JP4696419B2 - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator Download PDF

Info

Publication number
JP4696419B2
JP4696419B2 JP2001229064A JP2001229064A JP4696419B2 JP 4696419 B2 JP4696419 B2 JP 4696419B2 JP 2001229064 A JP2001229064 A JP 2001229064A JP 2001229064 A JP2001229064 A JP 2001229064A JP 4696419 B2 JP4696419 B2 JP 4696419B2
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
piezoelectric
excitation electrode
holes
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229064A
Other languages
Japanese (ja)
Other versions
JP2003046366A5 (en
JP2003046366A (en
Inventor
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2001229064A priority Critical patent/JP4696419B2/en
Publication of JP2003046366A publication Critical patent/JP2003046366A/en
Publication of JP2003046366A5 publication Critical patent/JP2003046366A5/ja
Application granted granted Critical
Publication of JP4696419B2 publication Critical patent/JP4696419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、短冊型圧電基板を用いた圧電振動子において、圧電基板両主面上中央部の励振用主電極と圧電基板長辺方向端部との間に複数の溝または孔を形成し、あるいはドーピングを施した圧電基板を備えた圧電振動子に関するものである。
【0002】
【従来の技術】
近年、各種電子機器や伝送通信機器に用いる基準周波数信号源として圧電振動子、例えば水晶振動子が幅広く使用されている。特に、ATカット水晶基板を用いた水晶振動子は、広い温度範囲で極めて高い周波数安定性を有し、更に経時変化特性にも優れており、且つ、製造技術の進歩により低コストで大量に製造することができるようになったので、移動体通信を中心とする各種通信機器で多用されている。
【0003】
ATカット水晶振動子は、厚み滑り振動モード(Thickness Shear Mode)を主振動として用いられることが多く、今日ではエネルギー閉じ込め型水晶振動子が主流となり広く用いられている。
【0004】
ここで、エネルギー閉じ込め型水晶振動子とは、水晶基板の励振用電極のない領域の周波数をf'o、励振用電極のある部分の共振周波数fo(励振用電極を付加したことによる質量負荷効果によりfo<f'oとなっている)としたとき、励振用電極のある部分では波動は自由に伝搬するが、前記励振用電極のない部分(電極端近傍)に波動がくると水晶基板の厚み方向に平行な面で反射を起こすので電極直下に定在波をつくりエネルギーが閉じ込められ、励振用電極のない領域では振動エネルギーは指数関数的に減衰するということを利用した水晶振動子であることは周知の通りである。
【0005】
しかし、前記厚み滑り振動モードの共振周波数近傍には、他に厚み屈曲振動(Thickness Flexural Mode)、縦振動(Longitudinal Mode)、輪郭滑り振動(Face Shear Mode)等の不要な振動モードが存在することが知られている。これらの不要な振動モードは水晶基板の輪郭寸法に依存し、厚み滑り振動により得られる所望共振周波数に悪影響を及ぼし、それによって生ずる不要スプリアス、また温度変化に対する周波数及びCI値(クリスタル・インピーダンス=水晶振動子の等価抵抗)の非連続的な変動、所謂、特異現象(Anomalous Activity Dip)等が問題となっていた。
【0006】
上述の如き問題を抑制するための対策の一つとして、従来、水晶基板の周囲の面取り加工を行うことが提案され広く実施されている。面取り加工した水晶基板の構造は、一般にベベル構造やコンベックス構造と呼ばれ、図13(a)のは片面ベベル(プラノベベル)、図13(b)のは両面ベベル(バイベベル)構造、図14(a)のは片面コンベックス(プラノコンベックス)、図14(b)のは両面コンベックス(バイコンベックス)の構造が知られている。これら水晶基板の構造は、水晶基板中央部から長手方向端部に向かって徐々に板厚を薄くした構造となっている。
【0007】
これらの面取り加工はバレル研磨装置により行われ、バレル研磨装置には円筒パイプを回転させるパイピング法、及び、円筒状や球状のバレル槽を公転或は自転させる高速遊星旋回法などがある。これらバレル研磨装置に水晶基板と砥粒とを入れて槽を回転させて、自重によって加圧された水晶基板と砥粒とを接触させその時の摩擦により水晶基板周囲を研磨して面取り加工するものである。
【0008】
上述の如く水晶基板の輪郭に面取り加工を施すことにより、主振動である厚み滑り振動のエネルギーを閉じ込め、一方、厚み屈曲、縦、輪郭滑り等の副振動のエネルギーを大きく弱めることができる。つまり、厚み滑り振動モードにおける振動エネルギーを励振電極近傍に閉じ込めることが可能となり、更に水晶基板寸法等に起因する輪郭系振動モードなどの不要スプリアスも抑圧し、良好な特性を有する水晶振動子を得ることができる。
【0009】
一方、前述の主振動のエネルギーを閉じ込め、且つ、不要スプリアスの原因となる副振動モードを抑圧するという効果の再現性を良くするためには、面取り加工の寸法精度のバラツキを抑えて高精度な加工を維持する必要がある。
【0010】
【発明が解決しようとする課題】
今日、携帯電話機等の通信機器の小型化によりそれに用いられる電子デバイスも小型化が要求され、水晶振動子においても小型化の開発が進められ、水晶振動子の小型化に伴って、それに用いられる水晶基板のサイズも小型化されている。
【0011】
しかしながら、現在のバレル研磨装置は水晶基板の自重を利用して研磨を行うので、水晶基板の小型化に伴い単位時間当たりの水晶基板の輪郭の加工量が減少し、それによって研磨加工の時間は長くなり研磨効率が低下してしまうという問題があった。更に、砥粒は湿度の影響を受け易く、わずかの湿気で砥粒が固まり易いため、単なる面取り加工では時間による精度のコントロールが困難でありバラツキにも影響を及ぼし易いという問題があった。
故に、水晶基板の小型化による研磨加工の効率の低下、及び研磨加工の条件の変化(湿度による砥粒への影響等)との複合要因により水晶基板の面取り加工による安定した品質維持が非常に困難になってきた。
【0012】
つまり、水晶基板の面取り加工寸法精度が低下すると水晶振動子の共振特性や周波数温度特性のバラツキ、等価回路定数値のバラツキが生じ、小型の水晶振動子を量産する場合、水晶基板の面取り加工精度の低下は顕著であり、歩留りの低下の大きな要因となっていた。
本発明の目的は、上述した如き従来の面取り加工を要する圧電基板を用いた圧電振動子の問題点に鑑みなされたものであって、エネルギー閉じ込めに必要な圧電基板の構造的な加工を高精度に再現性良く実現し、且つ、量産における歩留りを向上せしめた圧電振動子及びその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明に係わる圧電振動子は、以下の構成をとる。
本発明の第1の形態は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の溝を設け、前記複数の溝は、前記圧電基板の対向する辺から延在し、互いに間挿するよう配置されていることを特徴とする。
本発明の第2の形態は、前記複数の溝は、前記圧電基板の辺から、前記圧電基板の辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする。
本発明の第3の形態は、厚み滑り振動を主振動とする圧電振動子において、前記圧電振動子が短冊形であって、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、前記複数の孔は、前記圧電基板の短辺方向に列状に形成され、前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜していることを特徴とする。
本発明の第4の形態は、前記圧電振動子が短冊形であって、前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜し、且つ、前記圧電基板長辺方向に平行し且つ前記励振用電極のほぼ中央部を通過する線に対して線対称に設けられていることを特徴とする。
本発明の第5の形態は、前記複数の列は、前記圧電基板の対向する辺から延在し、互いに間挿するよう配置されていることを特徴とする。
本発明の第6の形態は 前記複数の列が、前記圧電基板の辺から、前記圧電基板の辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする。
本発明の第7の形態は、厚み滑り振動を主振動とする圧電振動子において、前記圧電振動子が短冊形であって、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、前記複数の孔は、前記圧電基板の短辺方向に列状に形成され、前記列が、所望の曲率で前記励振用電極側に湾曲していることを特徴とする。
本発明の第8の形態は、前記列の長さは、前記励振用電極の長さ以上であることを特徴とする。
本発明の第9の形態は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、前記励振用電極に近い前記孔の圧電基板厚さ方向の深さは、他の孔の深さより浅いことを特徴とする圧電振動子。
本発明の第10の形態は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある複数の孔の圧電基板厚さ方向の深さを他の孔の深さより深くしたことを特徴とする。
本発明の第11の形態は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、前記孔の圧電基板厚さ方向の深さは、前記励振用電極に近いほど浅く、圧電基板長手方向端部に近いほど深くしたことを特徴とする。
本発明の第12の形態は、前記孔を、千鳥格子状に配列したことを特徴とする。
本発明の第13の形態は、前記励振用電極に近い前記列を構成する孔の圧電基板厚さ方向の深さは、他の列に含まれる孔の深さより浅いことを特徴とする。
本発明の第14の形態は、前記列を構成する孔の圧電基板厚さ方向の深さは、前記励振用電極に近い列の孔ほど浅く、圧電基板長手方向端部に近い列の孔ほど深くしたことを特徴とする。
本発明の第15の形態は、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある列を構成する孔の圧電基板厚さ方向の深さを他の列を構成する孔の深さより深くしたことを特徴とする。
本発明の第16の形態は、前記励振用電極にもっとも近接した一対の列及びその次に近接した一対の列を構成する孔の圧電基板厚さ方向の深さは、他の列を構成する孔の深さより浅いことを特徴とする
[適用例1]本適用例は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の溝を設けたことを特徴とする圧電振動子である。
【0014】
[適用例2]本適用例は、前記圧電振動子が短冊形であって、前記複数の溝が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜して設けられていることを特徴とする圧電振動子である。
【0015】
[適用例3]本適用例は、前記圧電振動子が短冊形であって、前記複数の溝が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜し、且つ、前記圧電基板長辺に平行し且つ前記励振用電極のほぼ中央部を通過する線に対して線対称に設けられていることを特徴とする圧電振動子である。
【0016】
[適用例4]本適用例は、前記複数の溝が、前記圧電基板の対向する長辺から延在し、互いに間挿するよう配置されていることを特徴とする圧電振動子である。
【0017】
[適用例5]本適用例は、前記複数の溝が、前記圧電基板長辺から、前記圧電基板長辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする圧電振動子である。
【0018】
[適用例6]本適用例は、前記溝が、所定の曲率で前記励振用電極側に湾曲していることを特徴とする圧電振動子である。
【0019】
[適用例7]本適用例は、前記溝の長さが、前記励振用電極辺の長さ以上であることを特徴とする圧電振動子である。
【0020】
[適用例8]本適用例は、前記励振用電極にもっとも近接した溝の圧電基板厚さ方向の深さは、他の溝の深さより浅いことを特徴とする圧電振動子である。
【0021】
[適用例9]本適用例は、前記複数の溝の圧電基板厚さ方向の深さは、前記励振用電極に近い程浅く、圧電基板長手方向端部に近いほど深くしたことを特徴とする圧電振動子である。
【0022】
[適用例10]本適用例は、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある溝の
圧電基板厚さ方向の深さを他の溝の深さより深くしたことを特徴とする圧電振動子である。
【0023】
[適用例11]本適用例は、前記励振用電極にもっとも近接した溝及びその次に近接した溝の圧電基板厚さ方向の深さは、他の溝の深さより浅いことを特徴とする圧電振動子である。
【0024】
[適用例12]本適用例は、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある隣り合う一組の溝と、該一組の溝とは前記励振用電極を挟んで対向する位置にある他の隣り合う一組の溝の圧電基板厚さ方向の深さをそれ以外の溝の深さより深くしたことを特徴とする圧電振動子である。
【0025】
[適用例13]本適用例は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設けたことを特徴とする圧電振動子である。
【0026】
[適用例14]本適用例は、前記振動子が短冊形であって、前記複数の孔は、前記圧電基板の短辺方向に列状に形成したことを特徴とする圧電振動子である。
【0027】
[適用例15]本適用例は、前記振動子が短冊形であって、前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜していることを特徴とする圧電振動子である。
【0028】
[適用例16]本適用例は、前記振動子が短冊形であって、前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜し、且つ、前記圧電基板長辺方向に平行し且つ前記励振用電極のほぼ中央部を通過する線に対して線対称に設けられていることを特徴とする圧電振動子である。
【0029】
[適用例17]本適用例は、前記複数の列が、前記圧電基板の対向する長辺から延在し、互いに間挿
するよう配置されていることを特徴とする圧電振動子である。
【0030】
[適用例18]本適用例は、前記複数の列が、前記圧電基板長辺から、前記圧電基板長辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする圧電振動子である。
【0031】
[適用例19]本適用例は、前記列が、所望の曲率で前記励振用電極側に湾曲していることを特徴とする圧電振動子である。
【0032】
[適用例20]本適用例は、前記孔が、千鳥格子状に配列したことを特徴とする圧電振動子である。
【0033】
[適用例21]本適用例は、前記列の長さが、前記励振用電極の長さ以上であることを特徴とする圧電振動子である。
【0034】
[適用例22]本適用例は、前記励振用電極に近い前記孔の圧電基板厚さ方向の深さが、他の孔の深さより浅いことを特徴とする圧電振動子である。
【0035】
[適用例23]本適用例は、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある複数の孔の圧電基板厚さ方向の深さを他の孔の深さより深くしたことを特徴とする圧電振動子である。
【0036】
[適用例24]本適用例は、前記孔の圧電基板厚さ方向の深さを、前記励振用電極に近いほど浅く、
圧電基板長手方向端部に近いほど深くしたことを特徴とする圧電振動子である。
【0037】
[適用例25]本適用例は、前記励振用電極に近い前記列を構成する孔の圧電基板厚さ方向の深さが、他の列に含まれる孔の深さより浅いことを特徴とする圧電振動子である。
【0038】
[適用例26]本適用例は、前記列を構成する孔の圧電基板厚さ方向の深さを、前記励振用電極に近い列の孔ほど浅く、圧電基板長手方向端部に近い列の孔ほど深くしたことを特徴とする圧電振動子である。
【0039】
[適用例27]本適用例は、前記励振用電極と圧電基板長手方向端部との間の所望の位置にある列を構成する孔の圧電基板厚さ方向の深さを他の列を構成する孔の深さより深くしたことを特徴とする圧電振動子である。
【0040】
[適用例28]本適用例は、前記励振用電極にもっとも近接した一対の列及びその次に近接した一対の列を構成する孔の圧電基板厚さ方向の深さが、他の列を構成する孔の深さより浅いことを特徴とする圧電振動子である。
【0041】
[適用例29]本適用例は、厚み滑り振動を主振動とする圧電振動子において、圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に添加物を添加したことを特徴とする圧電振動子である。
【0042】
[適用例30]本適用例は、前記添加物を、イオン打込み技術或は気相熱拡散技術を用いて添加したことを特徴とする圧電振動子である。
【0043】
[適用例31]本適用例は、単一のウェーハ上であって、圧電振動子の励振用電極と該圧電振動子個片の長手方向端部との間に位置する部位に複数の溝または孔を形成する工程或は添加物を添加する工程と、単一のウェーハ上であって、各圧電振動子個片に対応し、圧電振動子個片の端部或は端部付近に位置する部位にスルーホールを形成する工程と、単一のウェーハ上に圧電振動子個片の励振用電極及びリード電極を夫々複数形成する工程と、前記スルーホールに導体膜を形成する工程と、前記単一のウェーハを複数の圧電振動子に分割する工程とからなることを特徴とする圧電振動子の製造方法である。
【0044】
[適用例32]本適用例は、上記溝または孔を形成する工程と上記スルーホールを形成する工程とを同時に行うことを特徴とする圧電振動子の製造方法である。
【0045】
[適用例33]本適用例は、上記励振用電極及びリード電極を形成する工程と上記スルーホールに導体膜を形成する工程とを同時に行うことを特徴とする圧電振動子の製造方法である。
【0046】
【発明の実施の形態】
以下、図示した実施の形態例に基づいて本発明を詳細に説明する。
図1は、本発明に係る圧電振動子の一例としてATカット水晶振動子を示す図であって、図1(a)は水晶振動子1の斜視図、図1(b)は前記水晶振動子1をパッケージ2本体内に実装した状態を示す斜視図、図1(c)はそのA−A断面図である。
この水晶振動子1は、短冊平板状のATカット水晶基板の両主面に励振用電極3及びリード電極4を導電性材料膜にて形成すると共に、パッケージ開口側のATカット水晶基板主面上リード電極4が延出する基板端部に切欠き部を設けた凹所5の内壁にリード電極4と接続する導体膜6を有している。導体膜6はリード電極4の延長上にあって反対側の主面にまで到達している。凹所5をスルーホール7とすることによって上側のリード電極4を下面付近にまで延在することができる。
【0047】
更に、前記励振用電極3とATカット水晶基板長手方向端部との間に、前記基板長手方向端部と平行な励振用電極辺8に平行に複数の溝9を形成している。これらの溝の深さは、前記励振用電極から前記基板長手方向端部に向かって徐々に深くなっている。
【0048】
尚、前記スルーホール7は図2に示すような実施形態を用いてもよい。図2(a)は、水晶振動子14の斜視図であって励振用電極10とATカット水晶基板長手方向端部との間に穴状のスルーホール11を設けて前記励振用電極10からリード電極12を当該スルーホール11まで延出し、他方の面に貫通したスルーホール11内に形成した導体膜13に接続している。図2(b)は、水晶振動子14をパッケージ15本体内に実装した状態を示す斜視図、図2(c)はそのA−A断面図である。
【0049】
前記穴状のスルーホール11を水晶基板の両端側付近に設け、下面側のリード電極を上面まで延在するようにすれば、水晶振動子14をパッケージ15本体内に実装する際に上下の方向性がなくなり、いずれの面を下向きにしても接続できるようになるので作業性が向上する。尚、図1に示した凹陥状のスルーホール7を水晶基板両端側に設け、水晶振動子の上下方向性をなくすことも可能である。
【0050】
図1(b)のパッケージ2内に形成された凹陥部の段差上に形成されたパッド16に対して各リード電極4を接続する際には、水晶基板下面に形成したリード電極4についてはパッド16に載置して導電性接着剤或は半田(バインダ)にて接続を行い、上側のリード電極4についてはスルーホール7内の導電膜6と他方のパッド17とを導電性接着剤等18により接続する。従って、上下のリード電極4を各パッド16,17に対して接続する作業において、夫々一回の導電性接着剤等18の塗布により完了できるので生産性を向上することができる。
【0051】
ここで、ATカット水晶基板上に形成した複数の溝について、以下詳細に説明する。図1及び図2に示した水晶振動子は、平行平板の水晶基板の両主面の中央部に配置された励振用電極と水晶基板長手方向端部との間に、所定の間隔で複数個の溝9が形成されている。当該溝9は、水晶基板にフォトリソグラフィ技法とエッチング技法とを用いて形成しており、溝9の深さを基板の長手方向端部へ近づくほど深くした構造としている。
【0052】
上述した構造とすることにより図3(a)に示すように、水晶基板20(実線で示した)は点線で示したバイベベル構造19の水晶基板と擬似的に等価となり、水晶基板端部への主振動モード(ここでは、厚みすべり振動モード)の振動エネルギーの漏洩を防止し、スプリアスの要因となる副振動モードを抑圧せしめ、励振用電極部直下に主振動モードの振動エネルギーを閉じ込めることができる。
【0053】
尚、図3(b)に示すように、複数個設けた溝のうち励振用電極3に近接した溝21を除いて、少なくとも一の溝22の深さを他の溝の深さより深くして、点線23で示した如く所定の部位を絞り込んだ構造としても良い。この場合、溝が深い部位で振動エネルギーを閉じ込めることができる。また、こうした構造とすることにより水晶基板長手方向端部に近接した溝24において、導電性接着剤等の励振用電極3への流れ込みを防ぐことができるという効果も得られる。
【0054】
ここで、互いに深さの異なる複数の溝を一括処理にてフォトリソグラフィ技法とエッチング技法により形成する手段について詳細に述べる。
水晶基板は、結晶軸方向により異方性を有するため、図4(a)に示すようにエッチングを行い溝を形成したとき、X軸方向に溝の断面を観察すると溝の側壁25,26の傾斜度は、エッチング終点で夫々θ1,θ2となる性質を有している。
【0055】
図4(b)に示す如く溝側壁の傾斜度は、フォトリソグラフィ技法で形成した保護膜27で覆われていないエッチングすべき開口幅sの部位をエッチングする過程で傾斜度θ1,θ2が形成されるまで、深さ(水晶基板厚さ)方向に向かってエッチングは進行し、深さdの点Cに到達したとき、つまり傾斜度θ1=tan−1(CP/AP),θ2=tan−1(CQ/BQ)の側壁25,26の形成が完了した時点でエッチングの終点となり、それ以降はエッチングは進行しない。
【0056】
即ち、開口幅sの大きさによって側壁の形成時間(エッチング終点時間)が異なるため、それによって深さdが変わってくる。
【0057】
本願出願人は、この性質に着眼してエネルギー閉じ込め型水晶振動子の設計に際し、図4(a)に示す如く開口幅s1≠s2とすれば、深さd1≠d2となることを利用して、深さの相異なる複数の溝をフォトリソグラフィ技法とエッチング技法を用いて一括処理することを可能せしめ、所望の特性を満足する水晶振動子の実現に至った。
【0058】
以下に、水晶基板上に溝をフォトリソグラフィ技法とエッチング技法とにより一括形成する手法について図5を用いて説明する。
水晶基板28を用意し(図5(a))、両主面上に保護膜29を塗布する(図5(b))。フォトリソグラフィにより溝に対応する部位に穴30の開いたマスク等の露光手段31を用いて保護膜29を露光し(図5(c))、現像を行い溝を形成する所定の部位のみ水晶基板を露出させる(図5(d))。エッチングにより複数の溝32を一括形成し(図5(e))、保護膜29を剥離する(図5(f))。
【0059】
ここで、前述の水晶基板のエッチングの性質を更に応用し、励振用電極から延出したリード電極を他方の面へ導出するためのスルーホールの形成も前述の溝形成工程にて一括形成にて処理することができる。
即ち、図6に示す如く、上述の水晶基板のエッチングの性質を考慮して、溝幅sに対してスルーホール33の開口断面幅tを、s<<tとすれば、水晶基板の両主面からエッチングを同時または交互に行うことによって、水晶基板厚さ方向の中心で夫々のスルーホール形成部位に形成される凹陥底部を互いに到達させ貫通させることができる。
【0060】
前記スルーホール33が形成されるまでには、溝32は溝幅sがスルーホール開口幅tに比して極めて小さいので、所定の傾斜度θsをもって既にエッチング終点に到達しているので、溝32とスルーホール33は一括形成にて処理が可能となる。
尚、溝32の側壁傾斜度θsとスルーホール33の側壁傾斜度θtとの関係は、θs=θtであることは言うまでもない。
【0061】
次に、図7及び図8を用いて本発明に係る水晶振動子の他の実施例について説明する。図7(a)は、励振用電極辺34にほぼ平行な溝35であって溝35の長さを電極辺34以上としたパターン、図7(b)は、圧電基板長辺と直交する線から、圧電基板長手方向端部37に向けて所望の角度傾斜して形成した溝38のパターン、図7(c)は、圧電基板主面上で圧電基板長辺36と直交する線から、圧電基板長手方向端部37に向けて所望の角度傾斜し、且つ、圧電基板長手方向に平行し、励振用電極のほぼ中央を通過する線に対して線対称となるよう形成した溝39のパターン、図7(d)は、圧電基板の対向する長辺36から延在し、且つ、圧電基板長手方向端部37に向けて所望の角度傾斜させて互いに間挿するように形成した溝40のパターン、図7(e)は、圧電基板短辺の二等分線38上の所望部位から所望の曲率で励振用電極3側に湾曲して形成した溝41のパターンである。
【0062】
図8(a)は、圧電基板長手方向端部37と前記励振用電極3との間に複数の孔42を設け、孔42が短辺37方向に列状になっているパターン、図8(b)は、圧電基板長辺36と直交する線から、圧電基板長手方向端部37に向けて所望の角度傾斜して形成した列状の孔43のパターン、図8(c)は、圧電基板長辺36と直交する線から、圧電基板長手方向端部37に向けて所望の角度傾斜し、且つ、圧電基板長手方向に平行し、励振用電極3のほぼ中央部を通過する線に対して線対称となるよう形成した列状の孔44のパターン、図8(d)は、圧電基板長辺36から延在し、且つ、圧電基板長手方向端部37に向けて所望の角度傾斜させて互いに間挿するように形成した列状の孔45のパターン、図8(e)は、圧電基板短辺37の二等分線上の所望部位から所望の曲率で前記励振用電極3側に湾曲して形成した列状の孔46のパターン、図8(f)は、圧電基板長手方向端部37と前記励振用電極3との間に千鳥格子状に配列してなる複数の列状の孔47からなるパターン、図8(g)は、圧電基板長手方向端部37と前記励振用電極3との間にランダムに形成した孔48からなるパターンである。
【0063】
ここで、前述の変形実施例で示したATカット水晶基板上に形成する溝または孔のパターンの深さは、図9(a)に示す如く溝または孔の深さd1を一定とした構造や、図9(b)に示す如く励振用電極3にもっとも近接した溝または孔の深さd2を他の溝より浅いことを特徴とした構造や、図9(c)に示す如く励振用電極3から水晶基板長手方向端部37に向かって溝または孔の深さを暫時大きくした(d3<d4<d5)ことを特徴とした構造が考えられる。
【0064】
尚、図8(g)のランダムに設けた孔48の場合、その孔48の深さは、図10(a)に示すように圧電基板短辺37方向の励振用電極3の端部に平行な位置49を基準とし、該基準位置49から孔の中心までの距離xにおいて、当該距離が圧電基板長手方向端部に近づくにしたがって、図10(b)の如く孔の深さyを適宜設定すれば良い。
【0065】
また、上記変形実施例における溝または孔の形成においても、水晶基板にフォトリソグラフィ技法とエッチング技法とを用いれば容易に形成することができるは言うまでもない。
【0066】
更に、エネルギー閉じ込め型振動子の設計にあたって、上述の溝または孔のパターンの選定及び溝または孔の深さの設定は、エネルギー閉じ込めに要する励振用電極の電極膜厚や電極寸法を考慮して、設計者の設計思想に基づいて適宜設定すれば良い。
【0067】
上述の如く、溝または孔の加工をフォトリソグラフィ技法とエッチング技法を用いることにより、当該溝または孔の寸法や位置を高精度に形成せしめ、更に量産においても好適な加工手段であるので、従来の小型水晶基板の面取り加工に比して加工バラツキを極めて抑制することができ、且つ、再現性も優れているので、水晶振動子の共振特性や温度特性等の諸特性のバラツキや等価回路定数値のバラツキも低減することができる。
【0068】
次に、励振用電極と水晶基板長手方向端部との間に添加物(dopant)を添加する(doping)ことにより水晶基板の励振用電極直下の振動領域にエネルギーを閉じ込める手法について以下説明する。
【0069】
ATカット水晶振動子の励振用電極へ電圧を印加すると、その振動レスポンスには、主振動モードである厚味滑り振動とスプリアスの要因となる輪郭滑り振動等の副振動モードとが混在するという問題があり、これを解決するためにATカット水晶基板の一部分にのみ励振用電極を形成し、且つ、ATカット水晶基板の、特に小型の水晶基板において励振用電極と基板長手方向端部との間に溝または孔を設けることによって、励振用電極直下に主振動のエネルギーを閉じ込め、副振動モードを抑圧せしめた優れた水晶振動子を実現し得るのは前述の通りである。
【0070】
本願出願人は、更に本願発明に係る他の実施例として、図11に示すように気相熱拡散技術やLSIの製造等で広く用いられているイオン打込み(Ion Implantation )技術を応用して、励振用電極3と水晶基板長手方向端部37との間にドーピング層50を形成することによって、励振用電極直下に主振動のエネルギーを閉じ込め、副振動を抑圧した水晶振動子が実現できることに思い至った。
【0071】
ここでは、イオン打込みを用いたドーピング層50の形成について以下詳細に説明する。
イオン打込み技術は、添加物をイオン化し更にそれを加速してイオンビームとしてLSIで用いられるシリコン等の基板中へ叩き込む技術であって、イオンビームのエネルギーを数百eV以上とすると基板へ照射されたイオンは表面層に入り込み、基板表面の原子を真空中へたたき出す、所謂スパッタリング現象が発生する。更に、加速電圧を上昇させていくと、イオンは基板表面から基板厚さ方向へ更に深くまで入り込んでいく。
【0072】
イオン打込み装置は、質量分析計が付いているので特定のイオン種だけを選択して打込むことができるので、同一の添加物元素に対して、打込み深さや量に応じて異なるイオン種を選択できる。また、打込まれるイオンの量もイオン電流として、基板に流れる電流を測定することで正確に求められ、打込み深さもイオン種と加速電圧で決まるので、添加物の量及び深さ共に制御できる。
従って、水晶振動子の量産工程においてもイオン打込み手法は好適な工法である。
【0073】
ATカット水晶基板の励振用電極3と水晶基板長手方向端部37との間にドーピング層50を形成するには、先ず、ATカット水晶基板主面上へ保護膜を塗布し、フォトリソグラフィ技法によりドーピング層形成領域のみ水晶基板を露出させる。ボロン(B)やリン(P)等の添加物を適宜選定し、イオン打込みによりドーピングを行いドーピング層を形成後保護膜を剥離する。
【0074】
前述の処理を行うことによって、図11に示すように励振用電極直下のATカット水晶基板の両側に形成されたドーピング層50により主振動モードのエネルギーのみを前記励振用電極直下領域に閉じ込めることができ、副振動モードは抑圧され、優れた振動特性を備えた水晶振動子51を実現することができる。
【0075】
尚、前述した図11の水晶振動子51は、励振用電極3とドーピング層50の境界付近で波動を反射させ所望のエネルギーを閉じ込めた構造としているが、他の実施例として、所望のエネルギーを閉じ込め、面取り加工と同等の効果を得るためにドーピング層形成領域の断面の深さを溝や孔を形成した場合と等価となるよう設定してもよい。
即ち、溝や孔に代えてドーピング層形成領域を形成することにより、溝や孔を設けた場合と同様の効果を得ることができる。
【0076】
次に、上述した如き本発明に係る水晶振動子の製造方法について図12に基づいて説明する。尚、ここで一例として図1に示したATカット水晶振動子を製造する方法について図示説明するが、図1以外に示した溝または孔を形成した水晶基板を有する水晶振動子についての製造手順は図1の水晶振動子の製造手順に準じるものである。
【0077】
先ず、図12(a)の如く個片52となる部分が未分離で複数連結された状態にある単一のウェーハ53を準備する。図12(b)は、単一のウェーハ53上の各個片52の励振用電極3と該個片の長手方向端部37との間に位置する部位に複数の溝9をフォトリソグラフィ技法とエッチング技法により形成する工程である。図12(c)は、単一のウェーハ53上であって、各個片52に対応し個片52の端部37に位置する部位にスルーホール7を形成する工程である。スルーホール7の位置は各個片において定められた位置とする。この例では各個片52間の境界線54に沿った位置とする。
【0078】
図12(d)は、電極形状がかたどられたマスク等の手段を用いた真空蒸着やスパッタ成膜、或はフォトリソグラフィ技法等を用いて、励振用電極3、該励振用電極3から延出するリード電極4を形成する工程である。
尚、この工程と同時に、或は前後してスルーホールの内壁の適所に導体膜6を形成して一方のリード電極4との導通を確保する。
【0079】
図12(e)は、複数の個片52が連結された単一のウェーハ53をダイシング・ソー等の切断手段を用いて個片52に分割する工程である。斯かる製造手順により図に示したATカット水晶振動子52(1)が完成する。
【0080】
図2のような点対称に位置する2つの穴状のスルーホールを有する水晶振動子の場合には、個片を複数連結した単一ウェーハの各個片の境界線54上から内側寄りの位置にスルーホール11を形成することとなる。更に、図12(b)の溝または孔の形成工程と図12(c)のスルーホールの形成とを同時に行うことは前述の通り水晶基板のエッチングの性質を利用することにより可能であり、リードタイム短縮に寄与する。
【0081】
また、図11に示すような励振用電極3と水晶基板長手方向端部37との間にドーピング層50を形成した水晶振動子51の場合には、図12(b)の溝または孔の形成工程を水晶基板の励振用電極3と水晶基板長手方向端部37との間に添加物をイオン打込み装置により添加する工程に置き換えれば良い。尚、斯かるドーピング層50の形成工程は、図12(c)のスルーホール形成工程と前後してもかまわない。
【0082】
上述したごとき本発明に係る水晶振動子は、今日の小型の水晶振動子に用いられる小型の水晶基板に面取り加工と同等な溝または孔加工をフォトリソグラフィ技法とエッチング技法とにより、高精度にバラツキ無く、且つ、安定した再現性とによって実現し得るので、共振特性や温度特性等の諸特性及び等価回路定数値のバラツキを抑制せしめたエネルギー閉じ込め型水晶振動子を提供できる。
【0083】
また、励振用電極と水晶基板長手方向端部との間にドーピング層を形成することによって、励振用電極直下に主振動のエネルギーのみを閉じ込めることが可能となったので、上述と同様に共振特性や温度特性等の諸特性及び等価回路定数値のバラツキを抑制せしめたエネルギー閉じ込め型水晶振動子を提供できる。
【0084】
更に、本発明に係る水晶振動子の製造方法は量産において極めて好適であり、バラツキが無く歩留りも高いので、量産性の極めて高い製造方法を提供できる。
【0085】
以上、ATカット水晶基板を用いた圧電振動子及びその製造方法を本発明の実施例として説明したが、本発明はこれに限定されるものではなく、他の圧電材料、例えばランガサイト(LaGaSiO14)や四ホウ酸リチウム(Li)、圧電セラミック基板などの圧電材料についても本発明を適用することができるのは言うまでもない。
【0086】
【発明の効果】
本発明に係る圧電振動子及びその製造方法は、以上説明した如く構成したので下記の如く優れた効果を奏する。
請求項1乃至28の発明は、今日の小型の圧電振動子に用いられる小型の圧電基板に面取り加工と同等な溝または孔加工をフォトリソグラフィ技法とエッチング技法とにより、高精度にバラツキ無く、且つ、安定した再現性とによって実現し得るので、共振特性や温度特性等の諸特性及び等価回路定数値のバラツキを抑制せしめたエネルギー閉じ込め型圧電振動子を提供できるという優れた効果を奏する。
【0087】
請求項29および30の発明は、励振用電極と圧電基板長手方向端部との間にドーピング層を形成することによって、励振用電極直下に主振動のエネルギーのみ閉じ込めることを可能せしめたので、共振特性や温度特性等の諸特性及び等価回路定数値のバラツキを抑制せしめたエネルギー閉じ込め型圧電振動子を提供することができるという優れた効果を奏する。
【0088】
請求項31の発明は、圧電振動子をバッチ処理にてバラツキの無い、且つ、高い歩留りで製造することが可能であるので大量生産において極めて好適であるという優れた効果を奏する。
【0089】
請求項32の発明は、溝また孔の形成工程とスルーホール形成工程とを同時に行うことができるので、リードタイムを短縮をすることができるため生産効率を高めることに優れた効果を奏する。
【0090】
請求項33の発明は、励振用電極とリード電極を形成する工程とスルーホールに導電膜を形成する工程とを同時に行うことができるので、リードタイムを短縮することができるため生産効率を高めることに優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る実施形態を説明するための図であって、(a)は圧電振動子の斜視図、(b)は圧電振動子をパッケージ内にマウントした状態を示す斜視図、(c)はA−A断面図である。
【図2】本発明に係る他の実施形態を説明するための図であって、(a)は圧電振動子の斜視図、(b)は圧電振動子をパッケージ内にマウントした状態を示す斜視図、(c)はA−A断面図である。
【図3】(a)及び(b)は、本発明に係る圧電振動子の励振用電極と圧電基板長手方向端部との間に形成する溝の構造を示す断面図である。
【図4】(a)及び(b)は、圧電基板のエッチングの性質を説明するための断面図である。
【図5】(a)乃至(f)は、圧電基板にフォトリソグラフィ技法とエッチング技法とを用いて溝を形成する手法を説明するための断面図である。
【図6】本発明に係る溝とスルーホールの一括形成を説明するための断面図である。
【図7】(a)乃至(e)は、本発明に係る圧電基板に形成する溝パターンを説明するための平面図である。
【図8】(a)乃至(g)は、本発明に係る圧電基板に形成する孔によるパターンを説明するための平面図である。
【図9】(a)乃至(c)は、本発明に係る圧電基板に形成した溝または孔の深さを説明するための図である。
【図10】(a)及び(b)は、本発明に係る圧電基板にランダムに形成した孔の深さを説明するための図である。
【図11】本発明に係る他の実施形態を説明するための図であって、(a)は圧電振動子の斜視図、(b)は圧電振動子をパッケージ内にマウントした状態を示す斜視図、(c)はA−A断面図である
【図12】(a)乃至(e)は、本発明に係る圧電振動子の製造工程を説明するための図である。
【図13】(a)及び(b)は、従来のベベル構造を示す断面図である。
【図14】(a)及び(b)は、従来のコンベックス構造を示す断面図である。
【符合の説明】
1 圧電振動子
2 パッケージ
3 励振用電極
4 リード電極
5 切欠き部
6 導電膜
7 スルーホール
8 励振用電極辺
9 溝
10 励振用電極
11 スルーホール
12 リード電極
13 導電膜
14 圧電振動子
15 パッケージ
16 パッド
17 パッド
18 導電性接着剤
19 点線
20 圧電基板
21 溝
22 溝
23 点線
24 溝
25 側壁
26 側壁
27 保護膜
28 圧電基板
29 保護膜
30 穴
31 マスク
32 溝
33 スルーホール
34 励振用電極辺
35 溝
36 長辺
37 短辺
38 溝
39 溝
40 溝
41 溝
42 孔
43 孔
44 孔
45 孔
46 孔
47 孔
48 孔
49 基準線
50 ドーピング層
51 圧電振動子
52 個片
53 単一ウェーハ
54 境界線
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a piezoelectric vibrator using a strip-shaped piezoelectric substrate, wherein a plurality of grooves or holes are formed between an excitation main electrode at a central portion on both main surfaces of the piezoelectric substrate and an end portion in the longitudinal direction of the piezoelectric substrate, Alternatively, the present invention relates to a piezoelectric vibrator including a doped piezoelectric substrate.
[0002]
[Prior art]
In recent years, piezoelectric vibrators such as crystal vibrators have been widely used as reference frequency signal sources used in various electronic devices and transmission communication equipment. In particular, crystal resonators using AT-cut quartz substrates have extremely high frequency stability over a wide temperature range, and are excellent in aging characteristics, and are manufactured in large quantities at low cost due to advances in manufacturing technology. As a result, it is widely used in various communication devices centering on mobile communication.
[0003]
AT-cut quartz resonators are often used in a thickness-shear vibration mode as the main vibration, and energy confinement crystal resonators are mainly used today and are widely used.
[0004]
Here, the energy confinement type quartz crystal resonator means that the frequency of the region without the excitation electrode of the quartz substrate is f'o, and the resonance frequency fo of the portion with the excitation electrode (mass load effect by adding the excitation electrode) Fo <f'o), the wave propagates freely in a part with the excitation electrode, but when the wave comes to the part without the excitation electrode (near the electrode end), This is a crystal resonator that utilizes reflection that energy is confined by creating a standing wave directly under the electrode because reflection occurs on a plane parallel to the thickness direction, and vibration energy attenuates exponentially in the region where there is no excitation electrode. This is well known.
[0005]
However, there are other unnecessary vibration modes such as thickness flexural mode, longitudinal mode, and face shear mode near the resonance frequency of the thickness-shear mode. It has been known. These unnecessary vibration modes depend on the outline size of the quartz substrate and adversely affect the desired resonance frequency obtained by the thickness-shear vibration, resulting in unwanted spurious and frequency and CI values with respect to temperature changes (crystal impedance = crystal Discontinuous fluctuations (equivalent resistance of the vibrator), so-called singular phenomena (Anomalous Activity Dip), etc. have been problems.
[0006]
As one of the measures for suppressing the above problems, chamfering processing around the quartz substrate has been proposed and widely implemented. The structure of the chamfered quartz substrate is generally called a bevel structure or a convex structure. FIG. 13A shows a single-side bevel (plano bevel), FIG. 13B shows a double-side bevel (bi-bevel) structure, and FIG. ) Is a single-sided convex (plano convex), and FIG. 14B is a double-sided convex (biconvex). These crystal substrates have a structure in which the plate thickness is gradually reduced from the center of the crystal substrate toward the end in the longitudinal direction.
[0007]
These chamfering processes are performed by a barrel polishing apparatus. The barrel polishing apparatus includes a piping method for rotating a cylindrical pipe, and a high-speed planetary turning method for rotating or rotating a cylindrical or spherical barrel tank. A quartz substrate and abrasive grains are put in these barrel polishing equipment, the tank is rotated, the quartz substrate pressed by its own weight and the abrasive grains are brought into contact with each other, and the periphery of the quartz substrate is polished and chamfered by friction at that time It is.
[0008]
By chamfering the outline of the quartz substrate as described above, it is possible to confine the energy of thickness-slip vibration that is the main vibration, while greatly reducing the energy of sub-vibration such as thickness bending, vertical, and outline slip. In other words, it becomes possible to confine the vibration energy in the thickness-shear vibration mode in the vicinity of the excitation electrode, and further suppress unnecessary spurious such as the contour vibration mode due to the crystal substrate dimensions, etc., and obtain a crystal resonator having good characteristics. be able to.
[0009]
On the other hand, in order to improve the reproducibility of the effect of confining the energy of the main vibration and suppressing the secondary vibration mode that causes unnecessary spurious, it is possible to suppress the variation in the dimensional accuracy of the chamfering process and improve the accuracy Processing needs to be maintained.
[0010]
[Problems to be solved by the invention]
Today, electronic devices used for communication devices such as mobile phones are required to be miniaturized, and the development of miniaturization of crystal resonators is being promoted. The size of the quartz substrate is also reduced.
[0011]
However, since the current barrel polishing apparatus performs polishing using its own weight, the amount of processing of the contour of the quartz substrate per unit time decreases with the miniaturization of the quartz substrate, thereby reducing the polishing time. There was a problem that the polishing efficiency was lowered due to the lengthening. Furthermore, since the abrasive grains are easily affected by humidity, and the abrasive grains are likely to be hardened with a slight humidity, there is a problem that it is difficult to control the accuracy with time by simple chamfering, and that variations are easily affected.
Therefore, stable quality maintenance by chamfering of the quartz substrate is extremely possible due to a combination of factors such as a decrease in polishing efficiency due to miniaturization of the quartz substrate and changes in polishing conditions (such as the effect of humidity on the abrasive grains). It has become difficult.
[0012]
In other words, if the dimensional accuracy of the chamfering process of the quartz substrate decreases, variations in the resonance characteristics and frequency temperature characteristics of the crystal unit and variations in equivalent circuit constant values will occur. The decrease in the temperature was remarkable and was a major factor in the decrease in yield.
The object of the present invention has been made in view of the problems of the piezoelectric vibrator using the conventional piezoelectric substrate that requires chamfering as described above, and provides high-precision structural processing of the piezoelectric substrate necessary for energy confinement. It is another object of the present invention to provide a piezoelectric vibrator that can be realized with good reproducibility and has improved yield in mass production and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, a piezoelectric vibrator according to the present invention has the following configuration.
According to a first aspect of the present invention, in a piezoelectric vibrator having a thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the thickness shear vibration propagation end of the piezoelectric substrate is formed. A plurality of grooves are provided between a portion and the excitation electrode, and the plurality of grooves extend from opposing sides of the piezoelectric substrate and are arranged so as to be inserted into each other.
According to a second aspect of the present invention, the plurality of grooves extend from a side of the piezoelectric substrate to a vicinity of a line parallel to the side of the piezoelectric substrate and passing through a substantially central portion of the excitation electrode. Features.
According to a third aspect of the present invention, in the piezoelectric vibrator having thickness shear vibration as a main vibration, the piezoelectric vibrator has a strip shape, and an excitation electrode is formed in the central portion on both main surfaces of the piezoelectric substrate. A plurality of holes are provided between an end portion in the propagation direction of thickness shear vibration of the piezoelectric substrate and the excitation electrode, and the plurality of holes are formed in a row in the short side direction of the piezoelectric substrate. The row is inclined at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate.
According to a fourth aspect of the present invention, the piezoelectric vibrator has a rectangular shape, the row of holes is inclined at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate, and the length of the piezoelectric substrate is long. It is provided symmetrically with respect to a line parallel to the side direction and passing through the substantially central portion of the excitation electrode.
The fifth aspect of the present invention is characterized in that the plurality of rows extend from opposing sides of the piezoelectric substrate and are arranged so as to be inserted into each other.
According to a sixth aspect of the present invention, the plurality of rows extend from a side of the piezoelectric substrate to a vicinity of a line parallel to the side of the piezoelectric substrate and passing through a substantially central portion of the excitation electrode. And
According to a seventh aspect of the present invention, in the piezoelectric vibrator having thickness shear vibration as a main vibration, the piezoelectric vibrator has a strip shape, and an excitation electrode is formed in the center on both main surfaces of the piezoelectric substrate. A plurality of holes are provided between a thickness direction vibration vibration propagation end of the piezoelectric substrate and the excitation electrode, and the plurality of holes are formed in a row in the short side direction of the piezoelectric substrate. , And is curved toward the excitation electrode with a desired curvature.
The eighth aspect of the present invention is characterized in that the length of the row is equal to or longer than the length of the excitation electrode.
According to a ninth aspect of the present invention, in a piezoelectric vibrator having thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the thickness shear vibration propagation end of the piezoelectric substrate is formed. A piezoelectric vibrator having a plurality of holes provided between a portion and the excitation electrode, wherein a depth of the hole close to the excitation electrode in a thickness direction of the piezoelectric substrate is shallower than other holes .
According to a tenth aspect of the present invention, in a piezoelectric vibrator having a thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the thickness shear vibration propagation end of the piezoelectric substrate is formed. A plurality of holes are provided between the excitation electrode and the excitation electrode, and the depth in the piezoelectric substrate thickness direction of the plurality of holes at desired positions between the excitation electrode and the longitudinal end of the piezoelectric substrate is different. It is characterized by being deeper than the depth of the hole.
According to an eleventh aspect of the present invention, in a piezoelectric vibrator having a thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the thickness shear vibration propagation end of the piezoelectric substrate is formed. A plurality of holes are provided between the electrode and the excitation electrode, and the depth of the hole in the piezoelectric substrate thickness direction is shallower as it is closer to the excitation electrode and deeper as it is closer to the longitudinal end of the piezoelectric substrate. It is characterized by.
A twelfth aspect of the present invention is characterized in that the holes are arranged in a staggered pattern.
The thirteenth aspect of the present invention is characterized in that the depth in the piezoelectric substrate thickness direction of the holes constituting the row close to the excitation electrode is shallower than the depths of the holes included in the other rows.
In the fourteenth embodiment of the present invention, the depth of the holes constituting the row in the thickness direction of the piezoelectric substrate is shallower as the row of holes closer to the excitation electrode is closer to the hole in the row closer to the longitudinal end of the piezoelectric substrate. Characterized by deepening.
In the fifteenth aspect of the present invention, the depth in the piezoelectric substrate thickness direction of the holes constituting the row at a desired position between the excitation electrode and the longitudinal end portion of the piezoelectric substrate constitutes another row. It is characterized by being deeper than the depth of the hole.
According to a sixteenth aspect of the present invention, the depth in the piezoelectric substrate thickness direction of the holes constituting the pair of rows closest to the excitation electrode and the next pair of rows adjacent to the excitation electrode constitutes another row. It is characterized by being shallower than the depth of the hole .
[Application Example 1] In this application example, in a piezoelectric vibrator having a thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the propagation direction of the thickness shear vibration of the piezoelectric substrate is A piezoelectric vibrator characterized in that a plurality of grooves are provided between an end portion and the excitation electrode.
[0014]
Application Example 2 In this application example, the piezoelectric vibrator has a strip shape, and the plurality of grooves are provided at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate. A piezoelectric vibrator characterized by the following.
[0015]
Application Example 3 In this application example, the piezoelectric vibrator has a strip shape, the plurality of grooves are inclined at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate, and the piezoelectric substrate The piezoelectric vibrator is provided symmetrically with respect to a line parallel to a long side and passing through a substantially central portion of the excitation electrode.
[0016]
Application Example 4 This application example is a piezoelectric vibrator characterized in that the plurality of grooves extend from the opposing long sides of the piezoelectric substrate and are arranged so as to be interleaved with each other.
[0017]
Application Example 5 In this application example, the plurality of grooves extend from the long side of the piezoelectric substrate to the vicinity of a line that is parallel to the long side of the piezoelectric substrate and passes through a substantially central portion of the excitation electrode. A piezoelectric vibrator characterized by the following.
[0018]
Application Example 6 The application example is a piezoelectric vibrator in which the groove is curved toward the excitation electrode side with a predetermined curvature.
[0019]
Application Example 7 In this application example, the length of the groove is equal to or longer than the length of the excitation electrode side.
[0020]
Application Example 8 This application example is a piezoelectric vibrator characterized in that the depth in the piezoelectric substrate thickness direction of the groove closest to the excitation electrode is shallower than the depths of the other grooves.
[0021]
Application Example 9 This application example is characterized in that the depth in the piezoelectric substrate thickness direction of the plurality of grooves is shallower as it is closer to the excitation electrode and deeper as it is closer to the longitudinal end portion of the piezoelectric substrate. It is a piezoelectric vibrator.
[0022]
[Application Example 10] In this application example, the depth in the piezoelectric substrate thickness direction of the groove at a desired position between the excitation electrode and the longitudinal end portion of the piezoelectric substrate is made deeper than the depths of the other grooves. A piezoelectric vibrator characterized by the following.
[0023]
Application Example 11 This application example is characterized in that the depth in the piezoelectric substrate thickness direction of the groove closest to the excitation electrode and the next adjacent groove is shallower than the depths of the other grooves. It is a vibrator.
[0024]
Application Example 12 In this application example, a pair of adjacent grooves at a desired position between the excitation electrode and the longitudinal end portion of the piezoelectric substrate, and the pair of grooves include the excitation electrode. The piezoelectric vibrator is characterized in that the depth in the thickness direction of the piezoelectric substrate of another pair of adjacent grooves positioned opposite to each other is deeper than the depth of the other grooves.
[0025]
[Application Example 13] In this application example, in a piezoelectric vibrator having thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the propagation direction of the thickness shear vibration of the piezoelectric substrate is A piezoelectric vibrator comprising a plurality of holes provided between an end portion and the excitation electrode.
[0026]
Application Example 14 This application example is a piezoelectric vibrator in which the vibrator has a rectangular shape, and the plurality of holes are formed in a row in the short side direction of the piezoelectric substrate.
[0027]
Application Example 15 This application example is characterized in that the vibrator has a rectangular shape, and the row of holes is inclined at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate. It is a piezoelectric vibrator.
[0028]
Application Example 16 In this application example, the vibrator has a rectangular shape, the row of holes is inclined at a desired angle with respect to a line orthogonal to the long side of the piezoelectric substrate, and the piezoelectric substrate length A piezoelectric vibrator characterized in that the piezoelectric vibrator is provided symmetrically with respect to a line parallel to a side direction and passing through a substantially central portion of the excitation electrode.
[0029]
Application Example 17 This application example is a piezoelectric vibrator in which the plurality of rows extend from opposing long sides of the piezoelectric substrate and are arranged so as to be interleaved with each other.
[0030]
[Application Example 18] In this application example, the plurality of rows extend from the long side of the piezoelectric substrate to the vicinity of a line parallel to the long side of the piezoelectric substrate and passing through the substantially central portion of the excitation electrode. A piezoelectric vibrator characterized by the following.
[0031]
Application Example 19 The application example is a piezoelectric vibrator in which the row is curved toward the excitation electrode side with a desired curvature.
[0032]
Application Example 20 This application example is a piezoelectric vibrator in which the holes are arranged in a staggered pattern.
[0033]
[Application Example 21] In this application example, the length of the row is equal to or longer than the length of the excitation electrode.
[0034]
[Application Example 22] This application example is a piezoelectric vibrator characterized in that the hole in the piezoelectric substrate thickness direction of the hole close to the excitation electrode is shallower than the other holes.
[0035]
Application Example 23 In this application example, the depth in the piezoelectric substrate thickness direction of the plurality of holes at a desired position between the excitation electrode and the longitudinal end portion of the piezoelectric substrate is set deeper than the depths of the other holes. This is a piezoelectric vibrator characterized by the above.
[0036]
[Application Example 24] In this application example, the depth of the hole in the piezoelectric substrate thickness direction is shallower as it is closer to the excitation electrode.
The piezoelectric vibrator is characterized by being deeper as it is closer to the longitudinal end of the piezoelectric substrate.
[0037]
[Application Example 25] This application example is characterized in that the depth in the piezoelectric substrate thickness direction of the holes constituting the row close to the excitation electrode is shallower than the depths of the holes included in the other rows. It is a vibrator.
[0038]
Application Example 26 In this application example, the depth of the holes constituting the row in the piezoelectric substrate thickness direction is shallower as the holes in the row closer to the excitation electrode, and the holes in the row closer to the end in the longitudinal direction of the piezoelectric substrate. The piezoelectric vibrator is characterized by being deepened.
[0039]
[Application Example 27] In this application example, the depth in the piezoelectric substrate thickness direction of the holes constituting the row at a desired position between the excitation electrode and the longitudinal end of the piezoelectric substrate is constituted in another row. The piezoelectric vibrator is characterized by being deeper than the depth of the hole to be formed.
[0040]
[Application Example 28] In this application example, the depth in the piezoelectric substrate thickness direction of a pair of rows closest to the excitation electrode and a pair of rows adjacent to the next row constitutes another row. The piezoelectric vibrator is characterized by being shallower than the depth of the hole to be formed.
[0041]
[Application Example 29] In this application example, in a piezoelectric vibrator having thickness shear vibration as a main vibration, an excitation electrode is formed at the center on both main surfaces of the piezoelectric substrate, and the propagation direction of the thickness shear vibration of the piezoelectric substrate is The piezoelectric vibrator is characterized in that an additive is added between an end portion and the excitation electrode.
[0042]
Application Example 30 This application example is a piezoelectric vibrator in which the additive is added using an ion implantation technique or a gas phase thermal diffusion technique.
[0043]
[Application Example 31] In this application example , a plurality of grooves or grooves are formed on a single wafer between the excitation electrode of the piezoelectric vibrator and the longitudinal end portion of the piezoelectric vibrator piece. The step of forming holes or the step of adding additives, and on a single wafer, corresponding to each piezoelectric vibrator piece and located at or near the end of the piezoelectric vibrator piece. A step of forming a through hole in a portion, a step of forming a plurality of excitation electrodes and lead electrodes of piezoelectric vibrator pieces on a single wafer, a step of forming a conductor film in the through hole, A method of manufacturing a piezoelectric vibrator, comprising: dividing a single wafer into a plurality of piezoelectric vibrators.
[0044]
[Application Example 32] This application example is a method of manufacturing a piezoelectric vibrator, wherein the step of forming the groove or hole and the step of forming the through hole are performed simultaneously.
[0045]
Application Example 33 This application example is a method for manufacturing a piezoelectric vibrator, in which the step of forming the excitation electrode and the lead electrode and the step of forming a conductor film in the through hole are performed simultaneously.
[0046]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1A and 1B are diagrams showing an AT-cut quartz crystal resonator as an example of a piezoelectric vibrator according to the present invention. FIG. 1A is a perspective view of the crystal resonator 1, and FIG. FIG. 1C is a cross-sectional view taken along the line AA of FIG.
In this quartz crystal resonator 1, an excitation electrode 3 and a lead electrode 4 are formed of conductive material films on both main surfaces of a strip-shaped AT-cut crystal substrate, and on the main surface of the AT-cut crystal substrate on the package opening side. A conductor film 6 connected to the lead electrode 4 is provided on the inner wall of the recess 5 provided with a notch at the end of the substrate where the lead electrode 4 extends. The conductor film 6 is on the extension of the lead electrode 4 and reaches the opposite main surface. By making the recess 5 into the through hole 7, the upper lead electrode 4 can be extended to the vicinity of the lower surface.
[0047]
Further, a plurality of grooves 9 are formed between the excitation electrode 3 and the AT cut quartz substrate longitudinal end portion in parallel to the excitation electrode side 8 parallel to the substrate longitudinal end portion. The depth of these grooves gradually increases from the excitation electrode toward the end in the substrate longitudinal direction.
[0048]
The through hole 7 may be an embodiment as shown in FIG. FIG. 2A is a perspective view of the crystal resonator 14, in which a hole-like through hole 11 is provided between the excitation electrode 10 and the longitudinal end of the AT-cut crystal substrate, and leads from the excitation electrode 10. The electrode 12 extends to the through hole 11 and is connected to the conductor film 13 formed in the through hole 11 penetrating the other surface. FIG. 2B is a perspective view showing a state in which the crystal resonator 14 is mounted in the package 15 body, and FIG. 2C is a cross-sectional view taken along the line AA.
[0049]
If the hole-shaped through-holes 11 are provided in the vicinity of both ends of the quartz substrate, and the lead electrode on the lower surface side extends to the upper surface, the crystal resonator 14 is mounted in the vertical direction when mounted in the package 15 body. The workability is improved because the connection can be made regardless of which side faces downward. Note that the concave through holes 7 shown in FIG. 1 can be provided on both ends of the quartz substrate to eliminate the vertical direction of the quartz resonator.
[0050]
When each lead electrode 4 is connected to the pad 16 formed on the step of the recessed portion formed in the package 2 of FIG. 1B, the lead electrode 4 formed on the lower surface of the crystal substrate is padded. The conductive film 6 in the through hole 7 and the other pad 17 are connected to the upper lead electrode 4 with a conductive adhesive or the like 18. Connect with. Therefore, the operation of connecting the upper and lower lead electrodes 4 to the pads 16 and 17 can be completed by applying the conductive adhesive 18 once, so that productivity can be improved.
[0051]
Here, the plurality of grooves formed on the AT-cut quartz substrate will be described in detail below. The quartz crystal resonator shown in FIG. 1 and FIG. 2 includes a plurality of crystal resonators at predetermined intervals between excitation electrodes arranged at the center of both main surfaces of a parallel plate quartz substrate and the longitudinal ends of the quartz substrate. The groove 9 is formed. The groove 9 is formed on the quartz substrate by using a photolithography technique and an etching technique, and has a structure in which the depth of the groove 9 is made deeper toward the end in the longitudinal direction of the substrate.
[0052]
With the above-described structure, as shown in FIG. 3A, the quartz substrate 20 (shown by a solid line) becomes pseudo-equivalent to the quartz substrate of the vibe bevel structure 19 shown by the dotted line, and the quartz substrate 20 is connected to the end of the quartz substrate. Prevents leakage of vibration energy in the main vibration mode (here, thickness-shear vibration mode), suppresses the secondary vibration mode that causes spurious, and can confine the vibration energy of the main vibration mode directly under the excitation electrode. .
[0053]
In addition, as shown in FIG. 3B, the depth of at least one groove 22 is made deeper than the depth of other grooves except for the groove 21 close to the excitation electrode 3 among the plurality of grooves. As shown by the dotted line 23, a structure in which a predetermined portion is narrowed down may be used. In this case, vibration energy can be confined at a deep groove. Further, with such a structure, it is possible to obtain an effect that it is possible to prevent the conductive adhesive or the like from flowing into the excitation electrode 3 in the groove 24 close to the longitudinal end of the quartz substrate.
[0054]
Here, a means for forming a plurality of grooves having different depths by a batch process by a photolithography technique and an etching technique will be described in detail.
Since the quartz substrate has anisotropy in the crystal axis direction, when the groove is formed by etching as shown in FIG. 4 (a), the cross section of the groove in the X axis direction is observed. The inclination has the property of being θ1 and θ2 at the etching end point.
[0055]
As shown in FIG. 4B, the inclination of the groove side wall is such that the inclinations θ1 and θ2 are formed in the process of etching the portion of the opening width s to be etched that is not covered with the protective film 27 formed by the photolithography technique. Etching proceeds in the depth (quartz substrate thickness) direction until reaching point C at depth d, that is, the gradient θ1 = tan −1 (CP / AP), θ2 = tan −1. When the formation of the side walls 25 and 26 of (CQ / BQ) is completed, the etching ends, and thereafter, the etching does not proceed.
[0056]
That is, the side wall formation time (etching end point time) varies depending on the size of the opening width s, and the depth d changes accordingly.
[0057]
The applicant of the present application pays attention to this property and uses the fact that the depth d1 ≠ d2 when the opening width s1 ≠ s2 is set as shown in FIG. A plurality of grooves having different depths can be collectively processed by using a photolithography technique and an etching technique, and a crystal resonator satisfying desired characteristics has been realized.
[0058]
Hereinafter, a method for collectively forming grooves on a quartz substrate by a photolithography technique and an etching technique will be described with reference to FIG.
A quartz substrate 28 is prepared (FIG. 5A), and a protective film 29 is applied on both main surfaces (FIG. 5B). The protective film 29 is exposed using an exposure means 31 such as a mask having a hole 30 in a portion corresponding to the groove by photolithography (FIG. 5C), and development is performed so that only a predetermined portion where the groove is formed is a quartz crystal substrate. Is exposed (FIG. 5D). A plurality of grooves 32 are collectively formed by etching (FIG. 5E), and the protective film 29 is peeled off (FIG. 5F).
[0059]
Here, by further applying the above-mentioned etching characteristics of the quartz substrate, the formation of the through hole for leading the lead electrode extending from the excitation electrode to the other surface can also be formed in a lump in the above-described groove forming process. Can be processed.
That is, as shown in FIG. 6, in consideration of the above-mentioned etching property of the quartz substrate, if the opening cross-sectional width t of the through hole 33 is s << t with respect to the groove width s, By simultaneously or alternately performing etching from the surface, the concave bottoms formed at the respective through-hole forming portions can be made to reach and penetrate each other at the center in the thickness direction of the quartz crystal substrate.
[0060]
By the time the through hole 33 is formed, the groove 32 has a groove width s that is extremely smaller than the through hole opening width t. Therefore, the groove 32 has already reached the etching end point with a predetermined inclination θs. The through hole 33 can be processed by batch formation.
Needless to say, the relationship between the side wall inclination θs of the groove 32 and the side wall inclination θt of the through hole 33 is θs = θt.
[0061]
Next, another embodiment of the crystal resonator according to the present invention will be described with reference to FIGS. 7A shows a pattern in which the groove 35 is substantially parallel to the excitation electrode side 34, and the length of the groove 35 is equal to or longer than the electrode side 34. FIG. 7B shows a line orthogonal to the long side of the piezoelectric substrate. FIG. 7C shows a pattern of the groove 38 formed at a desired angle inclination toward the piezoelectric substrate longitudinal direction end portion 37, from the line orthogonal to the piezoelectric substrate long side 36 on the piezoelectric substrate main surface. A pattern of grooves 39 formed so as to be symmetrical with respect to a line inclined at a desired angle toward the substrate longitudinal direction end portion 37 and parallel to the piezoelectric substrate longitudinal direction and passing through substantially the center of the excitation electrode; FIG. 7D shows a pattern of grooves 40 extending from opposing long sides 36 of the piezoelectric substrate and formed so as to be inclined with respect to the piezoelectric substrate longitudinal direction end portion 37 at a desired angle. FIG. 7 (e) shows the desired region from the desired portion on the bisector 38 of the short side of the piezoelectric substrate. It is a pattern of grooves 41 formed by bending the excitation electrode 3 at a rate.
[0062]
8A shows a pattern in which a plurality of holes 42 are provided between the piezoelectric substrate longitudinal direction end portion 37 and the excitation electrode 3, and the holes 42 are arranged in a row in the direction of the short side 37. FIG. b) is a pattern of row-shaped holes 43 formed by inclining at a desired angle from the line orthogonal to the piezoelectric substrate long side 36 toward the piezoelectric substrate longitudinal direction end portion 37, and FIG. 8C shows the piezoelectric substrate. With respect to a line that is inclined at a desired angle from a line orthogonal to the long side 36 toward the longitudinal end portion 37 of the piezoelectric substrate and is parallel to the longitudinal direction of the piezoelectric substrate and passes through the substantially central portion of the excitation electrode 3 The pattern of the array of holes 44 formed to be line symmetric, FIG. 8D, extends from the piezoelectric substrate long side 36 and is inclined at a desired angle toward the piezoelectric substrate longitudinal direction end portion 37. The pattern of the row-shaped holes 45 formed so as to be interleaved with each other, FIG. FIG. 8 (f) shows a pattern of a row of holes 46 formed by curving from the desired part on the bisector to the excitation electrode 3 side with a desired curvature, and FIG. FIG. 8G shows a pattern comprising a plurality of rows of holes 47 arranged in a staggered pattern between the electrodes 3, and the piezoelectric substrate longitudinal direction end 37 and the excitation electrode 3. This is a pattern composed of randomly formed holes 48.
[0063]
Here, the depth of the groove or hole pattern formed on the AT-cut quartz substrate shown in the above-described modified embodiment is a structure in which the depth d1 of the groove or hole is constant as shown in FIG. 9 (b), the groove closest to the excitation electrode 3 or the depth d2 of the hole is shallower than the other grooves, or the excitation electrode 3 as shown in FIG. 9 (c). A structure characterized by the fact that the depth of the groove or hole is increased for a while (d3 <d4 <d5) from the crystal substrate longitudinal direction end 37 is considered.
[0064]
8 (g), the depth of the hole 48 is parallel to the end of the excitation electrode 3 in the direction of the short side 37 of the piezoelectric substrate, as shown in FIG. 10 (a). As a reference, the depth y of the hole is set appropriately as shown in FIG. 10B as the distance approaches the longitudinal end of the piezoelectric substrate at a distance x from the reference position 49 to the center of the hole. Just do it.
[0065]
Needless to say, the grooves or holes in the modified embodiment can be easily formed by using a photolithography technique and an etching technique on the quartz substrate.
[0066]
Furthermore, when designing the energy confinement type vibrator, the selection of the groove or hole pattern and the setting of the groove or hole depth described above take into account the electrode film thickness and electrode dimensions of the excitation electrode required for energy confinement. What is necessary is just to set suitably based on a designer's design concept.
[0067]
As described above, by using a photolithographic technique and an etching technique to process a groove or hole, the dimension or position of the groove or hole can be formed with high accuracy, and is a suitable processing means in mass production. Compared to chamfering of a small quartz substrate, the variation in processing can be extremely suppressed and the reproducibility is excellent. This variation can also be reduced.
[0068]
Next, a method of confining energy in the vibration region immediately below the excitation electrode of the quartz substrate by adding an additive (dopant) between the excitation electrode and the longitudinal end of the quartz substrate will be described.
[0069]
When a voltage is applied to the excitation electrode of an AT-cut quartz crystal unit, the vibration response includes a mixture of thick-slip vibration, which is the main vibration mode, and sub-vibration modes, such as contour-slip vibration, which cause spurious vibrations. In order to solve this problem, an excitation electrode is formed only on a part of the AT-cut quartz substrate, and between the excitation electrode and the longitudinal end of the substrate of the AT-cut quartz substrate, particularly in a small-sized quartz substrate. As described above, it is possible to realize an excellent crystal resonator in which the energy of the main vibration is confined immediately below the excitation electrode and the sub-vibration mode is suppressed by providing the groove or hole.
[0070]
Further, as another embodiment of the present invention, the applicant of the present application applies ion implantation (Ion Implantation) technology widely used in gas phase thermal diffusion technology and LSI manufacturing as shown in FIG. By forming the doping layer 50 between the excitation electrode 3 and the crystal substrate longitudinal direction end portion 37, a crystal resonator in which the energy of the main vibration is confined immediately below the excitation electrode and the sub vibration is suppressed can be realized. It came.
[0071]
Here, the formation of the doping layer 50 using ion implantation will be described in detail below.
The ion implantation technique is a technique for ionizing an additive and accelerating it and driving it into a substrate such as silicon used in LSI as an ion beam. When the energy of the ion beam is set to several hundred eV or more, the substrate is irradiated. A so-called sputtering phenomenon occurs in which the ions enter the surface layer and knock out atoms on the substrate surface into the vacuum. Furthermore, when the acceleration voltage is increased, ions enter deeper from the substrate surface in the substrate thickness direction.
[0072]
Since the ion implanter is equipped with a mass spectrometer, only specific ion species can be selected and implanted, so different ion species can be selected for the same additive element depending on the implantation depth and amount. it can. Also, the amount of ions to be implanted can be accurately obtained by measuring the current flowing through the substrate as an ion current, and the implantation depth is determined by the ion species and the acceleration voltage, so that both the amount and depth of the additive can be controlled.
Therefore, the ion implantation method is a suitable method even in the mass production process of the crystal resonator.
[0073]
In order to form the doping layer 50 between the excitation electrode 3 of the AT-cut quartz substrate and the end portion 37 in the longitudinal direction of the quartz substrate, first, a protective film is applied on the main surface of the AT-cut quartz substrate and photolithography technique is applied. The quartz substrate is exposed only in the doped layer formation region. Additives such as boron (B) and phosphorus (P) are appropriately selected, doping is performed by ion implantation to form a doping layer, and then the protective film is peeled off.
[0074]
By performing the above-described processing, only the energy of the main vibration mode can be confined in the region directly under the excitation electrode by the doping layers 50 formed on both sides of the AT-cut quartz substrate directly under the excitation electrode as shown in FIG. Thus, the secondary vibration mode is suppressed, and the crystal resonator 51 having excellent vibration characteristics can be realized.
[0075]
11 has the structure in which the wave is reflected near the boundary between the excitation electrode 3 and the doping layer 50 to confine the desired energy, but as another embodiment, the desired energy is In order to obtain the same effect as that of confinement and chamfering, the depth of the cross section of the doping layer forming region may be set to be equivalent to the case where grooves or holes are formed.
That is, by forming the doping layer forming region instead of the groove or hole, the same effect as that when the groove or hole is provided can be obtained.
[0076]
Next, a method for manufacturing a crystal resonator according to the present invention as described above will be described with reference to FIG. Here, as an example, a method for manufacturing the AT-cut crystal resonator shown in FIG. 1 will be described. However, a manufacturing procedure for a crystal resonator having a crystal substrate having grooves or holes shown in FIG. This is in accordance with the manufacturing procedure of the crystal unit of FIG.
[0077]
First, as shown in FIG. 12A, a single wafer 53 is prepared in a state where a plurality of parts to be pieces 52 are unseparated and connected. FIG. 12 (b) shows that a plurality of grooves 9 are etched and etched in a portion located between the excitation electrode 3 of each piece 52 on the single wafer 53 and the longitudinal end portion 37 of the piece. It is a process of forming by technique. FIG. 12C shows a process of forming the through hole 7 on a single wafer 53 and corresponding to each piece 52 and located at the end 37 of the piece 52. The position of the through hole 7 is a position determined in each piece. In this example, the position is along the boundary line 54 between the individual pieces 52.
[0078]
FIG. 12D shows an excitation electrode 3 extending from the excitation electrode 3 by using vacuum deposition, sputtering film formation, photolithography technique or the like using means such as a mask having a shaped electrode. This is a step of forming the lead electrode 4 to be performed.
At the same time as or before or after this step, a conductor film 6 is formed at an appropriate position on the inner wall of the through hole to ensure conduction with one lead electrode 4.
[0079]
FIG. 12E shows a process of dividing a single wafer 53 to which a plurality of pieces 52 are connected into pieces 52 using a cutting means such as a dicing saw. The AT-cut quartz crystal resonator 52 (1) shown in the drawing is completed by such a manufacturing procedure.
[0080]
In the case of a crystal resonator having two hole-like through-holes positioned symmetrically as shown in FIG. 2, a plurality of pieces are connected to a position closer to the inside from the boundary line 54 of each piece of a single wafer. The through hole 11 will be formed. Further, the groove or hole forming step of FIG. 12B and the through hole formation of FIG. 12C can be simultaneously performed by utilizing the etching property of the quartz substrate as described above. Contributes to time reduction.
[0081]
Further, in the case of the crystal resonator 51 in which the doping layer 50 is formed between the excitation electrode 3 and the crystal substrate longitudinal direction end 37 as shown in FIG. 11, the formation of the groove or hole of FIG. What is necessary is just to replace a process with the process of adding an additive with the ion implantation apparatus between the electrode 3 for excitation of a quartz substrate, and the quartz-crystal-substrate longitudinal direction edge part 37. FIG. Note that the step of forming the doping layer 50 may be performed before or after the through hole forming step of FIG.
[0082]
As described above, the crystal resonator according to the present invention has a highly accurate variation in the groove or hole processing equivalent to the chamfering processing performed on the small crystal substrate used in today's small crystal resonator by the photolithography technique and the etching technique. In addition, since it can be realized with stable reproducibility, it is possible to provide an energy confinement crystal resonator that suppresses variations in various characteristics such as resonance characteristics and temperature characteristics and equivalent circuit constant values.
[0083]
In addition, by forming a doping layer between the excitation electrode and the longitudinal end of the quartz substrate, it becomes possible to confine only the energy of the main vibration directly under the excitation electrode. It is possible to provide an energy confinement crystal resonator in which variations in various characteristics such as temperature characteristics and equivalent circuit constant values are suppressed.
[0084]
Furthermore, the method for manufacturing a crystal resonator according to the present invention is extremely suitable for mass production, and there is no variation and the yield is high. Therefore, a manufacturing method with extremely high mass productivity can be provided.
[0085]
As described above, the piezoelectric vibrator using the AT-cut quartz substrate and the manufacturing method thereof have been described as examples of the present invention. However, the present invention is not limited to this, and other piezoelectric materials such as langasite (La 3) It goes without saying that the present invention can also be applied to piezoelectric materials such as Ga 5 SiO 14 ), lithium tetraborate (Li 2 B 4 O 7 ), and piezoelectric ceramic substrates.
[0086]
【The invention's effect】
Since the piezoelectric vibrator and the manufacturing method thereof according to the present invention are configured as described above, the following excellent effects can be obtained.
The invention according to claims 1 to 28 provides a highly accurate and accurate variation in groove or hole machining equivalent to chamfering on a small piezoelectric substrate used in today's small piezoelectric vibrators by photolithography technique and etching technique, and Since this can be realized by stable reproducibility, it is possible to provide an energy confinement type piezoelectric vibrator in which variations in various characteristics such as resonance characteristics and temperature characteristics and equivalent circuit constant values are suppressed.
[0087]
In the inventions of claims 29 and 30, since the doping layer is formed between the excitation electrode and the longitudinal end portion of the piezoelectric substrate, it is possible to confine only the energy of the main vibration directly under the excitation electrode. It is possible to provide an energy confinement type piezoelectric vibrator that suppresses variations in various characteristics such as characteristics and temperature characteristics and variations in equivalent circuit constant values.
[0088]
The invention of claim 31 has an excellent effect that it is extremely suitable for mass production because the piezoelectric vibrator can be manufactured by batch processing without variation and with a high yield.
[0089]
According to the thirty-second aspect of the present invention, since the step of forming a groove or hole and the step of forming a through hole can be performed at the same time, the lead time can be shortened.
[0090]
In the invention of claim 33, since the step of forming the excitation electrode and the lead electrode and the step of forming the conductive film in the through hole can be performed at the same time, the lead time can be shortened, so that the production efficiency is improved. Has an excellent effect.
[Brief description of the drawings]
1A and 1B are diagrams for explaining an embodiment according to the present invention, in which FIG. 1A is a perspective view of a piezoelectric vibrator, and FIG. 1B is a perspective view showing a state in which the piezoelectric vibrator is mounted in a package; (C) is AA sectional drawing.
2A and 2B are diagrams for explaining another embodiment according to the present invention, in which FIG. 2A is a perspective view of a piezoelectric vibrator, and FIG. 2B is a perspective view showing a state in which the piezoelectric vibrator is mounted in a package. FIG. 2C is a cross-sectional view taken along the line AA.
FIGS. 3A and 3B are cross-sectional views showing a structure of a groove formed between an excitation electrode of a piezoelectric vibrator according to the present invention and a longitudinal end portion of the piezoelectric substrate.
FIGS. 4A and 4B are cross-sectional views for explaining the etching properties of a piezoelectric substrate.
FIGS. 5A to 5F are cross-sectional views for explaining a method of forming a groove in a piezoelectric substrate by using a photolithography technique and an etching technique.
FIG. 6 is a cross-sectional view for explaining collective formation of grooves and through holes according to the present invention.
FIGS. 7A to 7E are plan views for explaining a groove pattern formed in a piezoelectric substrate according to the present invention. FIGS.
FIGS. 8A to 8G are plan views for explaining patterns formed by holes formed in the piezoelectric substrate according to the present invention. FIGS.
FIGS. 9A to 9C are views for explaining the depths of grooves or holes formed in the piezoelectric substrate according to the present invention. FIGS.
FIGS. 10A and 10B are diagrams for explaining the depth of holes randomly formed in the piezoelectric substrate according to the present invention. FIGS.
11A and 11B are diagrams for explaining another embodiment according to the present invention, in which FIG. 11A is a perspective view of a piezoelectric vibrator, and FIG. 11B is a perspective view showing a state in which the piezoelectric vibrator is mounted in a package. FIGS. 12A and 12C are cross-sectional views taken along line AA. FIGS. 12A to 12E are views for explaining a manufacturing process of the piezoelectric vibrator according to the invention.
FIGS. 13A and 13B are cross-sectional views showing a conventional bevel structure. FIGS.
14A and 14B are cross-sectional views showing a conventional convex structure.
[Explanation of sign]
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrator 2 Package 3 Excitation electrode 4 Lead electrode 5 Notch part 6 Conductive film 7 Through hole 8 Excitation electrode side 9 Groove 10 Excitation electrode 11 Through hole 12 Lead electrode 13 Conductive film 14 Piezoelectric vibrator 15 Package 16 Pad 17 Pad 18 Conductive adhesive 19 Dotted line 20 Piezoelectric substrate 21 Groove 22 Groove 23 Dotted line 24 Groove 25 Side wall 26 Side wall 27 Protective film 28 Piezoelectric substrate 29 Protective film 30 Hole 31 Mask 32 Groove 33 Through hole 34 Excitation electrode side 35 Groove 36 long side 37 short side 38 groove 39 groove 40 groove 41 groove 42 hole 43 hole 44 hole 45 hole 46 hole 47 hole 48 hole 49 reference line 50 doping layer 51 piezoelectric vibrator 52 piece 53 single wafer 54 boundary line

Claims (16)

厚み滑り振動を主振動とする圧電振動子において、
圧電基板両主面上中央部に励振用電極を形成すると共に、
前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の溝を設け、
前記複数の溝は、前記圧電基板の対向する辺から延在し、互いに間挿するよう配置されていることを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
While forming the excitation electrode in the central part on both main surfaces of the piezoelectric substrate,
A plurality of grooves are provided between an end portion in the propagation direction of thickness shear vibration of the piezoelectric substrate and the excitation electrode,
The plurality of grooves extend from opposing sides of the piezoelectric substrate and are arranged so as to be interleaved with each other.
前記複数の溝は、前記圧電基板の辺から、前記圧電基板の辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする請求項1に記載の圧電振動子。The plurality of grooves extend from a side of the piezoelectric substrate to a vicinity of a line that is parallel to the side of the piezoelectric substrate and passes through a substantially central portion of the excitation electrode. Piezoelectric vibrator. 厚み滑り振動を主振動とする圧電振動子において、
前記圧電振動子が短冊形であって、
圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、
前記複数の孔は、前記圧電基板の短辺方向に列状に形成され、
前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜していることを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
The piezoelectric vibrator has a strip shape ,
Forming an excitation electrode in the central part on both principal surfaces of the piezoelectric substrate, and providing a plurality of holes between the thickness direction vibration propagation end of the piezoelectric substrate and the excitation electrode;
The plurality of holes are formed in a row in the short side direction of the piezoelectric substrate,
Pressure electric vibrator rows of said holes, to a line perpendicular to the long side of the piezoelectric substrate you characterized in that it desired angle tilt.
前記圧電振動子が短冊形であって、
前記孔の列が、前記圧電基板の長辺と直交する線に対し所望の角度傾斜し、
且つ、前記圧電基板長辺方向に平行し且つ前記励振用電極のほぼ中央部を通過する線に対して線対称に設けられていることを特徴とする請求項に記載の圧電振動子。
The piezoelectric vibrator has a strip shape,
The row of holes is inclined at a desired angle with respect to a line perpendicular to the long side of the piezoelectric substrate;
4. The piezoelectric vibrator according to claim 3 , wherein the piezoelectric vibrator is provided in line symmetry with respect to a line parallel to the long side direction of the piezoelectric substrate and passing through a substantially central portion of the excitation electrode.
前記複数の列は、前記圧電基板の対向する辺から延在し、互いに間挿するよう配置されていることを特徴とする請求項に記載の圧電振動子。The piezoelectric vibrator according to claim 3 , wherein the plurality of rows extend from opposing sides of the piezoelectric substrate and are arranged so as to be inserted into each other. 前記複数の列が、前記圧電基板の辺から、前記圧電基板の辺に平行し且つ前記励振用電極のほぼ中央部を通過する線付近まで延在することを特徴とする請求項に記載の圧電振動子。Wherein the plurality of rows, from the side of the piezoelectric substrate, according to claim 5, characterized in that extending to the vicinity of a line passing through the substantially central portion of the parallel to a side of the piezoelectric substrate and the excitation electrodes Piezoelectric vibrator. 厚み滑り振動を主振動とする圧電振動子において、
前記圧電振動子が短冊形であって、
圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、
前記複数の孔は、前記圧電基板の短辺方向に列状に形成され、
前記列が、所望の曲率で前記励振用電極側に湾曲していることを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
The piezoelectric vibrator has a strip shape ,
Forming an excitation electrode in the central part on both principal surfaces of the piezoelectric substrate, and providing a plurality of holes between the thickness direction vibration propagation end of the piezoelectric substrate and the excitation electrode;
The plurality of holes are formed in a row in the short side direction of the piezoelectric substrate,
The piezoelectric vibrator, wherein the row is curved toward the excitation electrode with a desired curvature.
前記列の長さは、前記励振用電極の長さ以上であることを特徴とする請求項3,4又はに記載の圧電振動子。The piezoelectric vibrator according to claim 3, 4 or 7 , wherein a length of the row is equal to or longer than a length of the excitation electrode. 厚み滑り振動を主振動とする圧電振動子において、
圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、
前記励振用電極に近い前記孔の圧電基板厚さ方向の深さは、他の孔の深さより浅いことを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
Forming an excitation electrode in the central part on both principal surfaces of the piezoelectric substrate, and providing a plurality of holes between the thickness direction vibration propagation end of the piezoelectric substrate and the excitation electrode;
Pressure electrostatic vibrator piezoelectric substrate thickness direction of the depth of the hole closer to the excitation electrodes, characterized shallower than the depth of the other hole.
厚み滑り振動を主振動とする圧電振動子において、
圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、
前記励振用電極と圧電基板長手方向端部との間の所望の位置にある複数の孔の圧電基板厚さ方向の深さを他の孔の深さより深くしたことを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
Forming an excitation electrode in the central part on both principal surfaces of the piezoelectric substrate, and providing a plurality of holes between the thickness direction vibration propagation end of the piezoelectric substrate and the excitation electrode;
Plural desired that the piezoelectric substrate thickness direction of the depth deeper than the depth of the other hole pressure electric vibration you wherein the hole at a position between said exciting electrode and the piezoelectric substrate longitudinal ends Child.
厚み滑り振動を主振動とする圧電振動子において、
圧電基板両主面上中央部に励振用電極を形成すると共に、前記圧電基板の厚み滑り振動の伝搬方向端部と前記励振用電極との間に複数の孔を設け、
前記孔の圧電基板厚さ方向の深さは、前記励振用電極に近いほど浅く、圧電基板長手方向端部に近いほど深くしたことを特徴とする圧電振動子。
In a piezoelectric vibrator whose thickness vibration is the main vibration,
Forming an excitation electrode in the central part on both principal surfaces of the piezoelectric substrate, and providing a plurality of holes between the thickness direction vibration propagation end of the piezoelectric substrate and the excitation electrode;
Piezoelectric substrate thickness direction of the depth of the hole is shallow closer to the excitation electrodes, pressure electrostatic vibrator you characterized in that deep closer to the piezoelectric substrate longitudinal ends.
前記孔を、千鳥格子状に配列したことを特徴とする請求項9乃至11のいずれか一項に記載の圧電振動子。The piezoelectric vibrator according to claim 9, wherein the holes are arranged in a staggered pattern. 前記励振用電極に近い前記列を構成する孔の圧電基板厚さ方向の深さは、他の列に含まれる孔の深さより浅いことを特徴とする請求項乃至のいずれか一項に記載の圧電振動子。Piezoelectric substrate thickness direction of the depth of the holes constituting the row closer to the excitation electrode, in any one of claims 3 to 7, characterized in that shallower than the depth of the holes included in the other columns The piezoelectric vibrator as described. 前記列を構成する孔の圧電基板厚さ方向の深さは、前記励振用電極に近い列の孔ほど浅く、圧電基板長手方向端部に近い列の孔ほど深くしたことを特徴とする請求項3乃至のいずれか一項に記載の圧電振動子。Piezoelectric substrate thickness direction of the depth of the hole constituting the columns claims, characterized in that the higher the rows of holes near the excitation electrodes shallow and deep as rows of holes near the piezoelectric substrate longitudinal end The piezoelectric vibrator according to any one of 3 to 7 . 前記励振用電極と圧電基板長手方向端部との間の所望の位置にある列を構成する孔の圧電基板厚さ方向の深さを他の列を構成する孔の深さより深くしたことを特徴とする請求項3,4又はのいずれか一項に記載の圧電振動子。The depth in the piezoelectric substrate thickness direction of the holes constituting the row at a desired position between the excitation electrode and the longitudinal end of the piezoelectric substrate is made deeper than the depths of the holes constituting the other rows. The piezoelectric vibrator according to claim 3, 4, or 7 . 前記励振用電極にもっとも近接した一対の列及びその次に近接した一対の列を構成する孔の圧電基板厚さ方向の深さは、他の列を構成する孔の深さより浅いことを特徴とする請求項又はに記載の圧電振動子。The depth in the piezoelectric substrate thickness direction of the holes constituting the pair of rows closest to the excitation electrode and the next pair of rows adjacent thereto is shallower than the depths of the holes constituting the other rows. The piezoelectric vibrator according to claim 5 or 6 .
JP2001229064A 2001-07-30 2001-07-30 Piezoelectric vibrator Expired - Fee Related JP4696419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229064A JP4696419B2 (en) 2001-07-30 2001-07-30 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229064A JP4696419B2 (en) 2001-07-30 2001-07-30 Piezoelectric vibrator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010282770A Division JP5136635B2 (en) 2010-12-20 2010-12-20 Piezoelectric vibrator

Publications (3)

Publication Number Publication Date
JP2003046366A JP2003046366A (en) 2003-02-14
JP2003046366A5 JP2003046366A5 (en) 2008-05-22
JP4696419B2 true JP4696419B2 (en) 2011-06-08

Family

ID=19061465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229064A Expired - Fee Related JP4696419B2 (en) 2001-07-30 2001-07-30 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP4696419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210723A (en) * 2015-01-29 2017-09-26 株式会社大真空 Crystal vibration piece and crystal vibration device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260718A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Tuning fork type vibration pieces, manufacturing method of tuning fork type vibration pieces, and piezoelectric device
JP4657660B2 (en) * 2003-09-12 2011-03-23 パナソニック株式会社 Thin film bulk acoustic resonator, manufacturing method thereof, filter, composite electronic component, and communication device
JP2006166390A (en) 2004-02-05 2006-06-22 Seiko Epson Corp Piezoelectric vibration piece, piezoelectric vibrator and piezoelectric oscillator
JP4613498B2 (en) * 2004-03-01 2011-01-19 セイコーエプソン株式会社 Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JP2005286992A (en) * 2004-03-02 2005-10-13 Seiko Epson Corp Piezoelectric oscillating piece, piezoelectric vibrator, and piezoelectric oscillator
JP2005260692A (en) * 2004-03-12 2005-09-22 Seiko Epson Corp Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator
JP2006166275A (en) * 2004-12-10 2006-06-22 Seiko Epson Corp Method of manufacturing crystal device
JP4771070B2 (en) * 2006-01-12 2011-09-14 エプソントヨコム株式会社 Piezoelectric vibrating piece and piezoelectric device
JP4771069B2 (en) * 2006-01-12 2011-09-14 エプソントヨコム株式会社 Piezoelectric vibrating piece and piezoelectric device
JP5061496B2 (en) * 2006-04-19 2012-10-31 セイコーエプソン株式会社 Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP4992411B2 (en) * 2006-12-20 2012-08-08 株式会社大真空 Piezoelectric vibrating piece and piezoelectric vibrating device
JP5272651B2 (en) * 2008-10-29 2013-08-28 セイコーエプソン株式会社 Manufacturing method of vibrating piece
JP2010226195A (en) * 2009-03-19 2010-10-07 Seiko Epson Corp Piezoelectric device
JP5285495B2 (en) * 2009-04-28 2013-09-11 京セラクリスタルデバイス株式会社 Manufacturing method of crystal unit
JP5377152B2 (en) * 2009-08-12 2013-12-25 エスアイアイ・クリスタルテクノロジー株式会社 Quartz crystal resonator and crystal resonator manufacturing method
JP2011176701A (en) * 2010-02-25 2011-09-08 Kyocera Kinseki Corp Tuning fork type bending crystal vibrating element
JP5510417B2 (en) * 2011-09-02 2014-06-04 セイコーエプソン株式会社 Manufacturing method of vibration substrate
JP5943187B2 (en) 2012-03-21 2016-06-29 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
JP2014057236A (en) * 2012-09-13 2014-03-27 Seiko Epson Corp Vibration piece, vibrator, oscillator, electronic apparatus and moving body
WO2014104110A1 (en) * 2012-12-27 2014-07-03 京セラ株式会社 Piezoelectric component
WO2016111037A1 (en) * 2015-01-09 2016-07-14 株式会社村田製作所 Crystal oscillator and crystal oscillation device
JP2017079388A (en) * 2015-10-20 2017-04-27 セイコーエプソン株式会社 Piezoelectric vibrator, electronic device and moving body
JP6820690B2 (en) * 2016-08-26 2021-01-27 京セラ株式会社 Manufacturing method of crystal vibrating element
JP6797764B2 (en) * 2017-08-09 2020-12-09 日本電波工業株式会社 Crystal oscillator and its manufacturing method
JP2019153878A (en) * 2018-03-01 2019-09-12 京セラ株式会社 Crystal device
JP2020198492A (en) * 2019-05-31 2020-12-10 京セラ株式会社 Crystal element, crystal device, and electronic apparatus, and method for manufacturing crystal element
JP7274386B2 (en) * 2019-09-17 2023-05-16 京セラ株式会社 Crystal elements, crystal devices and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278080A (en) * 1999-03-24 2000-10-06 Toyo Commun Equip Co Ltd Piezoelectric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278080A (en) * 1999-03-24 2000-10-06 Toyo Commun Equip Co Ltd Piezoelectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210723A (en) * 2015-01-29 2017-09-26 株式会社大真空 Crystal vibration piece and crystal vibration device
CN107210723B (en) * 2015-01-29 2020-10-20 株式会社大真空 Crystal vibrating piece and crystal vibrating device

Also Published As

Publication number Publication date
JP2003046366A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP4696419B2 (en) Piezoelectric vibrator
JP5136635B2 (en) Piezoelectric vibrator
CN110829997B (en) Thin film bulk acoustic resonator and method of manufacturing the same
CN110401428B (en) Thin film bulk acoustic resonator and method of manufacturing the same
CN110581695B (en) Thin film bulk acoustic resonator and method of manufacturing the same
US20070096596A1 (en) Mesa-shaped piezoelectric resonator element
CN101026368A (en) Film bulk acoustic resonator and method of manufacturing same
US6856218B2 (en) Surface acoustic wave device and communications apparatus using the same
KR100798550B1 (en) Piezoelectric substrate and method of manufacturing the same
CN109219896A (en) Mixed structure for surface acoustic wave device
JP2005130218A (en) Crystal piece forming method and crystal piece
JP6112505B2 (en) Method for manufacturing piezoelectric wafer and piezoelectric vibration element
JP5786393B2 (en) Quartz device manufacturing method
TWI652839B (en) Piezoelectric quartz wafer with single convex structure
JP5435060B2 (en) Vibrating piece
JP5234236B2 (en) Quartz substrate and method for manufacturing quartz substrate
JP3149835B2 (en) Spherical pot for convex processing
JP4641111B2 (en) Method for manufacturing piezoelectric device element
JPS61127217A (en) Piezoelectric thin film resonator
JP3979425B2 (en) Quartz substrate manufacturing method
JP5377152B2 (en) Quartz crystal resonator and crystal resonator manufacturing method
JP6276341B2 (en) Piezoelectric vibration element and piezoelectric wafer
JP2003234635A (en) Crystal filter
US20230336148A1 (en) Acoustic wave device
JP3258078B2 (en) Crystal oscillator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees