JP4691067B2 - Thermally conductive sheet - Google Patents

Thermally conductive sheet Download PDF

Info

Publication number
JP4691067B2
JP4691067B2 JP2007135197A JP2007135197A JP4691067B2 JP 4691067 B2 JP4691067 B2 JP 4691067B2 JP 2007135197 A JP2007135197 A JP 2007135197A JP 2007135197 A JP2007135197 A JP 2007135197A JP 4691067 B2 JP4691067 B2 JP 4691067B2
Authority
JP
Japan
Prior art keywords
heat conductive
conductive sheet
heat
plastic film
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007135197A
Other languages
Japanese (ja)
Other versions
JP2008042168A (en
Inventor
利雄 宮原
光洋 青柳
正久 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007135197A priority Critical patent/JP4691067B2/en
Publication of JP2008042168A publication Critical patent/JP2008042168A/en
Application granted granted Critical
Publication of JP4691067B2 publication Critical patent/JP4691067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えば各種電子・電気機器に搭載される冷却が必要な電子・電気部品と冷却用ヒートシンクとを接続する用途などに用いられる熱伝導性シートに関する。   The present invention relates to a heat conductive sheet used for connecting, for example, an electronic / electrical component that is mounted on various electronic / electrical devices and requires a cooling heat sink.

コンピューター等に代表される各種電子・電気機器に搭載されている半導体素子等の冷却の問題は、近年、重要課題として注目されてきている。このような冷却が必要な半導体素子等の冷却方法として、それが搭載される機器筺体にファンを取り付け、その機器筺体内の空気を冷却する方法や、その冷却すべき半導体素子等に冷却体(ヒートシンク)を取り付けて冷却する方法が代表的である。   In recent years, the problem of cooling semiconductor elements mounted on various electronic / electrical devices represented by computers and the like has attracted attention as an important issue. As a cooling method for a semiconductor element or the like that needs to be cooled, a fan is attached to a device housing on which the device is mounted, and the air inside the device housing is cooled, or a cooling device ( A method of cooling by attaching a heat sink) is typical.

冷却すべき半導体素子等(以下、被冷却部品と呼ぶ)にヒートシンクを取り付ける場合、その被冷却部品とヒートシンクとの間の熱的接続性が低いと十分な冷却性能が得られない。通常、単に被冷却部品にヒートシンクを接触させるだけでは、その接触部分の接触抵抗が大き過ぎて十分な冷却が実現しにくい場合が多い。被冷却部品とヒートシンクとを半田接合等により接合すれば、これらを熱抵抗が小さい状態で接続することができるが、被冷却部品とヒートシンクとの熱膨張率の相違等による熱的整合性の問題が生じることが多い。   When a heat sink is attached to a semiconductor element or the like to be cooled (hereinafter referred to as a component to be cooled), sufficient cooling performance cannot be obtained if the thermal connectivity between the component to be cooled and the heat sink is low. Usually, simply contacting a heat sink to a component to be cooled often has a contact resistance at the contact portion that is too large to achieve sufficient cooling. If the component to be cooled and the heat sink are joined by soldering or the like, they can be connected with a low thermal resistance, but there is a problem of thermal consistency due to the difference in thermal expansion coefficient between the component to be cooled and the heat sink. Often occurs.

具体的には、ヒートシンクとしては、熱伝導性に優れるアルミニウム材等が使用されることが多いが、被冷却部品である半導体素子等はそれより大幅に熱膨張率が小さい場合が多く、したがってヒートシンクと被冷却部品との接合部で熱的整合性が悪くなってしまう。そうなると、熱膨張率の大きい相違による反りの発生や、接合部での剥離の発生等の問題が生じることになる。   Specifically, aluminum materials with excellent thermal conductivity are often used as heat sinks, but semiconductor elements that are parts to be cooled often have a much lower coefficient of thermal expansion than that. And the thermal integrity at the joint between the component to be cooled. If it becomes so, problems, such as generation | occurrence | production of the curvature by the big difference of a thermal expansion coefficient, and generation | occurrence | production of peeling in a junction part will arise.

上述したヒートシンクと被冷却部品との接合部における熱的整合性の問題を解消するためには、被冷却部品とヒートシンクとの間にゴムシート等の成形品を挟んで接触させる方法が効果的であり、上記成形品として種々の熱伝導性シートが提案されている(例えば、特許文献1参照)。   In order to eliminate the above-mentioned problem of thermal compatibility at the joint between the heat sink and the component to be cooled, it is effective to sandwich a molded product such as a rubber sheet between the component to be cooled and the heat sink. There have been proposed various heat conductive sheets as the molded article (for example, see Patent Document 1).

特開2001−168246号公報JP 2001-168246 A

しかし、近年、半導体素子の発熱量は大きくなっているため、上述した熱伝導性シートの熱伝達性能を上げる必要があり、そのためには熱伝導性シートの熱伝導率を大きくする手段があるが、熱伝導率を大きくすると熱伝導性シートが硬くなるという欠点があり、この手段には限界がある。また、上記熱伝導性シートとしては、比較的柔らかく、かつ厚さの薄いシートが望まれている。しかしながら、熱伝導性シートの厚さを薄くした場合、シートが破れやすくなったり、伸びやすくなったりして、取り扱い性が悪くなる問題があり、そのため取り扱い性が良好な薄膜の熱伝導性シートが求められている。さらに、表面にプラスチックフィルムを貼り合わせた熱伝導性シートもあるが、この熱伝導性シートは軽く折り曲げを行うだけで部分的にプラスチックフィルムにシワができ、外観が悪くなるという欠点がある。   However, in recent years, since the amount of heat generated by semiconductor elements has increased, it is necessary to improve the heat transfer performance of the above-described heat conductive sheet. For this purpose, there is a means for increasing the heat conductivity of the heat conductive sheet. When the thermal conductivity is increased, there is a drawback that the thermal conductive sheet becomes hard, and this means has a limit. In addition, a sheet that is relatively soft and thin is desired as the heat conductive sheet. However, when the thickness of the heat conductive sheet is reduced, there is a problem that the sheet is easily torn or stretched and the handleability is deteriorated. Therefore, there is a thin film heat conductive sheet with good handleability. It has been demanded. Furthermore, there is also a heat conductive sheet having a plastic film bonded to the surface. However, this heat conductive sheet has a drawback that the plastic film can be partially wrinkled only by light bending and the appearance is deteriorated.

本発明は、前述した事情に鑑みてなされたもので、厚さが薄く、かつ強度、弾性、柔軟性および取り扱い性が良好な熱伝導性シートを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a heat conductive sheet that is thin and has good strength, elasticity, flexibility, and handleability.

本発明者らは、上述した課題を解決するために鋭意検討を行った結果、薄く柔らかい熱伝導層の表面に、適度な表面粗さを有するように薄いプラスチックフィルムを貼り合わせた場合、良好な強度、弾性、柔軟性および取り扱い性を有する薄膜の熱伝導性シートが得られること、また、上記のような適度な厚さで表面粗さを有するようにプラスチックフィルムを熱伝導層の表面に貼り合わせた熱伝導性シートは、ヒートシンクに圧着させるときに、ヒートシンクとの接触面積が少ないため少ない応力で圧着できることを見出した。   As a result of intensive studies to solve the above-described problems, the present inventors have found that when a thin plastic film is bonded to the surface of a thin and soft heat conductive layer so as to have an appropriate surface roughness, it is good. A thin-film heat conductive sheet having strength, elasticity, flexibility and handleability can be obtained, and a plastic film is applied to the surface of the heat conductive layer so as to have a surface roughness with an appropriate thickness as described above. It has been found that the combined heat conductive sheet can be pressure-bonded with less stress because it has a small contact area with the heat sink when it is pressure-bonded to the heat sink.

本発明は、上述した知見に基づいてなされたもので、下記(1)〜(6)に示す熱伝導性シートを提供する。
(1)熱伝導層の表面に、厚さ5〜12μmのプラスチックフィルムが、表面粗さがRzで36148μmとなるようにシボを付けて積層されていることを特徴とする熱伝導性シート。
(2)前記プラスチックフィルムがポリエステルフィルムであることを特徴とする(1)の熱伝導性シート。
(3)前記熱伝導層が非架橋混和物で形成されていることを特徴とする(1)または(2)の熱伝導性シート。
(4)前記非架橋混和物がアクリルゴムおよび/または熱可塑性エラストマーを主成分とすることを特徴とする(3)の熱伝導性シート。
(5)前記熱可塑性エラストマーがスチレン系エラストマーであることを特徴とする(4)の熱伝導性シート。
(6)前記熱伝導層の熱伝導率が1.5W/mk以上であることを特徴とする(1)〜(5)の熱伝導性シート。
This invention is made | formed based on the knowledge mentioned above, and provides the heat conductive sheet shown to following (1)-(6).
(1) Thermal conductivity, characterized in that a plastic film having a thickness of 5 to 12 μm is laminated on the surface of the thermal conductive layer with a texture so that the surface roughness is 36 to 148 μm in Rz. Sheet.
(2) The heat conductive sheet according to (1), wherein the plastic film is a polyester film.
(3) The heat conductive sheet according to (1) or (2), wherein the heat conductive layer is formed of a non-crosslinked mixture.
(4) The heat conductive sheet according to (3), wherein the non-crosslinked admixture contains acrylic rubber and / or a thermoplastic elastomer as a main component.
(5) The thermal conductive sheet according to (4), wherein the thermoplastic elastomer is a styrene elastomer.
(6) The heat conductive sheet according to any one of (1) to (5), wherein the heat conductivity of the heat conductive layer is 1.5 W / mk or more.

本発明の熱伝導性シートは、薄膜で、かつ優れた熱伝導性、強度、弾性、柔軟性および取り扱い性を併せ持っており、半導体素子等の被冷却部品とヒートシンクとを接合する用途などに好適に使用することができる。   The heat conductive sheet of the present invention is a thin film and has excellent heat conductivity, strength, elasticity, flexibility, and handleability, and is suitable for applications such as joining a component to be cooled such as a semiconductor element and a heat sink. Can be used for

以下、本発明につきさらに詳しく説明する。本発明の熱伝導性シートにおける熱伝導層の材料に限定はないが、ゴム、熱可塑性エラストマー等の非架橋ポリマーをベース樹脂とし、このベース樹脂に熱伝導性フィラーを配合した非架橋混和物を好適に用いることができる。熱伝導層は、熱伝導率が1.5W/mk以上、特に1.7W/mk以上であることが好ましい。また、熱伝導層は厚さ0.3〜1.0mmのシート状に形成することが適当である。さらに、本発明の熱伝導性シートは、耐熱温度として100℃以上を有し、電子部品関係における一般的な温度範囲である常温〜80℃では流動化を起こさないものが好適である。   Hereinafter, the present invention will be described in more detail. There is no limitation on the material of the heat conductive layer in the heat conductive sheet of the present invention, but a non-cross-linked admixture in which a non-cross-linked polymer such as rubber or thermoplastic elastomer is used as a base resin and a heat-conductive filler is blended with the base resin. It can be used suitably. The heat conduction layer preferably has a heat conductivity of 1.5 W / mk or more, particularly 1.7 W / mk or more. The heat conductive layer is suitably formed in a sheet shape having a thickness of 0.3 to 1.0 mm. Furthermore, the heat conductive sheet of the present invention preferably has a heat-resistant temperature of 100 ° C. or higher and does not cause fluidization at a normal temperature to 80 ° C., which is a general temperature range related to electronic components.

この場合、上記ベース樹脂としては、アクリルゴムおよび熱可塑性エラストマーの一方または両方を主成分とするものを好適に用いることができ、これにより熱伝導性シートからシロキサンが発生しないという利点を得ることができる。すなわち、熱伝導層の材料にシリコーンゴムを使用した場合、シリコーンゴムはシロキサンの発生により電気的な接点部分に悪影響を及ぼす(導電性を阻害する)恐れがあるが、ベース樹脂としてアクリルゴムおよび/または熱可塑性エラストマーを用いた場合は、上記のような不都合は生じない。   In this case, as the base resin, a resin mainly composed of one or both of acrylic rubber and thermoplastic elastomer can be preferably used, thereby obtaining an advantage that no siloxane is generated from the heat conductive sheet. it can. That is, when silicone rubber is used as the material of the heat conductive layer, the silicone rubber may adversely affect the electrical contact portion due to the generation of siloxane (inhibit conductivity). Or, when a thermoplastic elastomer is used, the above disadvantages do not occur.

また、上記熱可塑性エラストマーとしては、SBS(スチレン・ブタジエンブロックコポリマー)、SIS(スチレン・イソプレンブロックコポリマー)、SEBS(水素化SBS)、SEPS(水素化SIS)等のスチレン系エラストマーを用いることが好ましい。   The thermoplastic elastomer is preferably a styrene elastomer such as SBS (styrene / butadiene block copolymer), SIS (styrene / isoprene block copolymer), SEBS (hydrogenated SBS), or SEPS (hydrogenated SIS). .

上記熱伝導性フィラーとしては、例えば、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、チッ化ホウ素、チッ化アルミニウム、酸化亜鉛の粉末などを挙げることができる。   Examples of the thermally conductive filler include aluminum oxide, aluminum hydroxide, magnesium oxide, magnesium hydroxide, boron nitride, aluminum nitride, and zinc oxide powder.

上述した非架橋混和物における各成分の配合量は適宜決定することができるが、通常、ベース樹脂100質量部に対し、熱伝導性フィラーを200〜700質量部、特に300〜500質量部の割合で配合することが適当である。また、上記非架橋混和物には、ベース樹脂および熱伝導性フィラー以外の成分を適宜配合することができる。   Although the compounding quantity of each component in the non-crosslinked blend mentioned above can be determined as appropriate, the proportion of the heat conductive filler is usually 200 to 700 parts by weight, particularly 300 to 500 parts by weight, with respect to 100 parts by weight of the base resin. It is suitable to mix with. Moreover, components other than the base resin and the heat conductive filler can be appropriately blended with the non-crosslinked admixture.

本発明の熱伝導性シートにおけるプラスチックフィルムの材料に限定はないが、ポリエチレン、ポリプロピレン、ポリエステル、ポリイミド等からなるものを挙げることができる。また、プラスチックフィルムの厚さは5〜12μmとすることが適当である。 Although there is no limitation in the material of the plastic film in the heat conductive sheet of this invention, what consists of polyethylene, a polypropylene, polyester, a polyimide, etc. can be mentioned. The thickness of the plastic film is suitably 5 to 12 μm.

本発明の熱伝導性シートは、例えば、押出法等によって熱伝導層のシートを成形するとともに、この熱伝導層のシートにシボロール等によってプラスチックフィルムを圧着することにより製造することができ、このときシボロール等によってプラスチックフィルムにシボ(皺)を形成することができる。シボの形状としては、例えば、図1(a)に示すプラスチックフィルム10のように連続または非連続の多数の略波線状シボ12がほぼ平行に配されたもの、図1(b)に示すプラスチックフィルム14のように多数の縦線状シボ16と横線状シボ18が直行するように配された升目状のものなどを挙げることができる。上記プラスチックフィルムのシボは、表面粗さ(Rz)が36148μmであるように形成することが好ましい。 The heat conductive sheet of the present invention can be produced, for example, by forming a sheet of a heat conductive layer by an extrusion method or the like, and pressing a plastic film on the sheet of the heat conductive layer with a surface roll or the like. A wrinkle can be formed on a plastic film by a wrinkle roll or the like. Examples of the shape of the texture include, for example, a plastic film 10 illustrated in FIG. 1A in which a large number of continuous or non-continuous substantially wavy textured textures 12 are arranged substantially in parallel, and the plastic illustrated in FIG. Examples of the film 14 include a grid-like shape in which a large number of vertical line marks 16 and horizontal line marks 18 are arranged so as to be orthogonal. The plastic film is preferably formed to have a surface roughness (Rz) of 36 to 148 μm .

本発明において、プラスチックフィルムは熱伝導層の片面のみに積層してもよく、両面に積層してもよいが、両面に積層した場合は熱伝導性シートの熱抵抗が大きくなるため、片面のみに積層する方が好ましい。   In the present invention, the plastic film may be laminated only on one side of the heat conductive layer, or may be laminated on both sides, but when laminated on both sides, the thermal resistance of the heat conductive sheet increases, so only on one side. Lamination is preferred.

以下、実施例により本発明をさらに具体的に示すが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example shows this invention more concretely, this invention is not limited to the following Example.

本実施例において、熱伝導層のシートの材質は以下のとおりとした。
(No.1):アクリルゴムをベース樹脂とし、これに熱伝導性フィラー(酸化アルミニウム、水酸化アルミニウム、以下同様)を混合したもの。熱伝導率2.8W/mk、硬度60(JIS K 7312に準拠しタイプC(アスカーC型)で測定、以下同様)。
(No.2):スチレン系熱可塑性エラストマーをベースとし、これに熱伝導性フィラーを混合したもの。熱伝導率1.8W/mk、硬度40。
(No.3):スチレン系熱可塑性エラストマーをベースとし、これに熱伝導性フィラーを混合したもの。熱伝導率1.2W/mk、硬度40。
In this example, the material of the heat conductive layer sheet was as follows.
(No. 1): A mixture in which acrylic rubber is used as a base resin, and a heat conductive filler (aluminum oxide, aluminum hydroxide, the same applies hereinafter) is mixed therewith. Thermal conductivity 2.8 W / mk, hardness 60 (measured with Type C (Asker C type) according to JIS K 7312, the same applies hereinafter).
(No. 2): A styrene-based thermoplastic elastomer as a base and a heat conductive filler mixed therewith. Thermal conductivity 1.8 W / mk, hardness 40.
(No. 3): A styrene-based thermoplastic elastomer as a base and a heat conductive filler mixed therewith. Thermal conductivity 1.2 W / mk, hardness 40.

本実施例において、プラスチックフィルムの材質は以下のとおりとした。
(No.1):市販ポリエステルフィルム(帝人・デュポンフィルム株式会社製、製品名テイジン・テトロンフィルム)。
(No.2):市販ポリイミドフィルム(東レ・デュポン株式会社製、製品名カプトン)。
In this example, the material of the plastic film was as follows.
(No. 1): A commercially available polyester film (manufactured by Teijin DuPont Films, Inc., product name Teijin Tetron Film)
(No. 2): Commercially available polyimide film (manufactured by Toray DuPont Co., Ltd., product name Kapton).

上述した熱伝導層のシートとプラスチックフィルムとを表1に示す組み合わせで重ね合わせ、これらをシボロールとフラットロールとの間に一緒に挿入して圧着・圧延成形を行うことにより、実施例1〜8、比較例3〜5、7の熱伝導性シートを作製した。また、実施例9ではプレス成形で熱伝導性シートを作製し、比較例1、2ではプラスチックフィルムを使用せず、圧着・圧延成形やプレス成形を行うことなく熱伝導層のシートのみで熱伝導性シートを形成し、比較例6では熱伝導層のシートとプラスチックフィルムとを重ね合わせたものを一対のフラットロールの間に挿入して圧着・圧延成形を行うことにより熱伝導性シートを作製した。   The above-described heat conductive layer sheet and plastic film are superposed in the combinations shown in Table 1, and these are inserted together between the embossing roll and the flat roll to perform pressure bonding / rolling forming, thereby allowing Examples 1 to 8 The heat conductive sheets of Comparative Examples 3 to 5 and 7 were produced. In Example 9, a heat conductive sheet was produced by press molding. In Comparative Examples 1 and 2, a plastic film was not used, and heat conduction was performed only with the sheet of the heat conductive layer without performing crimping / rolling molding or press molding. In Comparative Example 6, a heat conductive sheet was produced by inserting a sheet of a heat conductive layer and a plastic film superimposed between a pair of flat rolls and performing crimping and rolling. .

シボロールとしては、表面粗さ(Rz)が90μmのものを用いた。また、圧着・圧延成形時のロール温度とライン速度の調整により成形品のプラスチックフィルム表面の表面粗さを調整した。ロール温度は常温から80℃の範囲で調整した。ロール温度が高いほどプラスチックフィルム表面の表面粗さは大きくなる。ライン速度は毎分1mから2mの範囲で調整した。ライン速度が速いほどプラスチックフィルム表面の表面粗さは小さくなる。このロール圧着・圧延方式では、プラスチックフィルム表面に連続または非連続の多数の略波線状シボがプラスチックフィルムの流れ方向にほぼ平行に配された(図1(a)参照)。また、実施例9では、プレス成形により、プラスチックフィルム表面に多数の縦線状シボと横線状シボを升目状に直行するように設けた(図1(b)参照)。   As the sivolol, one having a surface roughness (Rz) of 90 μm was used. Further, the surface roughness of the plastic film surface of the molded product was adjusted by adjusting the roll temperature and the line speed at the time of crimping and rolling. The roll temperature was adjusted in the range from room temperature to 80 ° C. The higher the roll temperature, the greater the surface roughness of the plastic film surface. The line speed was adjusted in the range of 1 m to 2 m per minute. The higher the line speed, the smaller the surface roughness of the plastic film surface. In this roll pressure bonding / rolling system, a large number of continuous or non-continuous substantially wavy lines were arranged on the surface of the plastic film substantially in parallel with the flow direction of the plastic film (see FIG. 1A). Further, in Example 9, a number of vertical and horizontal lines were provided on the surface of the plastic film by press molding so as to go straight in a grid pattern (see FIG. 1B).

実施例、比較例の熱伝導性シートの曲げによるシワの発生の有無(外観)、取り扱い性(変形や破れが起きないかの試験)、熱抵抗を下記の方法で調べた。
(曲げによるシワの発生の有無):150×200mmにカットした熱伝導性シートのR10での内折りと外折りを10回繰り返し、目立ったシワが発生しなければ○、発生したら×とした。
(取り扱い性):40×40mmにカットした熱伝導性シートをアルミニウム板に貼り付け、常温で熱伝導性シートに100g/cmの荷重を5分間加えた後、熱伝導性シートを剥がして目視観察を行い、変形や破れがないものを○、あるものを×とした。
(熱抵抗):10mm×32.5mm×32.5mmの2枚のアルミニウム板の間に略同面積の熱伝導性シートを挟み、熱伝導性シートの厚さを正確に0.02mm圧縮した状態で両アルミニウム板を固定した試料を用意し、その上部に熱伝導性グリスを介してヒーター、下部に熱伝導性グリスを介してヒートシンクを熱的に接続した。ここで、ヒーターに12Wの熱をかけ、上のアルミニウム板と下のアルミニウム板の温度を熱電対で測定し、10分後の温度を記録し、その温度差ΔTを求め、次の式により熱抵抗を算出した。熱抵抗は、実用的には1.0℃/W以下が使用可能な目安となる。
熱抵抗(℃/W)=ΔT(℃)/12(W)
表1に実施例と比較例の材料、成形条件および試験結果を示す。
The following methods examined the presence or absence (appearance) of wrinkles due to bending of the thermal conductive sheets of Examples and Comparative Examples, handling (testing whether deformation or tearing occurred), and thermal resistance.
(Presence or absence of generation of wrinkles due to bending): The inner and outer folds at R10 of the thermally conductive sheet cut to 150 × 200 mm were repeated 10 times.
(Handability): A heat conductive sheet cut to 40 × 40 mm is attached to an aluminum plate, a load of 100 g / cm 2 is applied to the heat conductive sheet at room temperature for 5 minutes, and then the heat conductive sheet is peeled off and visually observed. Observations were made, and those with no deformation or tearing were marked with ◯, and those with certain were marked with ×.
(Thermal resistance): A heat conductive sheet having approximately the same area is sandwiched between two aluminum plates of 10 mm × 32.5 mm × 32.5 mm, and the thickness of the heat conductive sheet is accurately compressed by 0.02 mm. A sample to which an aluminum plate was fixed was prepared, and a heater was connected to the upper part via a heat conductive grease, and a heat sink was thermally connected to the lower part via a heat conductive grease. Here, heat of 12 W is applied to the heater, the temperature of the upper aluminum plate and the lower aluminum plate is measured with a thermocouple, the temperature after 10 minutes is recorded, the temperature difference ΔT is obtained, and the heat is calculated according to the following equation: Resistance was calculated. The practical value of the thermal resistance is 1.0 ° C./W or less.
Thermal resistance (° C / W) = ΔT (° C) / 12 (W)
Table 1 shows materials, molding conditions, and test results of Examples and Comparative Examples.

Figure 0004691067
Figure 0004691067

表1より以下のことがわかる。実施例1は熱伝導性シートの厚さが1mmと比較的厚いため、熱抵抗が限界のものである。実施例2〜5は好適な例であり、熱抵抗も比較的小さい。実施例6はプラスチックフィルムの厚さが比較的厚いものであり、熱抵抗が大きくなっているが使用可能な範囲である。実施例7はプラスチックフィルムの材質をポリイミドにした例であり、好適である。実施例8はプラスチックフィルムの表面粗さを小さくした例であり、熱抵抗が小さい。実施例9は成形をプレス加工で縦横均一のシボを設けた例であり、同等条件の略波線状のシボを設けたものに比べわずかに熱抵抗が大きいが、使用可能である。比較例1、2はプラスチックフィルムによる補強のない熱伝導性シートの例であり、取り扱い性の試験で比較例1は破れ、比較例2は大きな変形を示し強度の点で劣っている。比較例3、4はプラスチックフィルムの表面粗さが大きい例であり、熱抵抗が大きくこの点で劣っている。比較例5はプラスチックフィルムの厚さが厚く、熱抵抗が過大でこの点で劣っている。比較例6は圧着・圧延成形時のロールとして上下ともフラットロールを用い、プラスチックフィルムの表面を平坦としたため、曲げにより大きなシワの発生があり、外観的に劣っている。比較例7は熱伝導率の小さい熱伝導層を用いた例であり、熱抵抗が大きすぎこの点で劣っている。   Table 1 shows the following. In Example 1, the heat resistance is limited because the thickness of the heat conductive sheet is relatively 1 mm. Examples 2 to 5 are suitable examples, and the thermal resistance is relatively small. In Example 6, the thickness of the plastic film is relatively thick, and the thermal resistance is large, but it is in a usable range. Example 7 is an example in which the material of the plastic film is polyimide, which is preferable. Example 8 is an example in which the surface roughness of the plastic film is reduced, and the thermal resistance is low. Example 9 is an example in which molding is formed by pressing to provide vertical and horizontal uniform textures. Although the heat resistance is slightly higher than that of the textured lines having substantially wavy lines on the same conditions, it can be used. Comparative Examples 1 and 2 are examples of a thermally conductive sheet not reinforced with a plastic film. In a handling test, Comparative Example 1 was broken, and Comparative Example 2 was greatly deformed and inferior in strength. Comparative Examples 3 and 4 are examples in which the surface roughness of the plastic film is large, and the thermal resistance is large and inferior in this respect. Comparative Example 5 is inferior in this respect because the plastic film is thick and the thermal resistance is excessive. In Comparative Example 6, flat rolls were used as the rolls at the time of pressure bonding / rolling and the surface of the plastic film was flattened, so that large wrinkles were generated by bending and the appearance was inferior. Comparative Example 7 is an example using a heat conductive layer having a low thermal conductivity, and the thermal resistance is too large and inferior in this respect.

(a)、(b)はそれぞれ本発明に係る熱伝導シートのプラスチックフィルムの表面の一例を示す拡大図である。(A), (b) is an enlarged view which shows an example of the surface of the plastic film of the heat conductive sheet which concerns on this invention, respectively.

符号の説明Explanation of symbols

10 プラスチックフィルム
12 略波線状シボ
14 プラスチックフィルム
16 縦線状シボ
18 横線状シボ
DESCRIPTION OF SYMBOLS 10 Plastic film 12 Substantially wavy line texture 14 Plastic film 16 Vertical line texture 18 Horizontal line texture

Claims (6)

熱伝導層の表面に、厚さ5〜12μmのプラスチックフィルムが、表面粗さがRzで36148μmとなるようにシボを付けて積層されていることを特徴とする熱伝導性シート。 A heat conductive sheet, characterized in that a plastic film having a thickness of 5 to 12 μm is laminated on the surface of the heat conductive layer with a texture so that the surface roughness is 36 to 148 μm in Rz. 前記プラスチックフィルムがポリエステルフィルムであることを特徴とする請求項1に記載の熱伝導性シート。   The thermally conductive sheet according to claim 1, wherein the plastic film is a polyester film. 前記熱伝導層が非架橋混和物で形成されていることを特徴とする請求項1または2に記載の熱伝導性シート。   The thermally conductive sheet according to claim 1, wherein the thermally conductive layer is formed of a non-crosslinked mixture. 前記非架橋混和物がアクリルゴムおよび/または熱可塑性エラストマーを主成分とすることを特徴とする請求項3に記載の熱伝導性シート。   The thermally conductive sheet according to claim 3, wherein the non-crosslinked admixture contains acrylic rubber and / or a thermoplastic elastomer as a main component. 前記熱可塑性エラストマーがスチレン系エラストマーであることを特徴とする請求項4に記載の熱伝導性シート。   The thermally conductive sheet according to claim 4, wherein the thermoplastic elastomer is a styrene elastomer. 前記熱伝導層の熱伝導率が1.5W/mk以上であることを特徴とする請求項1〜5のいずれか1項に記載の熱伝導性シート。   The heat conductive sheet according to any one of claims 1 to 5, wherein the heat conductivity of the heat conductive layer is 1.5 W / mk or more.
JP2007135197A 2006-07-13 2007-05-22 Thermally conductive sheet Active JP4691067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135197A JP4691067B2 (en) 2006-07-13 2007-05-22 Thermally conductive sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006192847 2006-07-13
JP2006192847 2006-07-13
JP2007135197A JP4691067B2 (en) 2006-07-13 2007-05-22 Thermally conductive sheet

Publications (2)

Publication Number Publication Date
JP2008042168A JP2008042168A (en) 2008-02-21
JP4691067B2 true JP4691067B2 (en) 2011-06-01

Family

ID=39176783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135197A Active JP4691067B2 (en) 2006-07-13 2007-05-22 Thermally conductive sheet

Country Status (1)

Country Link
JP (1) JP4691067B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021046A1 (en) * 2012-07-30 2014-02-06 株式会社村田製作所 Electronic apparatus and heat conductive sheet
JP6344951B2 (en) * 2014-03-31 2018-06-20 デクセリアルズ株式会社 Thermally conductive sheet and method for producing thermally conductive sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310984A (en) * 2000-04-28 2001-11-06 Efuko Kk Thermal conductive moldings
JP2003236988A (en) * 2001-12-11 2003-08-26 Tokai Rubber Ind Ltd Thermally conductive rubber member
JP2006049876A (en) * 2004-07-07 2006-02-16 Furukawa Electric Co Ltd:The Heat dissipating sheet against electromagnetic-wave interruption

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235218A (en) * 1992-02-21 1993-09-10 Toshiba Corp Heat radiation sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310984A (en) * 2000-04-28 2001-11-06 Efuko Kk Thermal conductive moldings
JP2003236988A (en) * 2001-12-11 2003-08-26 Tokai Rubber Ind Ltd Thermally conductive rubber member
JP2006049876A (en) * 2004-07-07 2006-02-16 Furukawa Electric Co Ltd:The Heat dissipating sheet against electromagnetic-wave interruption

Also Published As

Publication number Publication date
JP2008042168A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US7419722B2 (en) Heat-radiating sheet and heat-radiating structure
JP6592290B2 (en) Thermal interface material and manufacturing method thereof
TWI251320B (en) Thermal conductive composition, a heat-dissipating putty sheet and heat-dissipating structure using the same
TWI605115B (en) Thermally conductive foam sheet for electronic equipment and thermally conductive laminated body for electronic equipment
WO2016104759A1 (en) Heat transport structure and manufacturing method therefor
CN106537581B (en) Fin material and the heat-radiating structure for using the fin material
TW201012910A (en) Thermally conductive sheet composite and method for manufacturing the same
EP1865552A4 (en) Heat transfer sheet, radiation structure and method for using heat transfer sheet
CN115516570B (en) Thermal interface material
JP2020205426A (en) Heat conductive sheet and manufacturing method of the same
JP4691067B2 (en) Thermally conductive sheet
KR20190069530A (en) Film heater and manufacturing method
KR20190021230A (en) Heat sink
JP2008535691A5 (en)
US20170081559A1 (en) Double-Sided Adhesive Sheet, Joining Method Using Double-Sided Adhesive Sheet, And Method For Producing Double-Sided Adhesive Sheet
KR101457797B1 (en) Heat conduction sheet and heat conduction sheet manufacturing method
JP2016195252A (en) Heat diffusion sheet
JP3434186B2 (en) Heat conductive silicone gel molded sheet and method for producing the same
CN102548064A (en) Electric heating piece, electric heating device and equipment
CN212344315U (en) Double-layer structure type heat-conducting gasket
JP2011082423A (en) Heat conductive sheet
JP2007053145A (en) Heat-transfer sheet
JP2001284504A (en) Heat-conductive sheet and peel film therefor
JP2021160237A (en) Method for manufacturing heat-conductive sheet
JP7163700B2 (en) thermal conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R151 Written notification of patent or utility model registration

Ref document number: 4691067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350