JP4690837B2 - Temperature control method and temperature control apparatus for sample mounting electrode - Google Patents

Temperature control method and temperature control apparatus for sample mounting electrode Download PDF

Info

Publication number
JP4690837B2
JP4690837B2 JP2005265639A JP2005265639A JP4690837B2 JP 4690837 B2 JP4690837 B2 JP 4690837B2 JP 2005265639 A JP2005265639 A JP 2005265639A JP 2005265639 A JP2005265639 A JP 2005265639A JP 4690837 B2 JP4690837 B2 JP 4690837B2
Authority
JP
Japan
Prior art keywords
sample
temperature
mounting electrode
electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265639A
Other languages
Japanese (ja)
Other versions
JP2007081052A (en
Inventor
智行 田村
賢治 前田
健 吉岡
陽二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005265639A priority Critical patent/JP4690837B2/en
Publication of JP2007081052A publication Critical patent/JP2007081052A/en
Application granted granted Critical
Publication of JP4690837B2 publication Critical patent/JP4690837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマ処理技術に係り、プラズマ処理装置における経時変化を抑制することのできるプラズマ処理技術に関する。   The present invention relates to a plasma processing technique, and more particularly to a plasma processing technique capable of suppressing a change with time in a plasma processing apparatus.

プラズマエッチング装置では、試料(ウエハ)載置電極に高周波電力を印加して、プラズマからイオンを引き込むことにより、異方性エッチングを行う。このとき、プラズマエッチング装置用の試料載置電極には冷媒を循環させて試料(ウエハ)を一定温度に保持する。なお、静電チャック式の載置電極では、載置電極表面に絶縁層を設け、試料上にプラズマを生成した状態で載置電極に直流電圧を印加することにより、試料を静電吸着している。このとき、載置電極とプラズマ間は絶縁されている。   In the plasma etching apparatus, anisotropic etching is performed by applying high-frequency power to a sample (wafer) mounting electrode and drawing ions from plasma. At this time, a coolant is circulated through the sample mounting electrode for the plasma etching apparatus to keep the sample (wafer) at a constant temperature. In an electrostatic chuck type mounting electrode, an insulating layer is provided on the surface of the mounting electrode, and the sample is electrostatically adsorbed by applying a DC voltage to the mounting electrode in a state where plasma is generated on the sample. Yes. At this time, the mounting electrode and the plasma are insulated.

また、試料と載置電極との隙間には熱伝導用のガス(He)を供給し、数百Pa以上の一定圧力に保つことにより、試料から載置電極への熱伝導を図っている。なお、載置電極表面には、絶縁層としてAlなどのセラミックの溶射膜を用いることが多い。さらに、前記溶射膜には溶射膜を形成するセラミック粒子間に発生した気孔を封止して絶縁性を上げるため、封孔剤を塗布することが多い。 Further, heat conduction gas (He) is supplied to the gap between the sample and the mounting electrode, and the heat is transferred from the sample to the mounting electrode by maintaining a constant pressure of several hundred Pa or more. In many cases, a ceramic sprayed film such as Al 2 O 3 is used as an insulating layer on the surface of the mounting electrode. Further, a sealing agent is often applied to the sprayed film in order to seal the pores generated between the ceramic particles forming the sprayed film and increase the insulation.

また、前記熱伝導用のガスの圧力を試料の裏面全体で保持するために、載置電極の試料裏面の外周付近に対向する部分には、試料の全周が接触するよう径方向に幅をもった凸部を形成し、前記ガスの漏れを防止している。また、載置電極の内側の部分はガスが流れやすいようにある程度の隙間を持たせた部分と、試料に接触して保持する部分を形成する。なお、このような試料載置載置電極を使用した場合には、試料温度が徐々に低下する経時変化が生じること、およびこのような経時変化は前記封孔剤を変更することのより改善されることが知られている(特許文献1参照)。
特開2003−45952号公報
In addition, in order to maintain the pressure of the gas for heat conduction over the entire back surface of the sample, a width in the radial direction is set so that the entire periphery of the sample is in contact with the portion of the mounting electrode facing the vicinity of the periphery of the sample back A convex portion is formed to prevent leakage of the gas. In addition, the inner part of the mounting electrode forms a part having a certain gap so that gas can easily flow and a part to be held in contact with the sample. In addition, when such a sample mounting electrode is used, a change with time in which the sample temperature gradually decreases occurs, and such a change with time is improved by changing the sealing agent. It is known (see Patent Document 1).
JP 2003-45752 A

ところで、前述のような、載置電極表面にセラミックを溶射した試料載置載置電極を用いて、プラズマエッチング処理を行う場合、スループット向上のため、試料載置電極上に試料を載置せずにプラズマクリーニングを行うことがある。このような場合には、試料載置電極は頻繁にプラズマに曝されることとなる。   By the way, when performing the plasma etching process using the sample mounting electrode whose ceramic is sprayed on the surface of the mounting electrode as described above, the sample is not mounted on the sample mounting electrode in order to improve the throughput. Plasma cleaning may be performed. In such a case, the sample mounting electrode is frequently exposed to plasma.

このような運用を行う場合には、前記の特許文献1に示される場合とは異なり、試料温度が徐々に上昇するという経時変化が現れることが分かった。   When such an operation is performed, it has been found that, unlike the case described in Patent Document 1, a change with time in which the sample temperature gradually rises appears.

本発明は、このような問題に鑑みてなされたもので、プラズマ処理装置の経時変化に基づく試料温度変化を抑制して、試料温度を一定に保持することのできるプラズマ処理技術を提供するものである。   The present invention has been made in view of such problems, and provides a plasma processing technique capable of keeping a sample temperature constant by suppressing a change in the sample temperature based on a change with time of the plasma processing apparatus. is there.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

真空処理容器と、該真空処理容器内に処理ガスを供給するガス供給手段と、前記真空処理容器内に配置されその上部に試料を載置して保持する試料載置電極と、該試料載置電極と前記試料との間隙に冷却ガスを供給する冷却ガス供給手段と、前記試料載置電極に設けた冷媒流路に温度調整された冷媒を供給する電極温度調節器を備え、前記真空処理容器内に高周波電力を供給し該真空容器内にプラズマを生成して、前記試料にプラズマ処理を施すプラズマ処理装置における試料載置電極の温度制御方法において、
予め取得しておいた、前記間隙に供給された冷却ガス流量と載置電極をプラズマクリーニングしたことによる載置電極の経時変化に伴う試料温度の初期状態に対する温度上昇との関係と、前記プラズマクリーニングしたことにより経時変化した載置電極と前記試料との間隙に供給される、該間隙での圧力を一定にするのに必要とされる冷却ガス流量をもとに試料の温度上昇値を推定し、レシピにより指定された載置電極温度から前記温度上昇値分を減じた値を載置電極の目標温度として設定し、前記冷媒流路に供給する冷媒の温度あるいは流量を調整して前記試料の温度を一定の前記載置電極の経時変化前の試料温度に保持する。
A vacuum processing container; a gas supply means for supplying a processing gas into the vacuum processing container; a sample mounting electrode disposed in the vacuum processing container for mounting and holding a sample; and the sample mounting The vacuum processing container comprising: a cooling gas supply means for supplying a cooling gas to a gap between the electrode and the sample; and an electrode temperature controller for supplying a temperature-adjusted refrigerant to a refrigerant channel provided in the sample mounting electrode. In the method for controlling the temperature of the sample mounting electrode in the plasma processing apparatus for supplying a high frequency power into the plasma to generate plasma in the vacuum vessel and performing plasma processing on the sample,
The previously acquired relationship between the flow rate of the cooling gas supplied to the gap and the temperature rise relative to the initial state of the sample temperature accompanying the time-dependent change of the mounting electrode due to the plasma cleaning of the mounting electrode, and the plasma cleaning As a result, the temperature rise value of the sample is estimated based on the flow rate of the cooling gas that is supplied to the gap between the mounting electrode and the sample that has changed over time and is required to keep the pressure in the gap constant. The value obtained by subtracting the temperature increase value from the mounting electrode temperature specified by the recipe is set as the target temperature of the mounting electrode, and the temperature or flow rate of the refrigerant supplied to the refrigerant flow path is adjusted to adjust the temperature of the sample. The temperature is kept constant at the sample temperature before the aging of the mounting electrode.

本発明は、以上の構成を備えるため、プラズマ処理装置の経時変化に基づく試料温度変化を抑制して、試料温度を一定に保持することができる。   Since the present invention has the above-described configuration, it is possible to keep the sample temperature constant by suppressing the sample temperature change based on the change with time of the plasma processing apparatus.

以下、最良の実施形態を添付図面を参照しながら説明する。図1は、本発明の実施形態に係るプラズマ処理装置を説明する図、図2は、図1に示す試料載置電極の詳細を説明する図である。以下、これらの図を参照しながら説明する。プラズマ処理装置は、真空処理容器からなるプラズマ処理室101を備える。プラズマ処理室101の上部にはプラズマを発生させるための高周波電源102aおよびバイアス用の電源102bに接続されたアンテナ103と、エッチングガスを供給するガス供給系104を備える。また、プラズマ処理室101の下部には、処理室内を所定の圧力に保つための排気系105と、試料を載置する試料載置電極107を備える。   Hereinafter, the best embodiment will be described with reference to the accompanying drawings. FIG. 1 is a diagram for explaining a plasma processing apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining details of a sample mounting electrode shown in FIG. Hereinafter, description will be given with reference to these drawings. The plasma processing apparatus includes a plasma processing chamber 101 formed of a vacuum processing container. An upper portion of the plasma processing chamber 101 includes an antenna 103 connected to a high-frequency power source 102a for generating plasma and a power source 102b for bias, and a gas supply system 104 for supplying an etching gas. In addition, an exhaust system 105 for maintaining the processing chamber at a predetermined pressure and a sample mounting electrode 107 for mounting a sample are provided below the plasma processing chamber 101.

試料載置電極107について、図2を用いて詳細を説明する。試料載置電極の試料が載置されない部分(最外周部)はプラズマと絶縁するため石英カバー108などで被覆する。また、試料載置電極107は静電吸着電源109を用いた静電チャック機構を備える。   Details of the sample mounting electrode 107 will be described with reference to FIG. The portion of the sample mounting electrode where the sample is not mounted (the outermost peripheral portion) is covered with a quartz cover 108 or the like in order to insulate from the plasma. The sample mounting electrode 107 includes an electrostatic chuck mechanism using an electrostatic attraction power source 109.

すなわち、載置電極107の試料106と対向する面にはAlとTiOの混合物からなる誘電体の溶射膜110を施してある。また、溶射膜110の試料に接触する面は、研磨により表面粗さ(Ra)を0.8μm以下にしてある。載置電極107の外周部(土手部分111)表面と試料の最外周部は前述のように全周で接触している。また、試料106の裏面には冷却ガス供給系112からHeガスが供給されている。制御用コンピュータ116は、圧力計113で前記供給されるHeガスの圧力を監視し、1.5kPaの一定圧力になるよう流量を調節する。 That is, a dielectric sprayed film 110 made of a mixture of Al 2 O 3 and TiO 2 is applied to the surface of the mounting electrode 107 facing the sample 106. Further, the surface of the sprayed film 110 that comes into contact with the sample has a surface roughness (Ra) of 0.8 μm or less by polishing. As described above, the surface of the outer peripheral portion (bank portion 111) of the mounting electrode 107 and the outermost peripheral portion of the sample are in contact with each other as described above. Further, He gas is supplied from the cooling gas supply system 112 to the back surface of the sample 106. The control computer 116 monitors the pressure of the supplied He gas with the pressure gauge 113 and adjusts the flow rate so as to be a constant pressure of 1.5 kPa.

前述のように、試料最外周部は、その全周で載置電極の溶射膜110に接触しているため、この接触部分(土手部分111)で最もコンダクタンスが小さい。このため、冷却ガスの漏れ量は、ほとんどこの部分のシール性で決まることになる。このように、冷却ガスは、溶射膜110の表面の粗さのため、試料と載置電極との隙間から常時僅かに漏れている。この漏れ量は、漏れ量に対応する冷却ガス供給系112からの供給流量をモニタすることにより記録することができる。   As described above, since the outermost peripheral portion of the sample is in contact with the sprayed film 110 of the mounting electrode on the entire periphery, the conductance is the smallest at this contact portion (bank portion 111). For this reason, the leakage amount of the cooling gas is almost determined by the sealing performance of this portion. Thus, the cooling gas always leaks slightly from the gap between the sample and the mounting electrode due to the roughness of the surface of the sprayed film 110. This leakage amount can be recorded by monitoring the supply flow rate from the cooling gas supply system 112 corresponding to the leakage amount.

試料載置電極107には、静電吸着用の直流電源109、異方性エッチングを行うためのバイアス用高周波電源114、および載置電極107を温度制御するための電極温度調節器115が接続されている。電極温度調節器115は載置電極107内に形成した冷媒流路に供給する冷媒の温度あるいは流量を調整する
なお、図1に示すプラズマ処理室101には、試料を自動搬送するユニットを接続することができる。該ユニットは、例えば25枚の試料を格納したカセットを2基備え、これらのカセットから、試料を順次処理室に搬送して処理を施す。また、プラズマ処理装置の各電源102a,102b、冷却ガス供給系112、電極温度調節器115、静電吸着電源109、ガス供給系104、圧力計113は、制御用コンピュータ116に接続されており、各種設定および設定値の保存などを行うことができる。また、制御用コンピュータ116は、レシピ設定、表示、処理履歴の保存、演算などを行う図示しない操作用のコンピュータと表示装置を備えている。
Connected to the sample mounting electrode 107 are a DC power source 109 for electrostatic adsorption, a bias high frequency power source 114 for performing anisotropic etching, and an electrode temperature controller 115 for controlling the temperature of the mounting electrode 107. ing. The electrode temperature adjuster 115 adjusts the temperature or flow rate of the refrigerant supplied to the refrigerant flow path formed in the mounting electrode 107. The plasma processing chamber 101 shown in FIG. be able to. The unit includes, for example, two cassettes storing 25 samples, and samples are sequentially transferred from these cassettes to the processing chamber for processing. Further, each power source 102a, 102b, cooling gas supply system 112, electrode temperature controller 115, electrostatic adsorption power source 109, gas supply system 104, and pressure gauge 113 of the plasma processing apparatus are connected to a control computer 116. Various settings and setting values can be saved. The control computer 116 includes an operation computer (not shown) and a display device that perform recipe setting, display, processing history storage, calculation, and the like.

次に、前記プラズマ処理装置における試料温度の経時変化について説明する。   Next, the change with time of the sample temperature in the plasma processing apparatus will be described.

図3は、処理時間(延べ処理時間)に対する冷却ガス(He)流量の変化を示す図、図4は、冷却ガスの漏れ量(供給量)と試料(ウエハ)の温度上昇の関連を説明する図である。   FIG. 3 is a diagram showing a change in the flow rate of the cooling gas (He) with respect to the processing time (total processing time), and FIG. 4 explains the relationship between the leakage amount (supply amount) of the cooling gas and the temperature rise of the sample (wafer). FIG.

前記プラズマ処理装置では、試料を1枚エッチング処理するごとに処理室内に反応生成物が堆積する。このため、エッチング処理する毎にOプラズマによりクリーニングを実施する。また、スループット向上のために前記クリーニングは、載置電極上に試料を載置することなくウエハバイアス50〜200Wをかけてプラズマ放電を行う。 In the plasma processing apparatus, a reaction product is deposited in the processing chamber every time one sample is etched. For this reason, cleaning is performed with O 2 plasma every time the etching process is performed. Further, in order to improve the throughput, the cleaning performs plasma discharge by applying a wafer bias of 50 to 200 W without placing a sample on the placement electrode.

このような運用方法で試料の処理を続けていくと、冷却ガス流量は、図3に示すように徐々に増加する。また、冷却ガス流量の増加に対応して試料の温度が図4に示すように徐々に増加する。なお、図4に示したように冷却ガスの漏れ量と試料の温度の初期状態に対する温度上昇は比例関係にある。   When the sample processing is continued by such an operation method, the cooling gas flow rate gradually increases as shown in FIG. Further, the temperature of the sample gradually increases as shown in FIG. 4 corresponding to the increase in the cooling gas flow rate. As shown in FIG. 4, the temperature rise with respect to the initial state of the cooling gas leakage amount and the sample temperature is in a proportional relationship.

このため、冷却ガスの漏れ量に応じて載置電極の温度を低下させることにより、試料の温度を一定に保つことができる。   For this reason, the temperature of the sample can be kept constant by lowering the temperature of the mounting electrode in accordance with the leakage amount of the cooling gas.

前述のように、冷却ガスの流量(漏れ量)は試料最外周部と接触する載置電極の土手部分111の表面粗さによりほとんど決定される。また、前記土手部分の表面粗さは他の部分の表面粗さの変化を代表している。このため、載置電極の溶射面をプラズマに曝すことによる表面粗さの変化(増加)は、冷却ガスの流量の増加、および試料の冷却能力の低下を引き起こすことになる。このため、冷却ガス流量を監視することにより、試料温度の経時変化を監視することができる。   As described above, the flow rate (leakage amount) of the cooling gas is almost determined by the surface roughness of the bank portion 111 of the mounting electrode in contact with the outermost peripheral portion of the sample. Further, the surface roughness of the bank portion represents a change in the surface roughness of other portions. For this reason, a change (increase) in surface roughness caused by exposing the sprayed surface of the mounting electrode to plasma causes an increase in the flow rate of the cooling gas and a decrease in the cooling capacity of the sample. For this reason, the time-dependent change of sample temperature can be monitored by monitoring the cooling gas flow rate.

図5は、試料の温度制御方法を説明する図である。まず、制御用コンピュータは過去のウエハ処理時において取得したデータ(冷却ガス流量、静電吸着電圧、ウエハバイアス電圧(Vpp:ピーク・トウ・ピーク電圧)、ウエハバイアス電力)を履歴データとして保存しておく(ステップS1)。次いで、前記履歴データをもとに、基準条件に換算した冷却ガス流量のトレンドを解析し把握する(ステップS2)。次いで、現時点における冷却ガス流量のモニタ値をもとに基準冷却ガス流量を算出する(ステップS3)。なお、現時点における冷却ガスの流量は、前記ステップS2において把握したトレンドと、プラズマ処理時間(累積値)をもとに推定しても良い。   FIG. 5 is a diagram for explaining a method for controlling the temperature of a sample. First, the control computer stores data (cooling gas flow rate, electrostatic adsorption voltage, wafer bias voltage (Vpp: peak-to-peak voltage), wafer bias power) acquired during past wafer processing as history data. (Step S1). Next, based on the history data, the trend of the cooling gas flow rate converted into the reference condition is analyzed and grasped (step S2). Next, the reference cooling gas flow rate is calculated based on the monitoring value of the current cooling gas flow rate (step S3). The current flow rate of the cooling gas may be estimated based on the trend grasped in step S2 and the plasma processing time (cumulative value).

次いで、事前に取得した冷却ガス流量と試料温度上昇の相関関係(図4)(ステップS4)と前記推定した冷却ガス流量をもとに試料の温度上昇値を予測する(ステップS5)。   Next, the temperature rise value of the sample is predicted based on the correlation between the cooling gas flow rate acquired in advance and the sample temperature rise (FIG. 4) (step S4) and the estimated cooling gas flow rate (step S5).

次いで、レシピにより指定された載置電極設定温度(ステップS6)から、前記温度上昇分を差し引いた値を載置電極の目標温度に設定し制御を開始する(ステップS7,ステップS8)。   Next, a value obtained by subtracting the temperature rise is set as the target temperature of the mounting electrode from the mounting electrode setting temperature (step S6) designated by the recipe, and control is started (step S7, step S8).

図4に示す相関関係(ステップS4)を表す比例定数は載置電極や試料裏面圧によって異なるが、本実施形態の場合、ΔT=4(Q(ml/min)−1)であった。冷却ガス流量の長期トレンドを把握する場合は、ウエハ毎に冷却ガス流量にばらつきがあるので、10ロット以上のウエハ処理の結果から割り出すのが望ましい。   Although the proportionality constant representing the correlation (step S4) shown in FIG. 4 varies depending on the mounting electrode and the sample back pressure, in the present embodiment, ΔT = 4 (Q (ml / min) −1). When grasping the long-term trend of the cooling gas flow rate, the cooling gas flow rate varies from wafer to wafer, so it is desirable to determine from the results of wafer processing of 10 lots or more.

図5のステップS7,ステップS8において、本実施形態では、載置電極温度を下げることにより試料温度を一定に制御したが、載置電極温度を変更することに代えて、冷却ガス圧力を変えること、あるいは試料バイアス電力を変えることによっても、これらと試料温度との関係を把握さえしておけば、試料温度を一定に保つことができる。しかし、載置電極温度を利用するのが簡単で調節しやすい。   In step S7 and step S8 of FIG. 5, in this embodiment, the sample temperature is controlled to be constant by lowering the mounting electrode temperature. However, instead of changing the mounting electrode temperature, the cooling gas pressure is changed. Alternatively, by changing the sample bias power, the sample temperature can be kept constant as long as the relationship between these and the sample temperature is known. However, it is easy to use and adjust the mounting electrode temperature.

また、本実施形態では、載置電極の溶射膜としてAl膜を用いたが、Y溶射膜を用いることができる。また、裏面圧力は1kPa〜2kPaとすることができる。冷却ガスはHeガス以外のガスを使用することができる。また、初期の表面粗さとしてRa=0.8μm以下の例を示したが、Raの初期値としてこれに限るものではない。また、土手部分により形成されるシール部は、載置電極表面上で試料と接触し、流量を律速していれば、冷却ガス流量と試料温度上昇との相関を得ることができるため、ウエハの最外周に配置しなくても良い。また、相関関係は、表面粗さと冷却ガス漏れ流量および試料温度上昇の関係から、個々の載置電極と条件に対して求められる関係であり、比例関係に限られない。 In this embodiment, the Al 2 O 3 film is used as the sprayed film of the mounting electrode, but a Y 2 O 3 sprayed film can be used. The back pressure can be set to 1 kPa to 2 kPa. A gas other than He gas can be used as the cooling gas. In addition, although an example in which Ra = 0.8 μm or less is shown as the initial surface roughness, the initial value of Ra is not limited to this. In addition, since the seal portion formed by the bank portion is in contact with the sample on the surface of the mounting electrode and the flow rate is controlled, the correlation between the cooling gas flow rate and the sample temperature rise can be obtained. It does not need to be arranged on the outermost periphery. Further, the correlation is a relationship required for each mounting electrode and condition from the relationship between the surface roughness, the cooling gas leakage flow rate, and the sample temperature rise, and is not limited to the proportional relationship.

以上説明したように、本実施形態によれば、試料と載置電極の間に供給する冷却ガスの流量をもとに載置電極温度を制御することにより試料の温度を一定に保持するため、長期に渡ってエッチング特性を安定させることができる。また、載置電極の表面変化に伴う試料温度の経時変化を抑制し、長期に渡って安定したエッチング特性を得ることができる。   As described above, according to the present embodiment, the temperature of the sample is kept constant by controlling the temperature of the mounting electrode based on the flow rate of the cooling gas supplied between the sample and the mounting electrode. Etching characteristics can be stabilized over a long period of time. In addition, it is possible to suppress a change in the sample temperature with time due to a change in the surface of the mounting electrode, and to obtain etching characteristics that are stable over a long period of time.

本発明の実施形態に係るプラズマ処理装置を説明する図である。It is a figure explaining the plasma processing apparatus which concerns on embodiment of this invention. 図1に示す試料載置電極の詳細を説明する図である。It is a figure explaining the detail of the sample mounting electrode shown in FIG. 処理時間に対する冷却ガス流量の変化を示す図である。It is a figure which shows the change of the cooling gas flow rate with respect to process time. 冷却ガスの漏れ量と試料の温度上昇の関連を説明する図である。It is a figure explaining the relationship between the leakage amount of a cooling gas, and the temperature rise of a sample. 試料の温度制御方法を説明する図である。It is a figure explaining the temperature control method of a sample.

符号の説明Explanation of symbols

101 プラズマ処理室
102a プラズマ生成用高周波電源
102b バイアス用高周波電源
103 アンテナ
104 ガス供給系
105 排気系
106 試料(試料)
107 試料載置電極
108 石英カバー
109 静電吸着電源
110 溶射膜
111 載置電極外周部
112 冷却ガス供給系
113 圧力計
114 バイアス用高周波電源
115 電極温度調節器
116 制御用コンピュータ
DESCRIPTION OF SYMBOLS 101 Plasma processing chamber 102a High frequency power supply for plasma generation 102b High frequency power supply for bias 103 Antenna 104 Gas supply system 105 Exhaust system 106 Sample (sample)
107 Sample mounting electrode 108 Quartz cover
DESCRIPTION OF SYMBOLS 109 Electrostatic adsorption power source 110 Thermal spray film 111 Placement electrode outer peripheral part 112 Cooling gas supply system 113 Pressure gauge 114 Bias high frequency power supply 115 Electrode temperature controller 116 Control computer

Claims (3)

真空処理容器と、該真空処理容器内に処理ガスを供給するガス供給手段と、前記真空処理容器内に配置されその上部に試料を載置して保持する試料載置電極と、該試料載置電極と前記試料との間隙に冷却ガスを供給する冷却ガス供給手段と、前記試料載置電極に設けた冷媒流路に温度調整された冷媒を供給する電極温度調節器を備え、前記真空処理容器内に高周波電力を供給し該真空容器内にプラズマを生成して、前記試料にプラズマ処理を施すプラズマ処理装置における試料載置電極の温度制御方法において、
予め取得しておいた、前記間隙に供給された冷却ガス流量と載置電極をプラズマクリーニングしたことによる載置電極の経時変化に伴う試料温度の初期状態に対する温度上昇との関係と、前記プラズマクリーニングしたことにより経時変化した載置電極と前記試料との間隙に供給される、該間隙での圧力を一定にするのに必要とされる冷却ガス流量をもとに試料の温度上昇値を推定し、レシピにより指定された載置電極温度から前記温度上昇値分を減じた値を載置電極の目標温度として設定し、前記冷媒流路に供給する冷媒の温度あるいは流量を調整して前記試料の温度を一定の前記載置電極の経時変化前の試料温度に保持することを特徴とする試料載置電極の温度制御方法。
A vacuum processing container; a gas supply means for supplying a processing gas into the vacuum processing container; a sample mounting electrode disposed in the vacuum processing container for mounting and holding a sample; and the sample mounting The vacuum processing container comprising: a cooling gas supply means for supplying a cooling gas to a gap between the electrode and the sample; and an electrode temperature controller for supplying a temperature-adjusted refrigerant to a refrigerant channel provided in the sample mounting electrode. In the method for controlling the temperature of the sample mounting electrode in the plasma processing apparatus for supplying a high frequency power into the plasma to generate plasma in the vacuum vessel and performing plasma processing on the sample,
The previously acquired relationship between the flow rate of the cooling gas supplied to the gap and the temperature rise relative to the initial state of the sample temperature accompanying the time-dependent change of the mounting electrode due to the plasma cleaning of the mounting electrode, and the plasma cleaning As a result, the temperature rise value of the sample is estimated based on the flow rate of the cooling gas that is supplied to the gap between the mounting electrode and the sample that has changed over time and is required to keep the pressure in the gap constant. The value obtained by subtracting the temperature increase value from the mounting electrode temperature specified by the recipe is set as the target temperature of the mounting electrode, and the temperature or flow rate of the refrigerant supplied to the refrigerant flow path is adjusted to adjust the A temperature control method for a sample mounting electrode, characterized in that the temperature is maintained at a constant sample temperature before the time-dependent change of the mounting electrode.
請求項1記載の試料載置電極の温度制御方法において、
一つの試料にプラズマ処理を施す毎に、試料載置電極上に試料を載置しない状態でプラズマクリーニング処理を施すことを特徴とする試料載置電極の温度制御方法。
In the temperature control method of the sample mounting electrode according to claim 1,
A method for controlling a temperature of a sample mounting electrode, characterized in that a plasma cleaning process is performed without placing a sample on a sample mounting electrode every time a sample is subjected to plasma processing.
真空処理容器と、該真空処理容器内に処理ガスを供給するガス供給手段と、前記真空処理容器内に配置されその上部に試料を載置して保持する試料載置電極と、該試料載置電極と前記試料との間隙に冷却ガスを供給する冷却ガス供給手段と、前記試料載置電極に設けた冷媒流路に温度調整された冷媒を供給する電極温度調節器を備え、前記真空処理容器内に高周波電力を供給し該真空容器内にプラズマを生成して、前記試料にプラズマ処理を施すプラズマ処理装置において、
処理を施した各試料毎に、前記間隙に供給した冷却ガスの流量と載置電極をプラズマクリーニングしたことによる載置電極の経時変化に伴う試料温度の初期状態に対する温度上昇との関係を格納したデータベースを備え、
前記データベースと、前記プラズマクリーニングしたことにより経時変化した載置電極と前記試料との間隙に供給される、該間隙での圧力を一定にするのに必要とされる冷却ガス流量をもとに試料の温度上昇値を推定し、レシピにより指定された載置電極温度から前記温度上昇値分を減じた値を載置電極の目標温度として設定し、前記冷媒流路に供給する冷媒の温度あるいは流量を調整して前記試料の温度を一定の前記載置電極の経時変化前の試料温度に保持することを特徴とする試料載置電極の温度制御装置。
A vacuum processing container; a gas supply means for supplying a processing gas into the vacuum processing container; a sample mounting electrode disposed in the vacuum processing container for mounting and holding a sample; and the sample mounting The vacuum processing container comprising: a cooling gas supply means for supplying a cooling gas to a gap between the electrode and the sample; and an electrode temperature controller for supplying a temperature-adjusted refrigerant to a refrigerant channel provided in the sample mounting electrode. In a plasma processing apparatus for supplying a high-frequency power into the plasma to generate plasma in the vacuum vessel and subjecting the sample to plasma processing,
For each processed sample, the relationship between the flow rate of the cooling gas supplied to the gap and the temperature rise relative to the initial state of the sample temperature due to the time-dependent change of the mounting electrode due to the plasma cleaning of the mounting electrode was stored. With a database,
The sample is supplied based on the flow rate of the cooling gas required to keep the pressure in the gap constant, which is supplied to the gap between the database and the mounting electrode that has changed with time due to the plasma cleaning and the sample. The temperature or flow rate of the refrigerant supplied to the refrigerant flow path is set as a target electrode temperature set by subtracting the temperature increase value from the mounting electrode temperature specified by the recipe. The temperature of the sample is kept at the sample temperature before the time-dependent change of the placement electrode by adjusting the temperature of the sample placement electrode.
JP2005265639A 2005-09-13 2005-09-13 Temperature control method and temperature control apparatus for sample mounting electrode Expired - Fee Related JP4690837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265639A JP4690837B2 (en) 2005-09-13 2005-09-13 Temperature control method and temperature control apparatus for sample mounting electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265639A JP4690837B2 (en) 2005-09-13 2005-09-13 Temperature control method and temperature control apparatus for sample mounting electrode

Publications (2)

Publication Number Publication Date
JP2007081052A JP2007081052A (en) 2007-03-29
JP4690837B2 true JP4690837B2 (en) 2011-06-01

Family

ID=37941044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265639A Expired - Fee Related JP4690837B2 (en) 2005-09-13 2005-09-13 Temperature control method and temperature control apparatus for sample mounting electrode

Country Status (1)

Country Link
JP (1) JP4690837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854010B (en) * 2018-08-20 2022-07-22 北京北方华创微电子装备有限公司 Method and device for cooling wafer and semiconductor processing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358121A (en) * 2000-04-11 2001-12-26 Applied Materials Inc Correction for wafer temperature drift in plasma reactor based on continuous wafer temperature measurement using in-situ wafer temperature optical probe
JP2005191561A (en) * 2003-12-05 2005-07-14 Tokyo Electron Ltd Electrostatic chuck

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135753A (en) * 1988-11-16 1990-05-24 Sumitomo Metal Ind Ltd Sample holding device
JPH11260803A (en) * 1998-03-13 1999-09-24 Hitachi Ltd Method for controlling wafer temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358121A (en) * 2000-04-11 2001-12-26 Applied Materials Inc Correction for wafer temperature drift in plasma reactor based on continuous wafer temperature measurement using in-situ wafer temperature optical probe
JP2005191561A (en) * 2003-12-05 2005-07-14 Tokyo Electron Ltd Electrostatic chuck

Also Published As

Publication number Publication date
JP2007081052A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US10921773B2 (en) Temperature control method
JP3257328B2 (en) Plasma processing apparatus and plasma processing method
US10103011B2 (en) Plasma processing method and plasma processing apparatus
US9039909B2 (en) Plasma etching method, semiconductor device manufacturing method and computer-readable storage medium
US9087676B2 (en) Plasma processing method and plasma processing apparatus
US20100122774A1 (en) Substrate mounting table and substrate processing apparatus having same
JP4642550B2 (en) Substrate mounting table, substrate processing apparatus, and substrate temperature control method
JP2006351887A (en) Plasma processing device
JP2010045200A (en) Focus ring, and plasma processing apparatus and method
JP7202972B2 (en) PLASMA PROCESSING APPARATUS, PLASMA STATE DETECTION METHOD AND PLASMA STATE DETECTION PROGRAM
US10964513B2 (en) Plasma processing apparatus
US20200176228A1 (en) Plasma processing apparatus, calculation method, and calculation program
KR101898079B1 (en) Plasma processing apparatus
TW202015126A (en) Plasma processing apparatus and electrostatic attraction method
US20180122620A1 (en) Plasma processing apparatus
JP2020057696A5 (en)
US10714355B2 (en) Plasma etching method and plasma etching apparatus
JP4690837B2 (en) Temperature control method and temperature control apparatus for sample mounting electrode
US11705309B2 (en) Substrate processing method
US20110024040A1 (en) Deposit protection cover and plasma processing apparatus
TW202123779A (en) Plasma processing apparatus
JP2004259826A (en) Plasma processing system
JP3534716B2 (en) Plasma processing method
US11705346B2 (en) Substrate processing apparatus
JP3534660B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees