JP4697912B2 - Secondary power supply electrode material and secondary power supply using the same - Google Patents

Secondary power supply electrode material and secondary power supply using the same Download PDF

Info

Publication number
JP4697912B2
JP4697912B2 JP2000350826A JP2000350826A JP4697912B2 JP 4697912 B2 JP4697912 B2 JP 4697912B2 JP 2000350826 A JP2000350826 A JP 2000350826A JP 2000350826 A JP2000350826 A JP 2000350826A JP 4697912 B2 JP4697912 B2 JP 4697912B2
Authority
JP
Japan
Prior art keywords
electrode
secondary power
carbon
power source
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000350826A
Other languages
Japanese (ja)
Other versions
JP2002158139A5 (en
JP2002158139A (en
Inventor
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2000350826A priority Critical patent/JP4697912B2/en
Publication of JP2002158139A publication Critical patent/JP2002158139A/en
Publication of JP2002158139A5 publication Critical patent/JP2002158139A5/ja
Application granted granted Critical
Publication of JP4697912B2 publication Critical patent/JP4697912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学キャパシタや非水二次電池などの二次電源に用いられる電極材料およびその電極材料を負極に用いた二次電源に関するものである。
【0002】
【従来の技術】
近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わってモーター駆動である電気自動車、あるいはモーターとエンジンの両方を搭載したハイブリッド車への期待が高まっている。それら電気自動車やハイブリッド車ではモーターを駆動させるための電源として電池が使われているが、電気自動車に使われる電池は、重量や体積が非常に大きく、コスト的な面も踏まえれば、繰り返し使用できる充電型の電池、すなわち二次電池が好ましい。そして、その二次電池としては、例えば鉛電池、ニッケル・カドミウム(ニカド)電池、ニッケル水素電池などが挙げられ、それらの二次電池は導電性の高い酸性またはアルカリ性の水系電解液を用いているので、高い電流を取り出すことが可能である。
【0003】
しかしながら、水系電解液を用いた二次電池は、水の電気分解電圧が1.23Vであるため、単セルからはそれ以上の高い電圧を得ることができない。しかるに、電気自動車の電源としては200V前後の電圧が必要であることから、そのような高電圧を得るためには多くの電池を直列に接続しなければならず、したがって、小型・軽量化に際して極めて不利であった。
【0004】
高電圧型の二次電池としては、有機電解液を用いたリチウムイオン二次電池が挙げられる。このリチウムイオン二次電池では、分解電圧の高い有機溶媒を電解液溶媒としているため、最も卑な電位を示すリチウム(イオン)を負極活物質にとして用い、遷移金属とリチウムからなる複合酸化物を正極活物質として用いた場合には、平均作動電圧として3.6V、最高電圧としては4V以上の高い電圧を示す。現在市販されているリチウムイオン二次電池は、リチウムイオンの吸蔵および脱離が可能な炭素を負極に用い、コバルトとリチウムからなるコバルト酸リチウム(LiCoO2 )を正極に用いたものが主流である。そして、電解液には、六フッ化リン酸リチウム(LiPF6 )などのリチウム塩をエチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステルやジメチルカーボネート、ジエチルカーボネートなどの鎖状炭酸エステルとの混合溶媒に溶解したものが用いられている。
【0005】
このリチウムイオン二次電池は、水系二次電池に比べて高電圧であり、重量当たりのエネルギー密度で100Wh/kg以上、体積当たりのエネルギー密度としては250Wh/l以上と非常に高エネルギー密度であるが、有機電解液を用いているためイオン導電性が水系電解液に比べて低く、出力特性が悪いという問題があった。そのため、電極の薄膜化や電解液の改良などにより高出力化が進められているが、電気自動車用の電源としては300A程度の瞬間電流が必要とされるため、実用化しがたいという問題があった。
【0006】
そこで、電池に代わる電源として電気二重層を利用したキャパシタが注目されはじめてきた。この電気二重層キャパシタは、活性炭などの分極性電極を正負極に用い、プロピレンカーボネートなどの有機溶媒に四フッ化ホウ素の四級アンモニウム塩を溶解したものを電解液とした構成であり、電極表面と電解液との界面に生じる電気二重層を静電容量として蓄電する電源であるため、電池のような酸化還元反応を起こさず、その分、高い電流を取り出すことが可能であるとともに、サイクル劣化がないという長所を有している。
【0007】
しかしながら、電気二重層キャパシタは、静電容量分の電気量を充放電に用いるため、電池に比べてエネルギー密度が非常に低く(<2Wh/kg)、したがって、自動車用の電源とするには、電池以上に多くのキャパシタが必要になり、そのため、電気二重層キャパシタだけでの使用では実現が困難であった。
【0008】
そこで、大電流を取り出すことが可能な静電容量と、高いエネルギー密度をもつ電気化学的な酸化還元反応による疑似容量を併せ持った二次電源が提案されている。この二次電源では、有機電解液を用いてリチウムイオンを活物質媒体とすれば、高出力で高エネルギー密度を有したものにすることができる。ただし、この場合は、電気二重層キャパシタとは異なり、電極は正負極同一のものではなく、前記リチウムイオン二次電池の場合と同様の電極構成となる。
【0009】
リチウムイオン二次電池の充電反応は、正極から電気化学的にリチウムイオンが電解液中に溶出し、電解液を経由して負極中に挿入される。負極に炭素を用いた場合は、リチウムイオンの炭素格子中への挿入反応はリチウム極に対して0.5〜0Vの範囲内で進行する。ところが、特に1サイクル目において、炭素負極へのリチウムイオンの挿入反応が始まる前、具体的にはリチウム極に対して0.8〜0.6V付近において、炭素負極表面で電解液の分解反応が起きてしまう。この分解反応では前記リチウムイオンも消費され、しかも不可逆反応であるから、その分、正極側のリチウムイオンが損失する。これはサイクル毎に容量が劣化する原因となる。また、前記分解反応では炭素表面に被膜が生成するため、炭素表面と電解液との界面抵抗が増大してしまう。抵抗の増大は電池の負荷特性を著しく低減させてしまい、大電流下での容量確保を困難にしてしまう。
【0010】
そこで、炭素負極に代わって、最近ではチタン系の負極材料が注目されている。例えば、Li1+x Ti2 4 またはLi4/3+x Ti5/3 4 (0≦x≦1)はリチウム極に対して1.4〜1.8Vの付近で高い可逆容量を持ち、炭素負極のように不可逆な容量をほとんど持たないため、二次電源用の電極材料として非常に有望視されている。
【0011】
しかしながら、前記チタン系材料は絶縁体であるため、高出力を必要とする二次電源用の電極材料として用いるには、現状では極めて困難であった。
【0012】
【発明が解決しようとする課題】
本発明は、前記のような従来技術における問題点を解決し、高速の充放電条件下でも高エネルギー密度を示す二次電源用電極材料を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、リチウムイオンの負極への挿入反応に際して、炭素が電解液と反応する電位よりも貴な電位(対リチウム極)でのリチウムイオンの可逆的な挿入および脱離が可能な材料を用いることにより、サイクル毎の容量ロスを生じることなく、かつ被膜の形成による内部抵抗の増加が生じない電極材料を提供することが可能であること、特に微粒子化した材料であれば、高電流でもリチウムイオンの可逆的な挿入および脱離が可能であることを見出した。さらに、この微粒子化した材料を炭素表面に担持させ、500m/g以上の比表面積をもつ材料とすれば、前記疑似容量および静電容量とを併せ持った新規二次電源を提供することが可能であることを見出した。
【0014】
したがって、前記課題を解決するための本発明の構成は、金属リチウム極に対して1V以上2V以下の電圧領域でリチウムイオンの挿入および脱離に伴う電気容量を持ち、かつ平均粒径が1μm以下の活物質を炭素表面に担持してなり、その炭素の比表面積が500m/g以上である二次電源用電極材料からなるものである。そして、本発明は、前記活物質が少なくともLi1+xTiまたはLi4/3+xTi5/3(0≦x≦1)のいずれかを含むこと、前記炭素の平均粒径が10〜30μmであることを好ましい形態とし、また、本発明は、前記二次電源用電極材料を負極に用い、リチウムを含有した金属酸化物を主体とした材料を正極に用い、有機溶媒に少なくともリチウム塩を溶解させた電解液を用いた二次電源も対象としている。
【0015】
【発明の実施の形態】
本発明の二次電源用電極材料には、電解液の分解反応が起こる電位よりも高い電位でリチウムイオンの可逆的な挿入および脱離反応が可能な活物質材料を用いる。電解液の分解反応は、電解液を構成する電解質塩や溶媒の種類により若干異なるが、多くはリチウム極に対して0.8〜0.6Vで起こる。したがって、前記活物質としては0.8Vより貴な電位領域でリチウムイオンの挿入および脱離が可能な材料が選択される。具体的には、例えば、Li1+x Ti2 4 またはLi4/3+x Ti5/3 4 (0≦x≦1)が好適な活物質として挙げられる。また、Lix WO3 、Lix Nb2 5(0≦x≦1)なども活物質として用いることができる。これらは、リチウム極に対して1.4〜1.8V付近で高い容量を示すので、本発明における活物質として非常に適している。
【0016】
前記活物質は、高い電流密度でもリチウムイオンの挿入および脱離を可能にするため、比表面積の大きい微粒子が好ましい。具体的には、活物質の粒径としては平均粒径で1μm以下が好ましく、より好ましくは0.2μm以下であり0.01μm程度にまで小さくなってもよい。1μmより大きくなると比表面積が小さくなり、リチウムイオンの挿入や脱離のできる面が限定されるため、急速な充放電が困難になる。
【0017】
さらに、前記活物質を担持させる炭素は電気二重層による静電容量を持つことが必要である。比表面積が大きいとそれだけ静電容量も大きくなるので、前記炭素はできるだけ比表面積の大きいものが好ましい。具体的には、比表面積が500m2 /g以上のものが好ましく、1000m2 /g以上のものがより好ましく、3000m2 /g程度にまで比表面積が大きくなってもよい。また、前記炭素は平均粒径が10〜30μmであることが好ましい。炭素の粒径をそのようにすることによって、前記活物質を表面に担持させることを可能にするとともに、電極の薄膜化を達成して充分な出力特性を引き出し得るようにすることができる。この炭素は、その材質面で特に制約を受けることはないが、例えば、フェノール樹脂、石油コークス系、椰子殻から得られる活性炭が適している。
【0018】
本発明の二次電源用電極材料は、前記炭素表面に前記活物質の微粒子が担持されていることが特徴であり、それによって、充填性や活物質の利用率および出力性能を向上させることができる。そのためには、前記のように、炭素の平均粒径は10μm以上であることが好ましい。
【0019】
前記活物質を炭素表面に担持させる方法としては、例えば、ボールミル、ジェットミルや高速で羽根を回転させるハイブリタイザーなどの装置に前記活物質と炭素を装填して処理する手法があげられる。この場合、湿式による方法、乾式による方法のいずれも採用することができる。
【0020】
前記活物質と炭素よりなる本発明の二次電源用電極材料は、二次電源の電極に用いる場合、通常はシート状またはディスク状に成形して電極化される。具体的には、前記二次電源用電極材料に、必要に応じて、例えば高分子バインダーを加えて溶剤の存在下で混合してペースト状の混合物を調製し、そのペースト状混合物を例えば銅、アルミニウム、チタン、ニッケルなどの金属シートに塗布し、乾燥することによって電極が作製される。塗布後の乾燥に際しては必要に応じて加熱処理を採用してもよいし、また、密度を高めるため加圧処理を採用してもよい。
【0021】
前記高分子バインダーとしては、特に制限がなく、例えば、リチウムイオン二次電池に従来から使用されているようなポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン共重合体などが好適に用いられる。これらはそれぞれ単独で用いてもよいし、また、2種類以上を混合しても用いてもよい。また、その使用にあたって有機溶剤に分散または溶解させて用いてもよい。
【0022】
本発明の二次電源用電極材料は、二次電源の電極として用いる場合、負極に用いられるが、その際には、正極にもリチウムイオンの挿入および脱離が可能な活物質が含まれていることを必要である。この正極の活物質としては、従来からもリチウムイオン二次電池に使用されているリチウムと遷移金属との複合酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnなどや、それらのCo、Ni、Mnなどの一部を他の金属で置換したもの(例えば、Coの一部をNiやMnなどで置換したものでもよい)を正極活物質として用いることができる。
【0023】
前記正極も、負極と同様に電気二重層による静電容量を付与させるため、前記活物質の他に前記活性炭などの比表面積の大きい炭素を含ませておくことが好ましい。そのような比表面積の大きい炭素としては、負極の場合と同様に、500m2 /g以上の比表面積を有するものが好ましいが、材質面で必ずしも負極と同じである必要はない。さらに導電性を向上させる目的で他の炭素材料、例えば、アセチレンブラック、カーボンブラック、ケッチェンブラック、炭素繊維、カーボンナノチューブ、天然黒鉛、人造黒鉛などを添加してもかまわない。
【0024】
前記正極材料を用いて、二次電源用の正極を作製する場合には、基本的には前記負極の場合と同様な方法で電極化することが可能である。すなわち、負極と同様に、前記正極材料に必要に応じて高分子バインダーを添加し溶剤の存在下で混合してペースト状混合物を調製し、得られたペースト状混合物を前記と同様の金属箔などに塗布し、乾燥し、必要に応じて加圧してシート形またはディスク形に成形して電極化される。
【0025】
前記負極および正極を二次電源に用いる場合、電解液が必要となる。その電解液としては、リチウムイオンを活物質媒体とする場合、例えば、エチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステルやジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状炭酸エステル、あるいはγ−ブチロラクトンなどから構成される有機溶媒に、例えば、LiClO、LiPF、LiBFなどのリチウム塩を溶解させたものが好適に用いられる。必要に応じて、二次電源に使われる(CNBFや(CNPFなどの四級アンモニウム塩やホスホニウム塩を適量混合してもよい。
【0026】
前記の通り構成された負極、正極、電解液などを用いて二次電源を作製する場合、その形状は円筒形、角形、コイン形など特に制限はない。円筒形の二次電源を作製する場合は、前記シート形に成形した負極と正極とをセパレータを介してロール状に巻回し、その巻回構造の電極群を円筒缶内に装填する工程を経ることによって作製される。また、角形の二次電源を作製する場合は、前記シート形負極と正極とをセパレータを介在させて積層し、その積層電極群を角形容器内に装填する工程を経ることによって作製される。
【0027】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0028】
実施例1
レーザー散乱法により求められた平均粒径0.1μmのLi4/3+x Ti5/3 4 50重量部と、フェノール樹脂を焼成および賦活して得られた活性炭(平均粒径20μm、BET法による比表面積2000m2 /g)50重量部とを遊星ボールミルに装填し、回転速度1000rpmで3時間処理した。処理後の粉末を走査型電子顕微鏡で観察したところ、活性炭の表面にLi4/3+x Ti5/3 4 の微粒子が多数付着していた。
【0029】
上記のようにして得られた活性炭の表面にLi4/3+x Ti5/3 4 の微粒子が付着した粉末50重量部に、エタノール50重量部と60重量%ポリテトラフルオロエチレン水性分散液5重量部を加え、超音波分散機で混合してペースト状の混合物を得た。このペースト状混合物を厚さ15μmのアルミニウム箔に塗布し、80℃で真空乾燥して、シート形の電極を作製した。
【0030】
得られた電極を作用極として用い、金属リチウムを対極および参照極として用い、プロピレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒にLiPF6 を1mol/lの濃度になるように溶解させたものを電解液として用い、アルミラミネートセルを作製した。このアルミラミネートセルについて詳しく説明すると、このアルミラミネートセルとは、外装材としてナイロンフィルム−アルミニウム箔−変性ポリオレフィンフィルムからなる三層ラミネートフィルムを用い、その外装材内に前記の作用極、対極、参照極、電解液などを封入したモデルセルである。
【0031】
このセルを用いて、掃引速度10mV/sec、25mV/sec、50mV/sec、掃引電圧幅1〜3V(対リチウム参照極)で電圧−電流曲線を描いた。得られた曲線から作用極重量(ただし、この重量にはアルミニウム箔の重量は含まない)当たりの電気二重層による静電容量とリチウムイオンの酸化還元による疑似容量を推定した。その結果を後記の表1に示す。
【0032】
比較例1
活物質であるLi4/3+x Ti5/3 4 の平均粒径が2μmであることと、炭素として平均粒径が30μm(比表面積2500m2 /g)の活性炭を用いた以外は、すべて実施例1と同様に電極とセルを作製した。得られたセルを用いて、実施例1と同様に各掃引速度での静電容量と疑似容量を求めた。その結果を後記の表1に示す。
【0033】
比較例2
炭素として比表面積が50m2 /gのアセチレンブラックを用いた以外は、すべて実施例1と同様に電極とセルを作製した。得られたセルを用いて、実施例1と同様に各掃引速度での静電容量と疑似容量を求めた。その結果を表1に示す。
【0034】
【表1】

Figure 0004697912
【0035】
表1に示す結果から明らかなように、実施例1は、静電容量、疑似容量とも、比較例1〜2に比べて大きかった。また、比較例1〜2では、掃引速度を上げていくと、特に疑似容量が実施例1に比べて、大きく低下した。比較例1の疑似容量が極端に低くなったのは、活物質の粒径が大きすぎるため、急速なリチウムイオンの酸化還元反応に追随できなかったことによるものと考えられる。また、比較例2の静電容量が低かったのは、炭素の比表面積が小さすぎたためであると考えられる。
【0036】
【発明の効果】
以上説明したように、本発明では、電気二重層による静電容量と電気化学的な酸化還元反応による疑似容量を併せ持った高エネルギー密度の二次電源用電極材料を提供することができた。したがって、本発明の電極材料を二次電源の負極に用いることにより、電気二重層による静電容量と電気化学的な酸化還元反応による疑似容量を併せ持ち、高速の充放電条件下でも高エネルギー密度を示す二次電源の提供が可能になる。また、本発明の電極材料によれば、電解液の分解による容量ロスや被膜の生成がないので、サイクル特性が優れ、また、サイクル毎の電極表面と電解液との界面抵抗の増大も抑制することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material used for a secondary power source such as an electrochemical capacitor or a non-aqueous secondary battery, and a secondary power source using the electrode material as a negative electrode.
[0002]
[Prior art]
In recent years, due to environmental problems on the earth, there is an increasing expectation for electric vehicles driven by motors or hybrid vehicles equipped with both motors and engines instead of gasoline-powered vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, batteries are used as the power source for driving the motors. However, batteries used in electric vehicles are very heavy and have a large volume and can be used repeatedly in light of cost. A rechargeable battery, that is, a secondary battery is preferred. Examples of the secondary battery include a lead battery, a nickel cadmium (NiCad) battery, a nickel hydrogen battery, and the like, and these secondary batteries use a highly conductive acidic or alkaline aqueous electrolyte. Therefore, it is possible to take out a high current.
[0003]
However, since a secondary battery using an aqueous electrolyte has an electrolysis voltage of water of 1.23 V, a higher voltage than that cannot be obtained from a single cell. However, since a voltage of around 200V is required as a power source for an electric vehicle, many batteries must be connected in series in order to obtain such a high voltage. It was disadvantageous.
[0004]
Examples of the high voltage type secondary battery include a lithium ion secondary battery using an organic electrolyte. In this lithium ion secondary battery, since an organic solvent having a high decomposition voltage is used as an electrolyte solvent, lithium (ion) having the lowest potential is used as a negative electrode active material, and a composite oxide composed of a transition metal and lithium is used. When used as a positive electrode active material, the average operating voltage is 3.6 V, and the maximum voltage is 4 V or higher. The most popular lithium ion secondary batteries currently on the market use carbon that can occlude and desorb lithium ions as the negative electrode, and lithium cobaltate (LiCoO 2 ) composed of cobalt and lithium as the positive electrode. . In the electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent with a cyclic carbonate such as ethylene carbonate or propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate. Is used.
[0005]
This lithium ion secondary battery has a higher voltage than that of the water-based secondary battery, and has an energy density of 100 Wh / kg or more per weight and an energy density of 250 Wh / l or more per volume. However, since the organic electrolyte is used, there is a problem that the ionic conductivity is lower than that of the aqueous electrolyte and the output characteristics are poor. For this reason, high output is being promoted by reducing the thickness of the electrode and improving the electrolytic solution. However, since an instantaneous current of about 300 A is required as a power source for an electric vehicle, there is a problem that it is difficult to put it into practical use. It was.
[0006]
Therefore, a capacitor using an electric double layer has begun to attract attention as a power source replacing the battery. This electric double layer capacitor uses a polarizable electrode such as activated carbon as the positive and negative electrodes, and has a structure in which a quaternary ammonium salt of boron tetrafluoride is dissolved in an organic solvent such as propylene carbonate as an electrolytic solution. This is a power source that stores the electric double layer generated at the interface between the electrolyte and the electrolyte as electrostatic capacity, so that it does not cause oxidation-reduction reactions like batteries, and it is possible to extract a higher current and cycle deterioration. It has the advantage that there is no.
[0007]
However, since the electric double layer capacitor uses an amount of electricity corresponding to the electrostatic capacity for charging and discharging, the energy density is very low (<2 Wh / kg) compared to the battery. More capacitors than the battery are required, so that it has been difficult to realize by using only an electric double layer capacitor.
[0008]
Therefore, a secondary power source has been proposed which has both a capacitance capable of taking out a large current and a pseudo capacitance due to an electrochemical redox reaction having a high energy density. In this secondary power source, if lithium ions are used as an active material medium using an organic electrolytic solution, it can have a high output and a high energy density. However, in this case, unlike the electric double layer capacitor, the electrodes are not the same as the positive and negative electrodes, and have the same electrode configuration as in the case of the lithium ion secondary battery.
[0009]
In the charging reaction of the lithium ion secondary battery, lithium ions are electrochemically eluted from the positive electrode into the electrolytic solution and inserted into the negative electrode through the electrolytic solution. When carbon is used for the negative electrode, the insertion reaction of lithium ions into the carbon lattice proceeds within a range of 0.5 to 0 V with respect to the lithium electrode. However, particularly in the first cycle, before the lithium ion insertion reaction into the carbon negative electrode begins, specifically, in the vicinity of 0.8 to 0.6 V with respect to the lithium electrode, the decomposition reaction of the electrolyte solution occurs on the surface of the carbon negative electrode. I get up. In this decomposition reaction, the lithium ions are also consumed, and the reaction is irreversible, so that the lithium ions on the positive electrode side are lost accordingly. This causes the capacity to deteriorate every cycle. In addition, since a film is formed on the carbon surface in the decomposition reaction, the interface resistance between the carbon surface and the electrolytic solution increases. The increase in resistance significantly reduces the load characteristics of the battery, making it difficult to secure capacity under a large current.
[0010]
Therefore, titanium-based negative electrode materials have recently attracted attention in place of carbon negative electrodes. For example, Li 1 + x Ti 2 O 4 or Li 4/3 + x Ti 5/3 O 4 (0 ≦ x ≦ 1) has a high reversible capacity in the vicinity of 1.4 to 1.8 V with respect to the lithium electrode. It has very little irreversible capacity like a carbon negative electrode, and is therefore very promising as an electrode material for a secondary power source.
[0011]
However, since the titanium-based material is an insulator, it has been extremely difficult to use as an electrode material for a secondary power source that requires high output.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems in the prior art as described above, and to provide an electrode material for a secondary power source that exhibits a high energy density even under high-speed charge / discharge conditions.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that lithium at a potential (vs. lithium electrode) nobler than the potential at which carbon reacts with the electrolyte during the insertion reaction of lithium ions into the negative electrode. By using a material that can reversibly insert and desorb ions, it is possible to provide an electrode material that does not cause a capacity loss for each cycle and does not increase internal resistance due to the formation of a film. In particular, it has been found that lithium ion can be reversibly inserted and desorbed even at a high current if the material is finely divided. Furthermore, if the finely divided material is supported on the carbon surface and made a material having a specific surface area of 500 m 2 / g or more, it is possible to provide a new secondary power source having both the pseudo capacity and the electrostatic capacity. I found out.
[0014]
Therefore, the configuration of the present invention for solving the above problems has an electric capacity associated with insertion and desorption of lithium ions in a voltage region of 1 V or more and 2 V or less with respect to the metal lithium electrode, and an average particle size of 1 μm or less. The active material is supported on the carbon surface, and the carbon has a specific surface area of 500 m 2 / g or more and is made of an electrode material for a secondary power source. In the present invention, the active material contains at least one of Li 1 + x Ti 2 O 4 or Li 4/3 + x Ti 5/3 O 4 (0 ≦ x ≦ 1), and the average particle size of the carbon is 10 It is preferable that the secondary power supply electrode material is used for a negative electrode, a material mainly containing a metal oxide containing lithium is used for a positive electrode, and at least lithium as an organic solvent. A secondary power source using an electrolytic solution in which a salt is dissolved is also targeted.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As the electrode material for the secondary power source of the present invention, an active material that can reversibly insert and desorb lithium ions at a potential higher than the potential at which the decomposition reaction of the electrolytic solution occurs is used. The decomposition reaction of the electrolytic solution slightly varies depending on the type of electrolyte salt or solvent constituting the electrolytic solution, but most of the decomposition occurs at 0.8 to 0.6 V with respect to the lithium electrode. Therefore, a material capable of inserting and extracting lithium ions in a potential region nobler than 0.8 V is selected as the active material. Specifically, for example, Li 1 + x Ti 2 O 4 or Li 4/3 + x Ti 5/3 O 4 (0 ≦ x ≦ 1) may be mentioned as a suitable active material. Moreover, Li x WO 3, Li x Nb 2 O 5 (0 ≦ x ≦ 1) , or the like can be used as the active material. Since these have a high capacity in the vicinity of 1.4 to 1.8 V with respect to the lithium electrode, they are very suitable as active materials in the present invention.
[0016]
The active material is preferably fine particles having a large specific surface area in order to enable insertion and desorption of lithium ions even at a high current density. Specifically, the average particle size of the active material is preferably 1 μm or less, more preferably 0.2 μm or less, and may be as small as 0.01 μm. If it exceeds 1 μm, the specific surface area becomes small, and the surface on which lithium ions can be inserted and desorbed is limited, so that rapid charge / discharge becomes difficult.
[0017]
Further, the carbon supporting the active material needs to have a capacitance due to the electric double layer. Since the capacitance increases as the specific surface area increases, it is preferable that the carbon has as large a specific surface area as possible. Specifically, the specific surface area is preferably 500 m 2 / g or more, more preferably 1000 m 2 / g or more, and the specific surface area may be increased to about 3000 m 2 / g. The carbon preferably has an average particle size of 10 to 30 μm. By making the particle size of the carbon so as to allow the active material to be supported on the surface, it is possible to achieve a sufficient output characteristic by achieving a thin electrode. The carbon is not particularly restricted in terms of its material, but for example, activated carbon obtained from phenol resin, petroleum coke, and coconut shell is suitable.
[0018]
The electrode material for a secondary power source according to the present invention is characterized in that fine particles of the active material are supported on the carbon surface, thereby improving the filling property, the utilization factor of the active material, and the output performance. it can. For this purpose, as described above, the average particle diameter of carbon is preferably 10 μm or more.
[0019]
Examples of a method for supporting the active material on the carbon surface include a method in which the active material and carbon are loaded into a device such as a ball mill, a jet mill, or a hybridizer that rotates blades at high speed. In this case, either a wet method or a dry method can be employed.
[0020]
When the secondary power supply electrode material of the present invention comprising the active material and carbon is used for an electrode of a secondary power supply, it is usually formed into an electrode by forming it into a sheet shape or a disk shape. Specifically, to the electrode material for the secondary power supply, if necessary, for example, a polymer binder is added and mixed in the presence of a solvent to prepare a paste-like mixture, and the paste-like mixture is made of, for example, copper, An electrode is produced by applying to a metal sheet such as aluminum, titanium, or nickel and drying. When drying after application, heat treatment may be employed as necessary, or pressure treatment may be employed to increase the density.
[0021]
The polymer binder is not particularly limited, and for example, polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene copolymer and the like conventionally used in lithium ion secondary batteries are preferably used. These may be used singly or in combination of two or more. Further, it may be used by being dispersed or dissolved in an organic solvent.
[0022]
The secondary power supply electrode material of the present invention is used as a negative electrode when used as an electrode of a secondary power supply. In this case, the positive electrode also contains an active material capable of inserting and removing lithium ions. It is necessary to be. As the positive electrode active material, a composite oxide of lithium and a transition metal, which has been conventionally used in lithium ion secondary batteries, can be used. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc., and those in which a part of Co, Ni, Mn, etc. is replaced with other metals (for example, a part of Co is replaced with Ni, Mn, etc. May be used as the positive electrode active material.
[0023]
Similarly to the negative electrode, the positive electrode preferably contains carbon having a large specific surface area such as the activated carbon in addition to the active material in order to impart capacitance by the electric double layer. Such carbon having a large specific surface area is preferably one having a specific surface area of 500 m 2 / g or more, as in the case of the negative electrode, but it is not necessarily the same as the negative electrode in terms of material. Furthermore, other carbon materials such as acetylene black, carbon black, ketjen black, carbon fiber, carbon nanotube, natural graphite, artificial graphite, etc. may be added for the purpose of improving the conductivity.
[0024]
When a positive electrode for a secondary power source is produced using the positive electrode material, it can be formed into an electrode basically in the same manner as in the case of the negative electrode. That is, similarly to the negative electrode, a polymer binder is added to the positive electrode material as necessary and mixed in the presence of a solvent to prepare a paste-like mixture. It is applied to the substrate, dried, and pressed as necessary to form a sheet or disk to form an electrode.
[0025]
When the negative electrode and the positive electrode are used as a secondary power source, an electrolytic solution is required. As the electrolyte, when lithium ions are used as the active material medium, for example, cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, or γ-butyrolactone For example, a solution in which a lithium salt such as LiClO 4 , LiPF 6 , or LiBF 4 is dissolved in an organic solvent composed of If necessary, an appropriate amount of a quaternary ammonium salt or phosphonium salt such as (C 2 H 5 ) 4 NBF 4 or (C 2 H 5 ) 4 NPF 6 used for the secondary power source may be mixed.
[0026]
When the secondary power source is manufactured using the negative electrode, the positive electrode, the electrolytic solution and the like configured as described above, the shape is not particularly limited, such as a cylindrical shape, a square shape, or a coin shape. When producing a cylindrical secondary power source, the negative electrode and the positive electrode formed into a sheet shape are wound in a roll shape through a separator, and a process of loading the electrode group of the wound structure into a cylindrical can is performed. It is produced by. In the case of manufacturing a square secondary power source, the sheet-shaped negative electrode and the positive electrode are stacked with a separator interposed therebetween, and the stacked electrode group is loaded into a rectangular container.
[0027]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
[0028]
Example 1
50 parts by weight of Li 4/3 + x Ti 5/3 O 4 having an average particle diameter of 0.1 μm determined by a laser scattering method, and activated carbon obtained by firing and activating a phenol resin (average particle diameter of 20 μm, BET 50 parts by weight of a specific surface area of 2000 m 2 / g) was loaded on a planetary ball mill and treated at a rotational speed of 1000 rpm for 3 hours. When the treated powder was observed with a scanning electron microscope, a large number of fine particles of Li 4/3 + x Ti 5/3 O 4 adhered to the surface of the activated carbon.
[0029]
50 parts by weight of ethanol and 60% by weight of an aqueous polytetrafluoroethylene dispersion are mixed with 50 parts by weight of powder in which fine particles of Li 4/3 + x Ti 5/3 O 4 are adhered to the surface of the activated carbon obtained as described above. 5 parts by weight was added and mixed with an ultrasonic disperser to obtain a paste-like mixture. This pasty mixture was applied to an aluminum foil having a thickness of 15 μm and vacuum-dried at 80 ° C. to produce a sheet-shaped electrode.
[0030]
Using the obtained electrode as a working electrode, using metallic lithium as a counter electrode and a reference electrode, LiPF 6 was dissolved in a mixed solvent of propylene carbonate and diethyl carbonate in a volume ratio of 1: 1 to a concentration of 1 mol / l. An aluminum laminate cell was prepared using the sample as an electrolyte. The aluminum laminate cell will be described in detail. The aluminum laminate cell uses a three-layer laminate film made of nylon film-aluminum foil-modified polyolefin film as an exterior material, and the working electrode, the counter electrode, and the reference are included in the exterior material. This is a model cell in which an electrode, electrolyte, etc. are enclosed.
[0031]
Using this cell, a voltage-current curve was drawn at sweep rates of 10 mV / sec, 25 mV / sec, 50 mV / sec, and a sweep voltage width of 1 to 3 V (vs. lithium reference electrode). From the obtained curve, the electrostatic capacity due to the electric double layer and the pseudo capacity due to redox of lithium ions per working electrode weight (however, this weight does not include the weight of the aluminum foil) were estimated. The results are shown in Table 1 below.
[0032]
Comparative Example 1
Except for using an active material of Li 4/3 + x Ti 5/3 O 4 having an average particle diameter of 2 μm and using activated carbon having an average particle diameter of 30 μm (specific surface area 2500 m 2 / g) as carbon, All electrodes and cells were produced in the same manner as in Example 1. Using the obtained cell, the electrostatic capacity and the pseudo capacity at each sweep speed were obtained in the same manner as in Example 1. The results are shown in Table 1 below.
[0033]
Comparative Example 2
An electrode and a cell were produced in the same manner as in Example 1 except that acetylene black having a specific surface area of 50 m 2 / g was used as carbon. Using the obtained cell, the electrostatic capacity and the pseudo capacity at each sweep speed were obtained in the same manner as in Example 1. The results are shown in Table 1.
[0034]
[Table 1]
Figure 0004697912
[0035]
As is apparent from the results shown in Table 1, Example 1 was larger in both electrostatic capacity and pseudo capacity than Comparative Examples 1 and 2. Further, in Comparative Examples 1 and 2, when the sweep speed was increased, the pseudo capacity was greatly reduced as compared with Example 1. The reason why the pseudo capacity in Comparative Example 1 is extremely low is considered to be that the active material has too large a particle size to follow the rapid redox reaction of lithium ions. Moreover, it is thought that the electrostatic capacitance of the comparative example 2 was low because the specific surface area of carbon was too small.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an electrode material for a secondary power source having a high energy density that has both a capacitance due to an electric double layer and a pseudo capacitance due to an electrochemical redox reaction. Therefore, by using the electrode material of the present invention for the negative electrode of the secondary power source, it has both the electrostatic capacity due to the electric double layer and the pseudo capacity due to the electrochemical oxidation-reduction reaction, and has a high energy density even under high-speed charge / discharge conditions. The secondary power supply shown can be provided. In addition, according to the electrode material of the present invention, there is no capacity loss or film formation due to decomposition of the electrolytic solution, so that cycle characteristics are excellent, and an increase in the interfacial resistance between the electrode surface and the electrolytic solution for each cycle is also suppressed. be able to.

Claims (3)

少なくともLi 1+x Ti またはLi 4/3+x Ti 5/3 (0≦x≦1)のいずれかを含み、かつ平均粒径が1μm以下の活物質を炭素表面に担持してなり、前記炭素の比表面積が500m以上であることを特徴とする二次電源用電極材料。 At least Li 1 + x Ti 2 O 4 or Li 4/3 + x An active material containing any of Ti 5/3 O 4 (0 ≦ x ≦ 1) and having an average particle size of 1 μm or less is supported on the carbon surface, and the specific surface area of the carbon is 500 m 2 or more. An electrode material for a secondary power source characterized by 前記炭素の平均粒径が10〜30μmである請求項1記載の二次電源用電極材料。  The electrode material for secondary power supply according to claim 1, wherein the carbon has an average particle diameter of 10 to 30 µm. 請求項1または2に記載の二次電源用電極材料を負極に用い、リチウムを含有した金属酸化物を主体とした材料を正極に用い、有機溶媒に少なくともリチウム塩を溶解させた電解液を用いたことを特徴とする二次電源。An electrode material for a secondary power source according to claim 1 or 2 is used for a negative electrode, a material mainly composed of a metal oxide containing lithium is used for a positive electrode, and an electrolytic solution in which at least a lithium salt is dissolved in an organic solvent is used. A secondary power source characterized by
JP2000350826A 2000-11-17 2000-11-17 Secondary power supply electrode material and secondary power supply using the same Expired - Fee Related JP4697912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350826A JP4697912B2 (en) 2000-11-17 2000-11-17 Secondary power supply electrode material and secondary power supply using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350826A JP4697912B2 (en) 2000-11-17 2000-11-17 Secondary power supply electrode material and secondary power supply using the same

Publications (3)

Publication Number Publication Date
JP2002158139A JP2002158139A (en) 2002-05-31
JP2002158139A5 JP2002158139A5 (en) 2007-12-20
JP4697912B2 true JP4697912B2 (en) 2011-06-08

Family

ID=18823986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350826A Expired - Fee Related JP4697912B2 (en) 2000-11-17 2000-11-17 Secondary power supply electrode material and secondary power supply using the same

Country Status (1)

Country Link
JP (1) JP4697912B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
EP1511097A4 (en) * 2002-06-04 2008-09-17 Itochu Corp Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
JP4929580B2 (en) * 2003-10-30 2012-05-09 株式会社Gsユアサ Lithium ion secondary battery
JP2007180437A (en) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007266064A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric double layer capacitor
JP4580949B2 (en) * 2006-06-02 2010-11-17 株式会社東芝 Non-aqueous electrolyte battery, battery pack and rechargeable vacuum cleaner
KR101042613B1 (en) 2007-06-22 2011-06-20 주식회사 엘지화학 Anode Material of Excellent Conductivity and High Power Secondary Battery Employed with the Same
JP2009094271A (en) * 2007-10-09 2009-04-30 Nec Tokin Corp Electric double layer capacitor
KR100888685B1 (en) * 2007-11-05 2009-03-13 주식회사 코캄 Core-shell type anode active material for lithium secondary batteries and method of preparing for the same and lithium secondary batteries comprising the same
KR101105878B1 (en) * 2008-12-02 2012-01-16 주식회사 코캄 Core-shell type anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries comprising the same
WO2023117491A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Energy storage cells with fast charge and discharge capabilites
WO2023117490A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162158A (en) * 1994-12-01 1996-06-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000138142A (en) * 1998-11-02 2000-05-16 Honda Motor Co Ltd Electric double layer capacitor
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery
WO2001039305A1 (en) * 1999-11-25 2001-05-31 Lithium Power Technologies, Inc. Electrochemical capacitor and methods of fabricating same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162158A (en) * 1994-12-01 1996-06-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000138142A (en) * 1998-11-02 2000-05-16 Honda Motor Co Ltd Electric double layer capacitor
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery
WO2001039305A1 (en) * 1999-11-25 2001-05-31 Lithium Power Technologies, Inc. Electrochemical capacitor and methods of fabricating same

Also Published As

Publication number Publication date
JP2002158139A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP5317390B2 (en) Nonaqueous electrolyte secondary battery
CN1322611C (en) Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
RU2403654C1 (en) Cathode active material for high-safety lithium secondary batteries, method for preparing such material and lithium secondary batteries containing such material
CN1224122C (en) Nonaqueous lighium secondary cell
US20090305136A1 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR100769567B1 (en) Anode For Hybrid Capacitor, Manufacturing Method thereof and Hybrid Capacitor
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP7015447B2 (en) Non-aqueous electrolyte secondary battery
US20180277831A1 (en) Nonaqueous electrolyte secondary battery and production method thereof
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
JP4697912B2 (en) Secondary power supply electrode material and secondary power supply using the same
JP2007335360A (en) Lithium secondary cell
CN103000378A (en) Preparation method of cathode active material and preparation method of capacitor
JP2007184261A (en) Lithium-ion secondary battery
JP2003217583A (en) Composite electrode and electrochemical element using the same
JPH08227708A (en) Electrode and secondary battery using the electrode
TW201327996A (en) Hybrid energy storage device
CN102938322A (en) Super-capacitance battery and preparation method thereof
JP4099970B2 (en) Secondary power supply
JP2003297433A (en) Electrochemical element
JP2002025626A (en) Aging method for lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4697912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees