より前記密閉容器内に注入して高速パージを行い、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下すれば、不活性ガスを小流量で前記不活性ガス注入口より前記密閉容器内に注入して低速パージを行う粉体製造装置のパージング制御方法である。
【0011 】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。図1〜図6はこの発明による粉体製造装置の一つの実施の形態を示している。
【0012 】
粉体製造装置は、箱状の基台1上に、内部雰囲気を不活性ガスと置換可能で、開閉可能な密閉容器として、切削室容器2と加工素材室容器3との連結体を要している。切削室容器2は内部に密閉構造の切削室4を、加工素材室容器3は内部密閉構造の加工素材室5を各々画定しており、切削室4と加工素材室5とは切削室容器2に形成された連通口6(図4参照)により互いに連通している。
【0013 】
切削室容器2の上面部には蝶番7によって開閉可能な蓋部材8が取り付けられ、また加工素材室容器3の上面部には蝶番9によって開閉可能な蓋部材10が取り付けられている。蓋部材8、蓋部材10には、内部の状態を外部より視認できるよう、透明ガラス板11、12が取り付けられている。
【0014 】
切削室容器2は軸受13によって左右一対の工具主軸14を回転可能に支持している。工具主軸14には、切削室4内において、粉体製造用の回転切削工具15が、両持ち状態で、フランジ結合により交換可能に取り付けられている。回転切削工具15は、ドラム状の工具本体15aの外周面に、微細波形の切り刃を有する複数個の切り刃チップ15bが複列に、周方向に位相をずらせて設けられているものであり、均一微細な切粉(粉体)を発生する。
【0015 】
基台1上には主軸モータ16が取り付けられている。主軸モータ16は、上述の密閉容器外にあり、カップリング17によって工具主軸14と駆動連結されている。
【0016 】
図4に示されているように、切削室容器2には不活性ガス注入口18が形成されている。切削室容器2の蓋部材8には、フィルタ付きで、フィルタ(図示省略)により絞り効果を奏する排気口19が設けられている。また、切削室容器2には切削室4の酸素濃度を検出するOセンサ20が取り付けられている。
【0017 】
切削室容器2の背面部には、切削室4の内圧が異常上昇した時に開く感圧式の安全弁21が設けられている。
【0018 】
加工素材室容器3は、工具主軸14の軸線方向(X軸方向)に対して水平面で見て直交する方向(Y軸方向)に細長く、内部(加工素材室5)にY軸方向のリニアガイドレール22(図5参照)を有している。リニアガイドレール22には加工素材送り台23がY軸方向に摺動可能に係合している。加工素材送り台23は、リニアガイドレール22に案内されてY軸方向、すなわち、切り込み方向に直線移動可能になっており、加工素材Mの後端部を保持するねじ式のクランプ24が設けられている。
【0019 】
また、加工素材室容器3内にはクランプ24によって後端を加工素材送り台23より保持された加工素材Mの中間部を水平状態で補助支持する中間カイドローラ25が取付具26によって設けられている。加工素材Mは、たとえば、マグネシウムインゴットであり、中間部を中間カイドローラ25より保持され、先端側は連通口6の部分に固定された固定受け台27上に載り、水平状態で連通口6を貫通して切削室4内に臨むようになっている。
【0020 】
図6に示されているように、加工素材室容器3には軸受28、29によって送りねじ棒30が回転可能に設けられている。送りねじ棒30は加工素材室5内の下部にあってY軸方向に延在している。加工素材送り台23の下底面には送りナット31が固定されている。送りナット31は送りねじ棒30にねじ係合している。このねじ係合により、送りねじ棒30の回転が送りナット31のY軸方向の直線移動に変換され、加工素材送り台23が切り込み方向に駆動される。
【0021 】
加工素材室容器3の外側には送りモータ33が取り付けられている。送りモータ33はカップリング34によって送りねじ棒30と駆動連結されている。
【0022 】
切削室容器2の底部は開口しており、切削室4の下部にはその開口部35に切削粉回収用のホッパ36が設けられている(図4参照)。基台1内には開口部35と気密に接続されたホッパ形状の切削物回収ダクト37および切削物回収容器38が設けられている。切削物回収容器38は、切削物取り出しのために、切削物回収ダクト37より選択的に切り離すことができる構造になっている。
【0023 】
なお、基台1上には操作盤41等が設けられている。操作盤41には、パージスタートボタン42、サイクルスタート可能表示ランプ43、サイクルスタートボタン44等が設けられている。
【0024】
図7は上述の構成による粉体製造装置の不活性ガス供給系およびパージング制御系を示している。不活性ガス、たとえば、アルゴンガスの供給源としてガスボンベ50が設けられている。ガスボンベ50は、途中に二つ電磁開閉弁51、52と、絞り53とを有する不活性ガス供給回路54によって不活性ガス注入口18に接続されている。電磁開閉弁51と52は互いに並列に設けられているおり、一方の電磁開閉弁52の側に絞り53が設けられている。
【0025 】
電磁開閉弁51と52は制御装置54により開閉制御される。制御装置54は、Oセンサ20と操作盤41と接続され、パージスタートボタン42が押されると、Oセンサ20により検出される容器内の酸素濃度が所定値(パージ規定値)まで低下するまでは、電磁開閉弁51と52の双方を開弁し、Oセンサ20により検出される容器内の酸素濃度が所定値まで低下すれば、電磁開閉弁51を閉弁して電磁開閉弁52のみを開弁させる制御を行い、Oセンサ20により検出される容器内の酸素濃度が所定値(パージ規定値)まで低下すれば、サイクルスタート可能表示ランプ43を点灯し、サイクルスタートボタン44によるサイクル運転(粉体製造工程)の開始を許可する。
【0026 】
つぎに、図8のフローチャートを参照してこの発明による粉体製造装置の動作について説明する。
【0027 】
電源オンの状態で、パージスタートボタン42が押されると(ステップS10肯定)、電磁開閉弁51と52の双方が開弁し、ガスボンベ50よりアルゴンガスのような不活性ガスが、大流量で、不活性ガス注入口18へ流れ、不活性ガス注入口18より不活性ガスが切削室4、加工素材室5に注入される。この不活性ガスの注入に伴い切削室4、加工素材室5の空気(大気)が排気口19より排出される。これにより、切削室4、加工素材室5を不活性ガスに置換するパージングが高速に行われる(ステップS11)。これを高速パージと云う。
【0028 】
上述のような高速パージ下においては、Oセンサ20によって切削室4、加工素材室5の酸素濃度の検出が行われ、酸素濃度が所定値以下になるまでは(ステップS12否定)、高速パージが続行される。
【0029 】
切削室4、加工素材室5の酸素濃度が所定値以下になると(ステップS12肯定)、電磁開閉弁51が閉弁し、電磁開閉弁52のみが引き続き開弁状態を保つ。これによりガスボンベ50より不活性ガス注入口18へ流れる不活性ガスの流量が絞りにより計量される小流量に制限される(ステップS13)。これを低速パージと云う。低速パージにおける不活性ガスの流量は、排気口19よりの排気に対して切削室4、加工素材室5の酸素濃度を所定値以下に保つ必要最小限の値に設定されている。
【0030 】
上述のように、切削室4、加工素材室5の酸素濃度が所定値以下になると、不活性ガス雰囲気における粉体製造が可能になり、これに応えてサイクルスタート可能表示ランプ43が点灯し(ステップS14)、サイクルスタートボタン44によるサイクル運転(粉体製造工程)の開始を許可する。
【0031 】
サイクルスタートボタン44が押されると(ステップS15肯定)、サイクル運転が開始される(ステップS16)。
【0032 】
つぎに、サイクル運転について説明する。サイクル運転は、主軸モータ16によって工具主軸14と共に回転切削工具15を所定の回転速度で回転駆動する。また、送りモータ33によって送りねじ棒30を回転駆動し、加工素材送り台23をY軸方向の前進される。
【0033 】
これにより、クランプ24によって後端を加工素材送り台23より保持された加工素材Mが、先端側を固定受け台27より支持された水平状態で連通口6を貫通して切削室4内に入り、回転している回転切削工具15により切削される。この切削により、均一微細な切粉(粉体)が生じ、切粉は、ホッパ36、開口部35、切削物回収ダクト37を通って切削物回収容器38内に落下回収される。
【0034 】
上述の切削は、不活性ガス雰囲気で行われるから、活性度の高い被削材(加工素材M)であっても、切粉が酸化することがなく、不活性ガスがアルゴンガスであると窒化する虞れもない。
【0035 】
不活性ガス雰囲気は、切削室4、加工素材室5のパージングにより行われ、主軸モータ16、送りモータ33は切削室4、加工素材室5外にあり、切削室4、加工素材室5の内容積を必要最小限度に止めているから、不活性ガスの必要量、消費量を少なくでき、併せてパージング時間の短縮が図られる。
【0036】
【発明の効果】
以上の説明から理解される如く、請求項1、請求項2に記載の粉体製造装置によれば、内部雰囲気を不活性ガスに置換(パージング)された密閉容器内(切削室、加工素材室)での回転切削工具による切削加工により、マグネシウム等の金属の粉末材料を低コストで製造することができる。主軸モータ、送りモータは密閉容器外にあり、不活性ガスに置換する密閉容器の内容積を必要最小限度にしているから、不活性ガスの必要量、消費量を少なくでき、併せてパージング時間を短縮できる。
【0037】
請求項3に記載の粉体製造装置によれば、密閉容器の下部に切削物回収ダクトおよび切削物回収容器が気密に接続されているから、切削加工により得られた粉末材料(切粉)を無駄なく簡単に回収することができる。
【0038】
請求項4に記載の粉体製造装置によれば、不活性ガス注入口より不活性ガスを注入し、容器内気体を排気口より排出することにより、密閉容器のパージングが行われ、構造を複雑にすることなく密閉容器内を不活性ガス雰囲気にすることができる。
【0039】
請求項5に記載の粉体製造装置および請求項6に記載の粉体製造装置のパージング制御方法によれば、酸素濃度検出器により検出される酸素濃度が所定値まで低下するまでは不活性ガスを大流量で不活性ガス注入口より密閉容器内に注入して高速パージが行われ、酸素濃度検出器により検出される酸素濃度が所定値まで低下すれば、不活性ガスを小流量で不活性ガス注入口より密閉容器内に注入して低速パージが行われるから、パージング時間(段取り時間)の短縮と不活性ガスの消費量削減とが両立する。
【図面の簡単な説明】
【図1】この発明による粉体製造装置の一つの実施の形態を示す側面図である。
【図2】この発明による粉体製造装置の一つの実施の形態を示す平面図である。
【図3】図2の線III−IIIによる断面図である。
【図4】図2の線IV−IVによる拡大断面図である。
【図5】図1の線V−Vによる拡大断面図である。
【図6】この発明による粉体製造装置の一つの実施の形態を示す送りねじ機構部分の拡大断面図である。
【図7】 この発明による粉体製造装置の不活性ガス供給系およびパージング制御系の一つの実施の形態を示す構成図である。
【図8】この発明による粉体製造装置の動作フローを示すフローチャートである。
【符号の説明】
1 基台
2 切削室容器
3 加工素材室容器
4 切削室
5 加工素材室
8,10 蓋部材
14 工具主軸
15 回転切削工具
16 主軸モータ
18 不活性ガス注入口
19 排気口
20 Oセンサ
21 安全弁
22 リニアガイドレール
23 加工素材送り台
24 クランプ
27 固定受け台
30 ねじ棒
31 送りナット
33 送りモータ
37 切削物回収ダクト
38 切削物回収容器
41 操作盤
50 ガスボンベ
51,52 電磁開閉弁
53 絞り
54 制御装置
M 加工素材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder manufacturing apparatus and a purging control method for the powder manufacturing apparatus, and more particularly to a powder manufacturing apparatus for manufacturing a fine metal powder (powder material) such as magnesium and a purging control method for the powder manufacturing apparatus. Is.
[0002]
[Prior art]
In order to produce metal powder materials such as magnesium used in die-casting and compacting, the technology for pulverizing metal is well known by the spray method in which molten metal is ejected from an ultrafine nozzle. The spray method can stably produce high-quality fine powder.
[0003]
[Problems to be solved by the invention]
However, in powder production by the spray method, in addition to the expensive production equipment, the nozzles are severely worn, resulting in expensive powder and a narrow range of use of the powder.
[0004]
In particular, since magnesium is the lightest material among practical structural materials, it is expected as a next-generation lightweight material to replace aluminum, and the low cost of magnesium powder material is an important issue.
[0005]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a powder manufacturing apparatus for manufacturing a metal powder material such as magnesium at a low cost and a purging control method for the powder manufacturing apparatus. .
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, an internal atmosphere can be replaced with an inert gas, and an airtight container that can be opened and closed, and a rotary cutting tool that is provided in the airtight container and is used for producing metal powder such as magnesium are attached. Tool spindle, a spindle motor that is provided outside the sealed container and rotationally drives the tool spindle, and a rotary cutting tool that is provided in the sealed container and has a work material attached thereto and attached to the tool spindle. A workpiece feed base that can move linearly in the direction of giving a cut, a feed screw mechanism that is provided in the sealed container and moves the workpiece feed base in a cut direction, and is provided outside the sealed container, the feed screw and a feed motor for rotating the mechanism, the rotary cutting tool, to produce a powder of uniform fine chips on the outer peripheral surface of the drum-shaped tool body, the cutting edge of the fine waveform A plurality of cutting edge tip to the double row with a powder production apparatus is a tool provided by the phase-shifted in the circumferential direction.
[0007]
In the invention according to claim 2, the sealed container requires a connecting body of a cutting chamber container that cuts the processed material inside and a processed material chamber container chamber that stores the processed material inside, The cutting chamber container rotatably supports the pair of left and right tool spindles by means of bearings, and in the cutting chamber defined by the cutting chamber container, the drum-shaped tool main body and the axis of the tool main body in the extending direction. It said rotary cutting tool is constituted by a said on both sides of the tool body away from the tool body of the pair provided on the tool body flange portion, the flange portion at both ends state to the tool spindle 2. The powder production apparatus according to claim 1, wherein the powder production apparatus is attached in a replaceable manner by the flange connection used .
Moreover, invention in Claim 3 is the powder manufacturing apparatus of Claim 1 or Claim 2 with which the cut material collection | recovery duct and the cut material collection | recovery container are airtightly connected to the lower part of the said airtight container.
[0008]
According to a fourth aspect of the present invention, the sealed container is provided with an inert gas inlet and an exhaust port having a throttling effect, the inert gas is injected from the inert gas inlet, and the gas in the container is supplied to the container. It is a powder manufacturing apparatus of any one of Claims 1-3 by which the inside of the said airtight container is purged by discharging | emitting from an exhaust port .
[0009]
The invention according to claim 5 has an oxygen concentration detector for detecting the oxygen concentration in the sealed container, and the inert gas is supplied until the oxygen concentration detected by the oxygen concentration detector decreases to a predetermined value. If the oxygen concentration detected by the oxygen concentration detector is reduced to a predetermined value by injecting into the sealed container from the inert gas inlet at a large flow rate and performing a high-speed purge, the inert gas is reduced at a small flow rate It is a powder manufacturing apparatus of Claim 4 which inject | pours in the said airtight container from an inert gas injection port, and performs a low speed purge .
[0010]
According to a sixth aspect of the present invention, in the purging control method of the powder manufacturing apparatus according to the fourth aspect , the oxygen concentration in the sealed container is detected by an oxygen concentration detector and detected by the oxygen concentration detector. Until the oxygen concentration is reduced to a predetermined value, an inert gas is injected into the sealed container at a high flow rate from the inert gas inlet to perform a high-speed purge, and the oxygen concentration detected by the oxygen concentration detector is predetermined. If it falls to a value, it is a purging control method for a powder production apparatus that performs low-speed purging by injecting an inert gas at a small flow rate into the sealed container from the inert gas inlet.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 6 show an embodiment of a powder production apparatus according to the present invention.
[0012]
The powder manufacturing apparatus requires a connecting body of the cutting chamber container 2 and the processing material chamber container 3 as a closed container that can replace the inside atmosphere with an inert gas and can be opened and closed on the box-shaped base 1. ing. The cutting chamber container 2 defines a cutting chamber 4 having a sealed structure inside, and the processing material chamber container 3 defines a processing material chamber 5 having an inner sealing structure. The cutting chamber 4 and the processing material chamber 5 are defined by the cutting chamber container 2. The communication ports 6 (see FIG. 4) are connected to each other.
[0013]
A lid member 8 that can be opened and closed by a hinge 7 is attached to the upper surface portion of the cutting chamber container 2, and a lid member 10 that can be opened and closed by a hinge 9 is attached to the upper surface portion of the processing material chamber container 3. Transparent glass plates 11 and 12 are attached to the lid member 8 and the lid member 10 so that the internal state can be visually recognized from the outside.
[0014]
The cutting chamber container 2 rotatably supports a pair of left and right tool spindles 14 with bearings 13. In the cutting chamber 4, a rotary cutting tool 15 for powder production is attached to the tool spindle 14 so as to be exchangeable by flange connection in a both-sided state. The rotary cutting tool 15 is provided with a plurality of cutting edge chips 15b having fine corrugated cutting edges on the outer peripheral surface of a drum-shaped tool main body 15a in a double row with a phase shifted in the circumferential direction. , Uniform fine chips (powder) are generated.
[0015]
A spindle motor 16 is mounted on the base 1. The main shaft motor 16 is outside the above-described sealed container and is drivingly connected to the tool main shaft 14 by a coupling 17.
[0016]
As shown in FIG. 4, an inert gas inlet 18 is formed in the cutting chamber container 2. The lid member 8 of the cutting chamber container 2 is provided with an exhaust port 19 which is attached with a filter and has a throttling effect by a filter (not shown). An O 2 sensor 20 that detects the oxygen concentration in the cutting chamber 4 is attached to the cutting chamber container 2.
[0017]
A pressure-sensitive safety valve 21 that opens when the internal pressure of the cutting chamber 4 rises abnormally is provided on the back surface of the cutting chamber container 2.
[0018]
The work material chamber container 3 is elongated in a direction (Y-axis direction) perpendicular to the axial direction (X-axis direction) of the tool spindle 14 when viewed in a horizontal plane, and a linear guide in the Y-axis direction inside (work material chamber 5). It has a rail 22 (see FIG. 5). A workpiece feed base 23 is engaged with the linear guide rail 22 so as to be slidable in the Y-axis direction. The workpiece feed table 23 is guided by the linear guide rail 22 and can move linearly in the Y-axis direction, that is, in the cutting direction, and is provided with a screw-type clamp 24 that holds the rear end portion of the workpiece M. ing.
[0019]
Further, an intermediate guide roller 25 is provided in the processing material chamber container 3 by a fixture 26 for supporting the intermediate portion of the processing material M, the rear end of which is held by the processing material feed base 23 by the clamp 24, in a horizontal state. . The processed material M is, for example, a magnesium ingot, the intermediate portion is held by the intermediate guide roller 25, the tip side is placed on the fixed receiving base 27 fixed to the portion of the communication port 6, and penetrates the communication port 6 in a horizontal state. Then, it faces the cutting chamber 4.
[0020]
As shown in FIG. 6, the processing material chamber container 3 is provided with a feed screw rod 30 rotatably by bearings 28 and 29. The feed screw rod 30 is in the lower part in the workpiece material chamber 5 and extends in the Y-axis direction. A feed nut 31 is fixed to the lower bottom surface of the workpiece feed base 23. The feed nut 31 is threadedly engaged with the feed screw rod 30. By this screw engagement, the rotation of the feed screw rod 30 is converted into a linear movement of the feed nut 31 in the Y-axis direction, and the workpiece feed base 23 is driven in the cutting direction.
[0021]
A feed motor 33 is attached to the outside of the processing material chamber 3. The feed motor 33 is drivingly connected to the feed screw rod 30 by a coupling 34.
[0022]
The bottom of the cutting chamber container 2 is open, and a cutting powder collecting hopper 36 is provided in the opening 35 below the cutting chamber 4 (see FIG. 4). In the base 1, a hopper-shaped cut material collecting duct 37 and a cut material collecting container 38 which are airtightly connected to the opening 35 are provided. The cut material collection container 38 has a structure that can be selectively separated from the cut material collection duct 37 for taking out the cut material.
[0023]
An operation panel 41 and the like are provided on the base 1. The operation panel 41 is provided with a purge start button 42, a cycle start ready display lamp 43, a cycle start button 44, and the like.
[0024]
FIG. 7 shows an inert gas supply system and a purging control system of the powder production apparatus configured as described above. A gas cylinder 50 is provided as a supply source of an inert gas, for example, an argon gas. The gas cylinder 50 is connected to the inert gas inlet 18 by an inert gas supply circuit 54 having two electromagnetic on-off valves 51 and 52 and a throttle 53 in the middle. The electromagnetic on-off valves 51 and 52 are provided in parallel with each other, and a throttle 53 is provided on one electromagnetic on-off valve 52 side.
[0025]
The electromagnetic on / off valves 51 and 52 are controlled to open / close by a control device 54. The control device 54 is connected to the O 2 sensor 20 and the operation panel 41, and when the purge start button 42 is pressed, the oxygen concentration in the container detected by the O 2 sensor 20 decreases to a predetermined value (purge specified value). Until both the electromagnetic on-off valves 51 and 52 are opened, and the oxygen concentration in the container detected by the O 2 sensor 20 decreases to a predetermined value, the electromagnetic on-off valve 51 is closed and the electromagnetic on-off valve 52 is closed. When the oxygen concentration in the container detected by the O 2 sensor 20 is lowered to a predetermined value (purge specified value), the cycle start ready display lamp 43 is turned on and the cycle start button 44 is used. Permit the start of cycle operation (powder production process).
[0026]
Next, the operation of the powder production apparatus according to the present invention will be described with reference to the flowchart of FIG.
[0027]
When the purge start button 42 is pressed in the power-on state (step S10 affirmative), both the electromagnetic on-off valves 51 and 52 are opened, and an inert gas such as argon gas from the gas cylinder 50 has a large flow rate. The inert gas is supplied to the cutting chamber 4 and the work material chamber 5 from the inert gas inlet 18. As the inert gas is injected, the air (atmosphere) in the cutting chamber 4 and the workpiece material chamber 5 is discharged from the exhaust port 19. As a result, purging for replacing the cutting chamber 4 and the workpiece material chamber 5 with the inert gas is performed at high speed (step S11). This is called high-speed purge.
[0028]
Under the high-speed purge as described above, the oxygen concentration in the cutting chamber 4 and the workpiece material chamber 5 is detected by the O 2 sensor 20, and the high-speed purge is performed until the oxygen concentration becomes a predetermined value or less (No in step S12). Will continue.
[0029]
When the oxygen concentration in the cutting chamber 4 and the workpiece material chamber 5 becomes a predetermined value or less (Yes in step S12), the electromagnetic on-off valve 51 is closed, and only the electromagnetic on-off valve 52 is kept open. As a result, the flow rate of the inert gas flowing from the gas cylinder 50 to the inert gas inlet 18 is limited to a small flow rate measured by the throttle (step S13). This is called low speed purge. The flow rate of the inert gas in the low-speed purge is set to a minimum necessary value to keep the oxygen concentration in the cutting chamber 4 and the workpiece material chamber 5 below a predetermined value with respect to the exhaust from the exhaust port 19.
[0030]
As described above, when the oxygen concentration in the cutting chamber 4 and the workpiece material chamber 5 becomes a predetermined value or less, powder production in an inert gas atmosphere becomes possible, and in response to this, the cycle start ready display lamp 43 is turned on ( Step S14), the start of cycle operation (powder manufacturing process) by the cycle start button 44 is permitted.
[0031]
When the cycle start button 44 is pressed (Yes at Step S15), cycle operation is started (Step S16).
[0032]
Next, the cycle operation will be described. In the cycle operation, the spindle motor 16 rotates the rotary cutting tool 15 together with the tool spindle 14 at a predetermined rotational speed. Further, the feed screw 33 is driven to rotate by the feed motor 33, and the workpiece feed base 23 is advanced in the Y-axis direction.
[0033]
As a result, the work material M, whose rear end is held by the work material feed base 23 by the clamp 24, passes through the communication port 6 and enters the cutting chamber 4 in a horizontal state where the front end side is supported by the fixed receiving base 27. Then, it is cut by the rotating cutting tool 15 that is rotating. By this cutting, uniform fine chips (powder) are generated, and the chips fall and collect in the cut object collection container 38 through the hopper 36, the opening 35, and the cut object collection duct 37.
[0034]
Since the above-mentioned cutting is performed in an inert gas atmosphere, even if the work material (working material M) has a high degree of activity, chips are not oxidized, and nitriding is performed when the inert gas is argon gas. There is no fear of it.
[0035]
The inert gas atmosphere is generated by purging the cutting chamber 4 and the workpiece material chamber 5, and the spindle motor 16 and the feed motor 33 are outside the cutting chamber 4 and the workpiece material chamber 5. Since the product is kept to the minimum necessary level, the required amount and consumption of the inert gas can be reduced, and the purging time can be shortened.
[0036]
【The invention's effect】
As can be understood from the above description, according to the powder manufacturing apparatus of claims 1 and 2 , the inside atmosphere (cutting chamber, processing material chamber) in which the internal atmosphere is replaced (purged) with an inert gas. The metal powder material such as magnesium can be manufactured at a low cost by the cutting with the rotary cutting tool in FIG. The spindle motor and feed motor are located outside the sealed container, and the internal volume of the sealed container to be replaced with inert gas is minimized, so the required amount and consumption of inert gas can be reduced, and the purging time can be reduced. Can be shortened.
[0037]
According to the powder manufacturing apparatus of the third aspect , since the cut material collection duct and the cut material collection container are airtightly connected to the lower part of the hermetic container, the powder material (chip) obtained by cutting is used. It can be easily collected without waste.
[0038]
According to the powder manufacturing apparatus of the fourth aspect , the inert gas is injected from the inert gas inlet, and the gas in the container is discharged from the exhaust port, whereby the sealed container is purged and the structure is complicated. The inside of the sealed container can be made an inert gas atmosphere without making it.
[0039]
According to the purging control method of the powder manufacturing apparatus according to claim 5 and the powder manufacturing apparatus according to claim 6 , the inert gas is used until the oxygen concentration detected by the oxygen concentration detector decreases to a predetermined value. When the oxygen concentration detected by the oxygen concentration detector drops to a predetermined value, the inert gas is inactivated at a low flow rate. Since the low-speed purge is performed by injecting into the sealed container from the gas inlet, both shortening of the purging time (setup time) and reducing the consumption of the inert gas are achieved.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of a powder production apparatus according to the present invention.
FIG. 2 is a plan view showing one embodiment of a powder production apparatus according to the present invention.
3 is a cross-sectional view taken along line III-III in FIG.
4 is an enlarged cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is an enlarged cross-sectional view taken along line VV in FIG.
FIG. 6 is an enlarged cross-sectional view of a feed screw mechanism portion showing an embodiment of a powder production apparatus according to the present invention.
FIG. 7 is a configuration diagram showing one embodiment of an inert gas supply system and a purging control system of the powder production apparatus according to the present invention.
FIG. 8 is a flowchart showing an operation flow of the powder manufacturing apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 2 Cutting chamber container 3 Processing material chamber container 4 Cutting chamber 5 Processing material chamber 8, 10 Lid member 14 Tool spindle 15 Rotary cutting tool 16 Spindle motor 18 Inert gas inlet 19 Exhaust outlet 20 O 2 sensor 21 Safety valve 22 Linear guide rail 23 Work material feed base 24 Clamp 27 Fixed receiving base 30 Screw rod 31 Feed nut 33 Feed motor 37 Cut material collection duct 38 Cut material collection container 41 Operation panel 50 Gas cylinder 51, 52 Electromagnetic switching valve 53 Aperture 54 Control device M Processing material

Claims (6)

内部雰囲気を不活性ガスと置換可能で、開閉可能な密閉容器と、
前記密閉容器内に設けられ、マグネシウム等の金属の粉体製造用の回転切削工具を取り付けられる工具主軸と、
前記密閉容器外に設けられ、前記工具主軸を回転駆動する主軸モータと、
前記密閉容器内に設けられ、加工素材を取り付けられ、前記工具主軸に取り付けられる回転切削工具に対して切り込みを与える方向に直線移動可能な加工素材送り台と、
前記密閉容器内に設けられ、前記加工素材送り台を切り込み方向に移動させる送りねじ機構と、
前記密閉容器外に設けられ、前記送りねじ機構を回転駆動する送りモータと、
を有し、前記回転切削工具は、均一微細な切粉の粉体を生成するために、ドラム状の工具本体の外周面に、微細波形の切り刃を有する複数個の切り刃チップが複列に、周方向に位相をずらせて設けられている工具であることを特徴とする粉体製造装置。
An airtight container that can be replaced with an inert gas and can be opened and closed;
A tool spindle that is provided in the sealed container and to which a rotary cutting tool for producing powder of metal such as magnesium can be attached;
A spindle motor that is provided outside the sealed container and rotationally drives the tool spindle;
A working material feed base that is provided in the sealed container, is attached with a work material, and is linearly movable in a direction that gives a cut to a rotary cutting tool attached to the tool spindle;
A feed screw mechanism that is provided in the sealed container and moves the workpiece feed base in a cutting direction;
A feed motor that is provided outside the sealed container and rotationally drives the feed screw mechanism;
The rotary cutting tool includes a plurality of cutting edge chips having fine corrugated cutting edges on the outer peripheral surface of a drum-shaped tool body in order to generate uniform fine cutting powder. And a tool provided with a phase shifted in the circumferential direction.
前記密閉容器は、内部で前記加工素材を切削する切削室容器と内部に前記加工素材を収容する加工素材室容器室との連結体を要しており、
前記切削室容器は、軸受によって左右一対の前記工具主軸を回転可能に支持しており、
前記切削室容器で画定された切削室内で、前記ドラム状の工具本体とこの工具本体の軸の延伸方向における前記工具本体の両側で前記工具本体から離れて前記工具本体に設けられている一対のフランジ部とを備えて構成されている前記回転切削工具が、前記工具主軸に両持ち状態で前記フランジ部を用いたフランジ結合により交換可能に取り付けられていることを特徴とする請求項1記載の粉体製造装置。
The sealed container requires a connecting body of a cutting chamber container that cuts the processing material inside and a processing material chamber container chamber that houses the processing material inside,
The cutting chamber container rotatably supports the pair of left and right tool spindles by a bearing,
In the cutting chamber defined by the cutting chamber container, a pair of the drum-shaped tool main body and a pair of the tool main body provided on the tool main body on both sides of the tool main body in the extending direction of the axis of the tool main body. 2. The rotary cutting tool configured to include a flange portion is attached to the tool spindle so as to be exchangeable by flange coupling using the flange portion in a both-end supported state. Powder production equipment.
前記密閉容器の下部に切削物回収ダクトおよび切削物回収容器が気密に接続されていることを特徴する請求項1または請求項2に記載の粉体製造装置。  The powder manufacturing apparatus according to claim 1 or 2, wherein a cut material collection duct and a cut material collection container are airtightly connected to a lower portion of the sealed container. 前記密閉容器には不活性ガス注入口と絞り効果がある排気口とが設けられ、前記不活性ガス注入口より不活性ガスを注入され、容器内気体を前記排気口より排出することにより、前記密閉容器内がパージングされることを特徴とする請求項1〜請求項3のいずれか1項に記載の粉体製造装置。  The closed container is provided with an inert gas injection port and an exhaust port having a throttling effect, the inert gas is injected from the inert gas injection port, and the gas in the container is discharged from the exhaust port, The powder manufacturing apparatus according to any one of claims 1 to 3, wherein the inside of the sealed container is purged. 前記密閉容器内の酸素濃度を検出する酸素濃度検出器を有し、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下するまでは不活性ガスを大流量で前記不活性ガス注入口より前記密閉容器内に注入して高速パージを行い、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下すれば、不活性ガスを小流量で前記不活性ガス注入口より前記密閉容器内に注入して低速パージを行うことを特徴とする請求項4に記載の粉体製造装置。  An oxygen concentration detector for detecting the oxygen concentration in the sealed container, and the inert gas inlet at a large flow rate of the inert gas until the oxygen concentration detected by the oxygen concentration detector decreases to a predetermined value. If the oxygen concentration detected by the oxygen concentration detector is reduced to a predetermined value by injecting the gas into the closed vessel and performing high-speed purge, the closed vessel is supplied with a small flow rate from the inert gas inlet. The powder manufacturing apparatus according to claim 4, wherein low-speed purge is performed by injecting the powder into the inside. 請求項4に記載の粉体製造装置のパージング制御方法において、前記密閉容器内の酸素濃度を酸素濃度検出器より検出し、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下するまでは不活性ガスを大流量で前記不活性ガス注入口より前記密閉容器内に注入して高速パージを行い、前記酸素濃度検出器により検出される酸素濃度が所定値まで低下すれば、不活性ガスを小流量で前記不活性ガス注入口より前記密閉容器内に注入して低速パージを行うことを特徴とする粉体製造装置のパージング制御方法。  5. The purging control method for a powder manufacturing apparatus according to claim 4, wherein the oxygen concentration in the sealed container is detected by an oxygen concentration detector, and the oxygen concentration detected by the oxygen concentration detector is reduced to a predetermined value. The inert gas is injected into the sealed container at a large flow rate from the inert gas inlet, and high-speed purge is performed. If the oxygen concentration detected by the oxygen concentration detector decreases to a predetermined value, the inert gas A purging control method for a powder production apparatus, wherein low-speed purging is performed by injecting the gas into the sealed container from the inert gas inlet at a small flow rate.
JP32457199A 1999-11-15 1999-11-15 Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus Expired - Lifetime JP4697992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32457199A JP4697992B2 (en) 1999-11-15 1999-11-15 Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32457199A JP4697992B2 (en) 1999-11-15 1999-11-15 Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001137738A JP2001137738A (en) 2001-05-22
JP4697992B2 true JP4697992B2 (en) 2011-06-08

Family

ID=18167309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32457199A Expired - Lifetime JP4697992B2 (en) 1999-11-15 1999-11-15 Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4697992B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3781339A4 (en) 2018-04-04 2021-09-22 Metal Powder Works, LLC System and method for manufacturing powders from ductile materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185346A (en) * 1985-02-12 1986-08-19 株式会社クラレ Plastic cutter
JPS62205203A (en) * 1986-03-04 1987-09-09 Res Dev Corp Of Japan Production of ultrafine short metallic fiber
JPS63270557A (en) * 1987-04-28 1988-11-08 帝人株式会社 Rubbery article crusher having temperature adhesion
JPH038910A (en) * 1989-06-06 1991-01-16 Matsuyama Plow Mfg Co Ltd Snow-melting device
JPH06100164A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Magnetically coupled carrying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224222A (en) * 1983-06-03 1984-12-17 Toyo Seisen Kk Manufacture of short metal fiber
JPH0350985Y2 (en) * 1986-02-25 1991-10-31
JPH0165824U (en) * 1987-10-23 1989-04-27
JPH0184432U (en) * 1987-11-27 1989-06-05
JP3176160B2 (en) * 1993-01-21 2001-06-11 東京エレクトロン株式会社 Processing equipment
JPH07256135A (en) * 1994-03-24 1995-10-09 Nittetsu Mining Co Ltd Copper clad laminated plate pulverizing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185346A (en) * 1985-02-12 1986-08-19 株式会社クラレ Plastic cutter
JPS62205203A (en) * 1986-03-04 1987-09-09 Res Dev Corp Of Japan Production of ultrafine short metallic fiber
JPS63270557A (en) * 1987-04-28 1988-11-08 帝人株式会社 Rubbery article crusher having temperature adhesion
JPH038910A (en) * 1989-06-06 1991-01-16 Matsuyama Plow Mfg Co Ltd Snow-melting device
JPH06100164A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Magnetically coupled carrying device

Also Published As

Publication number Publication date
JP2001137738A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CN207592016U (en) A kind of block-resistant type hard alloy processes metal powder grinding device
CN213053899U (en) Automatic clear up metal chip's numerical control lathe
CN208743894U (en) Plasma digital control cutting machine with dedusting mechanism
CN213397302U (en) Cigarette machine rejects stalk and signs flow on-line intermittent type formula measuring device
JP4697992B2 (en) Powder manufacturing apparatus and parsing control method for powder manufacturing apparatus
CN116393816A (en) Laser cutting machine is used in medical instrument production
CN104229238B (en) Bag opening machine and water treatment system
CN108033666A (en) A kind of glass preparation sintering equipment
CN213672439U (en) Laser circular tube cutting machine with slag suction device
CN111701274B (en) Traditional chinese medicine draws enrichment facility
CN207326371U (en) A kind of pump housing screw servo lock dispensing apparatus
JP5323571B2 (en) Powder compression molding machine
JPH05261783A (en) Vent-type injection molding machine
CN206215899U (en) The dynamic multistation die casting regrinding-material handle sawing machine of double pendulum
CN114433320A (en) Raw material grinds immediately and uses screw feeder with broken and safeguard function
CN206393717U (en) A kind of root of kudzu vine slicing device
JPH04197594A (en) Laser beam machine
CN220863080U (en) Welding equipment
CN221019985U (en) Piston rod cutting machine is used in production of tipper hydraulic cylinder
CN219901045U (en) Welding set is used in chemical industry equipment production
CN220177064U (en) Ball mill with dust fall structure
CN215725133U (en) Multifunctional integrated fast switching module
CN214867516U (en) Surface milling equipment of metal processing mould
CN218837251U (en) Hydraulic driving device for abrasive wheel saw
CN211487052U (en) Cement mixing plant is used in construction of controllable raise dust of material loading mouth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4697992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term