JP4696895B2 - Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method - Google Patents

Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method Download PDF

Info

Publication number
JP4696895B2
JP4696895B2 JP2005366196A JP2005366196A JP4696895B2 JP 4696895 B2 JP4696895 B2 JP 4696895B2 JP 2005366196 A JP2005366196 A JP 2005366196A JP 2005366196 A JP2005366196 A JP 2005366196A JP 4696895 B2 JP4696895 B2 JP 4696895B2
Authority
JP
Japan
Prior art keywords
water column
nozzle
column type
ultrasonic flaw
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005366196A
Other languages
Japanese (ja)
Other versions
JP2007170901A (en
Inventor
輝明 進
賢司 松村
薫 田中
啓泰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005366196A priority Critical patent/JP4696895B2/en
Publication of JP2007170901A publication Critical patent/JP2007170901A/en
Application granted granted Critical
Publication of JP4696895B2 publication Critical patent/JP4696895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、走行する金属帯を検査対象とし、金属帯中の直径が50μm以上100μm以下の内部欠陥を精度よく検出することができる水柱式超音波探傷装置、及び水柱式超音波探傷方法に関する。   The present invention relates to a water column type ultrasonic flaw detection apparatus and a water column type ultrasonic flaw detection method that can detect an internal defect having a diameter of 50 μm or more and 100 μm or less with a traveling metal band as an inspection target.

鋼帯製品などの金属帯中の介在物は、プレス加工などの際、割れやネッキングの原因になるといわれており、非常に微細なものまで検出することが要求されている。例えば自動車部品に加工される鋼帯製品に対しては、直径が50μm以上の内部欠陥を検出することが求められている。このため、製造ラインに超音波探傷装置を設置し、鋼帯の内部欠陥を検出して、内部欠陥の個数、位置、種類、形態などの欠陥情報に基づき、製品の品質保証を行っている。   Inclusions in metal strips such as steel strip products are said to cause cracking and necking during press working, and it is required to detect even very fine ones. For example, steel strip products processed into automobile parts are required to detect internal defects with a diameter of 50 μm or more. For this reason, an ultrasonic flaw detector is installed in the production line, internal defects of the steel strip are detected, and product quality assurance is performed based on defect information such as the number, position, type, and form of the internal defects.

需要者の用途に応じて製造される金属帯製品は種々のものがあり、熱延鋼板の酸洗ラインには種々の板厚の金属帯が通板される。したがって、このような金属帯の製造ラインには、金属帯の板厚が変わった場合でも走行する金属帯の内部欠陥を精度よく検出することができる超音波探傷装置を設置する必要がある。
なお、製造ラインに設置する水柱式超音波探傷装置としては、金属帯の一側に、ノズルに収容した超音波探触子(以下、プローブという)を配置し、該プローブを送信・受信兼用プローブとした片側センサ方式のもの(特許文献1〜3)と、金属帯の両側にノズルに収容したプローブを配置した透過型のセンサ方式のものが知られている。
There are various types of metal strip products manufactured according to the customer's use, and metal strips of various thicknesses are passed through the pickling line of hot-rolled steel sheets. Therefore, it is necessary to install an ultrasonic flaw detector capable of accurately detecting internal defects of the traveling metal band even when the thickness of the metal band changes, in such a metal band production line.
In addition, as a water column type ultrasonic flaw detector installed in a production line, an ultrasonic probe (hereinafter referred to as a probe) housed in a nozzle is disposed on one side of a metal band, and the probe is used as a transmission / reception probe. One side sensor type (Patent Documents 1 to 3) and a transmission type sensor type in which probes housed in nozzles are arranged on both sides of a metal band are known.

特許文献1には、片側センサ方式の装置に関して、送信・受信兼用のプローブで受信した反射波のうち、所定の底面反射波の減衰量から信号処理して鋼中介在物を検出する薄鋼帯の介在物連続探査方法が開示されている。
また、特許文献2には、片側センサ方式の装置に関して、水柱ノズルの形状を工夫した発明が、特許文献3には、同上の装置に関し、水と高温鋼板界面に発生する不良導性の蒸気膜を破壊し、音響結合機能を回復させる発明が開示されている。
特開昭61−271448号公報 特開平7−113795号公報 特公昭55−28015号公報
Patent Document 1 discloses a thin steel strip that detects an inclusion in a steel by performing signal processing from an attenuation amount of a predetermined bottom surface reflected wave among reflected waves received by a transmitter / receiver probe with respect to a one-side sensor type device. The inclusion continuous exploration method is disclosed.
Patent Document 2 discloses an invention in which the shape of a water column nozzle is devised with respect to a one-side sensor type device, and Patent Document 3 relates to a device with the same as above, and a poorly conductive vapor film generated at the interface between water and a high-temperature steel sheet. Has been disclosed to restore the acoustic coupling function.
JP 61-271448 A Japanese Patent Application Laid-Open No. 7-113795 Japanese Patent Publication No.55-28015

しかしながら、特許文献1に記載の薄鋼帯の介在物連続探査方法は、散乱エコーを検出しているが、検出可能な介在物は厚さ20μm×幅100μm×長さ200μmが限界とされ、内部欠陥の検出能が不十分である。
また、特許文献1〜3に記載の水柱式超音波探傷装置は、片側センサ方式とした装置であるため、欠陥エコーがパスライン変動や鋼帯の傾きの影響を受けやすく、さらに板厚方向に感度分布があり、走行する金属帯中の直径が50μm以上100μm以下の介在物欠陥を検出できるようにするのは、極めて困難である。
However, the thin steel strip inclusion continuous exploration method described in Patent Document 1 detects scattered echoes, but the detectable inclusion is limited to a thickness of 20 μm × width of 100 μm × length of 200 μm. The defect detection ability is insufficient.
Moreover, since the water column type ultrasonic flaw detection apparatus described in Patent Documents 1 to 3 is a one-side sensor type apparatus, the defect echo is easily affected by the pass line fluctuation and the inclination of the steel strip, and further in the thickness direction. It is extremely difficult to detect an inclusion defect having a sensitivity distribution and having a diameter in the traveling metal strip of 50 μm or more and 100 μm or less.

しかも、従来の水柱式超音波探傷装置は、センサを金属帯厚み方向に動かす機能を有さないため、金属帯の板厚が広範囲に変わった場合、内部欠陥の検出能に板厚依存性が顕著に現れてしまうという問題がある。
そこで、本発明は、上記従来技術に鑑み、走行する金属帯を検査対象とし、金属帯の板厚が広範囲に変わった場合でもそれに対応することができ、しかも金属帯中の直径が50μm以上100μm以下の内部欠陥を精度よく検出することができる水柱式超音波探傷装置、及び水柱式超音波探傷方法を提供することを目的とする。
Moreover, the conventional water column type ultrasonic flaw detector does not have the function of moving the sensor in the thickness direction of the metal band, so that when the thickness of the metal band changes over a wide range, the detectability of internal defects is dependent on the thickness. There is a problem that it appears prominently.
Therefore, in view of the above-described conventional technology, the present invention can be applied to a traveling metal strip, even when the thickness of the metal strip changes over a wide range, and the diameter in the metal strip is 50 μm to 100 μm. An object of the present invention is to provide a water column type ultrasonic flaw detection apparatus and a water column type ultrasonic flaw detection method capable of accurately detecting the following internal defects.

本発明者らは、水柱式超音波探傷装置について鋭意検討し、透過型のセンサ方式とすることで、上記課題を解決できることを知見し、本発明をなした。
本発明は以下のとおりである。
1.走行する金属帯の表面に向けて水を噴射する上、下のノズルの内部に、超音波を送信するプローブと、超音波を受信するプローブを別個に収容した一対のセンサを、前記金属帯の上下両側に対向配置し、内部欠陥を検出可能に構成してなる水柱式超音波探傷装置において、前記ノズルの噴射口を長円形とし、該噴射口の面積を前記ノズル内のプローブの超音波発信面又は受信面の面積の2.5倍以上とし、前記噴射口入側の流路面積と前記噴射口の面積との比で表す絞り比を3.0以上とするとともに、上側のノズルの噴射口の長軸対短軸比を3.0〜3.4、下側のノズルの噴射口の長軸対短軸比を1.5以下とし、前記ノズルの流路部に多孔整流板が設置され、かつ前記金属帯の板厚に合わせて、前記センサを昇降させるセンサ昇降手段を具備したことを特徴とする水柱式超音波探傷装置。
The inventors of the present invention diligently studied the water column type ultrasonic flaw detector and found that the above-mentioned problems can be solved by adopting a transmission type sensor system, and made the present invention.
The present invention is as follows.
1. A pair of sensors that separately inject a probe for transmitting ultrasonic waves and a probe for receiving ultrasonic waves inside the lower nozzle are jetted of water toward the surface of the traveling metal band. In a water column type ultrasonic flaw detector configured to be opposed to both upper and lower sides and configured to detect an internal defect, the nozzle nozzle has an oval nozzle and the area of the nozzle is ultrasonic transmission of the probe in the nozzle. The area of the surface or the receiving surface is 2.5 times or more, and the aperture ratio expressed by the ratio of the flow path area on the inlet side to the area of the injection port is 3.0 or more, and the upper nozzle is injected. The long axis to short axis ratio of the port is 3.0 to 3.4, the long axis to short axis ratio of the lower nozzle is 1.5 or less, and a porous rectifying plate is installed in the flow path of the nozzle is, and in accordance with the plate thickness of the metal strip, the sensor elevating means for elevating said sensor Water column type ultrasonic flaw detection apparatus characterized by comprising.

.前記ノズルの噴射口から噴射する水量が流量調節弁で調整可能とされていることを特徴とする上記1.に記載の水柱式超音波探傷装置。
.前記センサの上流側に、前記金属帯の板厚を測定する厚み計を設け、該厚み計の測定値に基づき、前記センサ昇降手段を介して前記センサを昇降させるように構成してなることを特徴とする上記1.または2.に記載の水柱式超音波探傷装置。
2 . 1. The amount of water sprayed from the nozzle outlet can be adjusted by a flow rate control valve . Water column type ultrasonic flaw detection apparatus according to.
3 . A thickness gauge for measuring the thickness of the metal strip is provided on the upstream side of the sensor, and the sensor is lifted and lowered via the sensor lifting means based on the measured value of the thickness gauge. Characteristic 1. Or 2. The water column type ultrasonic flaw detector described in 1.

.前記センサの下流側に、前記金属帯にマーキングするマーカーを設け、前記金属帯中の内部欠陥位置をマーキングするように構成してなることを特徴とする上記1.〜.のいずれかに記載の水柱式超音波探傷装置。
.上記1.〜.のいずれかに記載の水柱式超音波探傷装置を用い、走行する金属帯の内部欠陥を検出する方法において、前記金属帯の板厚に合わせて前記センサ昇降手段を介して前記センサを昇降させ、プローブ間の間隔を所定値にした後、内部欠陥を検出することを特徴とする水柱式超音波探傷方法。
4 . 1. A marker for marking the metal strip is provided on the downstream side of the sensor, and the internal defect position in the metal strip is marked. ~ 3 . The water column type ultrasonic flaw detector according to any one of the above.
5 . Above 1. ~ 4 . In the method for detecting an internal defect of a traveling metal strip using the water column type ultrasonic flaw detector according to any one of the above, the sensor is moved up and down through the sensor lifting means according to the thickness of the metal strip, A water column type ultrasonic flaw detection method characterized in that an internal defect is detected after setting an interval between probes to a predetermined value.

本発明に係る水柱式超音波探傷装置は、外乱の影響を受け難い透過型のセンサ方式を採用すると共に、金属帯の板厚に合わせてセンサを昇降させるセンサ昇降手段を具備したから、金属帯の板厚が広範囲に変わった場合でもそれに対応して、透過型のセンサ方式の欠陥検出能を十分発揮することができ、走行する金属帯中の直径が50μm以上100μm以下の内部欠陥を精度よく検出することができる。   The water column type ultrasonic flaw detector according to the present invention employs a transmission type sensor system that is not easily affected by disturbances, and has a sensor elevating means for elevating the sensor in accordance with the thickness of the metal band. Correspondingly, even if the plate thickness of the metal plate changes over a wide range, the defect detection ability of the transmission type sensor system can be fully exerted, and the internal defect whose diameter in the traveling metal strip is 50 μm or more and 100 μm or less can be accurately detected. Can be detected.

以下、本発明の実施の形態について図を用い、詳細に説明する。図1は、本発明の実施の形態に係る水柱式超音波探傷装置の構成を示す全体図であり、図2は、図1の水柱式超音波探傷装置の要部を示す説明図である。
図1に示した本発明の実施の形態に係る水柱式超音波探傷装置は、透過型のセンサ方式とされている。すなわち、上、下のノズル2に超音波ビーム3を送信するプローブ1と、超音波ビーム3を受信するプローブ1とが別個に収容され、金属帯の上下両側に対向配置さ、内部欠陥を検出可能に構成されている。前記ノズル2は、水を噴射して金属帯表面との間に水柱4を形成する噴射口を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall view showing a configuration of a water column type ultrasonic flaw detector according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a main part of the water column type ultrasonic flaw detector of FIG.
The water column type ultrasonic flaw detector according to the embodiment of the present invention shown in FIG. 1 is a transmission type sensor system. That is, the probe 1 for transmitting the ultrasonic beam 3 to the upper and lower nozzles 2 and the probe 1 for receiving the ultrasonic beam 3 are separately accommodated and arranged oppositely on the upper and lower sides of the metal band to detect internal defects. It is configured to be possible. The nozzle 2 has an injection port for injecting water to form a water column 4 between the surface of the metal strip.

なお、図1、2に示すように、上側のプローブ1を金属帯表面に向かって垂直に超音波ビーム3を送信する送信プローブ1A、下側のプローブ1を金属帯からの超音波ビーム3を受信する受信プローブ1Bとして説明する。図2中、tは検査対象の金属帯Sの板厚を示す。
前記のプローブ1としては、図3(a)に示すようなラインフォーカス型プローブを用いた。ラインフォーカス型プローブは、素子を複数積層してなり、内部欠陥からの欠陥エコー高さが極大になるプローブ1の間隔があることが知られている(特許第3629913号)。
As shown in FIGS. 1 and 2, the upper probe 1 transmits the ultrasonic beam 3 vertically toward the surface of the metal band, and the lower probe 1 transmits the ultrasonic beam 3 from the metal band. The reception probe 1B will be described. In FIG. 2, t indicates the thickness of the metal strip S to be inspected.
As the probe 1, a line focus type probe as shown in FIG. It is known that the line focus type probe is formed by laminating a plurality of elements, and there is an interval of the probe 1 at which the height of the defect echo from the internal defect is maximized (Japanese Patent No. 3629913).

ここで、図1中5は、金属帯Sの板厚tに合わせてセンサを昇降させるセンサ昇降手段であり、駆動モータMなどを含む。例えば、駆動モータMの回転を、一端に歯を形成したラック部材に伝え、このラック部材の上下移動によって、プローブ1の間隔Lを変える構造のセンサ昇降手段5とすることができる。
このような水柱式超音波探傷装置によれば、金属帯Sの板厚tが変わったときに、金属帯Sの板厚tに合わせてセンサ昇降手段5でセンサを昇降させ、プローブ1間の間隔Lを変えることができる。なお、図1中、6は、センサの上流側に設けた厚み計を示し、コンピュータ10と接続されている。この厚み計6の測定値に基づき、センサ昇降手段5を介してセンサを昇降させ、プローブ1間の間隔Lを変える構成とするのが好ましい。このような水柱式超音波探傷装置によれば、プローブ1間の間隔Lを迅速に且つ正確に内部欠陥からの欠陥エコー高さが極大になる所定値に設定できる。
Here, reference numeral 5 in FIG. 1 denotes sensor lifting / lowering means for lifting / lowering the sensor in accordance with the thickness t of the metal strip S, and includes a drive motor M and the like. For example, the rotation of the drive motor M is transmitted to a rack member having teeth at one end, and the sensor elevating means 5 having a structure in which the interval L of the probe 1 is changed by the vertical movement of the rack member.
According to such a water column type ultrasonic flaw detector, when the thickness t of the metal strip S changes, the sensor is lifted and lowered by the sensor lifting means 5 in accordance with the thickness t of the metal strip S. The interval L can be changed. In FIG. 1, reference numeral 6 denotes a thickness gauge provided on the upstream side of the sensor, and is connected to the computer 10. It is preferable that the sensor is moved up and down via the sensor lifting and lowering means 5 based on the measured value of the thickness gauge 6 to change the interval L between the probes 1. According to such a water column type ultrasonic flaw detector, the interval L between the probes 1 can be quickly and accurately set to a predetermined value that maximizes the height of the defect echo from the internal defect.

また7は、センサの下流側に設けたマーカーを示し、コンピュータ10と接続され、コンピュータ10からの信号によって、マーカー7で内部欠陥の位置をマーキングする構成とするのが好ましい。このような水柱式超音波探傷装置によれば、金属帯S中に内部欠陥が検出された場合、マーカー7で内部欠陥の位置を迅速に且つ正確にマーキングすることができる。前記のコンピュータ10には、送信プローブ1Aから発する送信波及び受信プローブ1Bで受信した受信波に基づき、内部欠陥を検出する信号処理手段が内蔵されている。また、ノズル2内に設置する多孔整流板8としては、例えば図4に示すようにピッチp対孔径d比(p/d)=1.28とした貫通孔が形成されているものが好適に使用できる。   Reference numeral 7 denotes a marker provided on the downstream side of the sensor, which is preferably connected to the computer 10 and is configured to mark the position of the internal defect with the marker 7 by a signal from the computer 10. According to such a water column type ultrasonic flaw detector, when an internal defect is detected in the metal band S, the position of the internal defect can be quickly and accurately marked with the marker 7. The computer 10 includes signal processing means for detecting an internal defect based on a transmission wave emitted from the transmission probe 1A and a reception wave received by the reception probe 1B. Further, as the porous rectifying plate 8 installed in the nozzle 2, for example, as shown in FIG. 4, a plate having through holes with a pitch p to hole diameter d ratio (p / d) = 1.28 is preferably formed. Can be used.

ここで、プローブ1を収容するノズル2の噴射口形状は、図3(b)に示すように、プローブ形状に合わせて長円形としてなる。これは以下に述べる水柱安定化実験から得られたものである。
図3(b)は、図1に示したノズル2を金属帯側から見た場合の概略平面図であり、ノズル2は、ラインフォーカス型プローブを収容してなる。ラインフォーカス型プローブは、図3(a)に示したとおり、その超音波発信面又は受信面が超音波ビーム3の焦点方向から見て矩形状となっている。αは、プローブ1の超音波発信面又は受信面の面積を示し、xは、その超音波発信面又は受信面の長辺寸法、yは、超音波発信面又は受信面の短辺寸法である。またaは、ノズル2に形成した噴射口の長軸寸法、bは噴射口の短軸寸法である。a>x及びa>yの関係をみたす。
Here, the injection port shape of the nozzle 2 to accommodate the probe 1, as shown in FIG. 3 (b), ing as oval to fit the probe profile. This was obtained from the water column stabilization experiment described below.
FIG. 3B is a schematic plan view when the nozzle 2 shown in FIG. 1 is viewed from the metal band side, and the nozzle 2 accommodates a line focus type probe. As shown in FIG. 3A, the line focus type probe has a rectangular shape as seen from the focal direction of the ultrasonic beam 3 on the ultrasonic wave transmission surface or reception surface. α indicates the area of the ultrasonic transmission surface or reception surface of the probe 1, x is the long side dimension of the ultrasonic transmission surface or reception surface, and y is the short side dimension of the ultrasonic transmission surface or reception surface. . Moreover, a is the major axis dimension of the injection port formed in the nozzle 2, and b is the minor axis dimension of the injection port. The relationship of a> x and a> y is satisfied.

次いで、ラインフォーカス型プローブの形状に合わせて、ノズル2の噴射口形状を長円形とした場合の水柱安定化実験結果について説明する。
この水柱安定化実験は、長円形の噴射口の面積が異なる各種ノズルを用い、噴射水量を変化させ、水柱の断面積が十分確保でき、かつ超音波伝達の阻害要因となる気泡の発生がない水柱形成条件を調べたものである(図5参照)。
Next, a result of a water column stabilization experiment in the case where the nozzle 2 is formed in an oval shape according to the shape of the line focus type probe will be described.
In this water column stabilization experiment, various nozzles with different oval nozzle areas were used, the amount of water sprayed was changed, a sufficient cross-sectional area of the water column could be secured, and there was no generation of bubbles that would interfere with ultrasonic transmission. The water column formation conditions were examined (see FIG. 5).

水柱の長さは、最低限必要な30mmを超える(板厚が1.2〜6.5mmに対するプローブ1の間隔L=46〜78mmに相当)ものとし、噴射口の面積は、超音波発信面又は受信面の面積αに対して1〜14倍の範囲で変え、絞り比は3.0で一定とし、ノズル2から噴射する噴射水量は最大で300リットル/分とした。この場合、プローブ1として、焦点距離が38mmで、超音波発信面又は受信面の長辺寸法x=60mm、超音波発信面又は受信面の短辺寸法y=11mmのラインフォーカス型プローブを用いた。   The length of the water column exceeds the minimum required 30 mm (corresponding to the interval L of the probe 1 with respect to the plate thickness of 1.2 to 6.5 mm = 46 to 78 mm), and the area of the injection port is the ultrasonic transmission surface Alternatively, it was changed in a range of 1 to 14 times the area α of the receiving surface, the aperture ratio was constant at 3.0, and the amount of water jetted from the nozzle 2 was 300 liters / min at the maximum. In this case, a line focus type probe having a focal length of 38 mm, a long side dimension x = 60 mm of the ultrasonic transmission surface or the reception surface, and a short side dimension y = 11 mm of the ultrasonic transmission surface or the reception surface was used as the probe 1. .

その結果、プローブ1を収容するノズル2を以下の(イ)〜(ホ)とすることで、気泡を含まず、長さが最低限必要な30mmを超え、かつ断面積が十分な水柱を効果的に形成できるとの結果が得られた。
(イ)噴射口の面積が該ノズル内のプローブ1の超音波発信面又は受信面の面積αの2.5倍以上であるノズルを用い、それから噴射する噴射水量を上側で300リットル/分以上、下側で160リットル/分以上とすることができる水柱式超音波探傷装置(図5のハッチング部の範囲)。
(ロ)ノズル2の噴射口入側の流路面積と噴射口の面積との比で表す絞り比が3.0以上である水柱式超音波探傷装置。
(ハ)ノズル2の噴射口形状が長円形であり、上側の噴射口の長軸対短軸比が3.0〜3.4、下側の噴射口の長軸対短軸比が1.5以下である水柱式超音波探傷装置。
(ニ)ノズル2の噴射口から噴射する水量が流量調節弁9で調整可能とされている水柱式超音波探傷装置。
(ホ)ノズル2の流路部に、多孔整流板8が設置されている水柱式超音波探傷装置。
As a result, by setting the nozzle 2 that accommodates the probe 1 to the following (a) to (e), a water column that does not include bubbles, has a minimum length of 30 mm, and has a sufficient cross-sectional area is effective. The result that it can form automatically was obtained.
(A) Using a nozzle whose area of the injection port is 2.5 times or more the area α of the ultrasonic transmission surface or reception surface of the probe 1 in the nozzle, and then the amount of water to be injected is 300 liters / minute or more on the upper side. The water column type ultrasonic flaw detector which can be made 160 liters / min or more on the lower side (range of hatched portion in FIG. 5).
(B) A water column type ultrasonic flaw detector in which the aperture ratio represented by the ratio of the flow path area on the inlet side of the nozzle 2 to the area of the nozzle is 3.0 or more.
(C) The shape of the nozzle 2 is an oval, the ratio of the major axis to the minor axis of the upper nozzle is 3.0 to 3.4, and the ratio of the major axis to the minor axis of the lower nozzle is 1. Water column type ultrasonic flaw detector which is 5 or less.
(D) A water column type ultrasonic flaw detector in which the amount of water ejected from the ejection port of the nozzle 2 can be adjusted by the flow rate control valve 9.
(E) A water column type ultrasonic flaw detector in which a porous rectifying plate 8 is installed in the flow path of the nozzle 2.

このようなノズル2に超音波を発信するプローブ1と、受信するプローブ1とを別個に収容することで、S/Nが良好な透過型のセンサを構成できるので好ましい。
ここで、上記(ニ)とするのは、絞り比を大きくするほど、給水系統内の水圧が高くなるから、絞り比が3.0を超えた所定値であるノズルを用いた場合、絞り比が3.0であるノズルを用いた場合(図5の結果)に比べて、長さが30mmを超える断面積が十分な水柱を効果的に形成するための噴射水量は、上側で300リットル/分よりも少なくでき、下側で160リットル/分よりも少なくできるからである。また上記(ホ)とするのは安定な水柱4を形成するのに役立つからである。
By accommodating separately the probe 1 which transmits an ultrasonic wave to such a nozzle 2, and the probe 1 to receive, since a transmissive | pervious sensor with favorable S / N can be comprised, it is preferable.
Here, the reason (d) is that the greater the aperture ratio, the higher the water pressure in the water supply system. Therefore, when a nozzle having a predetermined value exceeding the aperture ratio of 3.0 is used, Compared to the case of using a nozzle having a diameter of 3.0 (result of FIG. 5), the amount of jet water for effectively forming a water column having a sufficient cross-sectional area exceeding 30 mm in length is 300 liter / This is because it can be less than a minute and can be less than 160 liters / minute on the lower side. Further, the reason (e) is useful for forming a stable water column 4.

ただし、ノズル2の噴射口形状を円形とした場合には、噴射口の面積を超音波発信面又は受信面の面積に対して14倍までの範囲で変え、ノズル2の噴射口から噴射する水量を最大で300リットル/分としても、上側では長さが30mmを超える断面積が十分な水柱を安定して形成できず、音響結合機能が不十分となるという結果であった。一方、下側では、ノズル2の噴射口形状を直径が110mmの円形とし、ノズル2からの噴射水量を160リットル/分以上とした場合、気泡を含まず、長さが30mmを超える断面積が十分な水柱を安定して形成できた。   However, when the shape of the nozzle 2 is circular, the area of the nozzle is changed within a range of up to 14 times the area of the ultrasonic wave transmitting surface or the receiving surface, and the amount of water sprayed from the nozzle 2 Even if the maximum is 300 liters / minute, the cross-sectional area exceeding 30 mm on the upper side cannot stably form a sufficient water column, resulting in an insufficient acoustic coupling function. On the other hand, on the lower side, when the nozzle 2 has a circular shape with a diameter of 110 mm and the amount of water sprayed from the nozzle 2 is 160 liters / minute or more, the cross-sectional area does not include bubbles and exceeds 30 mm in length. Sufficient water column could be formed stably.

以上説明した本発明の実施の形態に係る水柱式超音波探傷装置を用い、走行する金属帯の内部欠陥を検出する方法について説明する。図6、図7には、透過型のセンサ方式を採用した水柱式超音波探傷装置の内部欠陥検出原理を模式的に示した。
透過型のセンサ方式の場合、送信プローブ1Aから送信された超音波ビーム3が水柱4を介して金属帯表面に伝わり、金属帯S内を伝搬した後、水柱4を介して受信プローブ1Bによって受信される。受信プローブ1Bで受信した受信波(透過波T1,T2並びに反射波F1,F2)は、欠陥検出ゲート信号によって信号処置され、所定値以上の欠陥エコー(反射波F2)が抽出されたときに、金属帯S中に内部欠陥があると検出される。この欠陥エコーが弱いと、ノイズから分離して欠陥エコーを抽出することが困難となり、金属帯S中に直径が50μm以上100μm以下の内部欠陥がある場合でも、それを検出することができなくなる。
A method for detecting an internal defect of a traveling metal strip using the water column type ultrasonic flaw detector according to the embodiment of the present invention described above will be described. 6 and 7 schematically show the internal defect detection principle of a water column type ultrasonic flaw detector employing a transmission type sensor system.
In the case of the transmission type sensor system, the ultrasonic beam 3 transmitted from the transmission probe 1A is transmitted to the surface of the metal band through the water column 4, propagates through the metal band S, and is then received by the reception probe 1B through the water column 4. Is done. The received waves (transmitted waves T1, T2 and reflected waves F1, F2) received by the reception probe 1B are signal-treated by the defect detection gate signal, and when a defect echo (reflected wave F2) of a predetermined value or more is extracted, It is detected that there is an internal defect in the metal band S. If the defect echo is weak, it is difficult to extract the defect echo from the noise, and even if an internal defect having a diameter of 50 μm or more and 100 μm or less exists in the metal band S, it cannot be detected.

図1に示した水柱式超音波探傷装置を用い、走行する金属帯の内部欠陥を検出する方法によれば、金属帯の板厚が変わったときに、金属帯の板厚に合わせてセンサ昇降手段5を介してセンサを昇降させ、プローブ1間の間隔を内部欠陥からの欠陥エコー高さが極大になる所定値にした後、内部欠陥を検出することができる。ラインフォーカス型プローブを用いた場合には、金属帯の板厚tに応じ、金属帯Sから所定だけ離れ、内部欠陥からの欠陥エコー高さが極大になるプローブ1間の間隔があることがわかっている。   According to the method for detecting an internal defect of a traveling metal strip using the water column type ultrasonic flaw detector shown in FIG. 1, when the thickness of the metal strip changes, the sensor goes up and down according to the thickness of the metal strip. After the sensor is moved up and down via the means 5 and the interval between the probes 1 is set to a predetermined value at which the height of the defect echo from the internal defect is maximized, the internal defect can be detected. When the line focus type probe is used, it is found that there is an interval between the probes 1 that is separated from the metal band S by a predetermined amount and the height of the defect echo from the internal defect is maximized according to the thickness t of the metal band. ing.

したがって、本発明の実施の形態に係る水柱式超音波探傷装置によれば、外乱の影響を受け難い透過型のセンサ方式を採用すると共に、金属帯の板厚に合わせてセンサを昇降させるセンサ昇降手段を具備したから、金属帯の板厚が広範囲に変わった場合でもそれに対応して、透過型のセンサ方式の欠陥検出能を十分発揮することができ、走行する金属帯S中に直径が50μm以上100μm以下の内部欠陥がある場合、それを精度よく検出することができる。   Therefore, according to the water column type ultrasonic flaw detector according to the embodiment of the present invention, the sensor lifting / lowering that adopts a transmission type sensor system that is not easily affected by disturbance and moves the sensor up and down according to the thickness of the metal strip. Therefore, even if the thickness of the metal strip changes over a wide range, the defect detection ability of the transmission type sensor system can be sufficiently exhibited, and the diameter of the traveling metal strip S is 50 μm. When there is an internal defect of 100 μm or less, it can be detected with high accuracy.

図1に示したような水柱式超音波探傷装置を構成し、板厚が1.2〜6.5mmの鋼板が通板される熱延鋼板の酸洗ラインに設置した。その際、焦点距離が38mm、欠陥検出能として直径が50μm以上100μm以下の内部欠陥を検出することができるラインフォーカス型プローブを、ノズル2に別個に収納し、鋼帯の上下両側に対向配置して一対のセンサを構成すると共に、鋼帯の板厚tに合わせてセンサを昇降させるセンサ昇降手段5を具備した。   A water column type ultrasonic flaw detector as shown in FIG. 1 was constructed and installed in a pickling line of a hot-rolled steel plate through which a steel plate having a thickness of 1.2 to 6.5 mm was passed. At that time, a line focus type probe capable of detecting an internal defect having a focal length of 38 mm and a defect detection capability of 50 μm or more and 100 μm or less is separately housed in the nozzle 2 and arranged oppositely on both upper and lower sides of the steel strip. The sensor elevating means 5 for elevating the sensor in accordance with the thickness t of the steel strip is provided.

このセンサ昇降手段5を具備した水柱式超音波探傷装置を用い、鋼帯の板厚が変わったときに鋼帯の板厚に合わせてセンサ昇降手段5を介してセンサを昇降させ、プローブ1の間隔を所定値にした後、内部欠陥を検出するようにした。その結果、検査する鋼帯の板厚が広範囲に変わった場合でも直径が50μm以上100μm以下の介在物欠陥を精度よく検出することができた。   Using the water column type ultrasonic flaw detector provided with the sensor lifting / lowering means 5, when the thickness of the steel strip changes, the sensor is lifted / lowered via the sensor lifting / lowering means 5 in accordance with the thickness of the steel strip. After the interval was set to a predetermined value, an internal defect was detected. As a result, even when the thickness of the steel strip to be inspected changed over a wide range, inclusion defects having a diameter of 50 μm or more and 100 μm or less could be accurately detected.

一方、従来の水柱式超音波探傷装置は、片側センサ方式とした装置であるため、板厚が一定の場合に直径が100μm以上200μm以下の介在物欠陥を検出できるが、センサ昇降手段5を具備していないので、鋼帯の板厚tが変わった場合に鋼板中に直径が50μm以上100μm以下の介在物欠陥がある場合でもそれを検出できなかった。   On the other hand, since the conventional water column type ultrasonic flaw detector is a one-side sensor type device, it can detect an inclusion defect having a diameter of 100 μm or more and 200 μm or less when the plate thickness is constant. Therefore, even when there is an inclusion defect having a diameter of 50 μm or more and 100 μm or less in the steel plate when the thickness t of the steel strip is changed, it cannot be detected.

本発明の実施の形態に係る水柱式超音波探傷装置の構成を示す全体図である。1 is an overall view showing a configuration of a water column type ultrasonic flaw detector according to an embodiment of the present invention. 図1の水柱式超音波探傷装置の要部を示す概略側面図である。It is a schematic side view which shows the principal part of the water column type ultrasonic flaw detector of FIG. (a)はセンサに用いて好適なプローブを示す概略斜視図であり、(b)はそれを収容したセンサを金属帯側から見た場合の概略平面図である。(A) is a schematic perspective view which shows a suitable probe used for a sensor, (b) is a schematic plan view at the time of seeing the sensor which accommodated it from the metal strip side. 図1の水柱式超音波探傷装置に設けて好適な多孔整流板の概略平面図である。FIG. 2 is a schematic plan view of a porous rectifying plate suitable for being provided in the water column type ultrasonic flaw detector of FIG. 図1の水柱式超音波探傷装置に用いたノズルの水柱安定化実験結果を示す特性図である。It is a characteristic view which shows the water column stabilization experiment result of the nozzle used for the water column type ultrasonic flaw detector of FIG. 透過型のセンサ方式による内部欠陥検出原理を説明する説明図である。It is explanatory drawing explaining the internal defect detection principle by a transmissive | pervious sensor system. 透過型のセンサ方式を採用した水柱式超音波探傷装置での信号処理を説明する特性図である。It is a characteristic view explaining the signal processing with the water column type ultrasonic flaw detector which employ | adopted the transmission type sensor system.

符号の説明Explanation of symbols

1 プローブ
2 ノズル
3 超音波ビーム
4 水柱
5 センサ昇降手段
6 厚み計
7 マーカー
8 多孔整流板
9 流量調節弁
10 コンピュータ
11 内部欠陥
S 金属帯
t 金属帯の板厚
L プローブの間隔
x 超音波発信面又は受信面の長辺寸法
y 超音波発信面又は受信面の短辺寸法
α 超音波発信面又は受信面の面積
a 噴射口の長軸寸法
b 噴射口の短軸寸法
p 孔ピッチ
d 孔径
DESCRIPTION OF SYMBOLS 1 Probe 2 Nozzle 3 Ultrasonic beam 4 Water column 5 Sensor raising / lowering means 6 Thickness gauge 7 Marker 8 Porous rectifying plate 9 Flow control valve 10 Computer 11 Internal defect S Metal strip t Metal strip thickness L Probe interval x Ultrasonic transmission surface Or long side dimension of receiving surface y short side dimension of ultrasonic transmitting surface or receiving surface α area of ultrasonic transmitting surface or receiving surface a long axis size of injection port b short axis size of injection port p hole pitch d hole diameter

Claims (5)

走行する金属帯の表面に向けて水を噴射する上、下のノズルの内部に、超音波を送信するプローブと、超音波を受信するプローブを別個に収容した一対のセンサを、前記金属帯の上下両側に対向配置し、内部欠陥を検出可能に構成してなる水柱式超音波探傷装置において、前記ノズルの噴射口を長円形とし、該噴射口の面積を前記ノズル内のプローブの超音波発信面又は受信面の面積の2.5倍以上とし、前記噴射口入側の流路面積と前記噴射口の面積との比で表す絞り比を3.0以上とするとともに、上側のノズルの噴射口の長軸対短軸比を3.0〜3.4、下側のノズルの噴射口の長軸対短軸比を1.5以下とし、前記ノズルの流路部に多孔整流板が設置され、かつ前記金属帯の板厚に合わせて、前記センサを昇降させるセンサ昇降手段を具備したことを特徴とする水柱式超音波探傷装置。 A pair of sensors that separately inject a probe for transmitting ultrasonic waves and a probe for receiving ultrasonic waves inside the lower nozzle are jetted of water toward the surface of the traveling metal band. In a water column type ultrasonic flaw detector configured to be opposed to both upper and lower sides and configured to detect an internal defect, the nozzle nozzle has an oval nozzle and the area of the nozzle is ultrasonic transmission of the probe in the nozzle. The area of the surface or the receiving surface is 2.5 times or more, and the aperture ratio expressed by the ratio of the flow path area on the inlet side to the area of the injection port is 3.0 or more, and the upper nozzle is injected. The long axis to short axis ratio of the port is 3.0 to 3.4, the long axis to short axis ratio of the lower nozzle is 1.5 or less, and a porous rectifying plate is installed in the flow path of the nozzle is, and in accordance with the plate thickness of the metal strip, the sensor elevating means for elevating said sensor Water column type ultrasonic flaw detection apparatus characterized by comprising. 前記ノズルの噴射口から噴射する水量が流量調節弁で調整可能とされていることを特徴とする請求項1に記載の水柱式超音波探傷装置。 The water column type ultrasonic flaw detector according to claim 1, wherein an amount of water ejected from an ejection port of the nozzle is adjustable by a flow rate control valve. 前記センサの上流側に、前記金属帯の板厚を測定する厚み計を設け、該厚み計の測定値に基づき、前記センサ昇降手段を介して前記センサを昇降させるように構成してなることを特徴とする請求項1または2に記載の水柱式超音波探傷装置。 A thickness gauge for measuring the thickness of the metal strip is provided on the upstream side of the sensor, and the sensor is lifted and lowered via the sensor lifting means based on the measured value of the thickness gauge. The water column type ultrasonic flaw detector according to claim 1 or 2 . 前記センサの下流側に、前記金属帯にマーキングするマーカーを設け、前記金属帯中の内部欠陥位置をマーキングするように構成してなることを特徴とする請求項1〜のいずれかに記載の水柱式超音波探傷装置。 The marker according to any one of claims 1 to 3 , wherein a marker for marking the metal strip is provided on the downstream side of the sensor, and an internal defect position in the metal strip is marked. Water column type ultrasonic flaw detector. 請求項1〜のいずれかに記載の水柱式超音波探傷装置を用い、走行する金属帯の内部欠陥を検出する方法において、前記金属帯の板厚に合わせて前記センサ昇降手段を介して前記センサを昇降させ、プローブ間の間隔を所定値にした後、内部欠陥を検出することを特徴とする水柱式超音波探傷方法。 The method for detecting an internal defect of a traveling metal strip using the water column type ultrasonic flaw detector according to any one of claims 1 to 4 , wherein the sensor elevating means is used in accordance with the plate thickness of the metal strip. A water column type ultrasonic flaw detection method, wherein an internal defect is detected after raising and lowering a sensor to set a distance between probes to a predetermined value.
JP2005366196A 2005-12-20 2005-12-20 Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method Expired - Fee Related JP4696895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366196A JP4696895B2 (en) 2005-12-20 2005-12-20 Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366196A JP4696895B2 (en) 2005-12-20 2005-12-20 Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2007170901A JP2007170901A (en) 2007-07-05
JP4696895B2 true JP4696895B2 (en) 2011-06-08

Family

ID=38297666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366196A Expired - Fee Related JP4696895B2 (en) 2005-12-20 2005-12-20 Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP4696895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799180B1 (en) * 2016-01-20 2017-11-17 국방기술품질원 Hybrid sensor, apparatus and method for inspecting inner defects and thickness comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186917B2 (en) * 2007-12-26 2013-04-24 Jfeスチール株式会社 Method and apparatus for adjusting measurement gap in ultrasonic flaw detection
KR102132673B1 (en) * 2018-09-04 2020-07-13 주식회사 디이엔티 Ultrasonic waterfall type water layer equalizing apparatus for inspection of OLED panel
KR20240010028A (en) * 2021-07-20 2024-01-23 야마하 파인 테크 가부시키가이샤 Ultrasonic inspection devices and inspection devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832146B2 (en) * 1977-10-12 1983-07-11 川崎製鉄株式会社 Board stacking detection device
JPS61271448A (en) * 1985-05-28 1986-12-01 Kawasaki Steel Corp Continuous inspection for inclusion of thin steel hoop

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832146B2 (en) * 1977-10-12 1983-07-11 川崎製鉄株式会社 Board stacking detection device
JPS61271448A (en) * 1985-05-28 1986-12-01 Kawasaki Steel Corp Continuous inspection for inclusion of thin steel hoop

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799180B1 (en) * 2016-01-20 2017-11-17 국방기술품질원 Hybrid sensor, apparatus and method for inspecting inner defects and thickness comprising the same

Also Published As

Publication number Publication date
JP2007170901A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US6470749B1 (en) Method and apparatus for pulsed ultrasonic doppler measurement of wall deposition
CN101467035B (en) Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
Cobry et al. Comprehensive experimental studies of early-stage membrane scaling during nanofiltration
JP4696895B2 (en) Water column type ultrasonic flaw detector and water column type ultrasonic flaw detection method
CN103119433B (en) Device for inspecting a moving metal strip
JP2013537309A5 (en)
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP2009058238A (en) Method and device for defect inspection
JP5104247B2 (en) Manufacturing method of continuous cast slab
JP2012215520A (en) Ultrasonic measuring method and device for surface crack depth
JP2008070388A (en) Liquid level detection method by means of sound and its device
RU2394235C1 (en) Method for ultrasonic inspection of welded joints of small-diametre pipes
JP3097253B2 (en) Ultrasonic flaw detector for band-shaped plate
JP5570242B2 (en) Apparatus for detecting surface defect and surface subcutaneous defect, and detection method thereof
EP3441186B1 (en) Water jet device with sensor and method for water jet cutting
JP6076211B2 (en) Defect detection apparatus and defect detection method
RU89235U1 (en) DEVICE FOR ULTRASONIC RAIL DEFECTOSCOPY
JP2008261873A (en) Continuous observation device of turbidity of water
JP2009145232A (en) Device and method for measuring amount of corrosion in bottom of rail
JP4552230B2 (en) Ultrasonic flaw detection method and apparatus
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP4805431B2 (en) Sand level detector for fluidized bed equipment
JP2008070387A (en) Liquid level detection method by means of sound and its device
Muste et al. Near-transducer errors in acoustic Doppler current profiler measurements
JP2009222549A (en) Ultrasonic thickness measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees