JP4694918B2 - Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component - Google Patents

Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component Download PDF

Info

Publication number
JP4694918B2
JP4694918B2 JP2005236520A JP2005236520A JP4694918B2 JP 4694918 B2 JP4694918 B2 JP 4694918B2 JP 2005236520 A JP2005236520 A JP 2005236520A JP 2005236520 A JP2005236520 A JP 2005236520A JP 4694918 B2 JP4694918 B2 JP 4694918B2
Authority
JP
Japan
Prior art keywords
base film
film
silver powder
mass
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005236520A
Other languages
Japanese (ja)
Other versions
JP2007052980A (en
Inventor
立樹 平野
豪 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamaya Electric Co Ltd
Original Assignee
Kamaya Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamaya Electric Co Ltd filed Critical Kamaya Electric Co Ltd
Priority to JP2005236520A priority Critical patent/JP4694918B2/en
Publication of JP2007052980A publication Critical patent/JP2007052980A/en
Application granted granted Critical
Publication of JP4694918B2 publication Critical patent/JP4694918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Details Of Resistors (AREA)

Description

本発明は、角板形チップ部品の電極の端部において、めっき膜の下地膜形成に適用される導電性ペーストに関する。 The present invention, at the end of the square plate form chip parts electrodes, to a conductive paste which is applied to the base film shape formation of the plated film.

角板形チップ部品の電極端部において、めっき膜の下地膜を形成する導電性ペーストとしては、導電性粉末、無機バインダー、有機ビヒクル及び溶剤等を含むものが一般的に使用されている。従来の導電性ペーストは、ペーストの良好な塗布性や、乾燥後又は焼成後における膜の収縮性抑制及びピンホール発生防止等を解決するためにその成分等の改良が種々行われている。例えば、特許文献1及び2には、導電性粉末として、フレーク状の金属粉を特定割合で含有する導電性ペーストが提案されている。   As the conductive paste for forming the base film of the plating film at the electrode end of the square plate chip component, a paste containing a conductive powder, an inorganic binder, an organic vehicle, a solvent and the like is generally used. Conventional conductive paste has been improved in its components and the like in order to solve good paste applicability, suppression of film shrinkage after drying or baking, prevention of pinhole generation, and the like. For example, Patent Documents 1 and 2 propose a conductive paste containing flaky metal powder in a specific ratio as a conductive powder.

ところで、最近、電子情報機器の小型化、薄型化、軽量化、多機能化が急速に進み、これに伴い、角板形チップ部品においても小型化、高密度実装化が加速している。例えば、角板形チップ部品の実装時において、該部品の高密度実装化によるはんだフィレットの幅を極端に小さくした狭隣接実装と無洗浄化が進展しており、ランドの隙間が100μm以下のものも実現可能となっている。
一方、このような狭隣接実装化が進むに従い、従来の導電性ペーストを用いた角板形チップ部品の実装時においては、例えば、はんだ付けの際にチップ部品の端面電極から溶融したはんだの微小片が飛散するという、いわゆるはんだの爆ぜが生じ、該部品実装間でのはんだブリッチによる短絡の発生率が高くなってきている。
特開2001−261974号公報 特開平8−97527号公報
Recently, electronic information devices have rapidly become smaller, thinner, lighter, and more multifunctional, and accordingly, miniaturization and high-density mounting of square plate chip components are accelerating. For example, when mounting square chip components, narrow adjacent mounting with extremely small solder fillet width due to high density mounting of the components and no-cleaning are progressing, and the land gap is 100 μm or less Is also feasible.
On the other hand, with the progress of such narrow adjacent mounting, when mounting a square plate chip component using a conventional conductive paste, for example, when soldering, a minute amount of solder melted from the end surface electrode of the chip component The so-called solder explosion that the pieces are scattered occurs, and the occurrence rate of short-circuiting due to the solder blitch between the component mountings is increasing.
JP 2001-261974 A JP-A-8-97527

従って、本発明の課題は、高密度実装化に伴う狭隣接実装においても、はんだ微小片の飛散、いわゆるはんだの爆ぜを抑制することが可能であり、角板形チップ部品の電極端部の下地膜形成におけるペースト塗布性に優れた、角板形チップ部品における、導電性の下地膜とめっき膜とからなる端面電極の該めっき膜の下地膜形成用導電性ペーストを提供することにある。 Therefore, the problem of the present invention is that it is possible to suppress the scattering of small solder pieces, that is, the so-called solder explosion, even in the narrow adjacent mounting accompanying the high density mounting. excellent paste coating properties of definitive to Chimakugata formation, in square plate form chip parts, is to provide a base film for forming a conductive paste of the plating film of the end surface electrode made of a conductive base film and the plating film .

本発明者らは、上記課題を解決するために鋭意検討した。その結果、上記爆ぜの原因が、例えば、角板形チップ部品の電極の端部において、めっき膜の下地膜を導電性ペーストにより形成した場合、形成された膜に微小な空洞が形成される割合が高くなり、このため、該空洞がはんだ付け時の加熱等により膨張して該膜を突き破り、爆ぜの一つの原因になっている可能性が高いことを突きとめた。そこで、該空洞の発生を防止するよう、導電性粉末の種類、形状、割合、更には、溶剤の種類等を検討し、特定の導電性粉末及び溶媒を特定割合で含有する導電性ペーストを用いることにより狭隣接実装においても爆ぜの発生率を低下させることができることを見出し本発明を完成した。   The present inventors diligently studied to solve the above problems. As a result, the cause of the explosion is, for example, the proportion of minute cavities formed in the formed film when the base film of the plating film is formed with a conductive paste at the end of the electrode of the square plate chip component. For this reason, it was found that there is a high possibility that the cavity expands due to heating during soldering, breaks through the film, and is one cause of explosion. Therefore, in order to prevent the generation of the voids, the type, shape, and ratio of the conductive powder and the type of the solvent are examined, and the conductive paste containing the specific conductive powder and the solvent at a specific ratio is used. As a result, the present inventors have found that the occurrence rate of explosion can be reduced even in a narrowly adjacent mounting.

即ち、本発明によれば、銀粉55〜65質量%、鉛フリーの無機バインダー1〜5質量%、エチルセルロース、ニトロセルロース又はアクリル樹脂1〜10質量%及び溶剤20〜40質量%からなり、
前記銀粉のレーザー回折散乱式粒度分布測定法による重量累積粒径D50が3〜6μmであり、銀粉全量の50質量%以上が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmのフレーク状銀粉であり、且つ溶剤が、沸点240〜300℃、200℃における蒸気圧100〜300hPaの単一溶剤又は混合溶剤であることを特徴とする、角板形チップ部品における、導電性の下地膜とめっき膜とからなる端面電極の該めっき膜の下地膜形成用導電性ペースト(以下、単に、「本発明の導電ペースト」という)が提供される。
That is, according to the present invention, silver powder 55 to 65% by mass, lead-free inorganic binder 1 to 5% by mass, ethyl cellulose, nitrocellulose or acrylic resin 1 to 10% by mass and solvent 20 to 40% by mass,
The silver powder has a weight cumulative particle size D 50 of 3 to 6 μm as measured by a laser diffraction / scattering particle size distribution measurement method, and a major axis diameter of 3.0 to 6.0 μm and a minor axis diameter of 2.50% by mass or more of the total amount of silver powder. It is a flaky silver powder having a thickness of 0 to 5.0 μm and a thickness of 0.1 to 0.6 μm, and the solvent is a single solvent or a mixed solvent having a boiling point of 240 to 300 ° C. and a vapor pressure of 100 to 300 hPa at 200 ° C. A conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square plate chip component (hereinafter simply referred to as “the conductive paste of the present invention”) Is provided ) .

本発明の導電性ペーストは、銀粉、鉛フリーの無機バインダー、エチルセルロース、ニトロセルロース又はアクリル樹脂及び溶剤を特定割合で含み、特定の銀粉及び溶剤を配合するので、塗布性に優れ、しかも、角板形チップ部品の実装時における、はんだの微小片の飛散、いわゆるはんだの爆ぜの発生率を効率良く抑制することができる。 The conductive paste of the present invention contains silver powder, lead-free inorganic binder, ethyl cellulose, nitrocellulose or acrylic resin and a solvent in a specific ratio, and contains a specific silver powder and solvent, so that it has excellent coating properties and is a square plate. during mounting of the form chip parts, scattering of solder specks, Ru can be efficiently suppressed the incidence of popping of the so-called solder.

以下、本発明を更に詳細に説明する。
本発明の導電性ペーストは、導電性粉末として、銀粉を含有する。
前記銀粉は、レーザー回折散乱式粒度分布測定法による重量累積粒径D50が3〜6μmであり、銀粉全量の50質量%以上、好ましくは70質量%以上が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmのフレーク状銀粉である必要がある。上記銀粉の各条件を充足しない場合には、例えば、角板形チップ部品の実装時において、はんだの爆ぜの発生率が高くなる恐れがある。
前記フレーク状銀粉の長軸径、短軸径及び厚さの測定は、「粉体粒度測定法」(第2頁の第1章 粒度の定義と表示法、1.2 単一粒子径及び第1.1表 単一粒子径の定義、粉体工学研究会編 養賢堂発行 昭和40年2月20日)に基づき、走査型電子顕微鏡の銀粉の像を二次元的にみて二本の平行線ではさみ最小の間隔を示すときの間隔を短軸径とし、短軸径に直交する二本の平行線で本像をはさんだときの間隔を長軸径とし、厚さは二本の平行線ではさみ最小の間隔と定義し実測した。
Hereinafter, the present invention will be described in more detail.
The conductive paste of the present invention contains silver powder as the conductive powder.
The silver powder has a weight cumulative particle diameter D 50 of 3 to 6 μm as measured by a laser diffraction / scattering particle size distribution measurement method, and a major axis diameter of 3.0 to 6 is 50% by mass or more, preferably 70% by mass or more of the total amount of silver powder. The flaky silver powder must have a diameter of 0.0 μm, a minor axis diameter of 2.0 to 5.0 μm, and a thickness of 0.1 to 0.6 μm. If the above conditions for the silver powder are not satisfied, for example, when the square plate chip component is mounted, the rate of occurrence of solder explosion may increase.
The major axis diameter, minor axis diameter and thickness of the flaky silver powder are measured by the “powder particle size measurement method” (Chapter 2, definition and display method of particle size, 1.2 single particle size and 1.1 Table Based on the definition of single particle diameter, edited by the Powder Engineering Society, published by Yokendo, February 20, 1965, two parallel images of the silver powder image of a scanning electron microscope In the line, the interval when the minimum interval between the scissors is the short axis diameter, the interval when the main image is sandwiched between two parallel lines perpendicular to the short axis diameter is the long axis diameter, and the thickness is two parallel The line was defined as the minimum interval between the scissors and measured.

前記フレーク状銀粉の長短度(長軸径/短軸径)及び扁平度(短軸径/厚さ)は、爆ぜの発生率をより抑制するために長短度0.6〜3の範囲、扁平度3〜50の範囲とすることが好ましい。ここで、長短度及び扁平度は、「粉砕と粉体物性」(第35頁の第2章 粉体の基本的特性、2.3 粒子形状、2.3.1 形状指数、八嶋三郎 編、(株)培風館発行 昭和61年12月15日)の定義に基づく。また、前記フレーク状銀粉以外の銀粉の粒径は、上記D50を充足すれば特に限定されないが、爆ぜをより防止するには、そのほとんどが、粒径0.2〜1μmの微小銀粉であることが好ましい。 The flake silver powder has a length (major axis diameter / minor axis diameter) and flatness (minor axis diameter / thickness) ranging from 0.6 to 3 in order to further suppress the occurrence rate of explosion. The degree is preferably in the range of 3-50. Here, the length and the flatness are “grinding and powder physical properties” (Chapter 35, Chapter 2, Basic characteristics of powder, 2.3 Particle shape, 2.3.1 Shape index, edited by Saburo Yajima, Based on the definition of Bafukan Co., Ltd. (December 15, 1986). The particle size of the silver powder other than the flaky silver powder is not particularly limited if satisfying the above D 50, the more prevent bursting, the most is the fine silver powder having a particle diameter of 0.2~1μm It is preferable.

本発明の導電性ペーストにおいて、前記銀粉の配合割合は、ペースト全量に対して55〜65質量%、好ましくは58〜62質量%である。この範囲外では、例えば、角板形チップ部品の実装時において、はんだの爆ぜの発生率が高くなる恐れがあり、更には、角板形チップの製造時において塗布性が低下する恐れがある。
前記特定形状及び粒径を有する銀粉の製造は、例えば、還元法で製造した銀粉末を、湿式ボールミル法等の機械的加工処理により混合・粉砕等することにより得ることができる。
In the conductive paste of the present invention, the blending ratio of the silver powder is 55 to 65% by mass, preferably 58 to 62% by mass, based on the total amount of the paste. Outside this range, for example, the incidence of solder explosion may be high when mounting a square plate chip component, and furthermore, the applicability may be reduced when manufacturing a square plate chip.
The silver powder having the specific shape and particle size can be produced, for example, by mixing and pulverizing silver powder produced by a reduction method by mechanical processing such as a wet ball mill method.

本発明の導電性ペーストは、鉛フリー無機バインダーを含有する。
前記無機バインダーは、軟化点500〜600℃程度の鉛フリー無機バインダーが好ましく、例えば、ビスマス系ガラス(Bi2O3、B2O3、Al2O3、ZnO、SiO2)、酸化亜鉛系ガラス、酸化リン系ガラス等が挙げられる。
前記無機バインダーの粒径は、適宜選択できるが、本発明の所望の効果を十分発揮するように、またペースト内に十分分散させるために、通常、レーザー回折散乱式粒度分布測定法による重量累積粒径D50が3.0μm以下、好ましくはD50が0.5〜2.0μmである。
本発明の導電性ペーストにおいて、前記無機バインダーの配合割合は、ペースト全量に対して1〜5質量%、好ましくは3〜5質量%である。この範囲外では、例えば、角板形チップ部品の実装時において、はんだの爆ぜの発生率が高くなる恐れがある。
The conductive paste of the present invention contains a lead-free inorganic binder.
The inorganic binder is preferably a lead-free inorganic binder having a softening point of about 500 to 600 ° C., for example, bismuth-based glass (Bi 2 O 3 , B 2 O 3 , Al 2 O 3 , ZnO, SiO 2 ), zinc oxide-based Glass, phosphorus oxide type glass, etc. are mentioned.
The particle size of the inorganic binder can be selected as appropriate, but in order to sufficiently achieve the desired effect of the present invention and to sufficiently disperse it in the paste, it is usually a weight cumulative particle by a laser diffraction scattering type particle size distribution measuring method. The diameter D 50 is 3.0 μm or less, preferably D 50 is 0.5 to 2.0 μm.
In the conductive paste of the present invention, the blending ratio of the inorganic binder is 1 to 5% by mass, preferably 3 to 5% by mass, based on the total amount of the paste. Outside this range, for example, when mounting square-plate chip components, the rate of solder explosion may be high.

本発明の導電性ペーストは、エチルセルロース、ニトロセルロース又はアクリル樹脂を含有する。
本発明の導電性ペーストにおいて、前記エチルセルロース、ニトロセルロース又はアクリル樹脂の配合割合は、ペースト全量に対して、1〜10質量%、好ましくは5〜8質量%である。この範囲外では、例えば、角板形チップ部品の実装時において、はんだの爆ぜの発生率が高くなる恐れがある。
The conductive paste of the present invention, ethylcellulose, containing nitrocellulose or acrylic resin.
In the conductive paste of the present invention, the blending ratio of the ethyl cellulose, nitrocellulose or acrylic resin is 1 to 10% by mass, preferably 5 to 8% by mass, based on the total amount of the paste. Outside this range, for example, when mounting square-plate chip components, the rate of solder explosion may be high.

本発明の導電性ペーストは、溶剤を含有する。
前記溶剤は、導電性ペーストの乾燥時や焼成時等において、膜内に空洞が生じないようにするために、沸点240〜300℃、200℃における蒸気圧100〜300hPaの溶剤を用いる必要があり、このような沸点及び蒸気圧を有する混合溶剤であっても良い。即ち、このような沸点及び蒸気圧を示さない溶剤、若しくはこのような沸点及び蒸気圧を示さない混合溶剤の使用では、爆ぜの抑制が充分でない。沸点240〜300℃、200℃における蒸気圧100〜300hPaの溶剤としては、例えば、ブチルカルビトールアセテート、フタル酸ジエチル、フタル酸ブチル等が挙げられる。好ましくは、これらの単一溶剤が挙げられ、特に好ましくはブチルカルビトールアセテートの単一溶剤が挙げられる。
本発明の導電性ペーストにおいて、前記溶剤の配合割合は、20〜40質量%、好ましくは25〜35質量%である。この範囲外では、例えば、角板形チップ部品の実装時において、はんだの爆ぜの発生率が高くなる恐れがあり、更には、角板形チップ部品の製造時において塗布性が低下する恐れがある。
The conductive paste of the present invention contains a solvent.
As the solvent, it is necessary to use a solvent having a boiling point of 240 to 300 ° C. and a vapor pressure of 100 to 300 hPa at 200 ° C. in order to prevent voids in the film when the conductive paste is dried or fired. A mixed solvent having such boiling point and vapor pressure may be used. That is, in the use of such boiling point and a solvent that does not exhibit a vapor pressure, or have mixed solvent such exhibit such boiling points and vapor pressures, the suppression of bursting is not sufficient. Boiling point 240 to 300 ° C., as the solvent vapor pressure 100~300hPa at 200 ° C., for example, butyl carbitol acetate, diethyl phthalate, dibutyl etc. phthalate. These single solvents are preferable, and a single solvent of butyl carbitol acetate is particularly preferable.
In the conductive paste of the present invention, the blending ratio of the solvent is 20 to 40% by mass, preferably 25 to 35% by mass. Outside this range, for example, there is a risk that the rate of solder explosion will be high when mounting a square plate chip component, and there is a possibility that the coating property will be reduced during the manufacture of the square plate chip component. .

本発明の導電性ペーストは、例えば、角板形チップ部品の端面電極におけるめっき膜の下地膜として、印刷、塗布、転写等により膜形成することができる。該端面電極膜の作成には、通常、120〜180℃程度の乾燥工程と、ピーク温度600〜650℃程度の焼成工程が実施されるが、本発明の導電性ペーストは、形成される膜内における空洞の発生率を充分抑制することができる。   For example, the conductive paste of the present invention can be formed into a film by printing, coating, transfer, or the like as a base film of a plating film in an end face electrode of a square plate chip component. The end face electrode film is usually formed by a drying step of about 120 to 180 ° C. and a baking step of a peak temperature of about 600 to 650 ° C. The conductive paste of the present invention is formed in the formed film. It is possible to sufficiently suppress the generation rate of cavities.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されない。
実施例1
レーザー回折式粒度測定器(商品名「マイクロトラック FRA」、日機装社製)により測定したD50が5μmであり、銀粉全量の70質量%が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmで、長短度0.6〜3、且つ扁平度3〜50のフレーク状銀粉である導電性銀粉末60質量部と、D50が1.5μmビスマス系ガラス(Bi2O3、B2O3、Al2O3、ZnO、SiO2)4質量部と、エチルセルロース7質量部と、沸点246.8℃、200℃における蒸気圧200hPaのブチルカルビトールアセテート29質量部とを混合して導電性ペーストを調製した。
得られた導電性ペーストを転写法により角板形チップ抵抗器の端面電極部に塗布し、ピーク温度600℃で焼成を行った。
そして、本発明の導電性ペーストの塗布性を観察すると、上電極及び裏電極へのペーストのかぶさり幅は電極幅の1/3以下であり、ニジミは観察されなかった。また顕微鏡で塗布面を観察したところカスレも認められず、良好な結果を得た。そこで、更に、ニッケルめっきを施した後、錫めっきをバレル法により電気めっきして角板形チップ抵抗器を作製した。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
Example 1
D 50 measured by a laser diffraction particle size analyzer (trade name “Microtrac FRA”, manufactured by Nikkiso Co., Ltd.) is 5 μm, and 70% by mass of the total amount of silver powder is a major axis diameter of 3.0 to 6.0 μm, a minor axis 60 parts by mass of conductive silver powder, which is a flaky silver powder having a diameter of 2.0 to 5.0 μm, a thickness of 0.1 to 0.6 μm, a length of 0.6 to 3, and a flatness of 3 to 50; 50 is 1.5 μm bismuth glass (Bi 2 O 3 , B 2 O 3 , Al 2 O 3 , ZnO, SiO 2 ) 4 parts by weight, ethyl cellulose 7 parts by weight, boiling point 246.8 ° C., vapor at 200 ° C. A conductive paste was prepared by mixing 29 parts by mass of butyl carbitol acetate with a pressure of 200 hPa.
The obtained conductive paste was applied to the end face electrode portion of the square plate resistor by a transfer method, and baked at a peak temperature of 600 ° C.
And when the applicability | paintability of the electrically conductive paste of this invention was observed, the covering width of the paste to an upper electrode and a back electrode is 1/3 or less of an electrode width, and no blur was observed. Further, when the coated surface was observed with a microscope, no blur was observed and good results were obtained. Therefore, after further nickel plating, tin plate was electroplated by the barrel method to produce a square plate type chip resistor.

爆ぜは、実装におけるチップ抵抗器の基板への取り付けの際に適用したはんだ材料と錫めっき膜とが溶解した金属が微小片として飛散することにより発生する。この原因の一つとして、角板形チップ部品の端面電極の最外のめっき膜である錫膜の一部が実装時に飛散することが考えられる。
そこで、爆ぜ発生の確認検査は、角板チップ抵抗器の製造時において、端面電極の下地膜の導電性ペーストの塗布時にニジミ、カスレ等の不具合が発生しなかったものについて、ガラスエポキシ基板上にその部品を等間隔におき、250℃、10分間加熱した後、爆ぜの原因となる錫膜の飛散発生率をルーペを用いて目視で観察し、該錫膜の飛散が発生したチップ抵抗器の個数を、測定した全体チップ抵抗器の個数により除すことにより算出した値を爆ぜ発生率とした。
爆ぜが全く発生しなかったものを○、50ppm以下の発生が観察されたものを△、100ppm以上の発生が観察されたものを×とした。結果を表1に示す。
Explosion occurs when a metal in which a solder material and a tin-plated film applied when mounting a chip resistor on a substrate in mounting is dispersed as fine pieces. As one of the causes, it is conceivable that a part of the tin film that is the outermost plating film of the end face electrode of the square plate chip component is scattered during mounting.
Therefore, the confirmation test for the occurrence of the explosion was performed on the glass epoxy substrate for the case where no defects such as blemishes and smears occurred during the application of the conductive paste of the base film of the end face electrode during the manufacture of the square chip resistor. The parts were placed at regular intervals and heated at 250 ° C. for 10 minutes, and then the incidence of tin film scattering that caused explosions was visually observed with a magnifying glass. The value calculated by dividing the number by the total number of chip resistors measured was taken as the explosion occurrence rate.
The case where no explosion occurred was indicated by ◯, the case where generation of 50 ppm or less was observed was indicated by Δ, and the case where generation of 100 ppm or more was observed was indicated by ×. The results are shown in Table 1.

実施例2及び3
導電性銀粉末の配合割合を55質量部及びブチルカルビトールアセテートの配合割合を34質量部に(実施例2)、若しくは導電性銀粉末の配合割合を65質量部及びブチルカルビトールアセテートの配合割合を24質量部に(実施例3)代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Examples 2 and 3
The blending ratio of conductive silver powder is 55 parts by weight and the blending ratio of butyl carbitol acetate is 34 parts by weight (Example 2), or the blending ratio of conductive silver powder is 65 parts by weight and the blending ratio of butyl carbitol acetate. A conductive paste was prepared in the same manner as in Example 1 except that 24 parts by mass was replaced with 24 parts by mass (Example 3). Further, a chip resistor was prepared and each measurement was performed. The results are shown in Table 1.

比較例1
導電性銀粉末を、D50が7μmであり、銀粉全量の70質量%が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmで、長短度0.6〜3、且つ扁平度3〜50のフレーク状銀粉である導電性銀粉末60質量部に(D50が本発明の範囲外)、代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
尚、比較例において、上電極及び裏電極へのペーストのかぶさり幅が電極幅の1/3を超えてニジミが発生した場合、若しくはカスレが発生した場合には、爆ぜ発生の確認検査は行なわなかった。
Comparative Example 1
The conductive silver powder has a D 50 of 7 μm, and 70% by mass of the total amount of silver powder is a major axis diameter of 3.0 to 6.0 μm, a minor axis diameter of 2.0 to 5.0 μm, and a thickness of 0.1 to 0 Except that it was replaced with 60 parts by mass of conductive silver powder, which is a flaky silver powder having a length of 0.6 to 3 and a flatness of 3 to 50 at 6 μm (D 50 is outside the scope of the present invention). A conductive paste was prepared in the same manner as in Example 1, a chip resistor was further produced, and each measurement was performed. The results are shown in Table 1.
In the comparative example, when the covering width of the paste on the upper electrode and the back electrode exceeds 1/3 of the electrode width, or when smearing occurs, or when scumming occurs, a confirmation inspection for occurrence of explosion is not performed. It was.

比較例2
導電性銀粉末を、D50が1μmであり、銀粉全量の70質量%が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmで、長短度0.6〜3、且つ扁平度3〜50のフレーク状銀粉である導電性銀粉末60質量部に(D50が本発明の範囲外)、代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 2
The conductive silver powder has a D 50 of 1 μm, 70% by mass of the total amount of the silver powder is a major axis diameter of 3.0 to 6.0 μm, a minor axis diameter of 2.0 to 5.0 μm, and a thickness of 0.1 to 0 Except that it was replaced with 60 parts by mass of conductive silver powder, which is a flaky silver powder having a length of 0.6 to 3 and a flatness of 3 to 50 at 6 μm (D 50 is outside the scope of the present invention). A conductive paste was prepared in the same manner as in Example 1, a chip resistor was further produced, and each measurement was performed. The results are shown in Table 1.

比較例3
導電性銀粉末を、D50が5μmであり、銀粉全量の70質量%が、長軸径7.0μm以上、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmで、長短度3.5以上、且つ扁平度3〜50のフレーク状銀粉である導電性銀粉末60質量部に(長軸径が本発明の範囲外)、代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 3
The conductive silver powder has a D 50 of 5 μm, 70% by mass of the total amount of the silver powder is a major axis diameter of 7.0 μm or more, a minor axis diameter of 2.0 to 5.0 μm, and a thickness of 0.1 to 0.6 μm. The same as Example 1 except that the conductive silver powder is a flaky silver powder having a length of 3.5 or more and a flatness of 3 to 50 (part of major axis diameter is outside the scope of the present invention). A conductive paste was prepared, a chip resistor was further produced, and each measurement was performed. The results are shown in Table 1.

比較例4
導電性銀粉末を、D50が5μmであり、銀粉全量の70質量%が、長軸径1.0〜2.8μm、短軸径0.5〜1.8μm及び厚さ0.1μm未満で、長短度1.1〜5.6、且つ扁平度18以上のフレーク状銀粉である導電性銀粉末60質量部に(長軸径、短軸径、厚さが本発明の範囲外)、代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 4
The conductive silver powder has a D 50 of 5 μm, 70% by mass of the total amount of silver powder is a major axis diameter of 1.0 to 2.8 μm, a minor axis diameter of 0.5 to 1.8 μm and a thickness of less than 0.1 μm. , 60 parts by mass of conductive silver powder which is a flaky silver powder having a length of 1.1 to 5.6 and a flatness of 18 or more (major axis diameter, minor axis diameter and thickness are outside the scope of the present invention), Except for the above, a conductive paste was prepared in the same manner as in Example 1, a chip resistor was prepared, and each measurement was performed. The results are shown in Table 1.

比較例5
溶媒を、沸点246.8℃、200℃における蒸気圧200hPaであるブチルカルビトールアセテートと、沸点219℃、200℃における蒸気圧450hPaであるテルピネオールとの容積比1:1の混合溶媒に代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 5
The solvent was changed to a mixed solvent having a volume ratio of 1: 1 between butyl carbitol acetate having a vapor pressure of 200 hPa at a boiling point of 246.8 ° C. and 200 ° C. and terpineol having a vapor pressure of 450 hPa at a boiling point of 219 ° C. and 200 ° C. Prepared a conductive paste in the same manner as in Example 1, further produced a chip resistor, and performed each measurement. The results are shown in Table 1.

比較例6
溶媒を、沸点295℃、蒸気圧100hPaであるフタル酸ジエチルと、沸点219℃、200℃における蒸気圧450hPaであるテルピネオールとの容積比1:1の混合溶媒に代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 6
Example 1 except that the solvent was changed to a mixed solvent having a volume ratio of 1: 1 between diethyl phthalate having a boiling point of 295 ° C. and a vapor pressure of 100 hPa and terpineol having a boiling point of 219 ° C. and a vapor pressure of 450 hPa at 200 ° C. Similarly, a conductive paste was prepared, a chip resistor was further produced, and each measurement was performed. The results are shown in Table 1.

比較例7
溶媒を、沸点219℃、200℃における蒸気圧450hPaであるテルピネオールに代えた以外は、実施例1と同様に導電性ペーストを調製し、更にチップ抵抗器の作製を行い、各測定を行った。結果を表1に示す。
Comparative Example 7
A conductive paste was prepared in the same manner as in Example 1 except that the solvent was changed to terpineol having a vapor pressure of 450 hPa at boiling points of 219 ° C. and 200 ° C., and a chip resistor was further prepared and measured. The results are shown in Table 1.

Figure 0004694918
Figure 0004694918

Claims (3)

銀粉55〜65質量%、鉛フリーの無機バインダー1〜5質量%、エチルセルロース、ニトロセルロース又はアクリル樹脂1〜10質量%及び溶剤20〜40質量%からなり、
前記銀粉のレーザー回折散乱式粒度分布測定法による重量累積粒径D50が3〜6μmであり、銀粉全量の50質量%以上が、長軸径3.0〜6.0μm、短軸径2.0〜5.0μm及び厚さ0.1〜0.6μmのフレーク状銀粉であり、且つ溶剤が、沸点240〜300℃、200℃における蒸気圧100〜300hPaの単一溶剤又は混合溶剤であることを特徴とする、角板形チップ部品における、導電性の下地膜とめっき膜とからなる端面電極の該めっき膜の下地膜形成用導電性ペースト。
Silver powder 55 to 65% by mass, lead-free inorganic binder 1 to 5% by mass, ethyl cellulose, nitrocellulose or acrylic resin 1 to 10% by mass and solvent 20 to 40% by mass,
The silver powder has a weight cumulative particle size D 50 of 3 to 6 μm as measured by a laser diffraction / scattering particle size distribution measurement method, and a major axis diameter of 3.0 to 6.0 μm and a minor axis diameter of 2.50% by mass or more of the total amount of silver powder. It is a flaky silver powder having a thickness of 0 to 5.0 μm and a thickness of 0.1 to 0.6 μm, and the solvent is a single solvent or a mixed solvent having a boiling point of 240 to 300 ° C. and a vapor pressure of 100 to 300 hPa at 200 ° C. A conductive paste for forming a base film on a plating film of an end face electrode composed of a conductive base film and a plating film in a square plate chip component .
前記無機バインダーのレーザー回折散乱式粒度分布測定法による重量累積粒径D50が3.0μm以下である請求項1記載の角板形チップ部品における、導電性の下地膜とめっき膜とからなる端面電極の該めっき膜の下地膜形成用導電性ペースト。 The end face comprising a conductive base film and a plating film in a square plate chip component according to claim 1, wherein the cumulative particle size D 50 of the inorganic binder measured by a laser diffraction scattering type particle size distribution measurement method is 3.0 µm or less. A conductive paste for forming a base film of the plating film of an electrode . 沸点240〜300℃、200℃における蒸気圧100〜300hPaの溶剤が、ブチルカルビトールアセテート、フタル酸ジエチル、フタル酸ブチルであることを特徴とする請求項1又は2記載の角板形チップ部品における、導電性の下地膜とめっき膜とからなる端面電極の該めっき膜の下地膜形成用導電性ペースト。 Boiling point 240 to 300 ° C., the solvent vapor pressure 100~300hPa at 200 ° C. is butyl carbitol acetate, diethyl phthalate, square plate form chip parts according to claim 1 or 2, wherein the phthalic acid dibutyl The conductive paste for forming a base film of the plating film of the end face electrode made of a conductive base film and a plating film .
JP2005236520A 2005-08-17 2005-08-17 Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component Active JP4694918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236520A JP4694918B2 (en) 2005-08-17 2005-08-17 Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236520A JP4694918B2 (en) 2005-08-17 2005-08-17 Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component

Publications (2)

Publication Number Publication Date
JP2007052980A JP2007052980A (en) 2007-03-01
JP4694918B2 true JP4694918B2 (en) 2011-06-08

Family

ID=37917281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236520A Active JP4694918B2 (en) 2005-08-17 2005-08-17 Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component

Country Status (1)

Country Link
JP (1) JP4694918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355949B2 (en) * 2014-03-31 2018-07-11 株式会社タムラ製作所 Metal bonding material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334732A (en) * 1997-05-28 1998-12-18 Toray Ind Inc Photosensitive conductive paste and manufacture of electrode
JP2001122639A (en) * 1999-10-21 2001-05-08 Tdk Corp Glass frit, conductor paste composition and laminated capacitor
JP2003272442A (en) * 2002-03-19 2003-09-26 Toyobo Co Ltd Conductive paste and printed circuit using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334732A (en) * 1997-05-28 1998-12-18 Toray Ind Inc Photosensitive conductive paste and manufacture of electrode
JP2001122639A (en) * 1999-10-21 2001-05-08 Tdk Corp Glass frit, conductor paste composition and laminated capacitor
JP2003272442A (en) * 2002-03-19 2003-09-26 Toyobo Co Ltd Conductive paste and printed circuit using it

Also Published As

Publication number Publication date
JP2007052980A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
KR102102800B1 (en) Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
US7556747B2 (en) Electrically conductive pastes
JP4212035B2 (en) Conductive paste mainly composed of silver powder and method for producing the same
JP4503298B2 (en) Terminal electrode composition for multilayer ceramic capacitor
JP2013251256A (en) Low silver content paste composition, and method of making conductive film from said low silver content paste composition
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
KR100731219B1 (en) Terminal Electrode Compositions for Multilayer Ceramic Capacitors
JP4694918B2 (en) Conductive paste for forming a base film of a plating film of an end face electrode composed of a conductive base film and a plating film in a square chip component
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP6428797B2 (en) Negative characteristic thermistor and manufacturing method thereof
JP2011192608A (en) Conductive paste and method of manufacturing ceramic electronic component
JP2003257243A (en) Conductive paste
US20040023011A1 (en) Copper paste, wiring board using the same, and production method of wiring board
CN113314284B (en) Resistor paste, use thereof, and method for producing resistor
JP2005216987A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP7529177B2 (en) Method for forming terminal electrodes of multilayer ceramic electronic components
JP3649775B2 (en) Thick film conductive paste composition
JP2009187695A (en) Conductor paste composition for display
JP6290131B2 (en) Conductive paste for glass substrate, method for forming conductive film, and silver conductive film
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2022255117A1 (en) Electrically conductive paste and glass article
JP4610215B2 (en) Conductor paste
JPH0826251B2 (en) Silver powder for baking type conductive paint and baking type conductive paint using the same
JP2019114370A (en) Conductive composition, conductive paste, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250