JP4690558B2 - Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method - Google Patents

Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method Download PDF

Info

Publication number
JP4690558B2
JP4690558B2 JP2001012228A JP2001012228A JP4690558B2 JP 4690558 B2 JP4690558 B2 JP 4690558B2 JP 2001012228 A JP2001012228 A JP 2001012228A JP 2001012228 A JP2001012228 A JP 2001012228A JP 4690558 B2 JP4690558 B2 JP 4690558B2
Authority
JP
Japan
Prior art keywords
layer
plating
steel sheet
positive electrode
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012228A
Other languages
Japanese (ja)
Other versions
JP2002212778A (en
Inventor
清和 石塚
輝昭 山田
通博 濃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001012228A priority Critical patent/JP4690558B2/en
Publication of JP2002212778A publication Critical patent/JP2002212778A/en
Application granted granted Critical
Publication of JP4690558B2 publication Critical patent/JP4690558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリマンガン電池の正極缶に用いられるメッキ鋼板に関し、更に詳しくは、アルカリマンガン電池の電池特性および耐食性を改善しうる、Niメッキ鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
一般にアルカリマンガン電池では、正極物質、負極物質、電解液等を内填し、かつ自身が正極の端子を兼ねる容器(正極缶)用の素材として、Niメッキされた鋼板が使用される。従来Niメッキは、缶に加工した後のいわゆるバレルメッキによって行われてきたが、缶内面へのNiメッキの付着が十分ではなく品質上の不安定性の問題があることから、先メッキ鋼板を缶に加工する方法に置き換わりつつある。先メッキ鋼板の場合、Niメッキ層が硬く延展性に乏しいことから、プレス加工性に劣り、また加工時にメッキが剥離して耐食性が劣化しやすい等の問題があった。この問題に対し、Niメッキ後熱処理することでメッキと地鉄の界面にFe−Ni拡散層を形成して密着性を向上させると同時に、Niを再結晶、軟質化してメッキ層の延展性を向上させる方法が知られており、プレス加工性や耐食性は大幅に改善される。
【0003】
ところで、アルカリマンガン電池において、高容量化を達成するためには、正極合剤中の二酸化マンガン含有率を増加させる必要があり、二酸化マンガン自身は導電性が低いことから接触抵抗の増大を招いている。この対策として正極缶の内面に導電性皮膜を形成させることが行われているが、このようなアルカリマンガン電池は初期の接触抵抗は低いものの、高温で長期間保存すると急激に接触抵抗が増大し、電池特性が悪化するという問題がある。
【0004】
前述の電池特性について、鋼板素材側からの改善方法に言及したものとして、以下のような先行例を上げることが出来る。 特開平5−21044号公報では、DI絞り加工用の素材として、加工の際にNiメッキ層に割れを生じるような硬質なメッキを施すことが有効であって、この加工の際に生じたメッキ層の割れが正極物質との接触面積を増大し、電池特性も改善されるとしている。硬質なメッキとしては、有機添加物を含んだNiメッキや、またFe−Ni拡散層を介して前記メッキを施したもの等種々が例示されている。特開平7−122246、特開平7−300695号公報、WO95/11527等では、正極缶内面に相当する面の最表層に非常に硬質なNi−Sn合金メッキ層(例えばNi3Sn、Ni3Sn2、Ni3Sn4等)を形成することで、プレス加工の際にメッキ層に割れを形成し、正極物質との接触を確保するすることが開示されている。また、特開平8−138636号公報においては、鋼板にSnとNiをこの順で二重にメッキし、更に熱処理で合金化したメッキ層を正極缶内面に持ってくることで、プレス加工の際にNiを主体とするメッキ上層とSnを含んだメッキ下層との伸びの差から表面に割れが生じ、これによって正極物質との接触面積が増加し電池特性が改善されることが開示されている。特開平9−306439号公報では、メッキ硬度に違いを持たせたNi合金メッキを、缶内面になる面の硬度が高くなるように施し、プレス加工の際に缶内面の粗度を増加させて正極物質との密着を改善することが開示されている。合金メッキで硬度に差を持たせる方法としては、Niとの合金金属種類、量、また有機添加物量を相違させることが例示されている。特開平10−172521、特開平10−152522号公報では、正極缶内面になる面に、Ni−Co合金メッキ、またはNiメッキを介してNi−Co合金メッキを施すことが開示されている。Ni−Co合金メッキが非常に硬いため、プレス加工の際に非常に細かい割れを発生し、非常に細かい凹凸が形成されて正極物質との接触が改善され、性能を改善できるとしている。特開平11−102671号公報においては、正極缶内面になる面に、Niメッキを介してNi−Ag合金メッキまたはNi−Cr合金メッキを施すことが開示されている。Ni−Ag合金メッキ、Ni−Cr合金メッキとも非常に硬いため、プレス加工の際に非常に細かい割れを発生し、非常に細かい凹凸が形成されて正極物質との接触が改善され、性能を改善できるとしている。特開平11−329377、11−329378号公報では、先のNi−Sn系合金メッキの弱点である耐アルカリ性の改善により電池性能のいっそうの改善を目的として、それぞれNi−Bi合金メッキ、Ni−In合金メッキを利用することが開示されている。
【0005】
以上述べた各種従来技術は、プレス加工によって缶内面に微小な凹凸を形成させることを意図したものであり、このための鋼板としては、プレス加工時にメッキ層に割れが生じるような硬質なメッキを施したものが主に採用されている。しかしながら、このようなプレス加工の際にメッキ層に割れを形成する、という考えでは、プレス加工条件のバラツキによってメッキ層の割れ状況がバラツキ、安定した電池特性を得難いという問題が発生する。
【0006】
【発明が解決しようとする課題】
本発明では、以上の問題点を回避しつつ、電池特性が良好なメッキ鋼板を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の要旨は、アルカリマンガン電池正極缶用のメッキ鋼板であって、缶内面になる面に第1層としてFe−Ni拡散層を有し、第2層として不連続Niメッキ層を有することを特徴とする電池特性の優れたNiメッキ鋼板である。第1層のFe−Ni拡散層の付着量は、Niで0.1〜18g/m2、第2層の不連続Niメッキ層の付着量はNiで0.1〜9g/m2 (ただし1.78g/m 2 以上を除く。)ある。缶外面になる面には、第1層としてFe−Ni拡散層を有し、第2層として再結晶軟質化されたNiメッキ層を有することが望ましく、更に第3層として光沢Niメッキ層を有することも好適である。前記Niメッキ鋼板の製造方法としては、鋼板の両面に差厚のNiメッキを施し、熱拡散処理によって、一方の面(アルカリマンガン電池正極缶の内面になる面)はNiメッキ層の全てをFe−Ni拡散層とし、他方の面は、Niメッキ層の一部をFe−Ni拡散層とし、更に少なくとも一方の面(アルカリマンガン電池正極缶の内面になる面)に無光沢メッキ浴によって0.1〜9g/m2 (ただし1.78g/m 2 以上を除く。)の付着量の不連続Niメッキを施すことを特徴とするものである。
【0008】
【発明の実施の形態】
まず本発明における、アルカリマンガン電池正極缶内面に相当する面の構成要件について説明する。内面になる面には、第1層としてFe−Ni拡散層を有し、第2層として不連続Niメッキ層を有することが必要である。第1層のFe−Ni拡散層の付着量は、Niで0.1〜18g/m2であることが望ましく、前記付着量のNiメッキを施した後、熱拡散処理によりNiメッキ層の全てをFe−Ni拡散層とするものである。ここでのNiメッキの種類、方法は何ら限定はない。Niとしての付着量が0.1未満では、第2層との密着性が不足し、電池特性や耐食性が悪化する。また、付着量が18g/m2を超えても効果が飽和し不経済であるばかりでなく、Niメッキ層の全てをFe−Ni拡散層とするために高温、長時間を必要とし、生産性の観点からも好ましくない。
【0009】
第2層の不連続Niメッキ層の付着量は、Niで0.1〜9g/m2であることが望ましく、0.1g/m2未満では電池特性の改善効果なく、また9g/m2を超えると効果が飽和して不経済であるばかりでなく、不連続なメッキ層を形成することが困難となるため好ましくない。不連続Niメッキ層とは、サブミクロン〜ミクロンオーダーの粒状のNiメッキ結晶粒が点在して存在し、第1層が部分的に露出している状態を言い、SEMによる観察によって確認することができる。更に厳密には、オージェ分光法の表面分析によって、最表層からNiのみが検出される部分(第2層に相当)とFeとNiが共存して検出される部分(露出している第1層に相当)が点在することで確認することができる。前記不連続Niメッキ層は、無光沢メッキ浴によって、Ni9g/m2程度以下の付着量となるようにメッキすれば得ることができる。この際、無光沢メッキ浴には、レベリング剤、ピンホール抑制剤等の添加剤を一切添加しないことが、不連続な状態を得るためには望ましい。
【0010】
次にアルカリマンガン電池正極缶外面に相当する面の構成要件について説明する。外面になる面には、第1層としてFe−Ni拡散層を有し、第2層として再結晶軟質化されたNiメッキ層を有することが好ましい。この状態によって、プレス加工の際のメッキのパウダリングが防止されるとともに、延展性に富む再結晶軟質化されたNiメッキ層の効果によって、加工後も良好な耐食性が確保できる。
【0011】
第1層と第2層の付着量は、Niの合計で12〜40g/m2であることが望ましく、12g/m2未満では耐食性が不足し、40g/m2を超えても効果が飽和し不経済であるため好ましくない。前記付着量のNiメッキを施した後、熱拡散処理によって、Niメッキ層の一部をFe−Ni拡散層とし、表層に再結晶軟質化されたNiメッキ層が残存するように、処理時間、温度を調節することによって形成することができる。前記状態は、GDS(グロー放電分光法)、オージェ分光分析等による表層からの深さ方向分析によって、表層からNiのみが検出され、その後NiとFeの比率が連続的に変化する領域を経て、鋼板のFeのみが検出される状態から確認することができる。
【0012】
缶外面になる面には通常光沢外観が要求されることから、圧延によって光沢を付与する方法も採用できるし、また、前述の第2層の上層に更に第3層として、光沢Niメッキを施すことも好適である。
【0013】
【実施例】
以下に実施例によって本発明を詳細に説明する。
(実施例1のサンプル調整)
板厚0.3mmのNb−Ti−Sulc鋼未焼鈍材を原板とし、脱脂、酸洗の後、無光沢ワット浴により、一方の面(缶内面に相当する面)に5g/m2のNiを、他方の面には18g/m2のNiメッキを施した。その後、無酸化雰囲気中で、790℃×20secの熱処理を行った。この条件にて、一方の面(缶内面に相当する面)は全てFe−Ni拡散層となっており、他方の面は、Fe−Ni拡散層を介してNiメッキ層が残存していることがGDSによって確認できた。更に調質圧延を行い、脱脂、酸洗の後、一方の面(缶内面に相当する面)にのみ、無光沢ワット浴により1g/m2のNiメッキを施した。
【0016】
(比較例1のサンプル調整)
板厚0.3mmのNb−Ti−Sulc鋼未焼鈍材を原板とし、脱脂、酸洗の後、無光沢ワット浴により、両面に18g/m2のNiメッキを施した。その後、無酸化雰囲気中で、790℃×20secの熱処理を行った。この条件にて、両方の面がFe−Ni拡散層を介してNiメッキ層が残存していることがGDSによって確認できた。更に調質圧延を行い、脱脂、酸洗の後、一方の面(缶内面に相当する面)にのみ、無光沢ワット浴により3g/m2のNiメッキを施した。
【0017】
(比較例2のサンプル調整)
板厚0.3mmのNb−Ti−Sulc鋼未焼鈍材を原板とし、脱脂、酸洗の後、無光沢ワット浴により、一方の面(缶内面に相当する面)に5g/m2のNiを、他方の面には18g/m2のNiメッキを施した。その後、無酸化雰囲気中で、790℃×20secの熱処理を行った。この条件にて、一方の面(缶内面に相当する面)は全てFe−Ni拡散層となっており、他方の面は、Fe−Ni拡散層を介してNiメッキ層が残存していることがGDSによって確認できた。更に調質圧延を行い、脱脂、酸洗の後、一方の面(缶内面に相当する面)にのみ、無光沢ワット浴により10g/m2のNiメッキを施した。この条件では、SEM観察で、2回目のNiメッキは点在せず連続であることが確認された。
【0018】
(電池性能評価方法)
前記鋼板サンプルをプレス加工した正極缶を用い、通常のLR6型アルカリマンガン電池を製造し、60℃70%RHで40日間貯蔵した。1kHzの交流抵抗計で内部抵抗を計測した。内部抵抗が120mΩ以下を◎、121〜150mΩを○、151〜200mΩを△、201mΩ〜を×、と評価した。
【0019】
(缶内面耐食性評価方法)
前記鋼板サンプルをプレス加工した正極缶を脱脂し、端面を蜜鑞シールした後、60℃×90%RH雰囲気下に3日間放置した。その後内面をルーペ(×10)で子細に観察し錆発生有無を観察した。錆なしを「○」、錆ありを「×」とした。
【0020】
(缶外面耐食性評価方法)
耐食性;前記鋼板サンプルをプレス加工した正極缶を脱脂し、端面を蜜鑞シールした後、正極凸端子部外面を上に向けて、塩水噴霧(JIS−Z−2371準拠)試験機に投入した。3時間試験を行った後取り出し水洗乾燥して、赤錆発生有無を観察した。錆なしを「○」、錆ありを「×」とした。
【0021】
表1に示すように、本発明の実施例では良好な特性が得られた。比較例1は、缶内面側の不連続Niメッキ層とFe−Ni拡散層との間にNiメッキ層が形成されたため、比較例2は缶内面側の表層に連続Niメッキ層が形成されたため、いずれも電池性能の改善が得られなかった。
【0022】
【表1】

Figure 0004690558
【0023】
【発明の効果】
本発明は、アルカリマンガン電池正極缶用のメッキ鋼板において、缶内面になる面に第1層としてFe−Ni拡散層を有し、第2層として不連続Niメッキ層を有することにより、従来の問題点を回避しつつ、電池を高温で長時間保存後においても接触抵抗が増大しない、電池特性が良好なメッキ鋼板素材を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plated steel sheet used for a positive electrode can of an alkaline manganese battery, and more particularly to a Ni-plated steel sheet that can improve battery characteristics and corrosion resistance of an alkaline manganese battery and a method for manufacturing the same.
[0002]
[Prior art]
In general, in an alkaline manganese battery, a Ni-plated steel sheet is used as a material for a container (positive electrode can) that contains a positive electrode material, a negative electrode material, an electrolytic solution, and the like and also serves as a positive electrode terminal. Conventionally, Ni plating has been carried out by so-called barrel plating after processing into a can, but since the Ni plating adheres to the inner surface of the can and is not sufficient, there is a problem of instability in quality. It is being replaced by the method of processing. In the case of a pre-plated steel sheet, since the Ni plating layer is hard and poor in spreadability, the press workability is inferior, and the plating is peeled off during processing and the corrosion resistance is liable to deteriorate. To solve this problem, heat treatment after Ni plating forms a Fe-Ni diffusion layer at the interface between the plating and the base iron to improve adhesion, and at the same time recrystallizes and softens Ni to increase the spreadability of the plating layer. Methods for improving it are known, and press workability and corrosion resistance are greatly improved.
[0003]
By the way, in order to achieve high capacity in an alkaline manganese battery, it is necessary to increase the manganese dioxide content in the positive electrode mixture, and manganese dioxide itself has low conductivity, leading to an increase in contact resistance. Yes. As a countermeasure, a conductive film is formed on the inner surface of the positive electrode can. Although such an alkaline manganese battery has a low initial contact resistance, the contact resistance suddenly increases when stored at a high temperature for a long time. There is a problem that the battery characteristics deteriorate.
[0004]
Regarding the battery characteristics described above, the following prior examples can be given as referring to the improvement method from the steel sheet material side. In Japanese Patent Application Laid-Open No. 5-21044, it is effective to apply a hard plating that causes cracks in the Ni plating layer during processing as a material for DI drawing processing. It is said that the crack of the layer increases the contact area with the positive electrode material, and the battery characteristics are also improved. Examples of the hard plating include various types such as Ni plating containing an organic additive and those plated through an Fe—Ni diffusion layer. In JP-A-7-122246, JP-A-7-300695, WO95 / 11527, etc., a very hard Ni—Sn alloy plating layer (for example, Ni 3 Sn, Ni 3 Sn) is used as the outermost layer corresponding to the inner surface of the positive electrode can. 2 , Ni 3 Sn 4, etc.) to form a crack in the plating layer during press working to ensure contact with the positive electrode material. In JP-A-8-138636, a steel plate is plated with Sn and Ni in this order, and a plated layer alloyed by heat treatment is brought to the inner surface of the positive electrode can so that it can be pressed. It is disclosed that cracks occur on the surface due to the difference in elongation between the upper plating layer mainly composed of Ni and the lower plating layer containing Sn, thereby increasing the contact area with the positive electrode material and improving the battery characteristics. . In JP-A-9-306439, Ni alloy plating with different plating hardness is applied so that the hardness of the surface that becomes the inner surface of the can is increased, and the roughness of the inner surface of the can is increased during press working. It is disclosed to improve the adhesion with the positive electrode material. As a method of giving a difference in hardness by alloy plating, it is exemplified that the kind and amount of alloy metal with Ni and the amount of organic additive are different. Japanese Patent Application Laid-Open Nos. 10-172521 and 10-152522 disclose that Ni—Co alloy plating or Ni—Co alloy plating is applied to the inner surface of the positive electrode can via Ni plating. Since the Ni—Co alloy plating is very hard, very fine cracks are generated during pressing, and very fine irregularities are formed to improve the contact with the positive electrode material, thereby improving the performance. Japanese Patent Application Laid-Open No. 11-102671 discloses that Ni—Ag alloy plating or Ni—Cr alloy plating is applied to the inner surface of the positive electrode can via Ni plating. Since both Ni-Ag alloy plating and Ni-Cr alloy plating are very hard, very fine cracks are generated during press processing, very fine irregularities are formed, and contact with the positive electrode material is improved, improving performance. I can do it. In Japanese Patent Application Laid-Open Nos. 11-329377 and 11-329378, in order to further improve battery performance by improving alkali resistance, which is a weak point of the previous Ni—Sn alloy plating, Ni—Bi alloy plating and Ni—In, respectively. The use of alloy plating is disclosed.
[0005]
The various conventional technologies described above are intended to form minute irregularities on the inner surface of the can by pressing, and the steel plate for this purpose is made of hard plating that causes cracks in the plating layer during pressing. The ones that have been applied are mainly adopted. However, the idea that cracks are formed in the plated layer during such press working causes the problem that the cracked state of the plated layer varies due to variations in press working conditions and it is difficult to obtain stable battery characteristics.
[0006]
[Problems to be solved by the invention]
It is an object of the present invention to provide a plated steel sheet having good battery characteristics while avoiding the above problems.
[0007]
[Means for Solving the Problems]
The gist of the present invention is a plated steel sheet for a positive electrode can of an alkaline manganese battery, having a Fe—Ni diffusion layer as a first layer on a surface which becomes an inner surface of the can, and a discontinuous Ni plating layer as a second layer. This is a Ni-plated steel sheet having excellent battery characteristics. The adhesion amount of the first layer Fe—Ni diffusion layer is 0.1 to 18 g / m 2 in Ni, and the adhesion amount of the discontinuous Ni plating layer in the second layer is 0.1 to 9 g / m 2 (provided that 1.78 g / m 2 or more is excluded) . The outer surface of the can has an Fe—Ni diffusion layer as a first layer, and a recrystallized and softened Ni plating layer as a second layer, and a glossy Ni plating layer as a third layer. It is also suitable to have. As a method for producing the Ni-plated steel plate, Ni plating of a different thickness is applied to both surfaces of the steel plate, and one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) is formed on the Ni plating layer by Fe diffusion. -Ni diffusion layer, the other surface is a part of the Ni plating layer as a Fe-Ni diffusion layer, and at least one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) is 0. Discontinuous Ni plating with an adhesion amount of 1 to 9 g / m 2 (excluding 1.78 g / m 2 or more) is performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, the structural requirements of the surface corresponding to the inner surface of the alkaline manganese battery positive electrode can in the present invention will be described. On the inner surface, it is necessary to have a Fe—Ni diffusion layer as the first layer and a discontinuous Ni plating layer as the second layer. The adhesion amount of the Fe-Ni diffusion layer of the first layer is preferably 0.1 to 18 g / m 2 in Ni. After the Ni plating of the adhesion amount is applied, all of the Ni plating layer is subjected to thermal diffusion treatment. Is a Fe—Ni diffusion layer. The type and method of Ni plating here are not limited. When the adhesion amount as Ni is less than 0.1, the adhesion with the second layer is insufficient, and the battery characteristics and corrosion resistance are deteriorated. Moreover, even if the adhesion amount exceeds 18 g / m 2 , not only is the effect saturated and uneconomical, but also a high temperature and a long time are required to make all of the Ni plating layer a Fe—Ni diffusion layer. From the point of view, it is not preferable.
[0009]
Adhesion amount of discontinuous Ni plating layer of the second layer is desirably 0.1~9g / m 2 by Ni, no effect of improving the battery characteristics is less than 0.1 g / m 2, also 9 g / m 2 If it exceeds 1, not only is the effect saturated and uneconomical, but it becomes difficult to form a discontinuous plating layer, which is not preferable. The discontinuous Ni plating layer refers to a state where sub-micron to micron-order granular Ni plating crystal grains are scattered and the first layer is partially exposed, and is confirmed by observation with an SEM. Can do. More strictly, a portion where only Ni is detected from the outermost layer (corresponding to the second layer) and a portion where Fe and Ni are detected together (exposed first layer) by surface analysis of Auger spectroscopy. Can be confirmed by doting. The discontinuous Ni plating layer can be obtained by plating with a matte plating bath so that the adhesion amount is about 9 g / m 2 or less of Ni. At this time, in order to obtain a discontinuous state, it is desirable not to add any additives such as a leveling agent and a pinhole inhibitor to the matte plating bath.
[0010]
Next, the structural requirements of the surface corresponding to the outer surface of the alkaline manganese battery positive electrode can are described. On the outer surface, it is preferable to have a Fe—Ni diffusion layer as a first layer and a re-plated softened Ni plating layer as a second layer. In this state, the powdering of the plating during the press working is prevented, and good corrosion resistance can be secured even after the working by the effect of the recrystallized and softened Ni plating layer having a high spreadability.
[0011]
Adhesion amount of the first layer and the second layer is desirably 12~40g / m 2 in total of Ni, insufficient corrosion resistance is less than 12 g / m 2, the effect even exceed 40 g / m 2 is saturated However, it is not preferable because it is uneconomical. After performing the adhesion amount of Ni plating, by heat diffusion treatment, a part of the Ni plating layer is made into a Fe-Ni diffusion layer, and the treatment time so that the Ni plating layer recrystallized and softened remains on the surface layer, It can be formed by adjusting the temperature. The state is such that only Ni is detected from the surface layer by depth direction analysis from the surface layer by GDS (glow discharge spectroscopy), Auger spectroscopy, etc., and then the ratio of Ni and Fe continuously changes, It can confirm from the state from which only Fe of a steel plate is detected.
[0012]
Since the surface that becomes the outer surface of the can usually requires a glossy appearance, a method of imparting gloss by rolling can also be adopted, and gloss Ni plating is applied as a third layer on the second layer above. It is also suitable.
[0013]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
(Sample adjustment of Example 1)
An unannealed Nb-Ti-Sulc steel with a thickness of 0.3 mm is used as an original plate, and after degreasing and pickling, Ni is 5 g / m 2 on one surface (the surface corresponding to the inner surface of the can) by a matte watt bath. On the other side, 18 g / m 2 of Ni plating was applied. Thereafter, heat treatment was performed at 790 ° C. × 20 sec in a non-oxidizing atmosphere. Under this condition, one surface (the surface corresponding to the inner surface of the can) is all an Fe—Ni diffusion layer, and the Ni plating layer remains on the other surface through the Fe—Ni diffusion layer. Was confirmed by GDS. Further, temper rolling was performed, and after degreasing and pickling, only one surface (the surface corresponding to the inner surface of the can) was plated with 1 g / m 2 of Ni using a matte watt bath.
[0016]
(Sample adjustment of Comparative Example 1)
A non-annealed Nb-Ti-Sulc steel with a plate thickness of 0.3 mm was used as a base plate, and after degreasing and pickling, 18 g / m 2 of Ni plating was applied to both sides with a matte Watt bath. Thereafter, heat treatment was performed at 790 ° C. × 20 sec in a non-oxidizing atmosphere. Under these conditions, it was confirmed by GDS that the Ni plating layer remained on both surfaces via the Fe—Ni diffusion layer. Further, temper rolling was performed, and after degreasing and pickling, only one surface (the surface corresponding to the inner surface of the can) was plated with 3 g / m 2 of Ni using a matte watt bath.
[0017]
(Sample adjustment of Comparative Example 2)
An unannealed Nb-Ti-Sulc steel with a thickness of 0.3 mm is used as an original plate, and after degreasing and pickling, Ni is 5 g / m 2 on one surface (the surface corresponding to the inner surface of the can) by a matte watt bath. On the other side, 18 g / m 2 of Ni plating was applied. Thereafter, heat treatment was performed at 790 ° C. × 20 sec in a non-oxidizing atmosphere. Under this condition, one surface (the surface corresponding to the inner surface of the can) is all an Fe—Ni diffusion layer, and the Ni plating layer remains on the other surface through the Fe—Ni diffusion layer. Was confirmed by GDS. Further, temper rolling was performed, and after degreasing and pickling, only one surface (the surface corresponding to the inner surface of the can) was plated with 10 g / m 2 of Ni using a matte watt bath. Under this condition, it was confirmed by SEM observation that the second Ni plating was not scattered and was continuous.
[0018]
(Battery performance evaluation method)
A normal LR6 type alkaline manganese battery was manufactured using a positive electrode can obtained by pressing the steel plate sample, and stored at 60 ° C. and 70% RH for 40 days. The internal resistance was measured with a 1 kHz AC resistance meter. When the internal resistance was 120 mΩ or less, ◎, 121-150 mΩ were evaluated as ◯, 151-200 mΩ were evaluated as Δ, and 201 mΩ were evaluated as ×.
[0019]
(Can inner surface corrosion resistance evaluation method)
The positive electrode can obtained by pressing the steel sheet sample was degreased and the end face was sealed with honey, and then left in an atmosphere of 60 ° C. × 90% RH for 3 days. Thereafter, the inner surface was closely observed with a loupe (× 10) to observe whether rust was generated. “O” indicates no rust and “X” indicates rust.
[0020]
(Can outer surface corrosion resistance evaluation method)
Corrosion resistance: The positive electrode can obtained by pressing the steel plate sample was degreased and the end face was sealed with honey, and then the positive electrode convex terminal portion outer surface was directed upward, and the sample was put into a salt spray (JIS-Z-2371 compliant) tester. After performing the test for 3 hours, it was taken out, washed and dried, and the presence or absence of red rust was observed. “O” indicates no rust and “X” indicates rust.
[0021]
As shown in Table 1, good characteristics were obtained in the examples of the present invention. In Comparative Example 1, since the Ni plating layer was formed between the discontinuous Ni plating layer on the inner surface side of the can and the Fe—Ni diffusion layer, in Comparative Example 2, the continuous Ni plating layer was formed on the surface layer on the inner surface side of the can. In either case, no improvement in battery performance was obtained.
[0022]
[Table 1]
Figure 0004690558
[0023]
【The invention's effect】
In the plated steel sheet for an alkaline manganese battery positive electrode can, the present invention has a Fe-Ni diffusion layer as the first layer on the surface that becomes the inner surface of the can, and a discontinuous Ni plating layer as the second layer. While avoiding the problems, it is possible to provide a plated steel plate material having good battery characteristics in which contact resistance does not increase even after the battery is stored at a high temperature for a long time.

Claims (6)

アルカリマンガン電池正極缶用のメッキ鋼板であって、缶内面になる面に第1層としてFe−Ni拡散層を有し、第2層として不連続Niメッキ層を有し、第1層のFe−Ni拡散層の付着量が、Niで0.1〜18g/m 2 、第2層の不連続Niメッキ層の付着量がNiで0.1〜9g/m 2 (ただし1.78g/m 2 以上を除く。)であることを特徴とする貯蔵保存後の電池特性の優れたNiメッキ鋼板。A plated steel sheet for alkaline manganese battery positive electrode cans, comprising a Fe-Ni diffusion layer as the first layer on the surface become inner surface of the can, have a discontinuous Ni plating layer as the second layer, Fe of the first layer adhesion amount of -Ni diffusion layer, 0.1~18g / m 2 by Ni, 0.1~9g / m 2 adhesion amount of the discontinuous Ni plating layer of the second layer with Ni (provided that 1.78 g / m Ni-plated steel sheet with excellent battery characteristics after storage and storage , characterized in that 2 or more are excluded . 缶外面になる面に第1層としてFe−Ni拡散層を有し、第2層として再結晶軟質化されたNiメッキ層を有することを特徴とする請求項1に記載の貯蔵保存後の電池特性の優れたNiメッキ鋼板。2. The battery after storage and storage according to claim 1, further comprising an Fe—Ni diffusion layer as a first layer on a surface that becomes an outer surface of the can, and a Ni-plated layer that has been recrystallized and softened as a second layer. Ni-plated steel sheet with excellent characteristics . 第1層と第2層の付着量が、Niの合計で12〜40g/m2であることを特徴とする請求項に記載の貯蔵保存後の電池特性の優れたNiメッキ鋼板。The Ni-plated steel sheet having excellent battery characteristics after storage according to claim 2 , wherein the adhesion amount of the first layer and the second layer is 12 to 40 g / m 2 in total of Ni. 缶外面になる面に第1層としてFe−Ni拡散層を有し、第2層として再結晶軟質化されたNiメッキ層を有し、第3層として光沢Niメッキ層を有することを特徴とする請求項またはに記載の貯蔵保存後の電池特性の優れたNiメッキ鋼板。It has a Fe-Ni diffusion layer as a first layer on the surface that becomes the outer surface of the can, a re-softened Ni plating layer as a second layer, and a bright Ni plating layer as a third layer The Ni-plated steel sheet having excellent battery characteristics after storage and storage according to claim 2 or 3 . 鋼板の両面に差厚のNiメッキを施し、熱拡散処理によって、一方の面(アルカリマンガン電池正極缶の内面になる面)はNiメッキ層の全てをFe−Ni拡散層とし、他方の面は、Niメッキ層の一部をFe−Ni拡散層とし、更に少なくとも一方の面(アルカリマンガン電池正極缶の内面になる面)に無光沢メッキ浴によって0.1〜9g/m2 (ただし1.78g/m 2 以上を除く。)の付着量の不連続Niメッキを施すことを特徴とする請求項に記載の貯蔵保存後の電池特性の優れたNiメッキ鋼板の製造方法。Ni plating of different thickness is applied to both surfaces of the steel sheet, and one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) is made into an Fe-Ni diffusion layer on one side, and the other side In addition, a part of the Ni plating layer is a Fe—Ni diffusion layer, and further 0.1 to 9 g / m 2 (however, 1. ) in a matte plating bath on at least one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) . The method for producing a Ni-plated steel sheet having excellent battery characteristics after storage and storage according to claim 3 , wherein a discontinuous Ni plating with an adhesion amount of 78 g / m 2 or less is applied. 鋼板の両面に差厚のNiメッキを施し、熱拡散処理によって、一方の面(アルカリマンガン電池正極缶の内面になる面)はNiメッキ層の全てをFe−Ni拡散層とし、他方の面は、Niメッキ層の一部をFe−Ni拡散層とし、更に一方の面(アルカリマンガン電池正極缶の内面になる面)に無光沢メッキ浴によって0.1〜9g/m2 (ただし1.78g/m 2 以上を除く。)の付着量の不連続Niメッキを施し、他方の面には、光沢Niメッキを施すことを特徴とする、請求項に記載の貯蔵保存後の電池特性の優れたNiメッキ鋼板の製造方法。Ni plating of different thickness is applied to both surfaces of the steel sheet, and one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) is made into an Fe-Ni diffusion layer on one side, and the other side A part of the Ni plating layer is a Fe—Ni diffusion layer, and 0.1 to 9 g / m 2 (however, 1.78 g ) is applied to one surface (the surface that becomes the inner surface of the alkaline manganese battery positive electrode can) by a matte plating bath. / m excluding more subjected to discontinuous Ni coating weight of.), on the other surface, and characterized by applying bright Ni plating, excellent battery characteristics after storage storage according to claim 4 A method of manufacturing a Ni-plated steel sheet.
JP2001012228A 2001-01-19 2001-01-19 Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method Expired - Fee Related JP4690558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012228A JP4690558B2 (en) 2001-01-19 2001-01-19 Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012228A JP4690558B2 (en) 2001-01-19 2001-01-19 Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method

Publications (2)

Publication Number Publication Date
JP2002212778A JP2002212778A (en) 2002-07-31
JP4690558B2 true JP4690558B2 (en) 2011-06-01

Family

ID=18879271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012228A Expired - Fee Related JP4690558B2 (en) 2001-01-19 2001-01-19 Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method

Country Status (1)

Country Link
JP (1) JP4690558B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923145B2 (en) * 2002-04-22 2011-04-12 Toyo Kohan Co., Ltd. Surface treated steel sheet for battery case, battery case and battery using the case
JP4968877B2 (en) * 2004-12-27 2012-07-04 東洋鋼鈑株式会社 Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2012114097A (en) * 2004-12-27 2012-06-14 Toyo Kohan Co Ltd Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP2011192559A (en) * 2010-03-15 2011-09-29 Fdk Energy Co Ltd Battery can and alkaline battery
JP5418373B2 (en) * 2010-04-02 2014-02-19 新日鐵住金株式会社 Nickel-plated steel sheet for battery can and manufacturing method thereof
CN109072449B (en) * 2016-06-24 2023-07-14 杰富意钢铁株式会社 Steel plate for outer can of battery, outer can of battery and battery
CN113166966A (en) * 2018-12-27 2021-07-23 日本制铁株式会社 Nickel-plated steel sheet having excellent post-processing corrosion resistance, and method for producing nickel-plated steel sheet
WO2023210832A1 (en) * 2022-04-29 2023-11-02 東洋鋼鈑株式会社 Nickel-plated steel sheet and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166388A (en) * 1989-08-31 1991-07-18 Katayama Tokushu Kogyo Kk Ni-plated steel sheet, formed part made of same ni-plated steel sheet, and their production
JP2000026992A (en) * 1989-08-31 2000-01-25 Katayama Tokushu Kogyo Kk Ni-PLATED STEEL SHEET
JP2000192281A (en) * 1998-12-28 2000-07-11 Toyo Kohan Co Ltd Surface treated steel sheet for electric cell case, its production, electric cell case using the surface treated steel sheet and electric cell using the same
JP2000234197A (en) * 1999-02-09 2000-08-29 Nkk Corp Multilayer nickel plated steel sheet excellent in corrosion resistance
JP2002050324A (en) * 2000-08-04 2002-02-15 Toyo Kohan Co Ltd Surface treatment steel plate for battery case and battery case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166388A (en) * 1989-08-31 1991-07-18 Katayama Tokushu Kogyo Kk Ni-plated steel sheet, formed part made of same ni-plated steel sheet, and their production
JP2000026992A (en) * 1989-08-31 2000-01-25 Katayama Tokushu Kogyo Kk Ni-PLATED STEEL SHEET
JP2000192281A (en) * 1998-12-28 2000-07-11 Toyo Kohan Co Ltd Surface treated steel sheet for electric cell case, its production, electric cell case using the surface treated steel sheet and electric cell using the same
JP2000234197A (en) * 1999-02-09 2000-08-29 Nkk Corp Multilayer nickel plated steel sheet excellent in corrosion resistance
JP2002050324A (en) * 2000-08-04 2002-02-15 Toyo Kohan Co Ltd Surface treatment steel plate for battery case and battery case

Also Published As

Publication number Publication date
JP2002212778A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
KR100292173B1 (en) Surface-treated steel sheet for battery, manufacturing method thereof, battery case, and battery using the battery case
JPH062104A (en) Nickel plating steel strip with high corrosion resistance and its production
JP4690558B2 (en) Ni-plated steel sheet for alkaline manganese battery positive electrode can excellent in battery characteristics and manufacturing method
JPH01111895A (en) Cold rolled strip having nickel coating having large diffusion depth provided by electrolysis and production thereof
JP4051012B2 (en) Ni-plated steel sheet for battery cans
JP4051021B2 (en) Ni-plated steel sheet for battery cans
JP3745626B2 (en) Ni-plated steel plate for alkaline manganese battery positive electrode can
JP4216611B2 (en) Ni-plated steel sheet for battery cans
JP3854464B2 (en) Ni-plated steel plate for alkaline manganese battery positive electrode can
JP4750950B2 (en) Ni-plated steel plate for alkaline manganese battery positive electrode can
JP3940339B2 (en) Ni-plated steel sheet for alkaline battery positive electrode can and manufacturing method
JP3272866B2 (en) Surface treated steel sheet for alkaline battery case, alkaline battery case and alkaline battery
JPH0583628B2 (en)
JP3664046B2 (en) Method for producing Ni-plated steel sheet for positive electrode can of alkaline manganese battery
JP4031679B2 (en) Ni-plated steel sheet for battery can and manufacturing method thereof
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JPS6136595B2 (en)
JP3834260B2 (en) Ni-plated steel sheet for battery cans
JPH0772332B2 (en) Method for producing alloyed molten zinc plated steel sheet with excellent spot weldability
JP3704323B2 (en) Manufacturing method of Ni-plated steel sheet for battery can
JP2002212776A (en) Ni PLATED STEEL SHEET FOR POSITIVE ELECTRODE CAN OF ALKALI MANGANESE BATTERY
JP2006522869A (en) In particular, an electrolytically coated cold-rolled plate used to manufacture a battery case and a method of manufacturing the cold-rolled plate.
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JP3947444B2 (en) Manufacturing method of Ni-plated steel sheet for battery can
JP2713091B2 (en) Manufacturing method of electroplated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R151 Written notification of patent or utility model registration

Ref document number: 4690558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees