JP4689317B2 - Electrical insulating resin composition and laminate for circuit board using the same - Google Patents
Electrical insulating resin composition and laminate for circuit board using the same Download PDFInfo
- Publication number
- JP4689317B2 JP4689317B2 JP2005092923A JP2005092923A JP4689317B2 JP 4689317 B2 JP4689317 B2 JP 4689317B2 JP 2005092923 A JP2005092923 A JP 2005092923A JP 2005092923 A JP2005092923 A JP 2005092923A JP 4689317 B2 JP4689317 B2 JP 4689317B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- electrically insulating
- insulating resin
- compound
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 97
- 229910052751 metal Inorganic materials 0.000 claims description 106
- 239000002184 metal Substances 0.000 claims description 106
- 150000001875 compounds Chemical class 0.000 claims description 65
- 229920001971 elastomer Polymers 0.000 claims description 47
- 239000011888 foil Substances 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 35
- 239000011256 inorganic filler Substances 0.000 claims description 30
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 30
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 19
- 229910052740 iodine Inorganic materials 0.000 claims description 19
- 239000011630 iodine Substances 0.000 claims description 19
- 229920001577 copolymer Polymers 0.000 claims description 18
- -1 cyclic aliphatic compound Chemical class 0.000 claims description 15
- 239000007870 radical polymerization initiator Substances 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 4
- 239000003999 initiator Substances 0.000 claims description 4
- 229920005555 halobutyl Polymers 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 150000001451 organic peroxides Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 125
- 239000004020 conductor Substances 0.000 description 44
- 239000000178 monomer Substances 0.000 description 35
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 125000004122 cyclic group Chemical group 0.000 description 22
- 238000010292 electrical insulation Methods 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 239000005060 rubber Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 238000001723 curing Methods 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000011889 copper foil Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 229920005549 butyl rubber Polymers 0.000 description 12
- 239000003431 cross linking reagent Substances 0.000 description 12
- 150000001993 dienes Chemical class 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 11
- 238000009413 insulation Methods 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 8
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 8
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000003208 petroleum Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000010526 radical polymerization reaction Methods 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 5
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012777 electrically insulating material Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000010525 oxidative degradation reaction Methods 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920001195 polyisoprene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 2
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- QCXXDZUWBAHYPA-UHFFFAOYSA-N OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.O=C1NC(=O)NC(=O)N1 Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.O=C1NC(=O)NC(=O)N1 QCXXDZUWBAHYPA-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- NHLUYCJZUXOUBX-UHFFFAOYSA-N nonadec-1-ene Chemical compound CCCCCCCCCCCCCCCCCC=C NHLUYCJZUXOUBX-UHFFFAOYSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007719 peel strength test Methods 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- YHHHHJCAVQSFMJ-FNORWQNLSA-N (3e)-deca-1,3-diene Chemical compound CCCCCC\C=C\C=C YHHHHJCAVQSFMJ-FNORWQNLSA-N 0.000 description 1
- CLNYHERYALISIR-FNORWQNLSA-N (3e)-nona-1,3-diene Chemical compound CCCCC\C=C\C=C CLNYHERYALISIR-FNORWQNLSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- QTYUSOHYEPOHLV-FNORWQNLSA-N 1,3-Octadiene Chemical compound CCCC\C=C\C=C QTYUSOHYEPOHLV-FNORWQNLSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- GRWZFPFQSHTXHM-UHFFFAOYSA-N 11-methyldodec-1-ene Chemical compound CC(C)CCCCCCCCC=C GRWZFPFQSHTXHM-UHFFFAOYSA-N 0.000 description 1
- LPWUGKDQSNKUOQ-UHFFFAOYSA-N 12-ethyltetradec-1-ene Chemical compound CCC(CC)CCCCCCCCCC=C LPWUGKDQSNKUOQ-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NLSFWPFWEPGCJJ-UHFFFAOYSA-N 2-methylprop-2-enoyloxysilicon Chemical compound CC(=C)C(=O)O[Si] NLSFWPFWEPGCJJ-UHFFFAOYSA-N 0.000 description 1
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- PGSXPZMXPLNBEB-UHFFFAOYSA-N 3-ethenyldec-1-ene Chemical compound CCCCCCCC(C=C)C=C PGSXPZMXPLNBEB-UHFFFAOYSA-N 0.000 description 1
- OLGHJTHQWQKJQQ-UHFFFAOYSA-N 3-ethylhex-1-ene Chemical compound CCCC(CC)C=C OLGHJTHQWQKJQQ-UHFFFAOYSA-N 0.000 description 1
- YPVPQMCSLFDIKA-UHFFFAOYSA-N 3-ethylpent-1-ene Chemical compound CCC(CC)C=C YPVPQMCSLFDIKA-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- CQHABNAWKRJSNC-UHFFFAOYSA-N 4,4-bis(ethenyl)heptane Chemical compound C(=C)C(CCC)(CCC)C=C CQHABNAWKRJSNC-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- OPMUAJRVOWSBTP-UHFFFAOYSA-N 4-ethyl-1-hexene Chemical compound CCC(CC)CC=C OPMUAJRVOWSBTP-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- CKUITTGQMZBQAI-UHFFFAOYSA-N 5,5-bis(ethenyl)nonane Chemical compound C(=C)C(CCCC)(CCCC)C=C CKUITTGQMZBQAI-UHFFFAOYSA-N 0.000 description 1
- QNJMAPUHMGDDBE-UHFFFAOYSA-N 9-methyldec-1-ene Chemical compound CC(C)CCCCCCC=C QNJMAPUHMGDDBE-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 125000006841 cyclic skeleton Chemical group 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- CTQBRSUCLFHKGM-UHFFFAOYSA-N tetraoxolan-5-one Chemical compound O=C1OOOO1 CTQBRSUCLFHKGM-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Laminated Bodies (AREA)
Description
本発明は、プリント配線基板等の回路基板における電気絶縁材料として好適に使用することのできる電気絶縁性樹脂組成物、及び、これを用いた回路基板用積層体に関し、特に、優れた柔軟性を有すると同時に高い耐熱性も併せ持つ電気絶縁層を形成することができる電気絶縁性樹脂組成物、及びこれを用いた回路基板用積層体に関する。更に詳しくは、本発明は、放熱性の優れた金属ベース回路基板に用いることが好適な電気絶縁性樹脂組成物であり、ハンダ耐熱性に優れ、高温・多湿の過酷な環境下においても長期間にわたって安定使用が可能な電気絶縁層を形成することができる電気絶縁性樹脂組成物、及び、これを用いた回路基板用積層体、及びこれを用いた回路基板用積層体に関する。 The present invention relates to an electrically insulating resin composition that can be suitably used as an electrically insulating material in a circuit board such as a printed wiring board, and a laminate for a circuit board using the same, and in particular, has excellent flexibility. The present invention relates to an electrically insulating resin composition capable of forming an electrically insulating layer having high heat resistance at the same time, and a laminate for a circuit board using the same. More specifically, the present invention is an electrically insulating resin composition suitable for use in a metal base circuit board having excellent heat dissipation, excellent in solder heat resistance, and long-term even in a severe environment of high temperature and high humidity. The present invention relates to an electrically insulating resin composition capable of forming an electrically insulating layer that can be used stably over a wide range, a laminate for a circuit board using the same, and a laminate for a circuit board using the same.
近年、家電製品や産業機器、OA機器、車載用電子機器の小型化、省スペース化、高付加価値化が求められ、従来よりも過酷な温度・湿度・電気的環境下において使用に耐えうる絶縁材料が要求されており、特に電気絶縁性、耐電圧性、放熱性及び部品のハンダ付け部分での接続信頼性の高い電気絶縁材料が望まれている。 In recent years, there has been a demand for miniaturization, space saving, and high added value of home appliances, industrial equipment, OA equipment, and on-vehicle electronic equipment, and insulation that can withstand use in harsh temperatures, humidity, and electrical environments. There is a demand for materials, and in particular, an electrical insulation material having high electrical insulation, voltage resistance, heat dissipation, and high connection reliability in a soldered portion of a component is desired.
このような過酷な環境において使用される回路基板として、放熱性の高いアルミニウムや銅などの金属基板上に電気絶縁層を設け、その上に導電回路を配設した金属ベース回路基板が多く使われている。 As a circuit board used in such a harsh environment, a metal base circuit board in which an electrically insulating layer is provided on a metal board such as aluminum or copper having high heat dissipation and a conductive circuit is provided thereon is often used. ing.
このような金属ベース回路基板においては、電気絶縁層としてエポキシ樹脂が多く利用されているが、エポキシ樹脂自体は熱伝導性が低いため、導電回路上で発生した熱を金属基板に効率よく伝達させることができない。そこで、エポキシ樹脂に熱伝導性の無機フィラーを高充填することによって、電気絶縁層の熱伝導性を改善している。 In such a metal base circuit board, an epoxy resin is often used as an electrical insulating layer. However, since the epoxy resin itself has low thermal conductivity, heat generated on the conductive circuit is efficiently transmitted to the metal board. I can't. Therefore, the thermal conductivity of the electrical insulating layer is improved by highly filling the epoxy resin with a thermally conductive inorganic filler.
しかしながら、熱伝導率向上を目的として無機フィラーの配合率を高めると、電気絶縁層の柔軟性が低下して脆くなる上、電気絶縁層の金属基板に対する密着性も低下するという問題があった。また、金属ベース回路基板にハンダ付けを行う際、200℃以上の高温で処理を行うが、無機フィラーの配合率が高いと、ハンダ付け時の高熱によって電気絶縁層に欠陥が生じ、耐電圧性が低下する要因ともなっていた。 However, when the blending ratio of the inorganic filler is increased for the purpose of improving the thermal conductivity, there is a problem that the flexibility of the electrical insulating layer is lowered and becomes brittle, and the adhesion of the electrical insulating layer to the metal substrate is also decreased. In addition, when soldering a metal base circuit board, the treatment is performed at a high temperature of 200 ° C. or higher. However, if the blending ratio of the inorganic filler is high, defects are generated in the electrical insulating layer due to high heat during soldering, and withstand voltage resistance. It was also a factor that decreased.
このため、電気絶縁層の柔軟性や接着性を改良する対策として、特許文献1は、−40℃の弾性率が2×1010Pa以下の樹脂組成物を用いた金属ベース回路基板を開示しており、このような低弾性率の樹脂組成物として、ゴム成分を分散させたエポキシ樹脂を開示している。特許文献1は、ゴム成分を分散させたエポキシ樹脂の具体例として、CTBN(carboxyl-terminated butadiene-acrylonitrile rubber)変性エポキシ樹脂、変性ポリアミンの可撓性硬化剤を配合したエポキシ樹脂等を例示している。しかし、このような低弾性率のエポキシ樹脂を用いて得た電気絶縁層中にはイオン性不純物が含まれるため、作成した回路は、耐イオンマイグレーション性や吸水性などの電気的、物理的な特性の低下が避けられなかった。また、特許文献1では、エポキシ樹脂硬化体を半硬化させた状態(Bステージ状態)で取り扱うが、Bステージ状態での材料は寿命が短く、管理、保管などが困難であった。 For this reason, Patent Document 1 discloses a metal base circuit board using a resin composition having an elastic modulus of −40 ° C. of 2 × 10 10 Pa or less as a measure for improving the flexibility and adhesion of the electrical insulating layer. As such a low elastic modulus resin composition, an epoxy resin in which a rubber component is dispersed is disclosed. Patent Document 1 exemplifies CTBN (carboxyl-terminated butadiene-acrylonitrile rubber) modified epoxy resin, epoxy resin blended with a modified polyamine flexible curing agent, and the like as specific examples of the epoxy resin in which the rubber component is dispersed. Yes. However, since the ionic impurities are contained in the electrical insulating layer obtained by using such a low elastic modulus epoxy resin, the created circuit is electrically and physically resistant to ion migration and water absorption. The deterioration of characteristics was inevitable. In Patent Document 1, the cured epoxy resin is handled in a semi-cured state (B stage state), but the material in the B stage state has a short life and is difficult to manage and store.
また、特許文献2には、熱伝導性、耐湿性、耐熱性、絶縁信頼性、耐クラック性に優れた絶縁接着層材料として、エポキシ樹脂に、ガラス転移点が0℃以下で分子量10万〜200万のエポキシ基などの反応性基を有するアクリルゴムやNBRを添加した、低弾性率熱伝導性接着剤組成物が開示されている。このようなエポキシ硬化タイプの絶縁接着層材料は、特許文献1と同様に、室温において手で触ってもべた付くことがないよう、樹脂を半硬化させた状態(Bステージ状態)とすることによって取り扱い性を向上させている。しかしながら、エポキシ硬化タイプの絶縁接着層材料は、Bステージ状態での材料は寿命が短く、管理、保管など難しい問題が多かった。また、特許文献2に記載の樹脂組成では、無機フィラーの配合率を高めると、電気絶縁層の柔軟性が低下して脆くなるため、無機フィラーを高い含有量で充填できないなどの問題があった。 Patent Document 2 discloses that an insulating adhesive layer material excellent in thermal conductivity, moisture resistance, heat resistance, insulation reliability, and crack resistance has an epoxy resin having a glass transition point of 0 ° C. or less and a molecular weight of 100,000 to A low-modulus thermal conductive adhesive composition to which acrylic rubber having a reactive group such as 2 million epoxy groups or NBR is added is disclosed. Such an epoxy-curing type insulating adhesive layer material is made by semi-curing the resin (B stage state) so that it does not stick even when touched by hand at room temperature, as in Patent Document 1. The handling is improved. However, the epoxy-curing type insulating adhesive layer material has a short life in the B stage state, and there are many difficult problems such as management and storage. Further, in the resin composition described in Patent Document 2, when the blending ratio of the inorganic filler is increased, the flexibility of the electrical insulating layer is lowered and becomes brittle, so that there is a problem that the inorganic filler cannot be filled with a high content. .
一方、ラジカル重合反応を利用したタイプの電気絶縁層材料として、特許文献3は、ポリブタジエン樹脂又はポリイソプレン樹脂と、不飽和ポリブタジエン又はポリイソプレン含有ポリマーを含む熱硬化性組成物を開示している。しかし、特許文献3では、使用するポリブタジエン樹脂又はポリイソプレン樹脂や、不飽和ブタジエン又はイソプレンとして、主に1,2−付加体を用いるため、得られる硬化物は非常に硬く、基板への接着強度も低いといった問題があった。 On the other hand, Patent Document 3 discloses a thermosetting composition containing a polybutadiene resin or polyisoprene resin and an unsaturated polybutadiene or polyisoprene-containing polymer as an electrical insulating layer material utilizing a radical polymerization reaction. However, in Patent Document 3, since a 1,2-adduct is mainly used as the polybutadiene resin or polyisoprene resin or unsaturated butadiene or isoprene to be used, the obtained cured product is very hard and has an adhesive strength to the substrate. There was also a problem of being low.
その他、特許文献4は、エポキシ変性ゴムとアリル基含有化合物とビスマレイミド等の硬化性樹脂成分とを有する組成物をラジカル重合する方法を開示している。しかしながら、特許文献4は、信号処理のスピードを向上させるため比誘電率の低い材料を提供することを主目的としているため、得られる電気絶縁層の接着性は非常に低いという欠点がある。またエポキシ変性ゴムの配合割合が少ないため、柔軟性を要求される用途に対しては硬度が高すぎ、無機フィラーの大量配合を行うと脆さが甚だしく絶縁信頼性に欠け、放熱用絶縁材料としては、実際は使用困難なものである。 In addition, Patent Document 4 discloses a method for radical polymerization of a composition having an epoxy-modified rubber, an allyl group-containing compound, and a curable resin component such as bismaleimide. However, since Patent Document 4 mainly aims to provide a material having a low relative dielectric constant in order to improve the speed of signal processing, there is a drawback that the adhesiveness of the obtained electrical insulating layer is very low. Also, since the blending ratio of epoxy-modified rubber is small, the hardness is too high for applications that require flexibility. When a large amount of inorganic filler is blended, it is brittle and lacks insulation reliability. Is actually difficult to use.
本発明は、上記に鑑みてなされたものであって、優れた柔軟性と基板への密着性を有するとともに、高い耐熱性、耐湿性を併せ持ち、ハンダ付け時の高熱処理にも耐え、自動車のエンジンルームのように高温・多湿の過酷な環境下においても長期間にわたって安定使用が可能な電気絶縁層を形成することができる電気絶縁性樹脂組成物、及び、これを用いた回路基板用積層体を提供することを目的とする。 The present invention has been made in view of the above, and has excellent flexibility and adhesion to a substrate, and has both high heat resistance and moisture resistance, and can withstand high heat treatment during soldering. An electrically insulating resin composition capable of forming an electrically insulating layer that can be stably used over a long period of time in a severe environment of high temperature and humidity such as an engine room, and a laminate for a circuit board using the same The purpose is to provide.
本発明者らは、上記課題を解決するために、鋭意研究の結果、ジエン系モノマーの共重合体からなるゴム状高分子化合物(I)と、末端に1つ以上の二重結合を有する重合性モノマー(II)と、架橋剤(III)と、及び熱伝導性無機フィラー(IV)と、を含有する電気絶縁性樹脂組成物が、優れた柔軟性、密着性、耐湿性、耐熱劣化性を備えた電気絶縁層を形成することができることを見出し、本発明を完成するに至った。さらに、本発明の電気絶縁性樹脂組成物は、ジエン系モノマーの共重合体からなるゴム状高分子化合物(I)として、オレフィン系共重合ゴム、ブチルゴム、又はこれらの混合物を用いることを特徴とする。 In order to solve the above problems, the present inventors have intensively studied, and as a result, a rubbery polymer compound (I) comprising a copolymer of a diene monomer and a polymerization having one or more double bonds at the terminal. The electrically insulating resin composition containing the conductive monomer (II), the crosslinking agent (III), and the thermally conductive inorganic filler (IV) has excellent flexibility, adhesion, moisture resistance, and heat deterioration resistance. The inventors have found that an electrical insulating layer provided with can be formed, and have completed the present invention. Furthermore, the electrically insulating resin composition of the present invention is characterized by using an olefin copolymer rubber, butyl rubber, or a mixture thereof as the rubbery polymer compound (I) comprising a copolymer of a diene monomer. To do.
従来、無機フィラーを多量に充填すると、電気絶縁性樹脂組成物から作製された電気絶縁層が脆くなり絶縁信頼性に欠けるので、放熱用絶縁材料として使用するのが困難であった。これに対して、本発明では、電気絶縁性樹脂組成物に所定のジエン系モノマーの共重合体からなるゴム状高分子化合物(I)を含有させることによって、多量の熱伝導性フィラーを含有させたとしても、柔軟性を損なうことなく、高い耐熱性、耐湿性を備え、高温・多湿の過酷な環境下においても、長期に亘って安定な電気絶縁層を形成することができる。 Conventionally, when a large amount of an inorganic filler is filled, an electrically insulating layer made from an electrically insulating resin composition becomes brittle and lacks insulation reliability, so that it has been difficult to use as an insulating material for heat dissipation. In contrast, in the present invention, the electrically insulating resin composition contains a rubbery polymer compound (I) made of a copolymer of a predetermined diene monomer, so that a large amount of thermally conductive filler is contained. Even in such a case, it is possible to form an electrically insulating layer that has high heat resistance and moisture resistance and is stable over a long period of time even in a severe environment of high temperature and high humidity without impairing flexibility.
本発明においては、ゴム状高分子化合物(I)のヨウ素価が25以下であることが好ましい。ヨウ素価が25を超えると、ゴム状高分子化合物(I)の不飽和基の一部が未反応の状態で残存し、この未反応不飽和基がハンダ付け時の高温によって酸化されるなど、特に高温環境下で使用される際に、酸化劣化により電気絶縁層の絶縁性を劣化させる要因となる。このような電気絶縁層の絶縁性劣化を防止するために、ゴム状高分子化合物(I)のヨウ素価を25以下とする。 In the present invention, the iodine value of the rubber-like polymer compound (I) is preferably 25 or less. When the iodine value exceeds 25, a part of the unsaturated group of the rubber-like polymer compound (I) remains in an unreacted state, and this unreacted unsaturated group is oxidized by a high temperature during soldering. In particular, when used in a high-temperature environment, it becomes a factor that degrades the insulating properties of the electrical insulating layer due to oxidation degradation. In order to prevent such insulation deterioration of the electrical insulating layer, the iodine value of the rubbery polymer compound (I) is set to 25 or less.
本発明による電気絶縁性樹脂組成物は、さらに、不飽和環状オリゴマー化合物(V)を含有させることができる。不飽和環状オリゴマー化合物(V)は、ゴム状高分子化合物(I)と重合性モノマー(II)との相溶化剤として働き、これらの3成分が一層均一に重合した組織構造となるため、高温における局部的な加熱減量が起こらず、電気絶縁性樹脂組成物の熱劣化による耐電圧特性を更に向上させることができる。 The electrically insulating resin composition according to the present invention can further contain an unsaturated cyclic oligomer compound (V). The unsaturated cyclic oligomer compound (V) acts as a compatibilizer between the rubbery polymer compound (I) and the polymerizable monomer (II), and has a structure in which these three components are polymerized more uniformly. In this case, the local heat loss does not occur, and the withstand voltage characteristics due to thermal degradation of the electrically insulating resin composition can be further improved.
本発明による電気絶縁性樹脂組成物は、金属基板上に層状に形成された後に硬化されることによって、回路基板の電気絶縁層を形成することができる。本発明による電気絶縁性樹脂組成物は、多量に熱伝導性無機フィラー(IV)を含有し、ゴム状高分子化合物(I)によって高い耐熱性、耐湿性を備えているので、特に過酷な環境下で使用される回路基板の電気絶縁層として使用した場合、優れた絶縁特性及び耐環境性能が得られる。 The electrically insulating resin composition according to the present invention can form an electrically insulating layer of a circuit board by being cured after being formed into a layer on a metal substrate. Since the electrically insulating resin composition according to the present invention contains a large amount of the heat conductive inorganic filler (IV) and has high heat resistance and moisture resistance due to the rubbery polymer compound (I), the environment is particularly severe. When used as an electrical insulating layer of a circuit board used below, excellent insulating properties and environmental resistance are obtained.
本発明による回路基板用積層体は、上述した電気絶縁性樹脂組成物を硬化して得られる電気絶縁層の少なくとも一方の面に、金属層を有することを特徴とする。金属層は、例えば配線層用金属(導体)箔又は金属基板である。本発明の回路基板用積層体としては、金属基板、電気絶縁層及び金属導体箔の順に積層してなる3層構造の回路基板用積層体、金属導体箔及び電気絶縁層の順に積層してなる2層構造の回路基板用積層体、及び、金属導体箔、電気絶縁層及び金属導体箔の順に積層してなる3層構造の回路基板用積層体を挙げることができる。 The laminate for a circuit board according to the present invention is characterized by having a metal layer on at least one surface of an electrical insulating layer obtained by curing the above-described electrical insulating resin composition. The metal layer is, for example, a wiring layer metal (conductor) foil or a metal substrate. As the laminate for a circuit board of the present invention, a laminate for a circuit board having a three-layer structure in which a metal substrate, an electric insulation layer and a metal conductor foil are laminated in this order, a metal conductor foil and an electric insulation layer are laminated in this order. A laminate for a circuit board having a two-layer structure and a laminate for a circuit board having a three-layer structure in which a metal conductor foil, an electrical insulating layer, and a metal conductor foil are laminated in this order can be given.
金属基板、電気絶縁層及び金属導体箔の順に積層してなる3層構造の回路基板用積層体は、金属ベース回路基板の製造に利用されるものである。また、金属導体箔及び電気絶縁層の順に積層してなる2層構造の回路基板用積層体や、金属導体箔、電気絶縁層及び金属導体箔の順に積層してなる3層構造の回路基板用積層体は、多層回路基板の内層回路等に利用されるものである。 A laminate for a circuit board having a three-layer structure in which a metal substrate, an electrical insulating layer, and a metal conductor foil are laminated in this order is used for manufacturing a metal base circuit board. Also, for a circuit board laminate having a two-layer structure in which a metal conductor foil and an electric insulation layer are laminated in order, and for a circuit board having a three-layer structure in which a metal conductor foil, an electric insulation layer and a metal conductor foil are laminated in this order The laminate is used for an inner layer circuit of a multilayer circuit board.
本発明の電気絶縁性樹脂組成物は、ジエン系モノマーの共重合体からなり、特にヨウ素価が25以下であるゴム状高分子化合物(I)は、分子中の二重結合がほぼ完全に重合性モノマー(II)との重合反応に使われる。従って、電気絶縁層に残存する未反応の不飽和基の量を大幅に低減することができ、電気絶縁層の加熱による耐酸化劣化性を大きく向上させることができる。 The electrically insulating resin composition of the present invention comprises a copolymer of a diene monomer, and in particular, the rubbery polymer (I) having an iodine value of 25 or less has almost completely polymerized double bonds in the molecule. Used for polymerization reaction with the polymerizable monomer (II). Therefore, the amount of unreacted unsaturated groups remaining in the electrical insulating layer can be greatly reduced, and the oxidation deterioration resistance due to heating of the electrical insulating layer can be greatly improved.
また、架橋可能なゴム状高分子化合物(I)を使用することで、放熱性を高めるためアルミナなどの熱伝導性無機フィラー(IV)を多量に充填しても、柔軟性を維持して加工性の良い電気絶縁層又は電気絶縁材料を得ることができる。また、樹脂組成を適宜組み合わせることで、電気絶縁材料の接着性、耐電圧、柔軟性等を、要求特性に応じて提供することができる。 In addition, by using a crosslinkable rubber-like polymer compound (I), even if a large amount of thermally conductive inorganic filler (IV) such as alumina is filled in order to improve heat dissipation, the flexibility is maintained and processed. An electrically insulating layer or an electrically insulating material having good properties can be obtained. In addition, by appropriately combining the resin composition, the adhesiveness, withstand voltage, flexibility, and the like of the electrical insulating material can be provided according to the required characteristics.
さらに、ラジカル重合反応やその他の重合反応を利用するため、エポキシ樹脂のようなBステージ管理がまったく不要で、保存安定性が飛躍的に高まり、取り扱いが容易になる。また、硬化積層体製造時の硬化時間を短縮でき、生産性の向上や省エネルギーに役立つ。 Furthermore, since a radical polymerization reaction or other polymerization reaction is used, B stage management like an epoxy resin is not required at all, storage stability is dramatically increased, and handling is facilitated. In addition, the curing time during the production of the cured laminate can be shortened, which is useful for improving productivity and saving energy.
本発明による回路基板用積層体は、熱伝導性、耐熱性、耐湿性が大幅に改善された電気絶縁層を備えているので、特に過酷な環境下においても、優れた絶縁特性及び耐環境性を有する回路基板として使用することができる。 Since the laminate for a circuit board according to the present invention includes an electrical insulating layer with greatly improved thermal conductivity, heat resistance, and moisture resistance, it has excellent insulating properties and environmental resistance even in a severe environment. It can be used as a circuit board having
以下、本発明にかかる電気絶縁性樹脂組成物及び回路基板用積層体の実施の形態を詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。 Hereinafter, embodiments of the electrically insulating resin composition and the laminate for a circuit board according to the present invention will be described in detail. The present invention is not limited to the following embodiments.
〔A〕電気絶縁性樹脂組成物
本発明の電気絶縁性樹脂組成物は、ジエン系モノマーの共重合体からなるゴム状高分子化合物(I)と、末端に1つ以上の二重結合を有する重合性モノマー(II)と、架橋剤(III)と、熱伝導性無機フィラー(IV)とを含有する樹脂組成物である。
[A] Electrically Insulating Resin Composition The electrically insulating resin composition of the present invention has a rubbery polymer (I) composed of a copolymer of a diene monomer and one or more double bonds at the terminal. A resin composition containing a polymerizable monomer (II), a crosslinking agent (III), and a heat conductive inorganic filler (IV).
まず、架橋可能なゴム状高分子化合物(I)としては、ジエン系モノマーを共重合したゴム状高分子化合物であり、このような例としては、オレフィン系共重合体ゴム(1)及びブチルゴム(2)等が挙げられる。オレフィン系共重合体ゴム(1)としては、エチレン−α−オレフィン−非共役ジエン共重合体などが挙げられ、ブチルゴム(2)としては、イソブチレン−イソプレン共重合体、ハロゲン化ブチルゴム、スチレン等ビニル芳香族化合物とイソブチレン−イソプレンとの三元系共重合体などが挙げられる。 First, the crosslinkable rubber-like polymer compound (I) is a rubber-like polymer compound copolymerized with a diene monomer. Examples of such a rubber-like polymer compound (I) include olefin copolymer rubber (1) and butyl rubber ( 2). Examples of the olefin copolymer rubber (1) include ethylene-α-olefin-nonconjugated diene copolymers, and examples of the butyl rubber (2) include vinyls such as isobutylene-isoprene copolymer, halogenated butyl rubber, and styrene. Examples thereof include terpolymers of aromatic compounds and isobutylene-isoprene.
架橋可能な上記オレフィン系共重合体ゴム(1)としては、炭素数2〜20個のα−オレフィン含有量が50モル%以上の無定形でランダムな弾性共重合体又は結晶化度が50%以下の弾性共重合体であって、2種類以上のα−オレフィンと非共役ジエンとの共重合体が挙げられる。 The olefin copolymer rubber (1) that can be cross-linked is an amorphous and random elastic copolymer having a C 2-20 α-olefin content of 50 mol% or more, or a crystallinity of 50%. The following elastic copolymers include copolymers of two or more α-olefins and non-conjugated dienes.
このようなオレフィン系共重合体ゴム(1)の具体的な例としては、エチレン−α−オレフィン−非共役ジエン共重合体ゴムが挙げられる。 Specific examples of such olefin copolymer rubber (1) include ethylene-α-olefin-nonconjugated diene copolymer rubber.
ここで、上記α−オレフィンとしては、具体的には、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセン、及びこれらの組み合わせが挙げられる。また、上記非共役ジエンとしては、具体的には、ジシクロペンタジエン、1,4−ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネンなどが挙げられる。 Here, specific examples of the α-olefin include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene. 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3 -Methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3 -Ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-tetradecene, and combinations thereof It is. Specific examples of the non-conjugated diene include dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, and ethylidene norbornene.
これらのオレフィン系共重合体ゴム(1)は、常温で液状のものから、固体ではムーニー粘度[ML1+4(100℃)]で10〜240のものが好ましい。低粘度物ほど溶液の塗工性が良好な為、接着性など物性の許す範囲で選択することができる。また、上記のエチレン−α−オレフィン−非共役ジエン共重合体ゴムは、ヨウ素価が25以下であることが好ましい。ヨウ素価の好ましい範囲については、後述する。 These olefin-based copolymer rubbers (1) are preferably those having a Mooney viscosity [ML1 + 4 (100 ° C.)] of 10 to 240 from those which are liquid at room temperature. The lower the viscosity, the better the coating property of the solution, so that it can be selected within the range permitted by physical properties such as adhesiveness. The ethylene-α-olefin-nonconjugated diene copolymer rubber preferably has an iodine value of 25 or less. A preferable range of the iodine value will be described later.
架橋可能な上記ブチルゴム(2)等としては、イソブチレンとイソプレンとを主体とした共重合体や、ブチルゴムに塩素又は臭素を添加反応させたハロゲン化ブチルゴムが例示できる。更に、スチレンなどビニル芳香族モノマーとイソブチレン−イソプレンとの三元系共重合体も使用できる。これらのブチルゴム(2)等は、常温で液状のものから、ムーニー粘度[ML1+4(100℃)]で60程度のものが好ましい。 Examples of the crosslinkable butyl rubber (2) include a copolymer mainly composed of isobutylene and isoprene, and a halogenated butyl rubber obtained by adding chlorine or bromine to butyl rubber. Furthermore, a terpolymer of vinyl aromatic monomer such as styrene and isobutylene-isoprene can be used. These butyl rubbers (2) and the like are preferably those having a Mooney viscosity [ML1 + 4 (100 ° C.)] of about 60 from those which are liquid at room temperature.
また、不飽和度はイソプレンの共重合体比率により可変であるが、オレフィン系共重合体ゴム(1)及びブチルゴム(2)を含むゴム状高分子化合物(I)のヨウ素価としては、25以下が好ましく、3〜20がより好ましく、5〜20がさらに好ましい。ヨウ素価が3未満であると、樹脂組成物の硬化不良が起こり、Tピール強度の低下やハンダ耐熱が低下し、使用する環境によっては適さないことがある。また、ポリマーの架橋度が低下するため、溶剤で膨潤し易い傾向にあり好ましくない。一方、ヨウ素価が25を超えると、樹脂組成物が硬化した後でも不飽和結合が残存する傾向があり、熱処理後の絶縁耐圧が低下して好ましくない。 The degree of unsaturation is variable depending on the copolymer ratio of isoprene, but the iodine value of the rubbery polymer compound (I) including the olefin copolymer rubber (1) and the butyl rubber (2) is 25 or less. Are preferable, 3-20 are more preferable, and 5-20 are more preferable. If the iodine value is less than 3, poor curing of the resin composition occurs, the T peel strength decreases and the solder heat resistance decreases, which may not be suitable depending on the environment used. Further, since the degree of crosslinking of the polymer is lowered, it tends to swell with a solvent, which is not preferable. On the other hand, when the iodine value exceeds 25, an unsaturated bond tends to remain even after the resin composition is cured, which is not preferable because the withstand voltage after heat treatment is lowered.
ブチルゴム(2)等は、蒸気など気体透過率が低く、電気絶縁性も良好であるため、絶縁材として適している。また、ブチルゴム(2)は、EPDM(エチレン−プロピレンゴム)や水添SBS(スチレン−ブタジエン−スチレンブロック共重合体)、水添SIS(ポリスチレン−ポリイソプレン−ポリスチレンブロック共重合体)等とのブレンドにより共架橋が可能であり、ゴム状高分子化合物(I)の気体透過率や電気絶縁性、制振性を改良するために添加することもできる。 Butyl rubber (2) or the like is suitable as an insulating material because it has low gas permeability such as steam and good electrical insulation. Butyl rubber (2) is blended with EPDM (ethylene-propylene rubber), hydrogenated SBS (styrene-butadiene-styrene block copolymer), hydrogenated SIS (polystyrene-polyisoprene-polystyrene block copolymer), etc. Co-crosslinking is possible, and it can also be added to improve the gas permeability, electrical insulation and vibration damping properties of the rubber-like polymer compound (I).
さらに、上記架橋可能なゴム状高分子化合物(I)に、カルボン酸基、酸無水物基、アミノ基、水酸基、エポキシ基等の極性基や、ウレタン結合、エステル結合、アミド結合等の結合を導入してなる変性物も、後述する金属層との接着性を向上させることができるため、好適に使用することができる。 Furthermore, the crosslinkable rubbery polymer compound (I) has polar groups such as carboxylic acid groups, acid anhydride groups, amino groups, hydroxyl groups, and epoxy groups, and bonds such as urethane bonds, ester bonds, and amide bonds. The modified product introduced can also be suitably used because it can improve the adhesion to the metal layer described later.
本発明においては、上記オレフィン系共重合体ゴム(1)又はブチルゴム(2)を単独で使用してもよく、共重合体のモノマー構成比や分子量の異なる2種以上のオレフィン系共重合体ゴム(1)及びブチルゴム(2)を併用することも可能である。2種以上のゴム状高分子化合物(I)を併用することにより、電気絶縁性樹脂組成物の相溶性、接着性、柔軟性、電気物性等を調節することができる。 In the present invention, the olefin copolymer rubber (1) or butyl rubber (2) may be used alone, and two or more olefin copolymer rubbers having different monomer composition ratios and molecular weights of the copolymer. It is also possible to use (1) and butyl rubber (2) in combination. By using two or more rubbery polymer compounds (I) in combination, the compatibility, adhesiveness, flexibility, electrical properties, etc. of the electrically insulating resin composition can be adjusted.
次に、末端に1つ以上の炭素−炭素二重結合を有する重合性モノマー(II)(不飽和化合物)としては、過酸化物等により架橋が可能な化合物を用いることができる。このような化合物としては、例えば、末端にビニル基、アリル基、メタアリル基、アクリル基、メタクリル基のような高い反応性を示す二重結合を有する化合物や、共役ジエン及び非共役ジエン等を用いることができる。 Next, as the polymerizable monomer (II) (unsaturated compound) having one or more carbon-carbon double bonds at the terminal, a compound that can be crosslinked by a peroxide or the like can be used. As such a compound, for example, a compound having a highly reactive double bond such as a vinyl group, an allyl group, a methallyl group, an acrylic group or a methacryl group at the terminal, a conjugated diene, a non-conjugated diene, or the like is used. be able to.
このような重合性モノマー(II)の具体例としては、ジビニルヘプタン、ジビニルオクタン、ジビニルノナン、ビニルベンゼン、ジビニルベンゼン、ビスフェノールA型エポキシアクリレート、メチルメタクリレート、イソボロニルアクリレート、トリシクロデカンジメタクリレート、トリアリルイソシアヌレート、エトキシ化イソシアヌル酸トリアクリレート、ブタジエン、イソブチレン、ペンタジエン、ヘキサジエン、オクタジエン、ノナジエン、デカジエン、ジシクロペンタジエン、エチリデンノルボルネン等を例示することができる。特に、イソボロニルアクリレート、トリシクロデカンジメタクリレート、トリアリルイソシアヌレート、エトキシ化イソシアヌル酸トリアクリレートや、これらの分子中に含まれる芳香族環に水素添加することにより得られる環状脂肪族系の化合物のように、分子内に環状構造を含むモノマーを用いることが好ましい。環状脂肪族化合物、芳香族環化合物、複素環化合物のような環状構造を含むモノマーを用いることによって、電気絶縁性樹脂組成物の相溶性、耐熱性を一層向上させることができる。 Specific examples of such polymerizable monomer (II) include divinyl heptane, divinyl octane, divinyl nonane, vinyl benzene, divinyl benzene, bisphenol A type epoxy acrylate, methyl methacrylate, isobornyl acrylate, tricyclodecane dimethacrylate, tri Examples include allyl isocyanurate, ethoxylated isocyanuric acid triacrylate, butadiene, isobutylene, pentadiene, hexadiene, octadiene, nonadiene, decadiene, dicyclopentadiene, ethylidene norbornene and the like. In particular, isobornyl acrylate, tricyclodecanedimethacrylate, triallyl isocyanurate, ethoxylated isocyanuric acid triacrylate, and cycloaliphatic compounds obtained by hydrogenating aromatic rings contained in these molecules As described above, it is preferable to use a monomer having a cyclic structure in the molecule. By using a monomer having a cyclic structure such as a cycloaliphatic compound, an aromatic ring compound, or a heterocyclic compound, the compatibility and heat resistance of the electrically insulating resin composition can be further improved.
更に、上述の重合性モノマー(II)に、カルボン酸基、アミノ基、水酸基、エポキシ基等の極性基や、ウレタン結合、エステル結合、アミド結合等の結合を導入しておくことにより、電気絶縁性樹脂組成物と後述する金属層との接着性を向上させることができるため好ましい。 Furthermore, by introducing polar groups such as carboxylic acid group, amino group, hydroxyl group and epoxy group, and bonds such as urethane bond, ester bond and amide bond into the above-mentioned polymerizable monomer (II), electrical insulation is achieved. This is preferable because the adhesion between the conductive resin composition and the metal layer described later can be improved.
重合性モノマー(II)の分子量は、特に限定されるものではないが、分子量Mwが50〜500であることが好ましく、100〜350であることがより好ましい。 The molecular weight of the polymerizable monomer (II) is not particularly limited, but the molecular weight Mw is preferably 50 to 500, and more preferably 100 to 350.
重合性モノマー(II)は、電気絶縁性樹脂組成物内で主にフロー性と架橋反応に関係するため、使用する組成により相溶性を十分に考慮する必要が有る。 Since the polymerizable monomer (II) is mainly related to the flowability and the crosslinking reaction in the electrically insulating resin composition, it is necessary to sufficiently consider the compatibility depending on the composition used.
本発明の電気絶縁性樹脂組成物においては、ゴム状高分子化合物(I)及び重合性モノマー(II)との相溶性の良い不飽和環状オリゴマー(V)を添加することが可能である。不飽和環状オリゴマー化合物(V)は、ゴム状高分子化合物(I)と重合性モノマー(II)との相溶化剤として働き、これらの3成分が一層均一に重合した組織構造となるため、高温における局部的な加熱減量が起こらず、電気絶縁層中に微小ボイドが生じないためと考えられる効果によって、電気絶縁性樹脂組成物の熱劣化による耐電圧特性を更に向上させることができる。従って、本発明による電気絶縁性樹脂組成物は、耐熱性が要求される用途などに好適に利用することができる。また、常温で固体の不飽和環状オリゴマー(V)を使用する場合には、未硬化物の粘着性を抑えることができ、積層材料の製造においてベタ付きがなく作業性が良くなるという効果も得られる。 In the electrically insulating resin composition of the present invention, it is possible to add an unsaturated cyclic oligomer (V) having good compatibility with the rubbery polymer compound (I) and the polymerizable monomer (II). The unsaturated cyclic oligomer compound (V) acts as a compatibilizer between the rubbery polymer compound (I) and the polymerizable monomer (II), and has a structure in which these three components are polymerized more uniformly. Due to the effects that are considered to be caused by the fact that local heating loss does not occur and microvoids do not occur in the electrical insulating layer, the withstand voltage characteristics due to thermal degradation of the electrical insulating resin composition can be further improved. Therefore, the electrically insulating resin composition according to the present invention can be suitably used for applications that require heat resistance. In addition, when the unsaturated cyclic oligomer (V) that is solid at room temperature is used, the adhesiveness of the uncured product can be suppressed, and there is also an effect that the workability is improved because there is no stickiness in the production of the laminated material. It is done.
不飽和環状オリゴマー(V)としては、分子内に、芳香族、環状脂肪族又は複素環のような環状構造を有する化合物を用いることが好ましい。分子中に含まれる環状骨格例としては、クマロン、インデン、ロジン、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、トリシクロデカン、ノルボルネン、イソシアヌル酸、トリアジン等が挙げられる。これらの中でも、ロジン、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、トリシクロデカン、ノルボルネン等の脂環構造(環状脂肪族)を有するオリゴマーは、芳香族系や複素環系のオリゴマーと比べて相溶化作用が高く、硬化物の耐熱性をより一層向上させることができるため、好ましい。 As the unsaturated cyclic oligomer (V), it is preferable to use a compound having a cyclic structure such as aromatic, cycloaliphatic or heterocyclic in the molecule. Examples of the cyclic skeleton contained in the molecule include coumarone, indene, rosin, cyclopentane, cyclopentene, cyclohexane, cyclohexene, tricyclodecane, norbornene, isocyanuric acid, triazine and the like. Among these, oligomers having an alicyclic structure (cycloaliphatic) such as rosin, cyclopentane, cyclopentene, cyclohexane, cyclohexene, tricyclodecane and norbornene have a compatibilizing action compared to aromatic and heterocyclic oligomers. Is preferable because the heat resistance of the cured product can be further improved.
また、本発明に用いる不飽和環状オリゴマー(V)としては、環状構造を有する重合性モノマーの重合体、又は、環状構造を有する重合性モノマーと脂肪族系不飽和化合物との共重合体、ないし、それらのエステル化合物を用いることもできる。 The unsaturated cyclic oligomer (V) used in the present invention is a polymer of a polymerizable monomer having a cyclic structure, or a copolymer of a polymerizable monomer having a cyclic structure and an aliphatic unsaturated compound, or These ester compounds can also be used.
不飽和環状オリゴマー化合物(V)の具体的な化合物としては、(1)環状脂肪族系化合物である5−エチリデン−2−ノルボルネンやジシクロペンタジエン、又は、芳香族ビニル化合物であるスチレンやビニルトルエンと、脂肪族系不飽和化合物である1,4−ヘキサジエン、イソブチレン及び1,3−ペンタジエン等やC5留分と言われるジエン系不飽和混合物との共重合体、(2)ロジン誘導体のような縮合重合体又はそのエステル化物、(3)ダイマー酸又は変性物、(4)クマロンインデン樹脂のような共重合体、(5)トリアリルイソシアヌレートの重合体等を例示することができる。 Specific examples of the unsaturated cyclic oligomer compound (V) include (1) 5-ethylidene-2-norbornene and dicyclopentadiene, which are cyclic aliphatic compounds, or styrene and vinyl toluene, which are aromatic vinyl compounds. And aliphatic unsaturated compounds such as 1,4-hexadiene, isobutylene and 1,3-pentadiene, and diene unsaturated mixtures called C5 fractions, (2) such as rosin derivatives Examples include condensation polymers or esterified products thereof, (3) dimer acids or modified products, (4) copolymers such as coumarone indene resin, and (5) polymers of triallyl isocyanurate.
不飽和環状オリゴマー(V)は、分子中に1つ以上の不飽和結合を有することが好ましく、そのブロム価が25以上であることが好ましい。このような反応性不飽和結合を有するオリゴマーを用いることによって、電気絶縁性樹脂組成物の相溶性と反応の均一性を一層高めることができる。 The unsaturated cyclic oligomer (V) preferably has one or more unsaturated bonds in the molecule, and preferably has a bromine number of 25 or more. By using an oligomer having such a reactive unsaturated bond, the compatibility of the electrically insulating resin composition and the uniformity of the reaction can be further enhanced.
更に、不飽和環状オリゴマー(V)に、カルボン酸基、アミノ基、水酸基、エポキシ基等の極性基や、ウレタン結合、エステル結合、アミド結合等の結合を導入しておくことにより、電気絶縁性樹脂組成物を硬化して得られる電気絶縁層と、後述する金属層との接着性を向上させることができるため好ましい。 Furthermore, by introducing polar groups such as carboxylic acid groups, amino groups, hydroxyl groups, and epoxy groups, and bonds such as urethane bonds, ester bonds, and amide bonds into the unsaturated cyclic oligomer (V), electrical insulation is achieved. This is preferable because the adhesion between the electrical insulating layer obtained by curing the resin composition and the metal layer described later can be improved.
不飽和環状オリゴマー(V)の分子量Mwは、300から10000であることが好ましく、400から1000であることがより好ましい。ゴム状高分子化合物(I)と重合性モノマー(II)の分子量の中間に相当する分子量を有する不飽和環状オリゴマー(V)を用いることによって、電気絶縁性樹脂組成物の相溶性を一層高めることができる。 The molecular weight Mw of the unsaturated cyclic oligomer (V) is preferably 300 to 10,000, and more preferably 400 to 1,000. By further using the unsaturated cyclic oligomer (V) having a molecular weight corresponding to the intermediate molecular weight of the rubbery polymer compound (I) and the polymerizable monomer (II), the compatibility of the electrically insulating resin composition is further enhanced. Can do.
また、電気絶縁性樹脂組成物の未硬化物の粘着性を低下させるという品質安定性の観点からは、常温で固体の不飽和環状オリゴマーを使用することが好ましい。 Moreover, it is preferable to use a solid unsaturated cyclic oligomer at room temperature from the viewpoint of quality stability that lowers the tackiness of the uncured product of the electrically insulating resin composition.
ここで、前述の架橋可能なゴム状高分子化合物(I)と重合性モノマー(II)との好ましい配合割合は、化合物の種類によっても異なるため、一概に規定することは難しいが、ゴム状高分子化合物(I)の成分を主成分として配合することが好ましい。具体的には、ゴム状高分子化合物(I)成分及び重合性モノマー(II)成分の合計100重量部に対し、ゴム状高分子化合物(I)成分を50〜95重量部、重合性モノマー(II)成分を50〜5重量部の割合で配合することが好ましい。また、不飽和環状オリゴマー(V)を添加する場合には、ゴム状高分子化合物(I)成分を50〜80重量部、重合性モノマー(II)成分を40〜10重量部、不飽和環状オリゴマー(V)成分を40〜10重量部の割合で含有せしめることが好ましい。 Here, since the preferable blending ratio of the crosslinkable rubber-like polymer compound (I) and the polymerizable monomer (II) varies depending on the kind of the compound, it is difficult to define it generally. It is preferable to blend the component of the molecular compound (I) as a main component. Specifically, the rubbery polymer compound (I) component is added in an amount of 50 to 95 parts by weight with respect to 100 parts by weight of the rubbery polymer compound (I) component and the polymerizable monomer (II) component. II) It is preferable to mix | blend a component in the ratio of 50-5 weight part. When the unsaturated cyclic oligomer (V) is added, the rubbery polymer compound (I) component is 50 to 80 parts by weight, the polymerizable monomer (II) component is 40 to 10 parts by weight, and the unsaturated cyclic oligomer. (V) It is preferable to contain a component in the ratio of 40-10 weight part.
次に、本発明の電気絶縁性樹脂組成物においては、熱伝導性を向上させるため、熱伝導性無機フィラー(IV)を添加する。熱伝導性無機フィラー(IV)としては、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、炭化珪素、窒化珪素などがあり、配合に最適な粒子径、粒度分布、形状、充填量を決定して配合することができる。熱伝導性無機フィラー(IV)の配合量は、電気絶縁性樹脂組成物の体積(熱伝導性無機フィラーを含む)に対して、体積分率で40%から90%、好ましくは50%から75%の割合で配合する。熱伝導性無機フィラー(IV)の体積分率が40%未満であると、電気絶縁性樹脂組成物における熱伝導性の改善が十分ではないため好ましくない。一方、体積分率が90%を超えると、電気絶縁層の柔軟性が低下し加工性が悪化するため好ましくない。 Next, in the electrically insulating resin composition of the present invention, a thermally conductive inorganic filler (IV) is added in order to improve thermal conductivity. Examples of the thermally conductive inorganic filler (IV) include silica, alumina, aluminum nitride, boron nitride, silicon carbide, and silicon nitride. The particle diameter, particle size distribution, shape, and filling amount that are optimal for blending are determined and blended. be able to. The blending amount of the thermally conductive inorganic filler (IV) is 40% to 90%, preferably 50% to 75% by volume, with respect to the volume of the electrically insulating resin composition (including the thermally conductive inorganic filler). % Blended. If the volume fraction of the thermally conductive inorganic filler (IV) is less than 40%, the improvement in thermal conductivity in the electrically insulating resin composition is not sufficient, which is not preferable. On the other hand, if the volume fraction exceeds 90%, the flexibility of the electrical insulating layer decreases and the workability deteriorates, which is not preferable.
ここで、本発明において注目すべきことは、所定のゴム状高分子化合物(I)を電気絶縁性樹脂組成物に含有させることにより、従来に比べて熱伝導性無機フィラー(IV)の含有量を大幅に増加し得る点である。すなわち、本発明のゴム状高分子化合物(I)が電気絶縁層の柔軟性を確保するのに非常に有効であるため、熱伝導性無機フィラー(IV)を電気絶縁性樹脂組成物に対して多量に添加することが可能となる。従って、電気絶縁層の熱伝導性を非常に改善できると共に、電気絶縁層の柔軟性を損なうことなく加工性を良好に維持することができる。 Here, what should be noted in the present invention is that the content of the heat-conductive inorganic filler (IV) compared to the conventional one by containing the predetermined rubber-like polymer compound (I) in the electrically insulating resin composition. Can be greatly increased. That is, since the rubber-like polymer compound (I) of the present invention is very effective in ensuring the flexibility of the electrical insulating layer, the thermally conductive inorganic filler (IV) is used for the electrical insulating resin composition. A large amount can be added. Therefore, the thermal conductivity of the electrical insulation layer can be greatly improved, and the workability can be maintained well without impairing the flexibility of the electrical insulation layer.
次に、本発明の電気絶縁性樹脂組成物は、架橋剤(III)を使ってラジカル重合反応やその他の重合反応によって硬化させることができ、これらのうちいずれの重合反応も採用することができる。なお、ラジカル重合反応によって硬化させる場合は、電気絶縁性樹脂組成物に通常使用されるラジカル重合開始剤を添加する。 Next, the electrically insulating resin composition of the present invention can be cured by radical polymerization reaction or other polymerization reaction using the crosslinking agent (III), and any of these polymerization reactions can be employed. . In addition, when making it harden | cure by radical polymerization reaction, the radical polymerization initiator normally used for an electrically insulating resin composition is added.
ラジカル重合開始剤としては、有機過酸化物であるジアシルパーオキサイド、アルキルパーオキシエステル、パーオキシジカーボネート、モノパーオキシカーボネート、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、過安息香酸、t−ブチルパーオキサイド、ジクミルパーオキサイド、アゾビス系化合物であるアゾビスイソブチロニトリル、アゾビス−1−シクロヘキサンニトリル等を例示できるが、本発明はこれに制限されるものでは無い。 As radical polymerization initiators, organic peroxides such as diacyl peroxide, alkyl peroxy ester, peroxy dicarbonate, monoperoxy carbonate, peroxy ketal, dialkyl peroxide, hydroperoxide, ketone peroxide, perbenzoic acid Examples include acid, t-butyl peroxide, dicumyl peroxide, azobisisobutyronitrile and azobis-1-cyclohexanenitrile which are azobis compounds, but the present invention is not limited thereto.
ラジカル重合開始剤の添加量は、上記ゴム状高分子化合物(I)及び重合性モノマー(II)の合計100重量部に対して0.1から10重量部が好ましく、1から5重量部の範囲で添加すると良好な硬化物を得ることができるため、より好ましい。不飽和環状オリゴマー(V)を加えた場合も、ラジカル重合開始剤を上記と同様に添加すると良い。 The addition amount of the radical polymerization initiator is preferably 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the rubbery polymer compound (I) and the polymerizable monomer (II), and ranges from 1 to 5 parts by weight. It is more preferable because a good cured product can be obtained. Also when the unsaturated cyclic oligomer (V) is added, the radical polymerization initiator may be added in the same manner as described above.
そのほかの架橋剤(III)として、ジペンタメチレンテトラスルフィド、ジチオモルホリン、臭素化アルキルフェノールホルムアルデヒド樹脂、メチロール化フェノールホルムアルデヒド樹脂、p-キノンジオクシムなども、電気絶縁性樹脂組成物の組成に応じて使用することができる。 As other crosslinking agents (III), dipentamethylene tetrasulfide, dithiomorpholine, brominated alkylphenol formaldehyde resin, methylolated phenol formaldehyde resin, p-quinonedioxim, etc. should be used according to the composition of the electrically insulating resin composition. Can do.
また、熱伝導性無機フィラー(IV)を充填する場合、表面改質を行う目的でエポキシシラン、アミノシラン、メタクリロキシシランに例示されるシラン系カップリング剤、又はチタネート系、アルミニウム系カップリング剤等で予め熱伝導性無機フィラー(IV)の無機材料に表面処理を施すか、電気絶縁性樹脂組成物の中に配合することにより、熱伝導性無機フィラー(IV)、ガラスクロス、金属層である銅箔などと樹脂組成物との接着力を向上させることができる。 In addition, when the thermally conductive inorganic filler (IV) is filled, a silane coupling agent exemplified by epoxy silane, aminosilane, methacryloxysilane, titanate, aluminum coupling agent, etc. for the purpose of surface modification. The inorganic material of the thermally conductive inorganic filler (IV) is subjected to surface treatment in advance or is blended in the electrically insulating resin composition, so that it is a thermally conductive inorganic filler (IV), glass cloth, metal layer. The adhesive force between the copper foil and the resin composition can be improved.
また、電気絶縁性樹脂組成物をガラスクロス等に含浸させたり、可剥離性フィルム、金属導体箔や金属基板等の支持体上に塗工する際、電気絶縁性樹脂組成物の塗工性を調節するために、有機溶媒を使用して本発明の電気絶縁性樹脂組成物を希釈するのが好ましい。 In addition, when an electrically insulating resin composition is impregnated into a glass cloth or the like, or coated on a support such as a peelable film, a metal conductor foil or a metal substrate, the coating property of the electrically insulating resin composition is improved. In order to adjust, it is preferable to dilute the electrically insulating resin composition of the present invention using an organic solvent.
使用される有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、酢酸メチル、酢酸エチル、ベンゼン、トルエン、キシレン、アセトン、メチルエチルケトン、ジエチルエーテル、ジオキサン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼン等が挙げられ、これらの中から1種又は2種以上を適宜選択して使用する。 Examples of the organic solvent used include methanol, ethanol, propanol, isopropanol, methyl acetate, ethyl acetate, benzene, toluene, xylene, acetone, methyl ethyl ketone, diethyl ether, dioxane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, and chlorobenzene. Etc., and one or more of these are appropriately selected and used.
その他、電気絶縁性樹脂組成物の性能を向上させるために、要求性能を損なわない範囲で各種添加剤を加えてもよい。添加剤としては、例えば、耐イオンマイグレーション性を良くするためのイオン吸着剤、酸化劣化防止のための老化防止剤や難燃性を上げるための難燃剤などを添加することができる。 In addition, in order to improve the performance of the electrically insulating resin composition, various additives may be added as long as the required performance is not impaired. As an additive, for example, an ion adsorbent for improving ion migration resistance, an anti-aging agent for preventing oxidative degradation, a flame retardant for increasing flame retardancy, and the like can be added.
以上説明した各成分であるゴム状高分子化合物(I)、重合性モノマー(II)、架橋剤(III)、熱伝導性無機フィラー(IV)、及び必要に応じて添加される不飽和環状オリゴマー化合物(V)を均一に混合することによって、本発明の電気絶縁性樹脂組成物を調製することができる。 The rubber-like polymer compound (I), the polymerizable monomer (II), the crosslinking agent (III), the thermally conductive inorganic filler (IV), and the unsaturated cyclic oligomer added as necessary, which are the components described above By uniformly mixing the compound (V), the electrically insulating resin composition of the present invention can be prepared.
〔B〕回路基板用積層体
次に、本発明による回路基板用積層体について説明する。本発明による回路基板用積層体は、上述した電気絶縁性樹脂組成物を硬化してなる電気絶縁層の少なくとも一方の面に、金属層を有する。ここで、金属層は、金属基材、金属基板、金属箔等が使用できる。本発明の電気絶縁性樹脂組成物は、公知の回路基板における電気絶縁材料として限定なく使用することのできるものであるが、特に金属ベース回路基板における電気絶縁材料として好適に使用することができるため、以下、金属ベース回路基板を例に説明する。
[B] Circuit Board Laminate Next, the circuit board laminate according to the present invention will be described. The laminate for a circuit board according to the present invention has a metal layer on at least one surface of an electrical insulating layer formed by curing the above-described electrical insulating resin composition. Here, a metal base material, a metal substrate, metal foil, etc. can be used for a metal layer. Although the electrically insulating resin composition of the present invention can be used without limitation as an electrically insulating material in a known circuit board, it can be suitably used particularly as an electrically insulating material in a metal base circuit board. Hereinafter, a metal base circuit board will be described as an example.
本発明の金属ベース回路基板用積層体は、金属基材、電気絶縁層及び金属導体箔の順に積層してなる硬化積層体であり、その電気絶縁層が本発明の電気絶縁性樹脂組成物の硬化物からなることを特徴とする。その使用に際しては、表層の金属導体箔をエッチング処理などの一般的な回路形成加工を施すことによって、回路基板を形成することができる。また、当該回路基板の回路形成面上に、さらに電気絶縁層及び金属導体箔を形成し、さらに表層の金属導体箔に回路形成加工を施すことによって、多層回路基板としても利用可能である。 The laminate for a metal base circuit board of the present invention is a cured laminate obtained by laminating a metal base material, an electric insulation layer and a metal conductor foil in this order, and the electric insulation layer of the electric insulating resin composition of the present invention. It consists of hardened | cured material, It is characterized by the above-mentioned. In use, the circuit board can be formed by subjecting the surface metal conductor foil to a general circuit forming process such as etching. Further, by forming an electrical insulating layer and a metal conductor foil on the circuit formation surface of the circuit board, and further subjecting the surface metal conductor foil to a circuit formation process, the circuit board can be used as a multilayer circuit board.
上記電気絶縁層は、本発明の電気絶縁性樹脂組成物を、ラジカル重合反応やその他の重合反応などによって熱硬化させたものである。好ましい硬化温度条件は120〜250℃であり、圧力は2〜5MPaである。 The electrical insulating layer is obtained by thermally curing the electrical insulating resin composition of the present invention by radical polymerization reaction or other polymerization reaction. The preferable curing temperature condition is 120 to 250 ° C., and the pressure is 2 to 5 MPa.
本発明の金属ベース回路基板用積層体の形成方法は特に限定されず、例えば、金属基板や金属導体箔の上に電気絶縁性樹脂組成物を直接塗布し、電気絶縁性樹脂組成物を加熱加圧硬化することによって形成することができる。また、ガラスクロス等に電気絶縁性樹脂組成物を含浸させたプリプレグシートを、金属基板と金属導体箔の間に挟んで加熱加圧硬化することによって形成してもよい。また、可剥離性フィルムの上に電気絶縁性樹脂組成物を塗布して未硬化の電気絶縁層を形成し、この未硬化電気絶縁層から可剥離性フィルムを剥がして金属基板や金属導体箔の間に挟んで未硬化電気絶縁層を配置し、未硬化電気絶縁層を加熱加圧硬化して形成してもよい。 The method for forming the laminate for a metal base circuit board of the present invention is not particularly limited. For example, the electrically insulating resin composition is directly applied onto a metal substrate or a metal conductor foil, and the electrically insulating resin composition is heated. It can be formed by pressure curing. Alternatively, a prepreg sheet in which a glass cloth or the like is impregnated with an electrically insulating resin composition may be sandwiched between a metal substrate and a metal conductor foil and cured by heating and pressing. Also, an electrically insulating resin composition is applied onto the peelable film to form an uncured electrical insulating layer, and the peelable film is peeled off from the uncured electrical insulating layer to form a metal substrate or a metal conductor foil. An uncured electrical insulation layer may be disposed between the layers, and the uncured electrical insulation layer may be formed by heating and pressure curing.
そのほか、本発明の電気絶縁性樹脂組成物は、以下に述べるような回路基板用硬化体として使用することもできる。例えば、本発明の電気絶縁性樹脂組成物の硬化物からなる電気絶縁層の少なくとも一方の面に、金属導体箔を設けてなる回路基板用積層体として用いても良い。このような回路基板用積層体は、表面の金属導体箔に回路形成加工を施し、これを順次重ねて一体化することによって多層回路基板の製造に利用することができる。 In addition, the electrically insulating resin composition of the present invention can also be used as a cured product for a circuit board as described below. For example, you may use as a laminated body for circuit boards which provides metal conductor foil in the at least one surface of the electrically insulating layer which consists of hardened | cured material of the electrically insulating resin composition of this invention. Such a laminate for a circuit board can be used for the production of a multilayer circuit board by subjecting a metal conductor foil on the surface to a circuit forming process and sequentially stacking and integrating them.
電気絶縁層の一方の面に金属導体箔を設けた片面回路基板用積層体を製造する場合は、上述のプリプレグシート又は接着シートの片面に金属導体箔を組み合わせて、熱プレスなどで加熱硬化させることにより製造することができる。また、金属導体箔の上に電気絶縁性樹脂組成物を用いて塗膜(未硬化電気絶縁層)を形成した未硬化積層体を形成し、これを加熱硬化させることによっても製造することができる。 When manufacturing a laminate for a single-sided circuit board in which a metal conductor foil is provided on one side of the electrical insulating layer, the metal conductor foil is combined on one side of the above-described prepreg sheet or adhesive sheet, and heat-cured with a hot press or the like. Can be manufactured. It can also be produced by forming an uncured laminate in which a coating film (uncured electrical insulation layer) is formed using an electrically insulating resin composition on a metal conductor foil, and heating and curing this. .
また電気絶縁層の両面に金属導体箔を設けた両面回路基板用積層体を製造する場合は、上述のプリプレグシート又は接着シートの両面に金属導体箔を配置した状態で、あるいは、未硬化積層体の場合は、金属導体箔を形成した面の反対側にさらに金属導体箔を配置した状態で、熱プレスなどで加熱硬化させることで得られる。 Moreover, when manufacturing the laminated body for double-sided circuit boards which provided the metal conductor foil on both surfaces of the electrically insulating layer, in the state which has arrange | positioned the metal conductor foil on both surfaces of the above-mentioned prepreg sheet or an adhesive sheet, or an uncured laminated body In this case, it can be obtained by heat-curing with a hot press or the like in a state where the metal conductor foil is further arranged on the opposite side of the surface on which the metal conductor foil is formed.
硬化後の電気絶縁層の厚さは、一般的な要求特性から10〜300μmが好ましく、特に50〜150μmの範囲にあると産業上有用である。 The thickness of the electrically insulating layer after curing is preferably 10 to 300 μm in view of general required characteristics, and is industrially useful particularly in the range of 50 to 150 μm.
金属基板としては、アルミニウム、銅等の金属基板が使用できる。金属基板の厚さは、0.1mm〜5mm、好ましくは0.5mm〜3mmである。 As the metal substrate, a metal substrate such as aluminum or copper can be used. The thickness of the metal substrate is 0.1 mm to 5 mm, preferably 0.5 mm to 3 mm.
配線層形成用の金属導体箔としては、銅、アルミニウム等の金属箔が使用でき、その金属導体箔の厚さは5〜500μm、好ましくは35〜300μmである。 As the metal conductor foil for forming the wiring layer, a metal foil such as copper or aluminum can be used, and the thickness of the metal conductor foil is 5 to 500 μm, preferably 35 to 300 μm.
〔C〕回路基板用積層体の形成材料
次に、本発明の回路基板用積層体を形成するための形成材料(未硬化積層体)について説明する。この未硬化積層体は、回路基板の製造に使用される積層体であって、本発明の電気絶縁性樹脂組成物から得られた未硬化電気絶縁層と、金属層(配線層用金属導体箔又は金属基材)からなる積層体である。すなわち、本発明の未硬化積層体は、電気絶縁層と、金属基材又は配線層用金属導体箔から選ばれる少なくとも1層とを同時に形成するために使用されるものである。
[C] Forming Material of Circuit Board Laminate Next, a forming material (uncured laminate) for forming the circuit board laminate of the present invention will be described. This uncured laminate is a laminate used for the production of a circuit board, and comprises an uncured electrical insulating layer obtained from the electrically insulating resin composition of the present invention and a metal layer (metal conductor foil for wiring layers). Or a metal substrate). That is, the uncured laminate of the present invention is used for simultaneously forming an electrical insulating layer and at least one layer selected from a metal substrate or a metal conductor foil for a wiring layer.
本発明の回路基板用積層体を形成するための形成材料の主な供給形態としては、(1)回路基板における電気絶縁層を形成するために使用される未硬化のシート状材料であるシート状未硬化物、及び、(2)回路基板において、電気絶縁層と、金属基板又は配線層用金属導体箔から選ばれる1層の金属層とを形成するための2層構造の未硬化積層体が挙げられる。なお、これらの形成材料については、金属ベース回路基板用硬化積層体の製造に好適に利用することができるものであるが、その用途はこれに限定されるものではない。 The main supply form of the forming material for forming the laminate for a circuit board of the present invention is as follows: (1) Sheet-like material that is an uncured sheet-like material used for forming an electrical insulating layer in a circuit board An uncured product and (2) an uncured laminate having a two-layer structure for forming an electrical insulating layer and one metal layer selected from a metal conductor foil for a metal substrate or a wiring layer in a circuit board Can be mentioned. In addition, about these formation materials, although it can utilize suitably for manufacture of the hardening laminated body for metal base circuit boards, the use is not limited to this.
(1)のシート状未硬化物としては、(i)プリプレグシート、及び(ii)可剥離性フィルムの上に電気絶縁性樹脂組成物を塗布して未硬化電気絶縁層を形成した接着シートを挙げることができる。 As the sheet-like uncured material of (1), an adhesive sheet in which an uncured electrical insulating layer is formed by applying an electrically insulating resin composition on (i) a prepreg sheet and (ii) a peelable film. Can be mentioned.
(i)のプリプレグシートは、繊維シートに本発明の電気絶縁性樹脂組成物を含浸させたものである。使用に際しては、プリプレグシートの片面又は両面に金属導体箔を重ねた状態、あるいは、プリプレグシートの一方の面に金属導体箔を配置し、もう一方の面に金属基板を配置した状態で、この積層体を加熱圧着することによって、ガラスクロス等に浸み込んだ電気絶縁性樹脂組成物を硬化させ、電気絶縁層を形成する。プリプレグシートの両面に金属導体箔を重ねて、電気絶縁性樹脂組成物を硬化させた硬化積層体は、多層回路基板の内層回路等に好適に利用できる。 The prepreg sheet (i) is obtained by impregnating a fiber sheet with the electrically insulating resin composition of the present invention. In use, in a state where the metal conductor foil is superimposed on one side or both sides of the prepreg sheet, or in a state where the metal conductor foil is arranged on one side of the prepreg sheet and the metal substrate is arranged on the other side. By thermally pressing the body, the electrically insulating resin composition soaked in glass cloth or the like is cured to form an electrically insulating layer. A cured laminate in which a metal conductor foil is laminated on both surfaces of a prepreg sheet and the electrically insulating resin composition is cured can be suitably used for an inner layer circuit of a multilayer circuit board.
プリプレグシート(i)の作製に用いる繊維シートとしては、有機又は無機の織布又は不織布を用いることができる。無機繊維シートとしては、ガラスクロス等を用いることができる。また、有機繊維シートとしては、ポリイミド、アラミド、耐熱性ポリエステル、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、炭素繊維などからなる繊維シートを用いることができる。 As a fiber sheet used for preparation of the prepreg sheet (i), an organic or inorganic woven fabric or non-woven fabric can be used. A glass cloth etc. can be used as an inorganic fiber sheet. As the organic fiber sheet, a fiber sheet made of polyimide, aramid, heat resistant polyester, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), carbon fiber, or the like can be used.
プリプレグシート(i)は、本発明の電気絶縁性樹脂組成物を有機溶媒などで適当な濃度に希釈し、これをガラスクロス等に含浸させた後、乾燥させることによって形成することができる。ガラスクロス等の厚さは30〜200μmが好ましく、60〜100μmがより好ましく用途に応じて電気絶縁性樹脂組成物の付着量を調整することができる。 The prepreg sheet (i) can be formed by diluting the electrically insulating resin composition of the present invention to an appropriate concentration with an organic solvent or the like, impregnating it with a glass cloth or the like, and then drying it. The thickness of the glass cloth or the like is preferably 30 to 200 μm, more preferably 60 to 100 μm, and the adhesion amount of the electrically insulating resin composition can be adjusted according to the application.
また、(ii)の接着シートは、可剥離性フィルムの上に、本発明の電気絶縁性樹脂組成物からなる未硬化の電気絶縁層を形成した接着シートである。実際の使用時には、可剥離性フィルムを剥がして未硬化の電気絶縁層を金属基板や金属導体箔の間に挟んだ後、加熱加圧硬化させることで金属ベース回路基板等に利用ができる。更には金属導体箔を片面又は両面に重ねた状態で加熱圧着することによって、多層回路基板における内層回路用の硬化積層体として利用できる。 The adhesive sheet (ii) is an adhesive sheet in which an uncured electrical insulating layer made of the electrical insulating resin composition of the present invention is formed on a peelable film. In actual use, the peelable film is peeled off and an uncured electrical insulating layer is sandwiched between a metal substrate and a metal conductor foil, and then cured by heating and pressing, so that it can be used for a metal base circuit board. Furthermore, it can utilize as a hardening laminated body for the inner layer circuits in a multilayer circuit board by heat-pressing in the state which accumulated the metal conductor foil on the single side | surface or both surfaces.
この接着シート(ii)は、例えば、本発明の電気絶縁性樹脂組成物を可剥離性フィルム上に塗工し、得られた塗膜を乾燥することで得ることができる。この可剥離性フィルムとしては、ポリエチレン、ポリプロピレンなどのオレフィンフィルム、フッ素樹脂系フィルム、ポリエチレンテレフタレートフィルム、トリアセチルセルロース等がある。これらのフィルムにシリコーン樹脂等で剥離性を付与したものが好ましく使用される。このフィルムは、厚さ10〜200μmが好ましく、30〜100μmがより好ましい。 This adhesive sheet (ii) can be obtained, for example, by applying the electrically insulating resin composition of the present invention on a peelable film and drying the resulting coating film. Examples of the peelable film include olefin films such as polyethylene and polypropylene, fluororesin films, polyethylene terephthalate films, and triacetyl cellulose. Those obtained by imparting peelability to these films with a silicone resin or the like are preferably used. This film preferably has a thickness of 10 to 200 μm, more preferably 30 to 100 μm.
また、(2)の2層構造の未硬化積層体としては、(i)回路基板における金属基板となる金属板の上に、本発明の電気絶縁性樹脂組成物から得られる未硬化電気絶縁層を形成した2層構造の積層体、又は、(ii)回路基板における配線層となる金属導体箔の上に、本発明の電気絶縁性樹脂組成物から得られる未硬化電気絶縁層を形成した2層構造積層体を挙げることができる。このような未硬化積層体を製造する場合、金属基板又は金属導体箔の上に、本発明の電気絶縁性樹脂組成物を塗工し、得られた塗膜を乾燥することで製造することができる。 The uncured laminate having the two-layer structure (2) includes (i) an uncured electrical insulating layer obtained from the electrically insulating resin composition of the present invention on a metal plate serving as a metal substrate in a circuit board. (Ii) An uncured electrical insulating layer obtained from the electrical insulating resin composition of the present invention is formed on a two-layer laminate or (ii) a metal conductor foil serving as a wiring layer in a circuit board. A layer structure laminate can be given. When producing such an uncured laminate, it can be produced by applying the electrically insulating resin composition of the present invention on a metal substrate or metal conductor foil and drying the resulting coating film. it can.
金属導体箔の上に未硬化電気絶縁層を形成した未硬化積層体の場合は、未硬化電気絶縁層を金属基板の上に配置した状態で加熱加圧して、未硬化電気絶縁層を金属基板に貼り付けることにより、金属基板、電気絶縁層及び金属導体箔からなる3層積層体を形成する。また、未硬化電気絶縁層の上にさらに金属導体箔を重ねた状態で加熱圧着することによって、多層回路基板における内層回路用の硬化積層体として利用できる。 In the case of an uncured laminate in which an uncured electrical insulation layer is formed on a metal conductor foil, the uncured electrical insulation layer is heated and pressed in a state where the uncured electrical insulation layer is disposed on the metal substrate, and the uncured electrical insulation layer is formed on the metal substrate. A three-layer laminate composed of a metal substrate, an electrical insulating layer, and a metal conductor foil is formed by sticking to the substrate. Moreover, it can utilize as a hardening laminated body for the inner layer circuits in a multilayer circuit board by carrying out thermocompression bonding in the state which accumulated the metal conductor foil on the uncured electrical insulation layer.
また、金属基板の上に未硬化電気絶縁層を形成した積層体の場合は、未硬化電気絶縁層の上に金属導体箔を配置した状態で加熱加圧して、未硬化電気絶縁層を金属導体箔に貼り付けることにより、金属基板、電気絶縁層及び金属導体箔の順に積層してなる3層積層体を形成する。 In the case of a laminate in which an uncured electrical insulation layer is formed on a metal substrate, the uncured electrical insulation layer is made into a metal conductor by heating and pressing with a metal conductor foil placed on the uncured electrical insulation layer. By sticking to the foil, a three-layer laminate is formed by laminating the metal substrate, the electrical insulating layer, and the metal conductor foil in this order.
上述の(1)シート状未硬化物、(2)未硬化積層体における未硬化電気絶縁層には、必要に応じて保護フィルムを設けることができ、使用時には剥がして用いることが好ましい。保護フィルムには、上述の剥離性のフィルムなどが用いられる。 The above-mentioned (1) sheet-like uncured product and (2) the uncured electrical insulating layer in the uncured laminate can be provided with a protective film as necessary, and are preferably peeled off during use. As the protective film, the above-described peelable film or the like is used.
以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, based on an Example and a comparative example, it demonstrates further more concretely about this invention. In addition, this invention is not limited to the following Example.
(実施例1)
ゴム状高分子化合物(I)として液状EPDM(ユニロイヤルケミカル社:トライレン#65、エチレン/プロピレン比率=48/52、分子量=40000、ヨウ素価=20)を60重量部、重合性モノマー(II)成分としてトリアリルイソシアヌレート(TAIC)40重量部、シランカップリング剤(信越化学工業:KMB503)を3.5重量部、及び架橋剤(III)としてラジカル重合開始剤であるジクミルパーオキサイド(DCP)3.0重量部を、トルエン250重量部に加えて溶解した。
Example 1
Liquid EPDM (Uniroy Chemical Co .: Trilene # 65, ethylene / propylene ratio = 48/52, molecular weight = 40000, iodine value = 20) as rubbery polymer (I), 60 parts by weight, polymerizable monomer (II) 40 parts by weight of triallyl isocyanurate (TAIC) as a component, 3.5 parts by weight of a silane coupling agent (Shin-Etsu Chemical Co., Ltd .: KMB503), and dicumyl peroxide (DCP) as a radical polymerization initiator as a crosslinking agent (III) ) 3.0 parts by weight was dissolved in 250 parts by weight of toluene.
次いで、この溶液中の樹脂組成物40体積%に対し、熱伝導性無機フィラー(IV)としてアルミナ粉末(昭和電工:S50 平均粒径9μm)を60体積%添加し、電気絶縁性樹脂組成物として調製した。得られた溶液を厚さ70μmのガラスクロスに含浸して、厚さ100μmのプリプレグを製作した。これを35μmの銅箔と厚さ1.0mmのアルミニウム基板の間にセットし、熱プレスで180℃、5MPaで30分間加熱加圧硬化し、アルミニウム基板、電気絶縁層、銅箔の3層からなる積層板を製作した。 Next, 60% by volume of alumina powder (Showa Denko: S50 average particle size 9 μm) is added as a thermally conductive inorganic filler (IV) to 40% by volume of the resin composition in the solution to obtain an electrically insulating resin composition. Prepared. The obtained solution was impregnated into a glass cloth having a thickness of 70 μm to produce a prepreg having a thickness of 100 μm. This is set between a 35 μm copper foil and an aluminum substrate having a thickness of 1.0 mm, and heated and cured at 180 ° C. and 5 MPa for 30 minutes with a hot press, and from three layers of an aluminum substrate, an electrical insulating layer and a copper foil. A laminate was produced.
(実施例2)
ゴム状高分子化合物(I)として固形エチレン・プロピレンゴムであるEPDM#4010(三井化学社:エチレン/プロピレン/ジエン比率=63/26.4/10.6、ヨウ素価=22)を60重量部、オリゴマー化合物(V)としてジシクロペンタジエン系石油樹脂(日本ゼオン:QNT1345)を20重量部、及び重合性モノマー(II)成分としてトリアリルイソシアヌレート(TAIC)を20重量部、シランカップリング剤(信越化学工業:KMB503)を3.5重量部、更に架橋剤(III)としてラジカル開始剤であるジクミルパーオキサイド3.0重量部を、トルエン250重量部に加えて溶解させた。
(Example 2)
60 parts by weight of EPDM # 4010 (Mitsui Chemicals Co., Ltd .: ethylene / propylene / diene ratio = 63 / 26.4 / 10.6, iodine value = 22), which is a solid ethylene / propylene rubber, as the rubbery polymer compound (I) 20 parts by weight of dicyclopentadiene-based petroleum resin (Nippon Zeon: QNT1345) as the oligomer compound (V), 20 parts by weight of triallyl isocyanurate (TAIC) as the polymerizable monomer (II) component, and a silane coupling agent ( Shin-Etsu Chemical Co., Ltd .: KMB503) was added to 3.5 parts by weight, and further, 3.0 parts by weight of dicumyl peroxide as a radical initiator as a crosslinking agent (III) was added to 250 parts by weight of toluene and dissolved.
次いで、この溶液中の樹脂組成物40体積%に対し、熱伝導性無機フィラー(IV)としてアルミナ粉末を(昭和電工:S50 平均粒径9μm)60体積%を添加し、遠心脱法攪拌機で十分攪拌して電気絶縁性樹脂組成物を調製した。得られた溶液を厚さ35μmの銅箔の裏面にバーコータで塗布した後、80℃の加熱オーブン中で10分間乾燥して溶媒を飛散させ、厚さ100μmの電気絶縁層とした。次いで、厚さ1.0mmのアルミニウム基板の上に、銅箔に塗った電気絶縁層を重ね合わせて、熱プレスで180℃、5MPaで30分間加熱加圧硬化し、アルミニウム基板、電気絶縁層、銅箔の3層からなる積層板を作製した。 Next, 60% by volume of alumina powder (Showa Denko: S50 average particle size 9 μm) as heat conductive inorganic filler (IV) is added to 40% by volume of the resin composition in the solution, and the mixture is sufficiently stirred with a centrifugal de-stirrer. Thus, an electrically insulating resin composition was prepared. The obtained solution was applied to the back surface of a 35 μm thick copper foil with a bar coater and then dried in a heating oven at 80 ° C. for 10 minutes to disperse the solvent, thereby obtaining an electric insulating layer having a thickness of 100 μm. Next, an electrical insulating layer applied to a copper foil is overlaid on an aluminum substrate having a thickness of 1.0 mm, and heated and cured by heating at 180 ° C. and 5 MPa for 30 minutes. A laminate composed of three layers of copper foil was prepared.
(実施例3)
ゴム状高分子化合物(I)としてブチルゴム#365(日本ブチル社:ヨウ素価=11)を60重量部、オリゴマー化合物(V)としてジシクロペンタジエン系石油樹脂(丸善石油:マルカレツM845A)を20重量部、重合性モノマー(II)としてトリシクロデカンジメタノールジメタクリレート(新中村化学:NKDCP)を20重量部、アルミニウム系カップリング剤(味の素:AL−M)を3.5重量部、及び架橋剤(III)としてラジカル重合開始剤であるジクミルパーオキサイド3.0重量部を、トルエン200重量部に加えて溶解させ調合した。次いで、この溶液中の樹脂組成物50体積%に対し、熱伝導性無機フィラー(IV)としてチッ化アルミニウム粉末(東洋アルミニウム:UMK、平均粒径6.5μm)を50体積%添加し、遠心脱法攪拌機で十分攪拌することによって、電気絶縁性樹脂組成物を調製した。得られた溶液から実施例2と同様に厚さ100μmの絶縁層を作り、更に積層板を製作した。
(Example 3)
60 parts by weight of butyl rubber # 365 (Nippon Butyl: iodine value = 11) as the rubber-like polymer compound (I) and 20 parts by weight of dicyclopentadiene-based petroleum resin (Maruzen Petroleum: Marcaretsu M845A) as the oligomeric compound (V) As a polymerizable monomer (II), 20 parts by weight of tricyclodecane dimethanol dimethacrylate (Shin Nakamura Chemical: NKDCP), 3.5 parts by weight of an aluminum coupling agent (Ajinomoto: AL-M), and a crosslinking agent ( As III), 3.0 parts by weight of dicumyl peroxide as a radical polymerization initiator was added to 200 parts by weight of toluene and dissolved to prepare. Next, 50% by volume of aluminum nitride powder (Toyo Aluminum: UMK, average particle size 6.5 μm) was added as a thermally conductive inorganic filler (IV) to 50% by volume of the resin composition in the solution. An electrically insulating resin composition was prepared by sufficiently stirring with a stirrer. An insulating layer having a thickness of 100 μm was made from the obtained solution in the same manner as in Example 2, and a laminate was further produced.
(実施例4)
ゴム状高分子化合物(I)としてエチレン−プロピレンゴムであるEP43(日本合成ゴムのENBジエン含量1.5重量%:ヨウ素価=3)を60重量部、オリゴマー化合物(V)としてジシクロペンタジエン系石油樹脂(日本ゼオン:QNT1345)を20重量部、及び重合性モノマー(II)としてトリアリルイソシアヌレート(TAIC)を20重量部、シランカップリング剤(信越化学工業:KMB503)を3.5重量部、更に架橋剤(III)としてラジカル開始剤であるジクミルパーオキサイド3.0重量部を、トルエン250重量部に溶解させた。
Example 4
60 parts by weight of EP43 (ENB diene content of Japanese synthetic rubber: 1.5% by weight: iodine value = 3) as an ethylene-propylene rubber as the rubbery polymer compound (I), and dicyclopentadiene as the oligomeric compound (V) 20 parts by weight of petroleum resin (Nippon ZEON: QNT1345), 20 parts by weight of triallyl isocyanurate (TAIC) as polymerizable monomer (II), and 3.5 parts by weight of silane coupling agent (Shin-Etsu Chemical Co., Ltd .: KMB503) Further, 3.0 parts by weight of dicumyl peroxide as a radical initiator as a crosslinking agent (III) was dissolved in 250 parts by weight of toluene.
次いで、この溶液中の樹脂組成物50体積%に対し、熱伝導性無機フィラー(IV)としてアルミナ粉末(昭和電工:S50 平均粒径9μm)50体積%を添加し、遠心脱泡攪拌機で十分攪拌して電気絶縁性樹脂組成物を調製した。得られた溶液を厚さ35μmの銅箔の裏面にバーコータで塗布した後、80℃の加熱オーブン中で10分間乾燥して溶媒を飛散させ100μmの電気絶縁層とした。次いで、厚さ1.0mmのアルミニウム基板の上に、銅箔に塗った電気絶縁層を重ね合わせて、熱プレスで180℃、5MPaで30分間加熱加圧硬化し、アルミニウム基板、電気絶縁層、銅箔の3層からなる積層板を製作した。 Next, 50% by volume of alumina powder (Showa Denko: S50 average particle size 9 μm) is added as a thermally conductive inorganic filler (IV) to 50% by volume of the resin composition in the solution, and the mixture is sufficiently stirred with a centrifugal defoaming stirrer. Thus, an electrically insulating resin composition was prepared. The obtained solution was applied to the back surface of a 35 μm thick copper foil with a bar coater and then dried in a heating oven at 80 ° C. for 10 minutes to scatter the solvent to obtain a 100 μm electrically insulating layer. Next, an electrical insulating layer applied to a copper foil is overlaid on an aluminum substrate having a thickness of 1.0 mm, and heated and cured by heating at 180 ° C. and 5 MPa for 30 minutes. A laminate consisting of three layers of copper foil was produced.
(比較例1)
ゴム状高分子化合物として液状イソプレンゴム(クラレ:LIR−50 ヨウ素価=368)を70重量部、オリゴマー化合物(V)としてジシクロペンタジエン系石油樹脂(丸善石油:マルカレツM845A)を20重量部、重合性モノマー(II)としてトリシクロデカンジメタノールジメタクリレート(新中村化学:NKDCP)を10重量部、アルミニウム系カップリング剤(味の素:AL−M)を3.5重量部、及び架橋剤(III)としてラジカル重合開始剤であるジクミルパーオキサイド3.0重量部を、トルエン200重量部に加えて溶解させ調合した。
(Comparative Example 1)
70 parts by weight of liquid isoprene rubber (Kuraray: LIR-50 iodine number = 368) as a rubbery polymer compound, 20 parts by weight of dicyclopentadiene petroleum resin (Maruzen Petroleum: Marcaretsu M845A) as an oligomer compound (V), polymerization 10 parts by weight of tricyclodecane dimethanol dimethacrylate (Shin Nakamura Chemical: NKDCP), 3.5 parts by weight of an aluminum coupling agent (Ajinomoto: AL-M), and a crosslinking agent (III) As a radical polymerization initiator, 3.0 parts by weight of dicumyl peroxide as a radical polymerization initiator was added to 200 parts by weight of toluene and dissolved to prepare.
次いで、この溶液中の樹脂組成50体積%に対し、熱伝導性無機フィラー(IV)としてチッ化アルミニウム(東洋アルミニウム:UMK 平均粒径6.5μm)を50体積%添加し、遠心脱法攪拌機で十分攪拌することによって、電気絶縁性樹脂組成物を調製した。得られた溶液から実施例1と同様にして、厚さ100μmの電気絶縁層を作製した。更に、得られた電気絶縁層を用いて、実施例2と同様の方法で積層板を作製した。 Next, 50% by volume of aluminum nitride (Toyo Aluminum: UMK average particle size 6.5 μm) is added as a thermally conductive inorganic filler (IV) to 50% by volume of the resin composition in the solution, and a centrifugal de-stirring stirrer is sufficient. An electrically insulating resin composition was prepared by stirring. From the obtained solution, an electrical insulating layer having a thickness of 100 μm was produced in the same manner as in Example 1. Furthermore, a laminate was produced in the same manner as in Example 2 using the obtained electrical insulating layer.
(比較例2)
ゴム状高分子化合物としてSBSゴム(スチレン・ブタジエン・スチレン)である(旭化成:タフプレン125 ヨウ素価=205)を70重量部、重合性モノマー(II)としてトリシクロデカンジメタノールジメタクリレート(新中村化学:NKDCP)を30重量部、シランカップリング剤(信越化学工業:KMB503)を3.5重量部、及び架橋剤(III)としてラジカル重合開始剤であるジクミルパーオキサイドを3.0重量部加えて、トルエン250重量部に溶解させた。
(Comparative Example 2)
70 parts by weight of SBS rubber (styrene, butadiene, styrene) (Asahi Kasei: Tufprene 125 iodine value = 205) as the rubbery polymer compound, and tricyclodecane dimethanol dimethacrylate (Shin Nakamura Chemical) as the polymerizable monomer (II) : NKDCP), 30 parts by weight of silane coupling agent (Shin-Etsu Chemical Co., Ltd .: KMB503), and 3.0 parts by weight of dicumyl peroxide as a radical polymerization initiator as a crosslinking agent (III) And dissolved in 250 parts by weight of toluene.
次いで、この溶液中の樹脂組成物40体積%に対し、熱伝導性無機フィラー(IV)としてアルミナ粉末(昭和電工:S50 平均粒径9μm)60体積%を添加し、遠心脱法攪拌機で十分攪拌して電気絶縁性樹脂組成物を調製した。得られた溶液から実施例2と同様に厚さ100μmの絶縁層を作り、更に積層板を作製した。 Next, 60% by volume of alumina powder (Showa Denko: S50 average particle size 9 μm) is added as a thermally conductive inorganic filler (IV) to 40% by volume of the resin composition in this solution, and the mixture is sufficiently stirred with a centrifugal de-stirrer. Thus, an electrically insulating resin composition was prepared. An insulating layer having a thickness of 100 μm was formed from the obtained solution in the same manner as in Example 2, and a laminate was further prepared.
(比較例3)
ゴム状高分子化合物として二重結合を含まないエチレン−プロピレンゴム(エチレン:プロピレン=48:52、ムーニー粘度40、ヨウ素価=0)を70重量部、オリゴマー化合物(V)としてジシクロペンタジエン系石油樹脂(丸善石油:マルカレツM845A)を20重量部、重合性モノマーとしてトリシクロデカンジメタノールジメタクリレート(新中村化学:NKDCP)を10重量部、アルミニウム系カップリング剤(味の素:AL−M)を3.5重量部、及び架橋剤(III)としてラジカル開始剤であるジクミルパーオキサイドを3.0重量部加えてトルエン200重量部に溶解させ調合した。次いで、この溶液中の樹脂組成物50体積%に対し、熱伝導性無機フィラー(IV)としてチッ化アルミニウム(東洋アルミニウム:UMK平均粒径6.5μm)を50体積%添加し、遠心脱法攪拌機で十分攪拌することによって、電気絶縁性樹脂組成物を調製した。得られた溶液から実施例1と同様に100μmの絶縁層を作り、更に積層板を作製した。得られた電気絶縁性樹脂組成物を用いて、実施例2と同様の方法で積層板を作製した。
(Comparative Example 3)
70 parts by weight of ethylene-propylene rubber (ethylene: propylene = 48: 52, Mooney viscosity 40, iodine value = 0) containing no double bond as a rubbery polymer compound, and dicyclopentadiene petroleum as an oligomer compound (V) 20 parts by weight of resin (Maruzen Petroleum: Marcaretsu M845A), 10 parts by weight of tricyclodecane dimethanol dimethacrylate (Shin Nakamura Chemical: NKDCP) as a polymerizable monomer, 3 parts of an aluminum coupling agent (Ajinomoto: AL-M) 0.5 parts by weight and 3.0 parts by weight of dicumyl peroxide as a radical initiator as a crosslinking agent (III) were added and dissolved in 200 parts by weight of toluene to prepare. Next, 50% by volume of aluminum nitride (Toyo Aluminum: UMK average particle size 6.5 μm) was added as a thermally conductive inorganic filler (IV) to 50% by volume of the resin composition in the solution, and the mixture was centrifuged using a centrifugal de-stirrer. By sufficiently stirring, an electrically insulating resin composition was prepared. An insulating layer having a thickness of 100 μm was formed from the obtained solution in the same manner as in Example 1, and a laminate was further produced. A laminate was produced in the same manner as in Example 2 using the obtained electrically insulating resin composition.
実施例1〜4、及び比較例1〜3によって作製した積層板を、下記の評価方法によって評価した。結果を表1及び表2に示す。 The laminated board produced by Examples 1-4 and Comparative Examples 1-3 was evaluated with the following evaluation method. The results are shown in Tables 1 and 2.
〈Tピール強度試験〉
積層板の銅箔をエッチングして幅10mmのパターンを形成したサンプルを作製し、基板と銅箔が垂直になるように50mm/分の速度で引き剥がす際のTピール強度(N/cm)を測定した。
<T peel strength test>
A sample having a 10 mm wide pattern formed by etching the copper foil of the laminated board is prepared, and the T peel strength (N / cm) when peeling off at a rate of 50 mm / min so that the substrate and the copper foil are vertical It was measured.
〈ハンダ耐熱試験〉
上記実施例及び比較例で作成した積層板から、JIS C−6481に従ってサンプルを作製し、300℃のハンダ槽にサンプルを浮かべて、目視によって膨れ、ひび割れ等の有無が観察されるまでの時間を測定した。
<Solder heat resistance test>
Samples were prepared according to JIS C-6481 from the laminates prepared in the above examples and comparative examples, and the sample was floated on a 300 ° C. solder bath, and the time until the presence or absence of swelling, cracks, etc. was observed visually. It was measured.
〈高温熱劣化後の耐電圧〉
耐電圧試験用のテストパターン(直径20mmの銅箔パターン)をエッチングで製作し、220℃の乾燥オーブン中で120時間放置した後、JIS C2110のステップ耐電圧試験方法に従い測定した。
<Withstand voltage after high temperature thermal degradation>
A test pattern for a withstand voltage test (copper foil pattern having a diameter of 20 mm) was produced by etching, left in a drying oven at 220 ° C. for 120 hours, and then measured according to a step withstand voltage test method of JIS C2110.
表1及び表2に示す通り、実施例1〜4では、ヨウ素価25以下のゴム状高分子化合物(I)を使うことにより耐熱性に優れ、また銅箔Tピール強度試験においても十分な特性を有し、高温劣化後の耐電圧特性も非常に優れており、高温において実用性のある絶縁材料が得られたことが判る。また、実施例1〜4における電気絶縁層は、比較例1〜3の電気絶縁層に比べて柔軟性に富むため、ヒートサイクルにおける耐ハンダクラック性も期待ができる。 As shown in Tables 1 and 2, in Examples 1 to 4, the rubbery polymer compound (I) having an iodine value of 25 or less is used so that the heat resistance is excellent, and sufficient characteristics are also obtained in the copper foil T peel strength test. It is clear that the withstand voltage characteristics after high temperature degradation are very excellent, and an insulating material that is practical at high temperatures was obtained. In addition, since the electrical insulating layers in Examples 1 to 4 are more flexible than the electrical insulating layers in Comparative Examples 1 to 3, solder crack resistance in a heat cycle can be expected.
これらの結果を総合すると、本発明の意図する傾向が次のように言うことができる。すなわち、ゴム状高分子化合物(I)としてヨウ素価が25を超えるポリマーを使用すると架橋反応が十分に行われず、すなわち不飽和結合が残存するため高温において酸化劣化を受け特性が劣化することになる。これらの劣化は他の殆どの特性に関して影響が及ぶ。一方本発明の範囲に従った組成で電気絶縁層を製作すると、酸化劣化を受ける不飽和結合が殆ど残存しない状態にまで架橋が進み、耐熱性の高い電気絶縁層が得られる。 When these results are combined, the intended tendency of the present invention can be stated as follows. That is, when a polymer having an iodine value of more than 25 is used as the rubber-like polymer compound (I), the crosslinking reaction is not sufficiently performed, that is, the unsaturated bond remains, so that the characteristics deteriorate due to oxidative degradation at a high temperature. . These degradations have an impact on most other properties. On the other hand, when an electrical insulation layer is produced with a composition according to the scope of the present invention, the crosslinking proceeds to a state in which almost no unsaturated bond that undergoes oxidative degradation remains, and an electrical insulation layer having high heat resistance can be obtained.
以上のように、本発明にかかる電気絶縁性樹脂組成物は、優れた柔軟性、密着性、耐湿性を有するとともに、ハンダ付け時の高熱処理にも耐えうる耐熱劣化性を有し、高温・多湿の過酷な環境下においても長期間にわたって安定使用が可能であるため、プリント配線基板等の回路基板における電気絶縁材料として有用である。特に、エアコンや産業用モータのインバータなど発熱量の大きな用途や自動車のエンジンルーム等に搭載される電気機器のように、高温、振動条件下において使用される電気機器の回路基板等に好適に利用することができる。 As described above, the electrically insulating resin composition according to the present invention has excellent flexibility, adhesion, and moisture resistance, and has heat deterioration resistance that can withstand high heat treatment during soldering. Since it can be used stably over a long period of time even in a harsh and humid environment, it is useful as an electrical insulating material in a circuit board such as a printed wiring board. In particular, it is suitable for use in circuit boards for electrical equipment that is used under high temperature and vibration conditions, such as applications that generate a large amount of heat, such as inverters for air conditioners and industrial motors, and electrical equipment mounted in automobile engine rooms, etc. can do.
Claims (6)
末端に1つ以上の二重結合を有する環状脂肪族化合物、芳香族環化合物または複素環化合物(II)と、
有機過酸化物またはアゾビス系化合物のラジカル重合開始剤(III)と、
及び熱伝導性無機フィラー(IV)と、を含有し、
前記ゴム状高分子化合物(I)を50〜95重量部に対し、前記化合物(II)を50〜5重量部の割合で配合することを特徴とする電気絶縁性樹脂組成物。 A rubbery polymer (I) selected from an ethylene-α-olefin-nonconjugated diene copolymer, an isobutylene-isoprene copolymer, a halogenated butyl rubber or a vinyl aromatic compound-isobutylene-isoprene copolymer;
A cyclic aliphatic compound, an aromatic ring compound or a heterocyclic compound (II) having one or more double bonds at the terminal;
A radical polymerization initiator (III) of an organic peroxide or an azobis compound ,
And a thermally conductive inorganic filler (IV),
Before SL rubbery polymer compound with respect to 50 to 95 parts by weight of (I), the electrically insulating resin composition characterized by blending the compound (II) in a proportion of 50 to 5 parts by weight.
前記ゴム状高分子化合物(I)を50〜80重量部に対し、前記化合物(II)を40〜10重量部、前記オリゴマー(V)を40〜10重量部の割合で配合することを特徴とする請求項1又は2に記載の電気絶縁性樹脂組成物。 Furthermore, the oligomer (V) of an unsaturated cycloaliphatic compound is contained,
40 to 10 parts by weight of the compound (II) and 40 to 10 parts by weight of the oligomer (V) with respect to 50 to 80 parts by weight of the rubbery polymer compound (I) The electrically insulating resin composition according to claim 1 or 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005092923A JP4689317B2 (en) | 2005-03-28 | 2005-03-28 | Electrical insulating resin composition and laminate for circuit board using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005092923A JP4689317B2 (en) | 2005-03-28 | 2005-03-28 | Electrical insulating resin composition and laminate for circuit board using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006273954A JP2006273954A (en) | 2006-10-12 |
JP4689317B2 true JP4689317B2 (en) | 2011-05-25 |
Family
ID=37209012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005092923A Active JP4689317B2 (en) | 2005-03-28 | 2005-03-28 | Electrical insulating resin composition and laminate for circuit board using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4689317B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006290917A (en) * | 2005-04-05 | 2006-10-26 | Mitsui Chemicals Inc | Rubber composition and its use |
JP5486020B2 (en) * | 2010-01-13 | 2014-05-07 | 三菱電機株式会社 | Circuit board and manufacturing method thereof |
JP5530915B2 (en) * | 2010-12-21 | 2014-06-25 | パナソニック株式会社 | Back sheet for solar cell panel and solar cell panel using the same |
JP6749687B2 (en) * | 2015-06-23 | 2020-09-02 | 株式会社足立ライト工業所 | Joining method for joining fiber-reinforced thermoplastic resin material and object to be joined, and fiber-reinforced plastic product |
JPWO2022163609A1 (en) * | 2021-01-27 | 2022-08-04 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076624A (en) * | 1993-06-18 | 1995-01-10 | Fujikura Ltd | Electrical insulating composition |
JPH08208856A (en) * | 1994-10-13 | 1996-08-13 | Rogers Corp | Thermosetting composition based on polybutadiene and polyisoprene and its production |
JPH0971617A (en) * | 1994-12-20 | 1997-03-18 | Mitsui Petrochem Ind Ltd | Production of ethylene/alpha-olefin/non-conjugated polyene random copolymer, ethylene/alpha-olefin/non-conjugated polyene random copolymer and use of the same |
WO2004039873A1 (en) * | 2002-10-31 | 2004-05-13 | Toyo Chemical Co., Ltd. | Tape for biding electric wire |
JP2004196876A (en) * | 2002-12-16 | 2004-07-15 | Nhk Spring Co Ltd | Laminated material comprising electrical insulating material composition and conductive metal foil |
-
2005
- 2005-03-28 JP JP2005092923A patent/JP4689317B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076624A (en) * | 1993-06-18 | 1995-01-10 | Fujikura Ltd | Electrical insulating composition |
JPH08208856A (en) * | 1994-10-13 | 1996-08-13 | Rogers Corp | Thermosetting composition based on polybutadiene and polyisoprene and its production |
JPH0971617A (en) * | 1994-12-20 | 1997-03-18 | Mitsui Petrochem Ind Ltd | Production of ethylene/alpha-olefin/non-conjugated polyene random copolymer, ethylene/alpha-olefin/non-conjugated polyene random copolymer and use of the same |
WO2004039873A1 (en) * | 2002-10-31 | 2004-05-13 | Toyo Chemical Co., Ltd. | Tape for biding electric wire |
JP2004196876A (en) * | 2002-12-16 | 2004-07-15 | Nhk Spring Co Ltd | Laminated material comprising electrical insulating material composition and conductive metal foil |
Also Published As
Publication number | Publication date |
---|---|
JP2006273954A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7468502B2 (en) | Resin composition, laminate, multilayer printed wiring board, resin film and prepreg | |
JP7465894B2 (en) | Curable composition and cured product thereof | |
TW201837141A (en) | Resin composition, adhesive film, coverlay film, laminate, resin-coated copper foil and resin-coated copper-clad laminate | |
TW202003760A (en) | Low-dielectric adhesive composition | |
JP4689317B2 (en) | Electrical insulating resin composition and laminate for circuit board using the same | |
CN111333965A (en) | Dielectric material, prepreg and laminated board based on ethylene propylene diene monomer | |
US8535809B2 (en) | Electrical insulating resin composition, and laminate for circuit board | |
JP2017171833A (en) | Adhesive and composite conjugate | |
JP2006169446A (en) | Adhesive composition and cover lay film | |
JP4447956B2 (en) | Electrical insulating resin composition, and sheet-like uncured product using the same, uncured laminate for circuit board, and cured laminate for circuit board | |
JP4574217B2 (en) | Electrically insulating resin composition for circuit board, and sheet-like uncured product using the same, uncured laminate for circuit board, and cured laminate for circuit board | |
JP7444319B1 (en) | Adhesive composition, adhesive sheet, laminate, and printed wiring board containing the same | |
TWI851851B (en) | Adhesive films, laminates, and printed wiring boards | |
JP7537633B2 (en) | Adhesive composition, adhesive sheet, electromagnetic wave shielding film, laminate and printed wiring board | |
WO2023063357A1 (en) | Multilayer structure including insulating layer | |
JP3396952B2 (en) | Thermally crosslinkable cyclic olefin resin composition and crosslinked product thereof | |
CN116997627A (en) | Adhesive composition, and adhesive sheet, laminate and printed wiring board each comprising same | |
WO2021075367A1 (en) | Polyolefin-based adhesive composition | |
JP2022111423A (en) | Thermosetting cyclic imide resin composition | |
US20030108764A1 (en) | Method for improving bonding of circuit board substrates to metal surfaces and the articles formed thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4689317 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |