JPH11260803A - Method for controlling wafer temperature - Google Patents

Method for controlling wafer temperature

Info

Publication number
JPH11260803A
JPH11260803A JP6252598A JP6252598A JPH11260803A JP H11260803 A JPH11260803 A JP H11260803A JP 6252598 A JP6252598 A JP 6252598A JP 6252598 A JP6252598 A JP 6252598A JP H11260803 A JPH11260803 A JP H11260803A
Authority
JP
Japan
Prior art keywords
wafer
temperature
electrode
distribution
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6252598A
Other languages
Japanese (ja)
Inventor
Keisuke Matsumoto
圭介 松本
Yoichi Ito
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASADO KIKAI KOGYO KK
Hitachi Ltd
Original Assignee
KASADO KIKAI KOGYO KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASADO KIKAI KOGYO KK, Hitachi Ltd filed Critical KASADO KIKAI KOGYO KK
Priority to JP6252598A priority Critical patent/JPH11260803A/en
Publication of JPH11260803A publication Critical patent/JPH11260803A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the temperature of a wafer processed by a plasma processor to an arbitrary distribution with good reproducibility. SOLUTION: An inner refrigerant flow passage 23 and an outer refrigerant flow passage 24, which are separated, are formed in an electrostatic checking electrode 13, on which a wafer 1 in the middle a processing is installed. Refrigerants whose temperatures are adjusted to be different are respectively circulated by circulators 25 and 26, and by having distribution generated in an electrode temperature, wafer temperature distribution is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ等により処
理されるウェハの温度を任意の分布に制御するのに好適
なウェハ温度の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a wafer temperature suitable for controlling the temperature of a wafer processed by plasma or the like to an arbitrary distribution.

【0002】[0002]

【従来の技術】従来技術としては、特開平7ー2495
86記載のように、ウェハを電極上に静電吸着した後、
ウェハ裏面にそれぞれ圧力の異なる冷却ガスを導入して
ウェハ温度分布を制御することが提案されている。
2. Description of the Related Art The prior art is disclosed in Japanese Patent Application Laid-Open No. Hei 7-2495.
86, after electrostatically adsorbing the wafer on the electrode,
It has been proposed to control the wafer temperature distribution by introducing cooling gases having different pressures to the back surface of the wafer.

【0003】[0003]

【発明が解決しようとする課題】前記、従来技術をエッ
チング処理されるウェハを載置する電極に適用すること
を考えると次のような解決すべき課題がある。ウェハ裏
面のガス圧力を一定に制御してもウェハと電極間のガス
の洩れ量によってウェハ裏面のガス圧力の分布が異な
り、ウェハ温度分布を再現性良く制御することが困難で
あった。
Considering the application of the prior art to an electrode on which a wafer to be etched is placed, there are the following problems to be solved. Even if the gas pressure on the back surface of the wafer is controlled to be constant, the distribution of the gas pressure on the back surface of the wafer varies depending on the amount of gas leakage between the wafer and the electrodes, and it has been difficult to control the wafer temperature distribution with good reproducibility.

【0004】本発明の目的は、ウェハ温度を再現性良く
任意の分布に制御できる方法を提供することにある。
An object of the present invention is to provide a method capable of controlling a wafer temperature to an arbitrary distribution with high reproducibility.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、ウェハを載置する電極内に互いに隔離された複数の
冷媒流路を設け、各流路にそれぞれ異なる温度に温調さ
れた冷媒を循環して電極温度を温調することにより分布
を生じさせる。そして、この電極上に処理されるウェハ
を静電吸着により支持することにより達成される。さら
に、ウェハ裏面に冷却ガスを導入しながら実施すること
によりウェハと電極間の熱通過率を大きくでき、さらに
再現性を向上することが可能である。
In order to achieve the above-mentioned object, a plurality of coolant channels which are separated from each other are provided in an electrode on which a wafer is mounted, and a coolant whose temperature is controlled to a different temperature in each channel. To generate a distribution by controlling the electrode temperature. This is achieved by supporting the wafer to be processed on this electrode by electrostatic attraction. Further, by performing the process while introducing a cooling gas to the back surface of the wafer, the heat transmittance between the wafer and the electrode can be increased, and the reproducibility can be further improved.

【0006】エッチング処理されるウェハの温度は、電
極温度とウェハと電極間の熱通過率とウェハへのプラズ
マからの入熱量により決まる。電極温度の一定温度への
制御は、比較的容易であるがウェハと電極間の熱通過率
は、静電吸着力、冷却ガスの裏面圧力に大きく左右さ
れ、再現性良く制御することは難しい。したがって、従
来技術のように裏面圧力によりウェハ温度分布を制御す
るより、電極温度を制御した方がウェハ温度分布の再現
性は良いと考えられる。
The temperature of the wafer to be etched is determined by the electrode temperature, the heat transfer rate between the wafer and the electrode, and the amount of heat input from the plasma to the wafer. It is relatively easy to control the electrode temperature to a constant temperature, but the heat transfer rate between the wafer and the electrode largely depends on the electrostatic attraction force and the back pressure of the cooling gas, and it is difficult to control with good reproducibility. Therefore, it is considered that the reproducibility of the wafer temperature distribution is better when the electrode temperature is controlled than when the wafer temperature distribution is controlled by the back surface pressure as in the related art.

【0007】[0007]

【発明の実施の形態】以下、本発明を適用したいわゆる
有磁場マイクロ波エッチング装置の実施例の構成を図1
により説明する。ウェハ1のエッチングは、石英等のマ
イクロ波2を透過する材料で構成される放電管3内に所
定の流量導入したプロセスガス4をマイクロ波2とソレ
ノイドコイル5による磁場の相互作用によりプラズマ6
化し、さらに真空処理室を形成するチャンバ7に取付け
られた下部電極8に高周波電源9により高周波電力を印
加してウェハ1に入射するイオンのエネルギーを制御し
ながら行っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a configuration of an embodiment of a so-called magnetic field microwave etching apparatus to which the present invention is applied.
This will be described below. The etching of the wafer 1 is performed by using a process gas 4 introduced at a predetermined flow rate into a discharge tube 3 made of a material such as quartz that transmits the microwave 2.
Further, high frequency power is applied by a high frequency power supply 9 to a lower electrode 8 attached to a chamber 7 forming a vacuum processing chamber, thereby controlling the energy of ions incident on the wafer 1.

【0008】また、下部電極8上には導体でかつ熱伝導
率の小さい材料、この場合SUSで形成された電極1
0、Al23より成る絶縁膜11、及びこれらを接合す
るろう材12から構成される静電吸着電極13が固定さ
れている。さらに、下部電極8にはコイルとコンデンサ
からなるローパスフィルタ14を介して直流電源15が
接続されている。そして、エッチング処理開始時にウェ
ハ1を吸着する時には、プラズマ6を生成した状態でス
イッチ16を端子17と接続することにより静電吸着電
極13へ直流電圧を印加し、エッチング処理終了後ウェ
ハ1を解放する時には、プラズマ6を生成した状態で端
子18と接続して抵抗19を介して静電吸着電極13を
接地する。
On the lower electrode 8, a conductor and a material having a low thermal conductivity, in this case, an electrode 1 made of SUS, is used.
0, Al 2 O 3 than consisting insulating film 11, and the electrostatic chucking electrode 13 composed of the brazing material 12 for joining them have been fixed. Further, a DC power supply 15 is connected to the lower electrode 8 via a low-pass filter 14 including a coil and a capacitor. When the wafer 1 is sucked at the start of the etching process, a DC voltage is applied to the electrostatic attraction electrode 13 by connecting the switch 16 to the terminal 17 while the plasma 6 is generated, and the wafer 1 is released after the etching process is completed. At this time, the electrostatic attraction electrode 13 is grounded via the resistor 19 by connecting to the terminal 18 while the plasma 6 is generated.

【0009】一方、エッチングされるウェハ1の冷却
は、静電吸着電極13に前述した方法によりウェハ1を
支持した状態で、圧力計20により検出されるウェハ1
裏面の圧力が一定置になるようにマスフローコントロー
ラ21によりHeガス22の流量を制御する。また、静
電吸着電極13には、それぞれ隔離された内側冷媒流路
23、外側冷媒流路24が形成されており、それぞれサ
ーキュレータ25、26により温調された各冷媒を内側
冷媒ライン27、外側冷媒ライン28により循環するこ
とにより温調されている。
On the other hand, the wafer 1 to be etched is cooled while the wafer 1 is detected by the pressure gauge 20 while the wafer 1 is supported on the electrostatic attraction electrode 13 by the method described above.
The flow rate of the He gas 22 is controlled by the mass flow controller 21 so that the pressure on the back surface is kept constant. The electrostatic adsorption electrode 13 has an inner refrigerant flow path 23 and an outer refrigerant flow path 24 which are isolated from each other. The refrigerant whose temperature is controlled by circulators 25 and 26 is supplied to the inner refrigerant line 27 and the outer refrigerant flow path 24, respectively. The temperature is controlled by circulating through the refrigerant line 28.

【0010】次に、静電吸着電極13の表面形状につい
て図2により説明する。絶縁膜11表面には複数のリン
グ状のガス溝29と複数の放射状のガス溝30が設けて
あり、ウェハ1と絶縁膜11間をHeガス22が流れる
際に生じる圧力損失を低減してウェハ1裏面の圧力の均
一化を図っている。
Next, the surface shape of the electrostatic attraction electrode 13 will be described with reference to FIG. A plurality of ring-shaped gas grooves 29 and a plurality of radial gas grooves 30 are provided on the surface of the insulating film 11 to reduce the pressure loss generated when the He gas 22 flows between the wafer 1 and the insulating film 11 to reduce the wafer pressure. The pressure on the back side is made uniform.

【0011】次に、本発明の実施例についてウェハ温度
分布の制御性について検討した結果を図3に示す。な
お、エッチング条件は、通常のAl配線膜のエッチング
条件であるマイクロ波電力1000W、ソレノイドコイ
ル電流18/18A、処理圧力1Pa、プロセスガス流
量200ccm、Rf電力100W、静電吸着電圧−4
00V、ウェハ1裏面圧力1Kpaとし、ウェハ温度
は、ウェハ1表面にサーモテープを貼り付けて測定し
た。
Next, FIG. 3 shows the results of a study on the controllability of the wafer temperature distribution in the embodiment of the present invention. The etching conditions were the ordinary etching conditions for an Al wiring film: microwave power 1000 W, solenoid coil current 18/18 A, processing pressure 1 Pa, process gas flow rate 200 ccm, Rf power 100 W, electrostatic adsorption voltage −4.
The temperature of the wafer 1 was measured by attaching a thermo tape to the front surface of the wafer 1.

【0012】内側冷媒ライン27を循環する冷媒の温度
を20℃一定として静電吸着電極13内を循環しながら
外側冷媒ライン28を循環する冷媒の温度20℃から0
℃に低下することにより周辺が高いウェハ1の温度分布
を中央が高い温度分布に再現性良く制御できることが確
認できた。
The temperature of the refrigerant circulating in the inner refrigerant line 27 is kept constant at 20 ° C. and the temperature of the refrigerant circulating in the outer refrigerant line 28 while circulating in the electrostatic adsorption electrode 13 is reduced from 20 ° C. to 0 ° C.
It has been confirmed that the temperature distribution of the wafer 1 having a high periphery can be controlled to a high temperature distribution at the center with good reproducibility by lowering the temperature to ° C.

【0013】[0013]

【発明の効果】本発明によれば、ウェハ温度を再現性良
く任意の分布に制御できる方法を提供することができ
る。
According to the present invention, it is possible to provide a method capable of controlling the wafer temperature to an arbitrary distribution with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を適用したエッチング装置の
全体構成を示した図である。
FIG. 1 is a diagram showing an overall configuration of an etching apparatus to which an embodiment of the present invention is applied.

【図2】本発明の一実施例を適用した静電吸着電極の表
面形状を示した図である。
FIG. 2 is a diagram showing a surface shape of an electrostatic attraction electrode to which one embodiment of the present invention is applied.

【図3】本発明のウェハ温度分布の制御性を示した図で
ある。
FIG. 3 is a diagram showing controllability of a wafer temperature distribution according to the present invention.

【符号の説明】[Explanation of symbols]

13−−−静電吸着電極、23−−−内側冷媒流路、2
4−−−外側冷媒流路、25、26−−−サーキュレー
タ、27−−−内側冷媒ライン、28−−−外側冷媒ラ
イン
13 --- electrostatic adsorption electrode, 23 --- inner refrigerant flow path, 2
4 ---- outside refrigerant flow path, 25, 26 --- circulator, 27 --- inside refrigerant line, 28 --- outside refrigerant line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電極上に静電吸着されたウェハをプロセス
ガスをプラズマ化して処理するプラズマ処理装置におけ
るウェハ温度の制御方法において、 前記電極内に互いに隔離された複数の冷媒流路を形成す
るとともに、当該各流路に温度の異なる冷媒を循環する
ことを特徴とするウェハ温度の制御方法。
1. A method for controlling a wafer temperature in a plasma processing apparatus for processing a wafer electrostatically adsorbed on an electrode by converting a process gas into plasma, wherein a plurality of refrigerant channels isolated from each other are formed in the electrode. And circulating a coolant having a different temperature in each of the flow paths.
【請求項2】ウェハ裏面に冷却ガスを導入することを特
徴とする請求項1項記載のウェハ温度の制御方法。
2. The method according to claim 1, wherein a cooling gas is introduced into the back surface of the wafer.
JP6252598A 1998-03-13 1998-03-13 Method for controlling wafer temperature Pending JPH11260803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252598A JPH11260803A (en) 1998-03-13 1998-03-13 Method for controlling wafer temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252598A JPH11260803A (en) 1998-03-13 1998-03-13 Method for controlling wafer temperature

Publications (1)

Publication Number Publication Date
JPH11260803A true JPH11260803A (en) 1999-09-24

Family

ID=13202701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252598A Pending JPH11260803A (en) 1998-03-13 1998-03-13 Method for controlling wafer temperature

Country Status (1)

Country Link
JP (1) JPH11260803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243380A (en) * 2003-02-19 2003-08-29 Hitachi Ltd Plasma treatment apparatus
JP2007081052A (en) * 2005-09-13 2007-03-29 Hitachi High-Technologies Corp Plasma treatment method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243380A (en) * 2003-02-19 2003-08-29 Hitachi Ltd Plasma treatment apparatus
JP2007081052A (en) * 2005-09-13 2007-03-29 Hitachi High-Technologies Corp Plasma treatment method and apparatus

Similar Documents

Publication Publication Date Title
JP4833859B2 (en) Substrate holder having fluid gap and method of manufacturing the substrate holder
TWI618454B (en) Temperature control method for chamber components of plasma processing device, chamber components and substrate mounting table, and plasma processing device provided therewith
JP4151749B2 (en) Plasma processing apparatus and method
KR101840231B1 (en) Plasma processing apparatus
US20060291132A1 (en) Electrostatic chuck, wafer processing apparatus and plasma processing method
JP3817414B2 (en) Sample stage unit and plasma processing apparatus
JPH07130830A (en) Semiconductor manufacturing appartatus
JP2000216140A (en) Wafer stage and wafer treating apparatus
JP2003158120A (en) Surface treatment device
JP2007507104A (en) Method and apparatus for efficient temperature control using communication space
JPH08191059A (en) Plasma treating device
JPH09289201A (en) Plasma treating apparatus
JP3714248B2 (en) Processing apparatus and processing method
CN110519905B (en) Temperature control device and plasma equipment
JPH11260803A (en) Method for controlling wafer temperature
JP2010010231A (en) Plasma treatment device
JP2000232098A (en) Control method for sample temperature and vacuum process device
JP2004273619A (en) Test piece setting device for vacuum processing apparatus
JPH05234944A (en) Wafer temperature control method and equipment
JP2630118B2 (en) Vacuum processing method and device
JP3269781B2 (en) Vacuum processing method and device
JPS61238985A (en) Parallel flat plate type plasma etching device
JP2004259826A (en) Plasma processing system
KR20020041732A (en) Focus-ring, substrate processing device and substrate processing method
JP2001156042A (en) Plasma processing apparatus