JP4688282B2 - Polymer for photoresist and resin composition for photoresist - Google Patents

Polymer for photoresist and resin composition for photoresist Download PDF

Info

Publication number
JP4688282B2
JP4688282B2 JP2000368098A JP2000368098A JP4688282B2 JP 4688282 B2 JP4688282 B2 JP 4688282B2 JP 2000368098 A JP2000368098 A JP 2000368098A JP 2000368098 A JP2000368098 A JP 2000368098A JP 4688282 B2 JP4688282 B2 JP 4688282B2
Authority
JP
Japan
Prior art keywords
group
hydrogen atom
meth
different
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000368098A
Other languages
Japanese (ja)
Other versions
JP2002169289A (en
Inventor
聖晴 堤
晃 宝来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2000368098A priority Critical patent/JP4688282B2/en
Publication of JP2002169289A publication Critical patent/JP2002169289A/en
Application granted granted Critical
Publication of JP4688282B2 publication Critical patent/JP4688282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体の微細加工などを行う際に用いるフォトレジスト用の高分子化合物と、この高分子化合物を含有するフォトレジスト用樹脂組成物、及び半導体の製造方法に関する。
【0002】
【従来の技術】
半導体製造工程で用いられるポジ型フォトレジスト用樹脂は、基板密着性を示す機能と、露光によって光酸発生剤から発生する酸により脱離してアルカリ現像液に対して可溶になる機能が必要である。また、フォトレジスト用樹脂は、ドライエッチング耐性をも具備している必要がある。特に、露光工程での光源として、現在エキシマレーザーのArFを使用し、ギガオーダーの半導体への期待は高まっている。しかし、ArFは遠紫外で193nmの波長であることから、レジスト材料も紫外線領域での透明性が要求され,新規なモノマーが提案されている。
【0003】
その中において、ラクトン骨格を含む多環脂環式化合物は、基盤密着性の機能を持ち、さらにエッチング耐性が期待され最近注目をあびている。その中で、ノルボルナン骨格を応用したものとして、特開2000−26446や、特開2000−159758があるが、前者には極性基はラクトン骨格のみで、レジスト材としての有機溶媒への溶解性に難があり、後者はモノマー合成に際して、アルキル基を含んだシクロペンタジエンを必要とし、経済性に問題を残す。いずれにしても、いまだ十分なる機能を有し、しかも経済性あるラクトン骨格を含むモノマーは開発されていない。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、基板に対する密着性、及び有機溶媒への溶解性とエッチング耐性とをバランスよく兼ね備えた新規なフォトレジスト用高分子化合物を提供することにある。
【0005】
本発明の他の目的は、微細なパターンを高い精度で形成できるフォトレジスト用樹脂組成物、及び半導体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討した結果、ラクトン環が縮合した特定構造の脂環式骨格を有するモノマー単位を含むポリマーをフォトレジスト用樹脂として用いると、基板に対する密着性及び有機溶媒への溶解性とエッチング耐性とをバランスよく具備したフォトレジスト用高分子化合物が得られることを見出し、本発明を完成した。
【0007】
すなわち、本発明は下記式(I)
【化4】

Figure 0004688282
(上式において、Raは水素原子又はメチル基を示し、R1は水素原子又は置換基を有してもよい炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、有橋脂環式炭化水素基、又は複素環基を示す。)
で表される少なくとも1種のモノマー単位と、下記式(IIa)〜(IIg)
【化5】
Figure 0004688282
(上式において、R a は水素原子又はメチル基を示し、R 2 及びR 3 は、同一又は異なって、水素原子、又は炭素数1〜8の炭化水素基を示し、R 4 6 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又はメチル基を示し、R 7 及びR 8 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又は−COOR 9 を示し、R 9 はt−ブチル基、2−テトラヒドロフラニル基、2−テトラヒドロピラニル基又は2−オキセパニル基を示し、R 10 はメチル基又はエチル基を示し、R 11 及びR 12 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又はオキソ基を示し、R 13 は置換基を有してもよい3級の炭化水素基を示し、R 14 18 は、同一又は異なって、水素原子又はメチル基を示し、R 19 はt−ブチル基、2−テトラヒドロフラニル基、2−テトラヒドロピラニル基又は2−オキセパニル基を示す。mは1〜3の整数を示し、nは0又は1を示す。)
で表されるモノマー単位のうち、少なくとも式(IIa)、(IIc)で表されるモノマー単位から選択された少なくとも1種のモノマー単位とを含むとともに、ポリマー中の式(I)で表されるモノマー単位の割合が全体の少なくとも20モル%であり、脂環式炭化水素環を含む基を有するモノマー単位[式(I)で表されるモノマー単位を除く]を全体の0.1〜50モル%含み、且つ1,2−プロピレングリコールモノメチルエーテルアセテートに可溶であり、ポリマー濃度17重量%の1,2−プロピレングリコールモノメチルエーテルアセテート溶液を調製可能なフォトレジスト用高分子化合物を提供する。
【0013】
前記フォトレジスト用高分子化合物は、さらに、下記式(IIIa)〜(IIIj)
【化6】
Figure 0004688282
(上式において、R a は水素原子又はメチル基を示し、R 20 及びR 21 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又は保護基を有していてもよいカルボキシル基を示し、R 22 は保護基を有していてもよいヒドロキシル基、オキソ基又は保護基を有していてもよいカルボキシル基を示す。X 1 3 は、同一又は異なって、−CH 2 −又は−CO−O−を示す。R 23 25 は、同一又は異なって、水素原子又はメチル基を示す。R 26 及びR 27 は、同一又は異なって、水素原子又はメチル基を示す。R 28 32 は、同一又は異なって、水素原子又はメチル基を示す。R 33 は、水素原子又は置換基を有してもよい炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、有橋脂環式炭化水素基を示す。R 34 37 は、同一又は異なって、水素原子又はメチル基を示す。R 38 は、水素原子、保護基を有していてもよいヒドロキシル基、保護基を有していてもよいヒドロキシメチル基、保護基を有していてもよいカルボキシル基を示す。R 39 56 はそれぞれ水素原子、メチル基又はエチル基を示す。o、p、q及びrはそれぞれ0又は1を示す。)
で表されるモノマー単位[但し、式(IIa)〜(IIg)で表されるモノマー単位に含まれるものを除く]のうち、少なくとも(IIIa)で表されるモノマー単位から選択された少なくとも1種のモノマー単位を含んでいてもよい。
【0018】
本発明は、また、上記のフォトレジスト用高分子化合物と光酸発生剤とを少なくとも含むフォトレジスト用樹脂組成物を提供する。
【0019】
本発明は、さらに、上記のフォトレジスト用樹脂組成物を基材又は基板上に塗布してレジスト塗膜を形成し、露光及び現像を経てパターンを形成する工程を含む半導体の製造方法を提供する。
【0020】
なお、本明細書では、「アクリル」と「メタクリル」とを「(メタ)アクリル」、「アクリロイル」と「メタクリロイル」とを「(メタ)アクリロイル」と総称する場合がある。
【0021】
【発明の実施の形態】
本発明のフォトレジスト用高分子化合物は、ポリマー分子を構成する構造単位として、前記式(I)から選択された少なくとも1種のモノマー単位(繰り返し単位)(以下、「モノマーユニットI」と称することがある)を含んでいる。このモノマーユニットIは、親水性の高いラクトン環及びカルボキシル基を有しているため、基板への密着性を高める密着性付与ユニットとして機能する。また、脂環式炭素環(シクロヘキサン環)をも有しているため、エッチング耐性を高める機能をも有する。更に、ノルボルネン環に置換したカルボキシル基(COOR1)のエステル基であるR1に、酸により分解しアルカリ可溶となる基を導入すれば、酸による脱離性機能も有することになる。
【0022】
モノマーユニットIである式(I)に示したR1としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル基などや置換基を含んだヒドロキシエチル、ヒドロキシブチル基などの置換基を含んでもよい直鎖状炭化水素基や、i−プロピル、s−ブチル、t−ブチル基などの分岐状炭化水素基や、シクロペンチル、シクロヘキシル基などの脂環式炭化水素や、アダマンチル、ノルボニル、トリシクロデカニル、デカヒドロナフチル基などの有橋脂環式炭化水素基や、2−テトラヒドロフラニル、2−テトラヒドロピラニル、2−オキセパニル基などの複素環基などが好適である。また、R1が水素原子であると、アルカリ現像に対し、ぬれ性が改善され、またR1が酸により脱離する基、例えばt−ブチル、2−テトラヒドロフラニル、2−テトラヒドロピラニル、2−オキセパニル基などは好ましい。
【0023】
式(I)の代表例として
[1-1] 2−(メタ)アクリロイルオキシ−7−カルボキシ−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=カルボン酸基)
[1-2] 2−(メタ)アクリロイルオキシ−7−メトキシカルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=メチル基)
[1-3] 2−(メタ)アクリロイルオキシ−7−エトキシカルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=エチル基)
[1-4] 2−(メタ)アクリロイルオキシ−7−イソプロポキシカルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=イソプロピル基)
[1-5] 2−(メタ)アクリロイルオキシ−7−t−ブチロキシカルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=t−ブチル基)
[1-6] 2−(メタ)アクリロイルオキシ−7−(1−メチル−1−アダマンチルエトキシ)カルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=1−メチル−1−アダマンチルエチル基)
[1-7] 2−(メタ)アクリロイルオキシ−7−(2−テトラヒドロピラニルオキシ)カルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R1=2−テトラヒドロピラニル基)
などが挙げられるが、これらに限定されるものではない。
【0024】
前記式(I)で示したモノマーの製造方法としては、シクロペンタジエンと下記式(4)
【0025】
【化7】
Figure 0004688282
【0026】
で示した無水マレイン酸からの誘導体とをディールス・アルダー反応によりノルボルネン骨格を形成させ、その後タングステン酸等の触媒存在下、過酸化水素によりノルボルネン骨格の2重結合をエポキシ化させ、同時にエポキシ基はカルボン酸との閉環反応により、下記式(5)
【0027】
【化8】
Figure 0004688282
【0028】
が形成される。更に、トリエチルアミン等の脱塩酸剤の存在下、アクリルクロリドまたはメタクリルクロリドと反応させ、前記式(I)のモノマーが得られる。
【0029】
本発明の好ましい態様では、前記式(I)から選択された少なくとも1種のモノマー単位と、前記式(IIa)〜(IIg)から選択された少なくとも1種のモノマー単位(繰り返し単位)(以下、「モノマーユニットII」と称することがある)とを含んでいる。
【0030】
モノマーユニットIIにおいて、前記式(IIa)としての代表例は、
[2-1] 1−(1−(メタ)アクリロイルオキシ−1−メチルエチル)アダマンタン(Ra=H又はCH3、R2=R3=CH3、R4=R5=R6=H)
[2-2] 1−ヒドロキシ−3−(1−(メタ)アクリロイルオキシ−1−メチルエチル)アダマンタン(Ra=H又はCH3、R2=R3=CH3、R4=OH、R5=R6=H)
[2-3] 1−(1−エチル−1−(メタ)アクリロイルオキシプロピル)アダマンタン(Ra=H又はCH3、R2=R3=CH2CH3、R4=R5=R6=H)
[2-4] 1−ヒドロキシ−3−(1−エチル−1−(メタ)アクリロイルオキシプロピル)アダマンタン(Ra=H又はCH3、R2=R3=CH2CH3、R4=OH、R5=R6=H)
[2-5] 1−(1−(メタ)アクリロイルオキシ−1−メチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH2CH3、R4=R5=R6=H)
[2-6] 1−ヒドロキシ−3−(1−(メタ)アクリロイルオキシ−1−メチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH2CH3、R4=OH、R5=R6=H)
[2-7] 1−(1−(メタ)アクリロイルオキシ−1,2−ジメチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH(CH32、R4=R5=R6=H)
[2-8] 1−ヒドロキシ−3−(1−(メタ)アクリロイルオキシ−1,2−ジメチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH(CH32、R4=OH、R5=R6=H)
[2-9] 1,3−ジヒドロキシ−5−(1−(メタ)アクリロイルオキシ−1−メチルエチル)アダマンタン(Ra=H又はCH3、R2=R3=CH3、R4=R5=OH、R6=H)
[2-10] 1,3−ジヒドロキシ−5−(1−エチル−1−(メタ)アクリロイルオキシプロピル)アダマンタン(Ra=H又はCH3、R2=R3=CH2CH3、R4=R5=OH、R6=H)
[2-11] 1,3−ジヒドロキシ−5−(1−(メタ)アクリロイルオキシ−1−メチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH2CH3、R4=R5=OH、R6=H)
[2-12] 1,3−ジヒドロキシ−5−(1−(メタ)アクリロイルオキシ−1,2−ジメチルプロピル)アダマンタン(Ra=H又はCH3、R2=CH3、R3=CH(CH32、R4=R5=OH、R6=H)。
【0031】
前記式(IIb)の代表例は、
[2-13] 1−t−ブトキシカルボニル−3−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=R8=H、R9=t−ブチル基)
[2-14] 1,3−ビス(t−ブトキシカルボニル)−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=CO−O−C(CH33、R8=H、R9=t−ブチル基)
[2-15] 1−t−ブトキシカルボニル−3−ヒドロキシ−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=OH、R8=H、R9=t−ブチル基)
[2-16] 1−(2−テトラヒドロピラニルオキシカルボニル)−3−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=R8=H、R9=2−テトラヒドロピラニル基)
[2-17] 1,3−ビス(2−テトラヒドロピラニルオキシカルボニル)−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=2−テトラヒドロピラニルオキシカルボニル基、R8=H、R9=2−テトラヒドロピラニル基)
[2-18] 1−(2−テトラヒドロピラニルオキシカルボニル)−3−ヒドロキシ−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R7=OH、R8=H、R9=2−テトラヒドロピラニル基)。
【0032】
前記式(IIc)の代表例は、
[2-19] 2−(メタ)アクリロイルオキシ−2−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=R12=H)
[2-20] 1−ヒドロキシ−2−(メタ)アクリロイルオキシ−2−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=1−OH、R12=H)
[2-21] 5−ヒドロキシ−2−(メタ)アクリロイルオキシ−2−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=5−OH、R12=H)
[2-22] 1,3−ジヒドロキシ−2−(メタ)アクリロイルオキシ−2−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=1−OH、R12=3−OH)
[2-23] 1,5−ジヒドロキシ−2−(メタ)アクリロイルオキシ−2−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=1−OH、R12=5−OH)
[2-24] 1,3−ジヒドロキシ−6−(メタ)アクリロイルオキシ−6−メチルアダマンタン(Ra=H又はCH3、R10=CH3、R11=1−OH、R12=3−OH)
[2-25] 2−(メタ)アクリロイルオキシ−2−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=R12=H)
[2-26] 1−ヒドロキシ−2−(メタ)アクリロイルオキシ−2−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=1−OH、R12=H)
[2-27] 5−ヒドロキシ−2−(メタ)アクリロイルオキシ−2−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=5−OH、R12=H)
[2-28] 1,3−ジヒドロキシ−2−(メタ)アクリロイルオキシ−2−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=1−OH、R12=3−OH)
[2-29] 1,5−ジヒドロキシ−2−(メタ)アクリロイルオキシ−2−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=1−OH、R12=5−OH)
[2-30] 1,3−ジヒドロキシ−6−(メタ)アクリロイルオキシ−6−エチルアダマンタン(Ra=H又はCH3、R10=CH2CH3、R11=1−OH、R12=3−OH)。
【0033】
前記式(IId)の代表例は、
[2-31] t−ブチル(メタ)アクリレート(Ra=H又はCH3、R13=t−ブチル基)。
【0034】
前記式(IIe)の代表例は、
[2-32] 2−テトラヒドロピラニル(メタ)アクリレート(Ra=H又はCH3、m=2)
[2-33] 2−テトラヒドロフラニル(メタ)アクリレート(Ra=H又はCH3、m=1)。
【0035】
前記式(IIf)の代表例は、
[2-34] β−(メタ)アクリロイルオキシ−γ―ブチロラクトン(Ra=H又はCH3、R14=R15=R16=R17=R18=H)
[2-35] β−(メタ)アクリロイルオキシ−α,α―ジメチル−γ―ブチロラクトン(Ra=H又はCH3、R14=R15=CH3、R16=R17=R18=H)
[2-36] β−(メタ)アクリロイルオキシ−γ,γ―ジメチル−γ―ブチロラクトン(Ra=H又はCH3、R17=R18=CH3、R14=R15=R16=H)
[2-37] β−(メタ)アクリロイルオキシ−α,α,β―トリメチル−γ―ブチロラクトン(Ra=H又はCH3、R14=R15=R16=CH3、R17=R18=H)
[2-38] β−(メタ)アクリロイルオキシ−β,γ,γ―トリメチル−γ―ブチロラクトン(Ra=H又はCH3、R16=R17=R18=CH3、R14=R15=H)
[2-39] β−(メタ)アクリロイルオキシ−α,α,β,γ,γ―ペンタメチル−γ―ブチロラクトン(Ra=H又はCH3、R14=R15=R16=R17=R18=CH3)。
【0036】
前記式(IIg)の代表例は、
[2-40] 5−t−ブトキシカルボニルノルボルネン(R19=t−ブチル基、n=0)
[2-41] 9−t−ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン(R19=t−ブチル基、n=1)
[2-42] 5−(2−テトラヒドロピラニルオキシカルボニル)ノルボルネン(R19=t−ブチル基、n=0)
などが、挙げられるがこれらに限定されるものではない。
【0037】
本発明のフォトレジスト用高分子化合物は、上記モノマーユニットI、又はモノマーユニットI及びIIに加えて、前記式(IIIa)〜(IIIh)で表されるモノマー単位から選択された少なくとも1種のモノマー単位(繰り返し単位)(以下、「モノマーユニットIII」と称することがある)を含んでいてもよい。
【0038】
前記式(IIIa)の代表例として、
[3-1] 1−ヒドロキシ−3−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R20=OH、R21=R22=H)
[3-2] 1,3−ジヒドロキシ−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R20=R21=OH、R22=H)
[3-3] 1−カルボキシ−3−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R20=COOH、R21=R22=H)
[3-4] 1,3−ジカルボキシ−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R20=R21=COOH、R22=H)
[3-5] 1−カルボキシ−3−ヒドロキシ−5−(メタ)アクリロイルオキシアダマンタン(Ra=H又はCH3、R20=COOH、R21=OH、R22=H)
[3-6] 1−(メタ)アクリロイルオキシ−4−オキソアダマンタン(Ra=H又はCH3、R20=R21=H、R22=4−オキソ基)
[3-7] 3−ヒドロキシ−1−(メタ)アクリロイルオキシ−4−オキソアダマンタン(Ra=H又はCH3、R20=3−OH、R21=H、R22=4−オキソ基)
[3-8] 7−ヒドロキシ−1−(メタ)アクリロイルオキシ−4−オキソアダマンタン(Ra=H又はCH3、R20=7−OH、R21=H、R22=4−オキソ基)。
【0039】
前記式(IIIb)の代表例として、
[3-9] 1−(メタ)アクリロイルオキシ−4−オキサトリシクロ[4.3.1.13,8]ウンデカン−5−オン(Ra=H又はCH3、R23=R24=R25=H、X1=X3=−CH2−、X2=―CO−O−(左側がR41の結合している炭素原子側))
[3-10] 1−(メタ)アクリロイルオキシ−4,7−ジオキサトリシクロ[4.4.1.13,9]ドデカン−5,8−ジオン(Ra=H又はCH3、R23=R24=R25=H、X1=−CO−O−(左側がR23の結合している炭素原子側)、X2=−CO−O−(左側がR24の結合している炭素原子側)、X3=−CH2−)
[3-11] 1−(メタ)アクリロイルオキシ−4,8−ジオキサトリシクロ[4.4.1.13,9]ドデカン−5,7−ジオン(Ra=H又はCH3、R23=R24=R25=H、X1=―O−CO−(左側がR23の結合している炭素原子側)、X2=−CO−O−(左側がR24の結合している炭素原子側)、X3=−CH2−)
[3-12] 1−(メタ)アクリロイルオキシ−5,7−ジオキサトリシクロ[4.4.1.13,9]ドデカン−4,8−ジオン(Ra=H又はCH3、R23=R24=R25=H、X1=―CO−O−(左側がR23の結合している炭素原子側)、X2=−O−CO−(左側がR24の結合している炭素原子側)、X3=−CH2−)。
【0040】
前記式(IIIc)の代表例として、
[3-13] 2−(メタ)アクリロイルオキシ−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R26=R27=H)
[3-14] 2−(メタ)アクリロイルオキシ−2−メチル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン(Ra=H又はCH3、R26=CH3、R27=H)。
【0041】
前記式(IIId)の代表例として、
[3-15] α−(メタ)アクリロイルオキシ−γ―ブチロラクトン(Ra=H又はCH3、R28=R29=R30=R31=R32=H)
[3-16] α−(メタ)アクリロイルオキシ−α−メチル−γ―ブチロラクトン(Ra=H又はCH3、R28=CH3、R29=R30=R31=R32=H)
[3-17] α−(メタ)アクリロイルオキシ−β,β−ジメチル−γ―ブチロラクトン(Ra=H又はCH3、R29=R30=CH3、R28=R31=R32=H)
[3-18] α−(メタ)アクリロイルオキシ−α,β,β−トリメチル−γ―ブチロラクトン(Ra=H又はCH3、R28=R29=R30=CH3、R31=R32=H)
[3-19] α−(メタ)アクリロイルオキシ−γ,γ−ジメチル−γ―ブチロラクトン(Ra=H又はCH3、R31=R32=CH3、R28=R29=R30=H)
[3-20] α−(メタ)アクリロイルオキシ−α,γ,γ−トリメチル−γ―ブチロラクトン(Ra=H又はCH3、R28=R31=R32=CH3、R29=R30=H)
[3-21] α−(メタ)アクリロイルオキシ−β,β,γ,γ−テトラメチル−γ―ブチロラクトン(Ra=H又はCH3、R29=R30=R31=R32=CH3、R28=H)
[3-22] α−(メタ)アクリロイルオキシ−α,β,β,γ,γ−ペンタメチル−γ―ブチロラクトン(Ra=H又はCH3、R28=R29=R30=R31=R32=CH3)。
【0042】
前記式(IIIe)の代表例として、
[3-23] (メタ)アクリル酸(Ra=H又はCH3、R33=H)
[3-24] (メタ)アクリル酸メチル(Ra=H又はCH3、R33=メチル基)
[3-25] (メタ)アクリル酸エチル(Ra=H又はCH3、R33=エチル基)
[3-26] (メタ)アクリル酸イソプロピル(Ra=H又はCH3、R33=イソプロピル基)
[3-27] (メタ)アクリル酸n−ブチル(Ra=H又はCH3、R33=n−ブチル基)
[3-28] (メタ)アクリル酸シクロヘキシル(Ra=H又はCH3、R33=シクロヘキシル基)
[3-29] (メタ)アクリル酸デカヒドロナフチル(Ra=H又はCH3、R33=デカヒドロナフチル基)
[3-29] (メタ)アクリル酸ノルボルニル(Ra=H又はCH3、R33=ノルボルニル基)
[3-30] (メタ)アクリル酸イソボルニル(Ra=H又はCH3、R33=イソボルニル基)
[3-31] (メタ)アクリル酸アダマンチル(Ra=H又はCH3、R33=アダマンチル基)
[3-32] (メタ)アクリル酸ジメチルアダマンチル(Ra=H又はCH3、R33=ジメチルアダマンチル基)
[3-33] (メタ)アクリル酸トリシクロ[5.2.1.02,6]デシル(Ra=H又はCH3、R33=トリシクロ[5.2.1.02,6]デシル基)
[3-34] (メタ)アクリル酸テトラシクロ[4.4.0.12,5.17,10]ドデシル(Ra=H又はCH3、R33=テトラシクロ[4.4.0.12,5.17,10]ドデシル基)
33の置換基としては、ヒドロキシル基、ヒドロキシメチル基、カルボキシル基、オキソ基などが挙げられる。
【0043】
前記式(IIIf)の代表例として、
[3-35] 無水マレイン酸。
【0044】
前記式(IIIg)の代表例として、
[3-36] 4−オキサトリシクロ[35.1.02,6]デカン−8−エン−5−オン(R36=R37=H、o=p=0、q=1)
[3-37] 3−オキサトリシクロ[35.1.02,6]デカン−8−エン−4−オン(R34=R35=H、o=q=0、p=1)
[3-38] 5−オキサトリシクロ[6.2.1.02,7]ウンデカン−9−エン−6−オン(R36=R37=H、o=p=0、q=2)
[3-39] 4−オキサトリシクロ[6.2.1.02,7]ウンデカン−9−エン−5−オン(R34=R35=R36=R37=H、o=0、p=q=1)
[3-40] 4−オキサペンタシクロ[6.34.19,12.02,6.08,13]ペンタデカン−10−エン−5−オン(R36=R37=H、o=1、p=0、q=1)
[3-41] 3−オキサペンタシクロ[6.34.19,12.02,6.08,13]ペンタデカン−10−エン−4−オン(R34=R35=H、o=1、p=1、q=0)
[3-42] 5−オキサペンタシクロ[6.6.1.110,13.02,7.09,14]ヘキサデカン−11−エン−6−オン(R36=R37=H、o=1、p=0、q=2)
[3-43] 4−オキサペンタシクロ[6.6.1.110,13.02,7.09,14]ヘキサデカン−11−エン−5−オン(R34=R35=R36=R37=H、o=1、p=q=1)。
【0045】
前記式(IIIh)の代表例として、
[3-44] ノルボルネン(R38=H、r=0)
[3-45] 5−ヒドロキシ−2−ノルボルネン(R38=OH、r=0)。
【0046】
前記式(IIIi)の代表例として、
[3-46] 4−(メタ)アクリロイルオキシ−6−オキサビシクロ[3.2.1]オクタン−7−オン(Ra=H又はCH3、R39=R40=R41=R42=R43=R44=R45=R46=R47=H)
[3-47] 4−(メタ)アクリロイルオキシ−4−メチル−6−オキサビシクロ[3.2.1]オクタン−7−オン(Ra=H又はCH3、R39=R40=R42=R43=R44=R45=R46=R47=H、R41=CH3
[3-48] 4−(メタ)アクリロイルオキシ−5−メチル−6−オキサビシクロ[3.2.1]オクタン−7−オン(Ra=H又はCH3、R39=R40=R41=R43=R44=R45=R46=R47=H、R42=CH3
[3-49] 4−(メタ)アクリロイルオキシ−4,5−ジメチル−6−オキサビシクロ[3.2.1]オクタン−7−オン(Ra=H又はCH3、R39=R40=R43=R44=R45=R46=R47=H、R41=R42=CH3)。
【0047】
前記式(IIIj)の代表例として、
[3-50] 6−(メタ)アクリロイルオキシ−2−オキサビシクロ[2.2.2]オクタン−3−オン(Ra=H又はCH3、R48=R49=R50=R51=R52=R53=R54=R55=R56=H)
[3-51] 6−(メタ)アクリロイルオキシ−6−メチル−2−オキサビシクロ[2.2.2]オクタン−3−オン(Ra=H又はCH3、R48=R49=R50=R52=R53=R54=R55=R56=H、R51=CH3
[3-52] 6−(メタ)アクリロイルオキシ−1−メチル−2−オキサビシクロ[2.2.2]オクタン−3−オン(Ra=H又はCH3、R48=R49=R51=R52=R53=R54=R55=R56=H、R50=CH3
[3-53] 6−(メタ)アクリロイルオキシ−1,6−ジメチル−2−オキサビシクロ[2.2.2]オクタン−3−オン(Ra=H又はCH3、R48=R49=R52=R53=R54=R55=R56=H、R50=R51=CH3
などが挙げられるが、これらに特に限定されるものではない。
【0048】
本発明のフォトレジスト用樹脂組成物は、前記本発明のフォトレジスト用高分子化合物と光酸発生剤とを含んでいる。
【0049】
光酸発生剤としては、露光により効率よく酸を生成する慣用乃至公知の化合物、例えば、ジアゾニウム塩、ヨードニウム塩(例えば、ジフェニルヨードヘキサフルオロホスフェートなど)、スルホニウム塩(例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムメタンスルホネートなど)、スルホン酸エステル[例えば、1−フェニル−1−(4−メチルフェニル)スルホニルオキシ−1−ベンゾイルメタン、1,2,3−トリスルホニルオキシメチルベンゼン、1,3−ジニトロ−2−(4−フェニルスルホニルオキシメチル)ベンゼン、1−フェニル−1−(4−メチルフェニルスルホニルオキシメチル)−1−ヒドロキシ−1−ベンゾイルメタンなど]、オキサチアゾール誘導体、s−トリアジン誘導体、ジスルホン誘導体(ジフェニルジスルホンなど)、イミド化合物、オキシムスルホネート、ジアゾナフトキノン、ベンゾイントシレートなどを使用できる。これらの光酸発生剤は単独で又は2種以上組み合わせて使用できる。
【0050】
光酸発生剤の使用量は、光照射により生成する酸の強度や前記高分子化合物における各モノマー単位の比率などに応じて適宜選択でき、例えば、前記高分子化合物100重量部に対して0.1〜30重量部、好ましくは1〜25重量部、さらに好ましくは2〜20重量部程度の範囲から選択できる。
【0051】
フォトレジスト用樹脂組成物は、アルカリ可溶性樹脂(例えば、ノボラック樹脂、フェノール樹脂、イミド樹脂、カルボキシル基含有樹脂など)などのアルカリ可溶成分、着色剤(例えば、染料など)、有機溶媒(例えば、炭化水素類、ハロゲン化炭化水素類、アルコール類、エステル類、アミド類、ケトン類、エーテル類、セロソルブ類、カルビトール類、グリコールエーテルエステル類、これらの混合溶媒など)などを含んでいてもよい。
【0052】
このフォトレジスト用樹脂組成物を基材又は基板上に塗布し、乾燥した後、所定のマスクを介して、塗膜(レジスト膜)に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより、微細なパターンを高い精度で形成できる。
【0053】
基材又は基板としては、シリコンウエハ、金属、プラスチック、ガラス、セラミックなどが挙げられる。フォトレジスト用樹脂組成物の塗布は、スピンコータ、ディップコータ、ローラコータなどの慣用の塗布手段を用いて行うことができる。塗膜の厚みは、例えば0.1〜20μm、好ましくは0.3〜2μm程度である。
【0054】
露光には、種々の波長の光線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArClなど)などが使用される。露光エネルギーは、例えば1〜1000mJ/cm2、好ましくは10〜500mJ/cm2程度である。
【0055】
光照射により光酸発生剤から酸が生成し、この酸により、例えば前記高分子化合物のアルカリ可溶性ユニットのカルボキシル基等の保護基(脱離性基)が速やかに脱離して、可溶化に寄与するカルボキシル基等が生成する。そのため、水又はアルカリ現像液による現像により、所定のパターンを精度よく形成できる。
【0056】
【発明の効果】
本発明のフォトレジスト用高分子化合物は、ラクトン環の縮合した特定構造の脂環式骨格を有するモノマー単位を含み、またカルボン酸が置換されていることにより溶解性や、酸脱離性などの機能も付加されているので、高度なエッチング耐性が期待されるうえに、基板に対する密着性、レジストとしての溶剤への溶解性、アルカリ現像液との親和性などフォトレジストに必要とされる機能をバランスよく備えている。また、他のモノマーと組み合わせることにより、更にそれぞれの機能を向上させることも可能である。
【0057】
本発明のフォトレジスト用樹脂組成物及び半導体の製造方法によれば、レジストとして上記のような優れた特性を有する高分子化合物を用いるので、微細なパターンを高い精度で形成することができる。
【0058】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例6〜8は参考例として記載するものである。
【0059】
合成例1
シクロペンタジエン6.6g(0.1モル)、無水マレイン酸9.8g(0.1モル)、溶媒として酢酸エチル200mlに溶解し、オートクレーブにしこみ100℃で2時間撹拌した。室温に冷却後、反応混合物は、還流冷却器と滴下ロートを備えたフラスコに入れ、タングステン酸0.2gと水3.6gを混合し、温度50℃にて30%過酸化水素14.3g(0.13モル)を10分で滴下した。同温度でさらに5時間反応させ、室温に冷却後、水洗を行った。有機層をロータリーエバポレーターに入れ、溶媒の酢酸エチルを留去させた。残った液をテトラヒドロフラン200mlと混合し、還流冷却器と滴下ロートを備えたフラスコに入れ、さらにトリエチルアミン30.3g(0.3モル)を加え、メタクリルクロリド10.5g(0.1モル)を撹拌しながら室温で、30分かけて滴下した。さらに6時間室温で撹拌を続けた。反応混合液はガスクロマトグラフィーで分析したら、目的とした2−(メタ)アクリロイルオキシ−7−カルボキシ−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オンが14.5g(0.055モル)検出された。反応混合液はろ過後、カラムクロマトグラフィーにて目的とするモノマーを分離精製した。目的物はNMRとIRの各スペクトルにて同定を行い結果を下記に示した。
1H−NMR(400MHz、CDCl3
δ1.8(1H、ddd)、δ1.9(3H、s)、δ2.0(1H、ddd)、δ2.8(1H、m)、δ2.9(1H、m)、δ3.1(1H、dd)、δ3.2(1H、dd)、δ4.6(1H、dd)、δ4.7(1H、dd)、δ5.6(1H、d)、δ6.1(1H、d)
FT−IR(NaCl)
2500−3500cm-1、1800cm-1、1730cm-1、1700cm-1、1630cm-1
【0060】
本合成のルートを下記に示した。
【0061】
【化9】
Figure 0004688282
【0062】
合成例2
シクロペンタジエン6.6g(0.1モル)、マレイン酸モノ−t−ブチルエステル17.2g(0.1モル)、溶媒として酢酸エチル200mlに溶解し、オートクレーブにしこみ100℃で2時間撹拌した。室温に冷却後、反応混合物は、還流冷却器と滴下ロートを備えたフラスコに入れ、さらにタングステン酸0.2g加え混合し、温度50℃にて30%過酸化水素14.3g(0.13モル)を10分で滴下した。同温度でさらに5時間反応させ、室温に冷却後、水洗を行った。有機層をロータリーエバポレーターに入れ、溶媒の酢酸エチルを留去させた。残った液をテトラヒドロフラン200mlと混合し、還流冷却器と滴下ロートを備えたフラスコに入れ、さらにトリエチルアミン30.3g(0.3モル)を加え、メタクリルクロリド10.5g(0.1モル)を撹拌しながら室温で、30分かけて滴下した。さらに6時間室温で撹拌を続けた。反応混合液はガスクロマトグラフィーで分析したら、目的とした2−(メタ)アクリロイルオキシ−7−t−ブチロキシカルボニル−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オンが17.5g(0.054モル)検出された。反応混合液はろ過後、カラムクロマトグラフィーにて目的とするモノマーを分離精製した。目的物はNMRとIRの各スペクトルにて同定を行い結果を下記に示した。
1H−NMR(400MHz、CDCl3
δ1.3(9H、s)、δ1.8(1H、ddd)、δ1.9(3H、s)、δ2.0(1H、ddd)、δ2.8(1H、m)、δ2.9(1H、m)、δ3.1(1H、dd)、δ3.2(1H、dd)、δ4.6(1H、dd)、δ4.7(1H、dd)、δ5.6(1H、d)、δ6.1(1H、d)
FT−IR(NaCl)
1800cm-1、1730cm-1、1710cm-1、1630cm-1
【0063】
本合成のルートを下記に示した。
【0064】
【化10】
Figure 0004688282
【0065】
実施例1
下記構造の高分子化合物の合成
【0066】
【化11】
Figure 0004688282
【0067】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコにモノマー[1−1](メタクリレート)2.11g(7.9mmol)、モノマー[2−1](メタクリレート)4.15g(15.8mmol)、モノマー[3−1](メタクリレート)3.74g(15.8mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.12gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が6300、分子量分布が2.11であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppm、4.7ppm、12.5ppm付近に強いシグナルが観測された。
【0068】
実施例2
下記構造の高分子化合物の合成
【0069】
【化12】
Figure 0004688282
【0070】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコにモノマー[1−1](メタクリレート)2.21g(8.3mmol)、モノマー[2−19](メタクリレート)3.88g(16.6mmol)、モノマー[3−1](メタクリレート)3.91g(16.6mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.03gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が5400、分子量分布が1.88であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppm、4.7ppm、12.5ppm付近に強いシグナルが観測された。
【0071】
実施例3
下記構造の高分子化合物の合成
【0072】
【化13】
Figure 0004688282
【0073】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコにモノマー[1−1](メタクリレート)3.13g(11.8mmol)、モノマー[2−1](メタクリレート)4.11g(15.7mmol)、モノマー[3−6](メタクリレート)2.75g(11.8mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.12gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が6300、分子量分布が2.11であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppm、12.5ppm付近に強いシグナルが観測された。
【0074】
実施例4
下記構造の高分子化合物の合成
【0075】
【化14】
Figure 0004688282
【0076】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコにモノマー[1−5](メタクリレート)6.48g(20.1mmol)、モノマー[2−1](メタクリレート)3.52g(13.4mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.27gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が6500、分子量分布が2.14であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppmに強いシグナルが観測された。
【0077】
実施例5
下記構造の高分子化合物の合成
【0078】
【化15】
Figure 0004688282
【0079】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコにモノマー[1−5](メタクリレート)6.74g(20.9mmol)、モノマー[2−19](メタクリレート)3.26g(13.9mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂6.47gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が5800、分子量分布が1.88であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppmに強いシグナルが観測された。
【0080】
実施例6
下記構造の高分子化合物の合成
【0081】
【化16】
Figure 0004688282
【0082】
攪拌子と還流管を備えた3つ口フラスコに、モノマー[1−2](アクリレート)3.0g(12mmol)、モノマー[2−41]4.7g(24mmol)、モノマー[3−35]2.3g(26mmol)、および開始剤(和光純薬工業製V−601)1.0gを入れ、酢酸n−ブチル10gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を70℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの3:1混合液100mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度酢酸n−ブチル10gに溶解させ、上述の沈澱精製操作をさらに2回繰り返すことにより、所望の樹脂7.5gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が7000、分子量分布が2.0であった。1H−NMR(DMSO−d6中)分析では、0.9−3.6ppm(ブロード)のほか、1.3ppm、1.6ppm、1.9ppm、2.6ppm、2.8ppm、3.2ppm、3.6ppm、4.4ppmに強いシグナルが観測された。
【0083】
実施例7
下記構造の高分子化合物の合成
【0084】
【化17】
Figure 0004688282
【0085】
攪拌子と還流管を備えた3つ口フラスコに、モノマー[1−3](アクリレート)3.1g(12mmol)、モノマー[2−41]4.6g(24mmol)、モノマー[3−35]2.3g(26mmol)、および開始剤(和光純薬工業製V−601)1.0gを入れ、酢酸n−ブチル10gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を70℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの3:1混合液100mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度酢酸n−ブチル10gに溶解させ、上述の沈澱精製操作をさらに2回繰り返すことにより、所望の樹脂7.5gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が7100、分子量分布が2.0であった。1H−NMR(DMSO−d6中)分析では、0.9−3.6ppm(ブロード)のほか、1.3ppm、1.6ppm、1.9ppm、2.6ppm、2.8ppm、3.2ppm、3.6ppm、4.4ppmに強いシグナルが観測された。
【0086】
実施例8
下記構造の高分子化合物の合成
【0087】
【化18】
Figure 0004688282
【0088】
攪拌子と還流管を備えた3つ口フラスコに、モノマー[1−4](アクリレート)3.2g(12mmol)、モノマー[2−41]4.5g(24mmol)、モノマー[3−35]2.3g(26mmol)、および開始剤(和光純薬工業製V−601)1.0gを入れ、酢酸n−ブチル10gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を70℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの3:1混合液100mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度酢酸n−ブチル10gに溶解させ、上述の沈澱精製操作をさらに2回繰り返すことにより、所望の樹脂7.5gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が7000、分子量分布が2.0であった。1H−NMR(DMSO−d6中)分析では、0.9−3.6ppm(ブロード)のほか、1.3ppm、1.6ppm、1.9ppm、2.6ppm、2.8ppm、3.2ppm、3.6ppm、4.4ppmに強いシグナルが観測された。
【0089】
比較例1
下記構造の高分子化合物の合成
【0090】
【化19】
Figure 0004688282
【0091】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコに2−メタクリロイルオキシ−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン1.82g(8.2mmol)、モノマー[2−1](メタクリレート)4.30g(16.4mmol)、モノマー[3−1](メタクリレート)3.88g(16.4mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.12gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が6700、分子量分布が2.21であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppm、4.7ppm付近に強いシグナルが観測された。
【0092】
比較例2
下記構造の高分子化合物の合成
【0093】
【化20】
Figure 0004688282
【0094】
還流管、攪拌子、3方コックを備えた100ml丸底フラスコに2−メタクリロイルオキシ−4−オキサトリシクロ[4.2.1.03,7]ノナン−5−オン5.60g(25.2mmol)、モノマー[2−1](メタクリレート)4.40g(16.8mmol)、および開始剤(和光純薬工業製V−65)1.00gを入れ、テトラヒドロフラン40gに溶解させた。続いて、フラスコ内を乾燥窒素置換した後、反応系の温度を60℃に保ち、窒素雰囲気下、6時間攪拌した。反応液をヘキサンと酢酸エチルの9:1混合液500mlに落とし、生じた沈澱物を濾別することで精製を行った。回収した沈澱を減圧乾燥後、再度テトラヒドロフラン40gに溶解させ、上述の沈澱精製操作を繰り返すことにより、所望の樹脂7.55gを得た。回収したポリマーをGPC分析したところ、重量平均分子量が6900、分子量分布が2.12であった。1H−NMR(DMSO−d6中)分析では、1.5−2.5ppm(ブロード)のほか、3.1ppm、4.6ppmに強いシグナルが観測された。
【0095】
試験例1
実施例1〜8で得られたポリマー100重量部とトリフェニルスルホニウムヘキサフルオロアンチモネート10重量部とを溶媒である1,2−プロピレングリコールモノメチルエーテルアセテートと混合し、ポリマー濃度17重量%のフォトレジスト用樹脂組成物を調製した。このフォトレジスト用樹脂組成物をシリコンウエハーにスピンコーティング法により塗布し、厚み1.0μmの感光層を形成した。ホットプレート上で温度100℃で150秒間プリベークした後、波長247nmのKrFエキシマレーザーを用い、マスクを介して、照射量30mJ/cm2で露光した後、100℃の温度で60秒間ポストベークした。次いで、0.3Mのテトラメチルアンモニウムヒドロキシド水溶液により60秒間現像し、純水でリンスしたところ、何れの場合も、0.30μmのライン・アンド・スペースパターンが得られた。
【0096】
試験例2
比較例1及び2で得られたポリマー100重量部とトリフェニルスルホニウムヘキサフルオロアンチモネート10重量部とを溶媒である1,2−プロピレングリコールモノメチルエーテルアセテートと混合し、ポリマー濃度17重量%のフォトレジスト用樹脂組成物を調製した。しかし、樹脂の一部が溶解せず、フォトレジストとしての機能評価できなかった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoresist polymer compound used when performing fine processing of a semiconductor, a photoresist resin composition containing the polymer compound, and a semiconductor manufacturing method.
[0002]
[Prior art]
Resin for positive photoresist used in the semiconductor manufacturing process needs to have a function of exhibiting substrate adhesion and a function of being desorbed by an acid generated from a photoacid generator upon exposure to be soluble in an alkali developer. is there. Further, the photoresist resin needs to have dry etching resistance. In particular, the excimer laser ArF is currently used as a light source in the exposure process, and expectations for giga-order semiconductors are increasing. However, since ArF has a wavelength of 193 nm in the far ultraviolet, the resist material is also required to be transparent in the ultraviolet region, and a new monomer has been proposed.
[0003]
Among them, polycyclic alicyclic compounds containing a lactone skeleton have recently attracted attention because they have a substrate adhesion function and are expected to have etching resistance. Among them, there are JP-A-2000-26446 and JP-A-2000-159758 as applications of the norbornane skeleton. In the former, the polar group is only a lactone skeleton, and the solubility in an organic solvent as a resist material is improved. In the latter case, the latter requires cyclopentadiene containing an alkyl group, which causes a problem in economy. In any case, no monomer having a sufficient lactone function and having an economical lactone skeleton has been developed.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel polymer compound for photoresists having a good balance between adhesion to a substrate, solubility in an organic solvent and etching resistance.
[0005]
Another object of the present invention is to provide a photoresist resin composition capable of forming a fine pattern with high accuracy, and a semiconductor manufacturing method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that when a polymer containing a monomer unit having a alicyclic skeleton having a specific structure condensed with a lactone ring is used as a photoresist resin, adhesion to a substrate and The inventors have found that a high molecular compound for a photoresist having a good balance between solubility in an organic solvent and etching resistance can be obtained, and the present invention has been completed.
[0007]
  That is,The present invention,Formula (I) below
[Formula 4]
Figure 0004688282
(In the above formula, RaRepresents a hydrogen atom or a methyl group, R1Is a C1-C20 linear hydrocarbon group, branched hydrocarbon group, alicyclic hydrocarbon group, bridged alicyclic hydrocarbon group, or heterocyclic ring which may have a hydrogen atom or a substituent Indicates a group. )
At least one monomer unit represented byAnd the following formulas (IIa) to (IIg)
[Chemical formula 5]
Figure 0004688282
(In the above formula, R a Represents a hydrogen atom or a methyl group, R 2 And R Three Are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms; Four ~ 6 Are the same or different and each represents a hydrogen atom, a hydroxyl group or a methyl group which may have a protecting group, and R 7 And R 8 Are the same or different and are a hydrogen atom, a hydroxyl group optionally having a protecting group, or -COOR. 9 R 9 Represents a t-butyl group, a 2-tetrahydrofuranyl group, a 2-tetrahydropyranyl group or a 2-oxepanyl group; Ten Represents a methyl group or an ethyl group, R 11 And R 12 Are the same or different and each represents a hydrogen atom, a hydroxyl group or an oxo group which may have a protecting group, and R 13 Represents a tertiary hydrocarbon group which may have a substituent, and R 14 ~ 18 Are the same or different and each represents a hydrogen atom or a methyl group; 19 Represents a t-butyl group, a 2-tetrahydrofuranyl group, a 2-tetrahydropyranyl group or a 2-oxepanyl group. m represents an integer of 1 to 3, and n represents 0 or 1. )
And at least one monomer unit selected from the monomer units represented by formulas (IIa) and (IIc), and represented by formula (I) in the polymer The proportion of the monomer unit is at least 20 mol% of the whole, and the monomer unit having a group containing an alicyclic hydrocarbon ring [excluding the monomer unit represented by the formula (I)] is 0.1 to 50 mol of the whole %, And is soluble in 1,2-propylene glycol monomethyl ether acetate, and a 1,2-propylene glycol monomethyl ether acetate solution having a polymer concentration of 17% by weight can be prepared.High molecular compound for photoresistI will provide a.
[0013]
  The polymer compound for photoresist is further represented by the following formulas (IIIa) to (IIIj):
[Chemical 6]
Figure 0004688282
(In the above formula, R a Represents a hydrogen atom or a methyl group, R 20 And R twenty one Are the same or different and represent a hydrogen atom, a hydroxyl group which may have a protecting group or a carboxyl group which may have a protecting group, and R twenty two Represents a hydroxyl group optionally having a protecting group, an oxo group or a carboxyl group optionally having a protecting group. X 1 ~ Three Are the same or different and are —CH 2 -Or -CO-O- is shown. R twenty three ~ twenty five Are the same or different and each represents a hydrogen atom or a methyl group. R 26 And R 27 Are the same or different and each represents a hydrogen atom or a methyl group. R 28 ~ 32 Are the same or different and each represents a hydrogen atom or a methyl group. R 33 Represents a C1-C20 linear hydrocarbon group, branched hydrocarbon group, alicyclic hydrocarbon group or bridged alicyclic hydrocarbon group which may have a hydrogen atom or a substituent. R 34 ~ 37 Are the same or different and each represents a hydrogen atom or a methyl group. R 38 Represents a hydrogen atom, a hydroxyl group which may have a protecting group, a hydroxymethyl group which may have a protecting group, or a carboxyl group which may have a protecting group. R 39 ~ 56 Each represents a hydrogen atom, a methyl group or an ethyl group. o, p, q and r each represents 0 or 1; )
At least one selected from the monomer units represented by (IIIa) among the monomer units represented by the formula (except for those contained in the monomer units represented by formulas (IIa) to (IIg)) The monomer unit may be included.
[0018]
The present invention also provides a photoresist resin composition comprising at least the above polymer compound for photoresist and a photoacid generator.
[0019]
The present invention further provides a method for producing a semiconductor, comprising the steps of applying the above-described photoresist resin composition on a substrate or a substrate to form a resist coating film, and forming a pattern through exposure and development. .
[0020]
In this specification, “acryl” and “methacryl” may be collectively referred to as “(meth) acryl”, and “acryloyl” and “methacryloyl” may be collectively referred to as “(meth) acryloyl”.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The polymer compound for photoresist of the present invention has at least one monomer unit (repeating unit) selected from the formula (I) as a structural unit constituting the polymer molecule (hereinafter referred to as “monomer unit I”). Is included). Since this monomer unit I has a highly hydrophilic lactone ring and a carboxyl group, it functions as an adhesion-imparting unit that improves adhesion to the substrate. Moreover, since it also has an alicyclic carbocycle (cyclohexane ring), it also has a function of enhancing etching resistance. In addition, a carboxyl group substituted on the norbornene ring (COOR1R which is an ester group of1In addition, if a group which is decomposed by an acid and becomes alkali-soluble is introduced, it also has a function of leaving by an acid.
[0022]
R shown in formula (I) which is monomer unit I1As a methyl, ethyl, propyl, butyl, pentyl, hexyl group or the like, a linear hydrocarbon group which may contain a substituent such as hydroxyethyl or hydroxybutyl group containing a substituent, i-propyl, s- Branched hydrocarbon groups such as butyl and t-butyl groups, alicyclic hydrocarbons such as cyclopentyl and cyclohexyl groups, and bridged alicyclic hydrocarbons such as adamantyl, norbornyl, tricyclodecanyl and decahydronaphthyl groups And a heterocyclic group such as 2-tetrahydrofuranyl, 2-tetrahydropyranyl, 2-oxepanyl group and the like are preferable. R1Is a hydrogen atom, wettability is improved with respect to alkali development, and R1Are preferably groups that can be eliminated by an acid, such as t-butyl, 2-tetrahydrofuranyl, 2-tetrahydropyranyl, 2-oxepanyl, and the like.
[0023]
As a representative example of formula (I)
[1-1] 2- (Meth) acryloyloxy-7-carboxy-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= Carboxylic acid group)
[1-2] 2- (Meth) acryloyloxy-7-methoxycarbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= Methyl group)
[1-3] 2- (Meth) acryloyloxy-7-ethoxycarbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= Ethyl group)
[1-4] 2- (Meth) acryloyloxy-7-isopropoxycarbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= Isopropyl group)
[1-5] 2- (Meth) acryloyloxy-7-t-butyroxycarbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= T-butyl group)
[1-6] 2- (Meth) acryloyloxy-7- (1-methyl-1-adamantylethoxy) carbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= 1-methyl-1-adamantylethyl group)
[1-7] 2- (Meth) acryloyloxy-7- (2-tetrahydropyranyloxy) carbonyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R1= 2-tetrahydropyranyl group)
However, it is not limited to these.
[0024]
As a method for producing the monomer represented by the formula (I), cyclopentadiene and the following formula (4)
[0025]
[Chemical 7]
Figure 0004688282
[0026]
The norbornene skeleton is formed by the Diels-Alder reaction with the derivative from maleic anhydride shown in the following, and then the double bond of the norbornene skeleton is epoxidized with hydrogen peroxide in the presence of a catalyst such as tungstic acid. By the ring-closing reaction with carboxylic acid, the following formula (5)
[0027]
[Chemical 8]
Figure 0004688282
[0028]
Is formed. Further, it is reacted with acrylic chloride or methacrylic chloride in the presence of a dehydrochlorinating agent such as triethylamine to obtain the monomer of the formula (I).
[0029]
In a preferred embodiment of the present invention, at least one monomer unit selected from the formula (I) and at least one monomer unit (repeating unit) selected from the formulas (IIa) to (IIg) (hereinafter, "Sometimes referred to as" monomer unit II ").
[0030]
In the monomer unit II, a representative example of the formula (IIa) is
[2-1] 1- (1- (Meth) acryloyloxy-1-methylethyl) adamantane (Ra= H or CHThree, R2= RThree= CHThree, RFour= RFive= R6= H)
[2-2] 1-hydroxy-3- (1- (meth) acryloyloxy-1-methylethyl) adamantane (Ra= H or CHThree, R2= RThree= CHThree, RFour= OH, RFive= R6= H)
[2-3] 1- (1-Ethyl-1- (meth) acryloyloxypropyl) adamantane (Ra= H or CHThree, R2= RThree= CH2CHThree, RFour= RFive= R6= H)
[2-4] 1-hydroxy-3- (1-ethyl-1- (meth) acryloyloxypropyl) adamantane (Ra= H or CHThree, R2= RThree= CH2CHThree, RFour= OH, RFive= R6= H)
[2-5] 1- (1- (Meth) acryloyloxy-1-methylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH2CHThree, RFour= RFive= R6= H)
[2-6] 1-hydroxy-3- (1- (meth) acryloyloxy-1-methylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH2CHThree, RFour= OH, RFive= R6= H)
[2-7] 1- (1- (Meth) acryloyloxy-1,2-dimethylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH (CHThree)2, RFour= RFive= R6= H)
[2-8] 1-hydroxy-3- (1- (meth) acryloyloxy-1,2-dimethylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH (CHThree)2, RFour= OH, RFive= R6= H)
[2-9] 1,3-dihydroxy-5- (1- (meth) acryloyloxy-1-methylethyl) adamantane (Ra= H or CHThree, R2= RThree= CHThree, RFour= RFive= OH, R6= H)
[2-10] 1,3-Dihydroxy-5- (1-ethyl-1- (meth) acryloyloxypropyl) adamantane (Ra= H or CHThree, R2= RThree= CH2CHThree, RFour= RFive= OH, R6= H)
[2-11] 1,3-Dihydroxy-5- (1- (meth) acryloyloxy-1-methylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH2CHThree, RFour= RFive= OH, R6= H)
[2-12] 1,3-Dihydroxy-5- (1- (meth) acryloyloxy-1,2-dimethylpropyl) adamantane (Ra= H or CHThree, R2= CHThree, RThree= CH (CHThree)2, RFour= RFive= OH, R6= H).
[0031]
Representative examples of the formula (IIb) are
[2-13] 1-t-Butoxycarbonyl-3- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= R8= H, R9= T-butyl group)
[2-14] 1,3-bis (t-butoxycarbonyl) -5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= CO-O-C (CHThree)Three, R8= H, R9= T-butyl group)
[2-15] 1-t-Butoxycarbonyl-3-hydroxy-5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= OH, R8= H, R9= T-butyl group)
[2-16] 1- (2-Tetrahydropyranyloxycarbonyl) -3- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= R8= H, R9= 2-tetrahydropyranyl group)
[2-17] 1,3-bis (2-tetrahydropyranyloxycarbonyl) -5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= 2-tetrahydropyranyloxycarbonyl group, R8= H, R9= 2-tetrahydropyranyl group)
[2-18] 1- (2-Tetrahydropyranyloxycarbonyl) -3-hydroxy-5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R7= OH, R8= H, R9= 2-tetrahydropyranyl group).
[0032]
Representative examples of the formula (IIc) are
[2-19] 2- (Meth) acryloyloxy-2-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= R12= H)
[2-20] 1-hydroxy-2- (meth) acryloyloxy-2-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= 1-OH, R12= H)
[2-21] 5-Hydroxy-2- (meth) acryloyloxy-2-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= 5-OH, R12= H)
[2-22] 1,3-Dihydroxy-2- (meth) acryloyloxy-2-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= 1-OH, R12= 3-OH)
[2-23] 1,5-Dihydroxy-2- (meth) acryloyloxy-2-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= 1-OH, R12= 5-OH)
[2-24] 1,3-dihydroxy-6- (meth) acryloyloxy-6-methyladamantane (Ra= H or CHThree, RTen= CHThree, R11= 1-OH, R12= 3-OH)
[2-25] 2- (Meth) acryloyloxy-2-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= R12= H)
[2-26] 1-hydroxy-2- (meth) acryloyloxy-2-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= 1-OH, R12= H)
[2-27] 5-hydroxy-2- (meth) acryloyloxy-2-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= 5-OH, R12= H)
[2-28] 1,3-dihydroxy-2- (meth) acryloyloxy-2-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= 1-OH, R12= 3-OH)
[2-29] 1,5-Dihydroxy-2- (meth) acryloyloxy-2-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= 1-OH, R12= 5-OH)
[2-30] 1,3-Dihydroxy-6- (meth) acryloyloxy-6-ethyladamantane (Ra= H or CHThree, RTen= CH2CHThree, R11= 1-OH, R12= 3-OH).
[0033]
Representative examples of the formula (IId) are
[2-31] t-Butyl (meth) acrylate (Ra= H or CHThree, R13= T-butyl group).
[0034]
Representative examples of the formula (IIe) are
[2-32] 2-Tetrahydropyranyl (meth) acrylate (Ra= H or CHThree, M = 2)
[2-33] 2-tetrahydrofuranyl (meth) acrylate (Ra= H or CHThree, M = 1).
[0035]
Representative examples of the formula (IIf) are
[2-34] β- (Meth) acryloyloxy-γ-butyrolactone (Ra= H or CHThree, R14= R15= R16= R17= R18= H)
[2-35] β- (Meth) acryloyloxy-α, α-dimethyl-γ-butyrolactone (Ra= H or CHThree, R14= R15= CHThree, R16= R17= R18= H)
[2-36] β- (Meth) acryloyloxy-γ, γ-dimethyl-γ-butyrolactone (Ra= H or CHThree, R17= R18= CHThree, R14= R15= R16= H)
[2-37] β- (Meth) acryloyloxy-α, α, β-trimethyl-γ-butyrolactone (Ra= H or CHThree, R14= R15= R16= CHThree, R17= R18= H)
[2-38] β- (Meth) acryloyloxy-β, γ, γ-trimethyl-γ-butyrolactone (Ra= H or CHThree, R16= R17= R18= CHThree, R14= R15= H)
[2-39] β- (Meth) acryloyloxy-α, α, β, γ, γ-pentamethyl-γ-butyrolactone (Ra= H or CHThree, R14= R15= R16= R17= R18= CHThree).
[0036]
Representative examples of the formula (IIg) are
[2-40] 5-t-Butoxycarbonylnorbornene (R19= T-butyl group, n = 0)
[2-41] 9-t-Butoxycarbonyltetracyclo [6.2.1.13,6. 02,7] Dodeca-4-ene (R19= T-butyl group, n = 1)
[2-42] 5- (2-Tetrahydropyranyloxycarbonyl) norbornene (R19= T-butyl group, n = 0)
However, it is not limited to these.
[0037]
The polymer compound for photoresists of the present invention comprises at least one monomer selected from the monomer units represented by the formulas (IIIa) to (IIIh) in addition to the monomer unit I or the monomer units I and II. It may contain a unit (repeating unit) (hereinafter may be referred to as “monomer unit III”).
[0038]
As a representative example of the formula (IIIa),
[3-1] 1-hydroxy-3- (meth) acryloyloxyadamantane (Ra= H or CHThree, R20= OH, Rtwenty one= Rtwenty two= H)
[3-2] 1,3-Dihydroxy-5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R20= Rtwenty one= OH, Rtwenty two= H)
[3-3] 1-carboxy-3- (meth) acryloyloxyadamantane (Ra= H or CHThree, R20= COOH, Rtwenty one= Rtwenty two= H)
[3-4] 1,3-Dicarboxy-5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R20= Rtwenty one= COOH, Rtwenty two= H)
[3-5] 1-carboxy-3-hydroxy-5- (meth) acryloyloxyadamantane (Ra= H or CHThree, R20= COOH, Rtwenty one= OH, Rtwenty two= H)
[3-6] 1- (Meth) acryloyloxy-4-oxoadamantane (Ra= H or CHThree, R20= Rtwenty one= H, Rtwenty two= 4-oxo group)
[3-7] 3-hydroxy-1- (meth) acryloyloxy-4-oxoadamantane (Ra= H or CHThree, R20= 3-OH, Rtwenty one= H, Rtwenty two= 4-oxo group)
[3-8] 7-hydroxy-1- (meth) acryloyloxy-4-oxoadamantane (Ra= H or CHThree, R20= 7-OH, Rtwenty one= H, Rtwenty two= 4-oxo group).
[0039]
As a representative example of the formula (IIIb),
[3-9] 1- (Meth) acryloyloxy-4-oxatricyclo [4.3.1.13,8] Undecan-5-one (Ra= H or CHThree, Rtwenty three= Rtwenty four= Rtwenty five= H, X1= XThree= -CH2-, X2= -CO-O- (R on the left41The carbon atom side to which
[3-10] 1- (Meth) acryloyloxy-4,7-dioxatricyclo [4.4.1.13,9] Dodecane-5,8-dione (Ra= H or CHThree, Rtwenty three= Rtwenty four= Rtwenty five= H, X1= -CO-O- (R on the left sidetwenty threeOf carbon atoms to which X is bonded), X2= -CO-O- (R on the left sidetwenty fourOf carbon atoms to which X is bonded), XThree= -CH2−)
[3-11] 1- (Meth) acryloyloxy-4,8-dioxatricyclo [4.4.1.13,9] Dodecane-5,7-dione (Ra= H or CHThree, Rtwenty three= Rtwenty four= Rtwenty five= H, X1= -O-CO- (R on the left sidetwenty threeOf carbon atoms to which X is bonded), X2= -CO-O- (R on the left sidetwenty fourOf carbon atoms to which X is bonded), XThree= -CH2−)
[3-12] 1- (Meth) acryloyloxy-5,7-dioxatricyclo [4.4.1.13,9] Dodecane-4,8-dione (Ra= H or CHThree, Rtwenty three= Rtwenty four= Rtwenty five= H, X1= -CO-O- (R on the lefttwenty threeOf carbon atoms to which X is bonded), X2= -O-CO- (the left side is Rtwenty fourOf carbon atoms to which X is bonded), XThree= -CH2-).
[0040]
As a representative example of the formula (IIIc),
[3-13] 2- (Meth) acryloyloxy-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R26= R27= H)
[3-14] 2- (Meth) acryloyloxy-2-methyl-4-oxatricyclo [4.2.1.03,7Nonan-5-one (Ra= H or CHThree, R26= CHThree, R27= H).
[0041]
As a representative example of the formula (IIId),
[3-15] α- (Meth) acryloyloxy-γ-butyrolactone (Ra= H or CHThree, R28= R29= R30= R31= R32= H)
[3-16] α- (Meth) acryloyloxy-α-methyl-γ-butyrolactone (Ra= H or CHThree, R28= CHThree, R29= R30= R31= R32= H)
[3-17] α- (Meth) acryloyloxy-β, β-dimethyl-γ-butyrolactone (Ra= H or CHThree, R29= R30= CHThree, R28= R31= R32= H)
[3-18] α- (Meth) acryloyloxy-α, β, β-trimethyl-γ-butyrolactone (Ra= H or CHThree, R28= R29= R30= CHThree, R31= R32= H)
[3-19] α- (Meth) acryloyloxy-γ, γ-dimethyl-γ-butyrolactone (Ra= H or CHThree, R31= R32= CHThree, R28= R29= R30= H)
[3-20] α- (Meth) acryloyloxy-α, γ, γ-trimethyl-γ-butyrolactone (Ra= H or CHThree, R28= R31= R32= CHThree, R29= R30= H)
[3-21] α- (Meth) acryloyloxy-β, β, γ, γ-tetramethyl-γ-butyrolactone (Ra= H or CHThree, R29= R30= R31= R32= CHThree, R28= H)
[3-22] α- (Meth) acryloyloxy-α, β, β, γ, γ-pentamethyl-γ-butyrolactone (Ra= H or CHThree, R28= R29= R30= R31= R32= CHThree).
[0042]
As a representative example of the formula (IIIe),
[3-23] (Meth) acrylic acid (Ra= H or CHThree, R33= H)
[3-24] Methyl (meth) acrylate (Ra= H or CHThree, R33= Methyl group)
[3-25] Ethyl (meth) acrylate (Ra= H or CHThree, R33= Ethyl group)
[3-26] Isopropyl (meth) acrylate (Ra= H or CHThree, R33= Isopropyl group)
[3-27] n-Butyl (meth) acrylate (Ra= H or CHThree, R33= N-butyl group)
[3-28] Cyclohexyl (meth) acrylate (Ra= H or CHThree, R33= Cyclohexyl group)
[3-29] Decahydronaphthyl (meth) acrylate (Ra= H or CHThree, R33= Decahydronaphthyl group)
[3-29] Norbornyl (meth) acrylate (Ra= H or CHThree, R33= Norbornyl group)
[3-30] Isobornyl (meth) acrylate (Ra= H or CHThree, R33= Isobornyl group)
[3-31] Adamantyl (meth) acrylate (Ra= H or CHThree, R33= Adamantyl group)
[3-32] Dimethyladamantyl (meth) acrylate (Ra= H or CHThree, R33= Dimethyladamantyl group)
[3-33] Tricyclo (meth) acrylic acid [5.2.1.02,6] Decyl (Ra= H or CHThree, R33= Tricyclo [5.2.1.02,6] Decyl group)
[3-34] Tetracyclo (meth) acrylic acid [4.4.0.12,5. 17,10] Dodecyl (Ra= H or CHThree, R33= Tetracyclo [4.4.0.12,5. 17,10] Dodecyl group)
R33Examples of the substituent include a hydroxyl group, a hydroxymethyl group, a carboxyl group, and an oxo group.
[0043]
As a representative example of the formula (IIIf),
[3-35] Maleic anhydride.
[0044]
As a representative example of the formula (IIIg),
[3-36] 4-Oxatricyclo [35.1.02,6] Decan-8-en-5-one (R36= R37= H, o = p = 0, q = 1)
[3-37] 3-Oxatricyclo [35.1.02,6] Decan-8-en-4-one (R34= R35= H, o = q = 0, p = 1)
[3-38] 5-Oxatricyclo [6.2.1.02,7] Undecan-9-en-6-one (R36= R37= H, o = p = 0, q = 2)
[3-39] 4-Oxatricyclo [6.2.1.02,7] Undecan-9-en-5-one (R34= R35= R36= R37= H, o = 0, p = q = 1)
[3-40] 4-Oxapentacyclo [6.34.19,12. 02,6. 08,13] Pentadecan-10-en-5-one (R36= R37= H, o = 1, p = 0, q = 1)
[3-41] 3-Oxapentacyclo [6.34.19,12. 02,6. 08,13] Pentadecan-10-en-4-one (R34= R35= H, o = 1, p = 1, q = 0)
[3-42] 5-Oxapentacyclo [6.6.1.110,13. 02,7. 09,14] Hexadecan-11-en-6-one (R36= R37= H, o = 1, p = 0, q = 2)
[3-43] 4-Oxapentacyclo [6.6.1.110,13. 02,7. 09,14] Hexadecan-11-en-5-one (R34= R35= R36= R37= H, o = 1, p = q = 1).
[0045]
As a representative example of the formula (IIIh),
[3-44] Norbornene (R38= H, r = 0)
[3-45] 5-hydroxy-2-norbornene (R38= OH, r = 0).
[0046]
As a representative example of the formula (IIIi),
[3-46] 4- (Meth) acryloyloxy-6-oxabicyclo [3.2.1] octan-7-one (Ra= H or CHThree, R39= R40= R41= R42= R43= R44= R45= R46= R47= H)
[3-47] 4- (Meth) acryloyloxy-4-methyl-6-oxabicyclo [3.2.1] octan-7-one (Ra= H or CHThree, R39= R40= R42= R43= R44= R45= R46= R47= H, R41= CHThree)
[3-48] 4- (Meth) acryloyloxy-5-methyl-6-oxabicyclo [3.2.1] octan-7-one (Ra= H or CHThree, R39= R40= R41= R43= R44= R45= R46= R47= H, R42= CHThree)
[3-49] 4- (Meth) acryloyloxy-4,5-dimethyl-6-oxabicyclo [3.2.1] octan-7-one (Ra= H or CHThree, R39= R40= R43= R44= R45= R46= R47= H, R41= R42= CHThree).
[0047]
As a representative example of the formula (IIIj),
[3-50] 6- (Meth) acryloyloxy-2-oxabicyclo [2.2.2] octane-3-one (Ra= H or CHThree, R48= R49= R50= R51= R52= R53= R54= R55= R56= H)
[3-51] 6- (Meth) acryloyloxy-6-methyl-2-oxabicyclo [2.2.2] octane-3-one (Ra= H or CHThree, R48= R49= R50= R52= R53= R54= R55= R56= H, R51= CHThree)
[3-52] 6- (Meth) acryloyloxy-1-methyl-2-oxabicyclo [2.2.2] octan-3-one (Ra= H or CHThree, R48= R49= R51= R52= R53= R54= R55= R56= H, R50= CHThree)
[3-53] 6- (Meth) acryloyloxy-1,6-dimethyl-2-oxabicyclo [2.2.2] octane-3-one (Ra= H or CHThree, R48= R49= R52= R53= R54= R55= R56= H, R50= R51= CHThree)
However, it is not particularly limited to these.
[0048]
The resin composition for photoresists of the present invention contains the above-mentioned polymer compound for photoresists of the present invention and a photoacid generator.
[0049]
Examples of the photoacid generator include conventional or known compounds that efficiently generate acid upon exposure, such as diazonium salts, iodonium salts (for example, diphenyliodohexafluorophosphate), sulfonium salts (for example, triphenylsulfonium hexafluoroantimony). Nates, triphenylsulfonium hexafluorophosphate, triphenylsulfonium methanesulfonate, etc.), sulfonate esters [eg 1-phenyl-1- (4-methylphenyl) sulfonyloxy-1-benzoylmethane, 1,2,3-tri Sulfonyloxymethylbenzene, 1,3-dinitro-2- (4-phenylsulfonyloxymethyl) benzene, 1-phenyl-1- (4-methylphenylsulfonyloxymethyl) -1-hydroxy-1-benzo Rumetan etc.], oxathiazole derivatives, s- triazine derivatives, disulfone derivatives (diphenyl sulfone) imide compound, an oxime sulfonate, a diazonaphthoquinone, and benzoin tosylate. These photoacid generators can be used alone or in combination of two or more.
[0050]
The amount of the photoacid generator used can be appropriately selected according to the strength of the acid generated by light irradiation, the ratio of each monomer unit in the polymer compound, and the like. It can be selected from a range of about 1 to 30 parts by weight, preferably 1 to 25 parts by weight, and more preferably about 2 to 20 parts by weight.
[0051]
The resin composition for photoresist includes alkali-soluble components such as alkali-soluble resins (for example, novolak resins, phenol resins, imide resins, carboxyl group-containing resins), colorants (for example, dyes), organic solvents (for example, Hydrocarbons, halogenated hydrocarbons, alcohols, esters, amides, ketones, ethers, cellosolves, carbitols, glycol ether esters, mixed solvents thereof, etc.) .
[0052]
This photoresist resin composition is applied onto a substrate or substrate, dried, and then exposed to light on a coating film (resist film) through a predetermined mask (or further subjected to post-exposure baking). By forming the latent image pattern and then developing it, a fine pattern can be formed with high accuracy.
[0053]
Examples of the base material or the substrate include a silicon wafer, metal, plastic, glass, and ceramic. The application of the photoresist resin composition can be performed using a conventional application means such as a spin coater, a dip coater, or a roller coater. The thickness of the coating film is, for example, about 0.1 to 20 μm, preferably about 0.3 to 2 μm.
[0054]
For exposure, light of various wavelengths such as ultraviolet rays and X-rays can be used. For semiconductor resists, g-rays, i-rays, and excimer lasers (eg, XeCl, KrF, KrCl, ArF, ArCl, etc.) are usually used. Etc. are used. The exposure energy is, for example, 1 to 1000 mJ / cm.2, Preferably 10 to 500 mJ / cm2Degree.
[0055]
An acid is generated from the photoacid generator by light irradiation, and this acid quickly removes a protective group (leaving group) such as a carboxyl group of the alkali-soluble unit of the polymer compound, thereby contributing to solubilization. Carboxyl groups and the like are generated. Therefore, a predetermined pattern can be accurately formed by development with water or an alkali developer.
[0056]
【The invention's effect】
The polymer compound for photoresist of the present invention includes a monomer unit having a specific structure of an alicyclic skeleton condensed with a lactone ring, and has a solubility, acid detachment property, etc. due to substitution with a carboxylic acid. Since functions are also added, high etching resistance is expected, and the functions required for photoresists such as adhesion to substrates, solubility in solvents as resists, and affinity with alkaline developers are also provided. It is well-balanced. Moreover, each function can be further improved by combining with other monomers.
[0057]
According to the photoresist resin composition and the semiconductor manufacturing method of the present invention, since the polymer compound having the excellent characteristics as described above is used as a resist, a fine pattern can be formed with high accuracy.
[0058]
【Example】
  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.Examples 6 to 8 are described as reference examples.
[0059]
Synthesis example 1
6.6 g (0.1 mol) of cyclopentadiene, 9.8 g (0.1 mol) of maleic anhydride and 200 ml of ethyl acetate as a solvent were dissolved in an autoclave and stirred at 100 ° C. for 2 hours. After cooling to room temperature, the reaction mixture was put in a flask equipped with a reflux condenser and a dropping funnel, mixed with 0.2 g of tungstic acid and 3.6 g of water, and 14.3 g of 30% hydrogen peroxide at a temperature of 50 ° C. 0.13 mol) was added dropwise in 10 minutes. The mixture was further reacted at the same temperature for 5 hours, cooled to room temperature, and washed with water. The organic layer was placed in a rotary evaporator and the solvent ethyl acetate was distilled off. The remaining liquid was mixed with 200 ml of tetrahydrofuran, placed in a flask equipped with a reflux condenser and a dropping funnel, 30.3 g (0.3 mol) of triethylamine was further added, and 10.5 g (0.1 mol) of methacryl chloride was stirred. The solution was added dropwise at room temperature over 30 minutes. Stirring was continued for another 6 hours at room temperature. When the reaction mixture was analyzed by gas chromatography, the intended 2- (meth) acryloyloxy-7-carboxy-4-oxatricyclo [4.2.1.0] was obtained.3,714.5 g (0.055 mol) of nonan-5-one was detected. The reaction mixture was filtered, and the target monomer was separated and purified by column chromatography. The target product was identified by NMR and IR spectra, and the results are shown below.
1H-NMR (400 MHz, CDClThree)
δ1.8 (1H, ddd), δ1.9 (3H, s), δ2.0 (1H, ddd), δ2.8 (1H, m), δ2.9 (1H, m), δ3.1 (1H , Dd), δ3.2 (1H, dd), δ4.6 (1H, dd), δ4.7 (1H, dd), δ5.6 (1H, d), δ6.1 (1H, d)
FT-IR (NaCl)
2500-3500cm-11800cm-1, 1730cm-11700cm-1, 1630cm-1.
[0060]
The route of this synthesis is shown below.
[0061]
[Chemical 9]
Figure 0004688282
[0062]
Synthesis example 2
6.6 g (0.1 mol) of cyclopentadiene, 17.2 g (0.1 mol) of maleic acid mono-t-butyl ester and 200 ml of ethyl acetate as a solvent were dissolved in an autoclave and stirred at 100 ° C. for 2 hours. After cooling to room temperature, the reaction mixture was placed in a flask equipped with a reflux condenser and a dropping funnel, 0.2 g of tungstic acid was added and mixed, and 14.3 g (0.13 mol) of 30% hydrogen peroxide at a temperature of 50 ° C. ) Was added dropwise in 10 minutes. The mixture was further reacted at the same temperature for 5 hours, cooled to room temperature, and washed with water. The organic layer was placed in a rotary evaporator and the solvent ethyl acetate was distilled off. The remaining liquid was mixed with 200 ml of tetrahydrofuran, placed in a flask equipped with a reflux condenser and a dropping funnel, 30.3 g (0.3 mol) of triethylamine was further added, and 10.5 g (0.1 mol) of methacryl chloride was stirred. The solution was added dropwise at room temperature over 30 minutes. Stirring was continued for another 6 hours at room temperature. When the reaction mixture was analyzed by gas chromatography, the intended 2- (meth) acryloyloxy-7-t-butyroxycarbonyl-4-oxatricyclo [4.2.1.0] was obtained.3,717.5 g (0.054 mol) of nonan-5-one was detected. The reaction mixture was filtered, and the target monomer was separated and purified by column chromatography. The target product was identified by NMR and IR spectra, and the results are shown below.
1H-NMR (400 MHz, CDClThree)
δ1.3 (9H, s), δ1.8 (1H, ddd), δ1.9 (3H, s), δ2.0 (1H, ddd), δ2.8 (1H, m), δ2.9 (1H M), δ3.1 (1H, dd), δ3.2 (1H, dd), δ4.6 (1H, dd), δ4.7 (1H, dd), δ5.6 (1H, d), δ6 .1 (1H, d)
FT-IR (NaCl)
1800cm-1, 1730cm-1, 1710cm-1, 1630cm-1.
[0063]
The route of this synthesis is shown below.
[0064]
[Chemical Formula 10]
Figure 0004688282
[0065]
Example 1
Synthesis of polymer compounds with the following structure
[0066]
Embedded image
Figure 0004688282
[0067]
In a 100 ml round bottom flask equipped with a reflux tube, a stirrer, and a three-way cock, 2.11 g (7.9 mmol) of monomer [1-1] (methacrylate) and 4.15 g of monomer [2-1] (methacrylate) (15. 8 mmol), monomer [3-1] (methacrylate) 3.74 g (15.8 mmol), and initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) 1.00 g were added and dissolved in tetrahydrofuran 40 g. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 7.12 g of the desired resin. When the recovered polymer was analyzed by GPC, the weight average molecular weight was 6300, and the molecular weight distribution was 2.11.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed in the vicinity of 3.1 ppm, 4.6 ppm, 4.7 ppm, and 12.5 ppm in addition to 1.5-2.5 ppm (broad).
[0068]
Example 2
Synthesis of polymer compounds with the following structure
[0069]
Embedded image
Figure 0004688282
[0070]
In a 100 ml round bottom flask equipped with a reflux tube, a stirrer, and a three-way cock, 2.21 g (8.3 mmol) of monomer [1-1] (methacrylate) and 3.88 g of monomer [2-19] (methacrylate) (16. 6 mmol), monomer [3-1] (methacrylate) 3.91 g (16.6 mmol), and initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) 1.00 g were added and dissolved in tetrahydrofuran 40 g. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure and then dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 7.03 g of the desired resin. The recovered polymer was analyzed by GPC. As a result, the weight average molecular weight was 5,400 and the molecular weight distribution was 1.88.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed in the vicinity of 3.1 ppm, 4.6 ppm, 4.7 ppm, and 12.5 ppm in addition to 1.5-2.5 ppm (broad).
[0071]
Example 3
Synthesis of polymer compounds with the following structure
[0072]
Embedded image
Figure 0004688282
[0073]
In a 100 ml round bottom flask equipped with a reflux tube, a stirrer, and a three-way cock, 3.13 g (11.8 mmol) of monomer [1-1] (methacrylate) and 4.11 g of monomer [2-1] (methacrylate) (15. 7 mmol), 2.75 g (11.8 mmol) of monomer [3-6] (methacrylate), and 1.00 g of an initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 40 g of tetrahydrofuran. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 7.12 g of the desired resin. When the recovered polymer was analyzed by GPC, the weight average molecular weight was 6300, and the molecular weight distribution was 2.11.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed in the vicinity of 3.1 ppm, 4.6 ppm, and 12.5 ppm in addition to 1.5-2.5 ppm (broad).
[0074]
Example 4
Synthesis of polymer compounds with the following structure
[0075]
Embedded image
Figure 0004688282
[0076]
In a 100 ml round bottom flask equipped with a reflux tube, a stirring bar, and a three-way cock, 6.48 g (20.1 mmol) of monomer [1-5] (methacrylate) and 3.52 g of monomer [2-1] (methacrylate) (13. 4 mmol), and 1.00 g of an initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 40 g of tetrahydrofuran. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 40 g of tetrahydrofuran, and 7.27 g of the desired resin was obtained by repeating the precipitation purification operation described above. When the collected polymer was analyzed by GPC, the weight average molecular weight was 6500, and the molecular weight distribution was 2.14.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed at 3.1 ppm and 4.6 ppm in addition to 1.5-2.5 ppm (broad).
[0077]
Example 5
Synthesis of polymer compounds with the following structure
[0078]
Embedded image
Figure 0004688282
[0079]
In a 100 ml round bottom flask equipped with a reflux tube, a stirring bar and a three-way cock, 6.74 g (20.9 mmol) of monomer [1-5] (methacrylate) and 3.26 g (13. 9 mmol) and 1.00 g of an initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 40 g of tetrahydrofuran. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure and then dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 6.47 g of the desired resin. The recovered polymer was analyzed by GPC. As a result, the weight average molecular weight was 5,800 and the molecular weight distribution was 1.88.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed at 3.1 ppm and 4.6 ppm in addition to 1.5-2.5 ppm (broad).
[0080]
Example 6
Synthesis of polymer compounds with the following structure
[0081]
Embedded image
Figure 0004688282
[0082]
In a three-necked flask equipped with a stirrer and a reflux tube, 3.0 g (12 mmol) of monomer [1-2] (acrylate), 4.7 g (24 mmol) of monomer [2-41], monomer [3-35] 2 .3 g (26 mmol) and 1.0 g of an initiator (V-601 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 10 g of n-butyl acetate. Subsequently, after the inside of the flask was purged with dry nitrogen, the temperature of the reaction system was kept at 70 ° C. and stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 100 ml of a 3: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 10 g of n-butyl acetate, and the above-described precipitation purification operation was repeated twice more to obtain 7.5 g of the desired resin. When the recovered polymer was analyzed by GPC, the weight average molecular weight was 7000 and the molecular weight distribution was 2.0.1In the H-NMR (in DMSO-d6) analysis, in addition to 0.9-3.6 ppm (broad), 1.3 ppm, 1.6 ppm, 1.9 ppm, 2.6 ppm, 2.8 ppm, 3.2 ppm, 3 ppm, 3 ppm Strong signals were observed at .6 ppm and 4.4 ppm.
[0083]
Example 7
Synthesis of polymer compounds with the following structure
[0084]
Embedded image
Figure 0004688282
[0085]
In a three-necked flask equipped with a stirrer and a reflux tube, 3.1 g (12 mmol) of monomer [1-3] (acrylate), 4.6 g (24 mmol) of monomer [2-41], monomer [3-35] 2 .3 g (26 mmol) and 1.0 g of an initiator (V-601 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 10 g of n-butyl acetate. Subsequently, after the inside of the flask was purged with dry nitrogen, the temperature of the reaction system was kept at 70 ° C. and stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 100 ml of a 3: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 10 g of n-butyl acetate, and the above-described precipitation purification operation was repeated twice more to obtain 7.5 g of the desired resin. When the collected polymer was analyzed by GPC, the weight average molecular weight was 7100, and the molecular weight distribution was 2.0.1In the H-NMR (in DMSO-d6) analysis, in addition to 0.9-3.6 ppm (broad), 1.3 ppm, 1.6 ppm, 1.9 ppm, 2.6 ppm, 2.8 ppm, 3.2 ppm, 3 ppm, 3 ppm Strong signals were observed at .6 ppm and 4.4 ppm.
[0086]
Example 8
Synthesis of polymer compounds with the following structure
[0087]
Embedded image
Figure 0004688282
[0088]
In a three-necked flask equipped with a stirrer and a reflux tube, 3.2 g (12 mmol) of monomer [1-4] (acrylate), 4.5 g (24 mmol) of monomer [2-41], monomer [3-35] 2 .3 g (26 mmol) and 1.0 g of an initiator (V-601 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 10 g of n-butyl acetate. Subsequently, after the inside of the flask was purged with dry nitrogen, the temperature of the reaction system was kept at 70 ° C. and stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 100 ml of a 3: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 10 g of n-butyl acetate, and the above-described precipitation purification operation was repeated twice more to obtain 7.5 g of the desired resin. When the recovered polymer was analyzed by GPC, the weight average molecular weight was 7000 and the molecular weight distribution was 2.0.1In the H-NMR (in DMSO-d6) analysis, in addition to 0.9-3.6 ppm (broad), 1.3 ppm, 1.6 ppm, 1.9 ppm, 2.6 ppm, 2.8 ppm, 3.2 ppm, 3 ppm, 3 ppm Strong signals were observed at .6 ppm and 4.4 ppm.
[0089]
Comparative Example 1
Synthesis of polymer compounds with the following structure
[0090]
Embedded image
Figure 0004688282
[0091]
In a 100 ml round bottom flask equipped with a reflux tube, a stirrer and a three-way cock, 2-methacryloyloxy-4-oxatricyclo [4.2.1.03,7] Nonane-5-one 1.82 g (8.2 mmol), monomer [2-1] (methacrylate) 4.30 g (16.4 mmol), monomer [3-1] (methacrylate) 3.88 g (16.4 mmol) And 1.00 g of an initiator (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved in 40 g of tetrahydrofuran. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure, dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 7.12 g of the desired resin. When the collected polymer was analyzed by GPC, it had a weight average molecular weight of 6700 and a molecular weight distribution of 2.21.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed in the vicinity of 3.1 ppm, 4.6 ppm, and 4.7 ppm in addition to 1.5 to 2.5 ppm (broad).
[0092]
Comparative Example 2
Synthesis of polymer compounds with the following structure
[0093]
Embedded image
Figure 0004688282
[0094]
In a 100 ml round bottom flask equipped with a reflux tube, a stirrer and a three-way cock, 2-methacryloyloxy-4-oxatricyclo [4.2.1.03,7] Nonane-5-one 5.60 g (25.2 mmol), monomer [2-1] (methacrylate) 4.40 g (16.8 mmol), and initiator (Wako Pure Chemical Industries, Ltd. V-65) 1.00 g And dissolved in 40 g of tetrahydrofuran. Subsequently, after replacing the inside of the flask with dry nitrogen, the temperature of the reaction system was kept at 60 ° C., and the mixture was stirred for 6 hours in a nitrogen atmosphere. The reaction solution was dropped into 500 ml of a 9: 1 mixture of hexane and ethyl acetate, and the resulting precipitate was filtered off for purification. The recovered precipitate was dried under reduced pressure and then dissolved again in 40 g of tetrahydrofuran, and the above precipitation purification operation was repeated to obtain 7.55 g of the desired resin. When the collected polymer was analyzed by GPC, it had a weight average molecular weight of 6900 and a molecular weight distribution of 2.12.1In H-NMR (in DMSO-d6) analysis, a strong signal was observed at 3.1 ppm and 4.6 ppm in addition to 1.5-2.5 ppm (broad).
[0095]
Test example 1
100 parts by weight of the polymer obtained in Examples 1 to 8 and 10 parts by weight of triphenylsulfonium hexafluoroantimonate were mixed with 1,2-propylene glycol monomethyl ether acetate as a solvent to obtain a photoresist having a polymer concentration of 17% by weight. A resin composition was prepared. This photoresist resin composition was applied to a silicon wafer by spin coating to form a photosensitive layer having a thickness of 1.0 μm. After pre-baking on a hot plate at a temperature of 100 ° C. for 150 seconds, using a KrF excimer laser with a wavelength of 247 nm, the dose is 30 mJ / cm through the mask.2And then post-baked at a temperature of 100 ° C. for 60 seconds. Subsequently, development was carried out with a 0.3M tetramethylammonium hydroxide aqueous solution for 60 seconds and rinsed with pure water. In each case, a line and space pattern of 0.30 μm was obtained.
[0096]
Test example 2
100 parts by weight of the polymer obtained in Comparative Examples 1 and 2 and 10 parts by weight of triphenylsulfonium hexafluoroantimonate are mixed with 1,2-propylene glycol monomethyl ether acetate as a solvent to obtain a photoresist having a polymer concentration of 17% by weight. A resin composition was prepared. However, a part of the resin was not dissolved and the function as a photoresist could not be evaluated.

Claims (4)

下記式(I)
Figure 0004688282
(上式において、Raは水素原子又はメチル基を示し、R1は水素原子又は置換基を有してもよい炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、有橋脂環式炭化水素基、又は複素環基を示す。)
で表される少なくとも1種のモノマー単位と、下記式(IIa)〜(IIg)
Figure 0004688282
(上式において、R a は水素原子又はメチル基を示し、R 2 及びR 3 は、同一又は異なって、水素原子、又は炭素数1〜8の炭化水素基を示し、R 4 6 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又はメチル基を示し、R 7 及びR 8 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又は−COOR 9 を示し、R 9 はt−ブチル基、2−テトラヒドロフラニル基、2−テトラヒドロピラニル基又は2−オキセパニル基を示し、R 10 はメチル基又はエチル基を示し、R 11 及びR 12 は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又はオキソ基を示し、R 13 は置換基を有してもよい3級の炭化水素基を示し、R 14 18 は、同一又は異なって、水素原子又はメチル基を示し、R 19 はt−ブチル基、2−テトラヒドロフラニル基、2−テトラヒドロピラニル基又は2−オキセパニル基を示す。mは1〜3の整数を示し、nは0又は1を示す。)
で表されるモノマー単位のうち、少なくとも式(IIa)、(IIc)で表されるモノマー単位から選択された少なくとも1種のモノマー単位とを含むとともに、ポリマー中の式(I)で表されるモノマー単位の割合が全体の少なくとも20モル%であり、脂環式炭化水素環を含む基を有するモノマー単位[式(I)で表されるモノマー単位を除く]を全体の0.1〜50モル%含み、且つ1,2−プロピレングリコールモノメチルエーテルアセテートに可溶であり、ポリマー濃度17重量%の1,2−プロピレングリコールモノメチルエーテルアセテート溶液を調製可能なフォトレジスト用高分子化合物。
Formula (I) below
Figure 0004688282
(In the above formula, R a represents a hydrogen atom or a methyl group, and R 1 represents a hydrogen atom or a linear hydrocarbon group having 1 to 20 carbon atoms, a branched hydrocarbon group, or an aliphatic group which may have a substituent. A cyclic hydrocarbon group, a bridged alicyclic hydrocarbon group, or a heterocyclic group is shown.)
And at least one monomer unit represented by the following formulas (IIa) to (IIg):
Figure 0004688282
(In the above formula, R a represents a hydrogen atom or a methyl group, R 2 and R 3 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 4 to 6 are The same or different, a hydrogen atom, a hydroxyl group or a methyl group optionally having a protecting group, R 7 and R 8 being the same or different, a hydroxyl group optionally having a hydrogen atom or a protecting group represents a group or -COOR 9, R 9 is t- butyl, 2-tetrahydrofuranyl group, a 2-tetrahydropyranyl group or a 2-oxepanyl group, R 10 represents a methyl group or an ethyl group, R 11 and R 12 is the same or different and represents a hydrogen atom, a hydroxyl group or an oxo group which may have a protecting group, R 13 represents a tertiary hydrocarbon group which may have a substituent, R is 14-18, the same or different and each represents a hydrogen atom or a methylol It represents a group, R 19 is t- butyl, 2-tetrahydrofuranyl group, .m showing a 2-tetrahydropyranyl group or a 2-oxepanyl group represents an integer of 1 to 3, n is 0 or 1. )
And at least one monomer unit selected from the monomer units represented by formulas (IIa) and (IIc), and represented by formula (I) in the polymer The proportion of the monomer unit is at least 20 mol% of the whole, and the monomer unit having a group containing an alicyclic hydrocarbon ring [excluding the monomer unit represented by the formula (I)] is 0.1 to 50 mol of the whole %, And is soluble in 1,2-propylene glycol monomethyl ether acetate, and is capable of preparing a 1,2-propylene glycol monomethyl ether acetate solution having a polymer concentration of 17% by weight .
さらに、下記式(IIIa)〜(IIIj)
Figure 0004688282
(上式において、Raは水素原子又はメチル基を示し、R20及びR21は、同一又は異なって、水素原子、保護基を有していてもよいヒドロキシル基又は保護基を有していてもよいカルボキシル基を示し、R22は保護基を有していてもよいヒドロキシル基、オキソ基又は保護基を有していてもよいカルボキシル基を示す。X13は、同一又は異なって、−CH2−又は−CO−O−を示す。R2325は、同一又は異なって、水素原子又はメチル基を示す。R26及びR27は、同一又は異なって、水素原子又はメチル基を示す。R2832は、同一又は異なって、水素原子又はメチル基を示す。R33は、水素原子又は置換基を有してもよい炭素数1〜20の直鎖炭化水素、分岐炭化水素、脂環式炭化水素、有橋脂環式炭化水素を示す。R3437は、同一又は異なって、水素原子又はメチル基を示す。R38は、水素原子、保護基を有していてもよいヒドロキシル基、保護基を有していてもよいヒドロキシメチル基、保護基を有していてもよいカルボキシル基を示す。R3956はそれぞれ水素原子、メチル基又はエチル基を示す。o、p、q及びrはそれぞれ0又は1を示す。)
で表されるモノマー単位[但し、式(IIa)〜(IIg)で表されるモノマー単位に含まれるものを除く]のうち、少なくとも(IIIa)で表されるモノマー単位から選択された少なくとも1種のモノマー単位を含む請求項1記載のフォトレジスト用高分子化合物。
Further, the following formulas (IIIa) to (IIIj)
Figure 0004688282
(In the above formula, R a represents a hydrogen atom or a methyl group, and R 20 and R 21 are the same or different and have a hydrogen atom, a hydroxyl group which may have a protecting group, or a protecting group. R 22 represents a hydroxyl group optionally having a protecting group, an oxo group or a carboxyl group optionally having a protecting group, X 1 to 3 are the same or different, —CH 2 — or —CO—O— R 23 to 25 are the same or different and each represents a hydrogen atom or a methyl group, and R 26 and R 27 are the same or different and each represents a hydrogen atom or a methyl group. R 28 to 32 are the same or different and each represents a hydrogen atom or a methyl group, and R 33 represents a hydrogen atom or a linear hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, branched. Jo hydrocarbon group, alicyclic hydrocarbon group, a bridged alicyclic hydrocarbon group shown. 34-37 are the same or different, .R 38 represent a hydrogen atom or a methyl group, a hydrogen atom, hydroxyl group which may have a protective group, hydroxymethyl group which may have a protecting group, A carboxyl group which may have a protecting group, R 39 to 56 each represents a hydrogen atom, a methyl group or an ethyl group, and o, p, q and r each represents 0 or 1)
At least one selected from the monomer units represented by (IIIa) among the monomer units represented by the formula (except for those contained in the monomer units represented by formulas (IIa) to (IIg)) The high molecular compound for photoresists of Claim 1 containing the monomer unit of this.
請求項1又は2に記載のフォトレジスト用高分子化合物と光酸発生剤とを少なくとも含むフォトレジスト用樹脂組成物。A resin composition for photoresist comprising at least the polymer compound for photoresist according to claim 1 or 2 and a photoacid generator. 請求項記載のフォトレジスト用樹脂組成物を基材又は基板上に塗布してレジスト塗膜を形成し、露光及び現像を経てパターンを形成する工程を含む半導体の製造方法。A method for producing a semiconductor, comprising: applying a resin composition for a photoresist according to claim 3 on a substrate or a substrate to form a resist coating film; and forming a pattern through exposure and development.
JP2000368098A 2000-12-04 2000-12-04 Polymer for photoresist and resin composition for photoresist Expired - Lifetime JP4688282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368098A JP4688282B2 (en) 2000-12-04 2000-12-04 Polymer for photoresist and resin composition for photoresist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368098A JP4688282B2 (en) 2000-12-04 2000-12-04 Polymer for photoresist and resin composition for photoresist

Publications (2)

Publication Number Publication Date
JP2002169289A JP2002169289A (en) 2002-06-14
JP4688282B2 true JP4688282B2 (en) 2011-05-25

Family

ID=18838410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368098A Expired - Lifetime JP4688282B2 (en) 2000-12-04 2000-12-04 Polymer for photoresist and resin composition for photoresist

Country Status (1)

Country Link
JP (1) JP4688282B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200008924A (en) 2018-07-17 2020-01-29 에스케이씨 주식회사 Decoration film with embossing design and manufacturing method thereof
KR20210115505A (en) 2020-03-13 2021-09-27 에스케이씨 주식회사 Decoration sheet containing polyester layer and preperation method of decoration sheet
KR20210115503A (en) 2020-03-13 2021-09-27 에스케이씨 주식회사 Decoration sheet containing polyester layer and preperation method of decoration sheet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844133B2 (en) * 2001-08-31 2005-01-18 Shin-Etsu Chemical Co., Ltd. Polymer, resist composition and patterning process
JP2004182890A (en) * 2002-12-04 2004-07-02 Daicel Chem Ind Ltd Polylmer compound for photoresist, and resin composition for photoresist
JP4347130B2 (en) 2004-04-28 2009-10-21 東京応化工業株式会社 Positive resist composition, resist pattern forming method, and ion implantation method
JP4804730B2 (en) 2004-07-26 2011-11-02 ダイセル化学工業株式会社 Polymer compound containing repeating unit having 2-oxatricyclo [4.2.1.04,8] nonan-3-one ring, and photoresist resin composition
JP4740677B2 (en) * 2005-07-27 2011-08-03 ダイセル化学工業株式会社 3-oxa-7-oxa (or thia) tricyclo [4.2.1.04,8] nonan-2-one derivatives
JP4831307B2 (en) 2005-12-02 2011-12-07 信越化学工業株式会社 Novel ester compound, polymer compound, resist material and pattern forming method
JP2008088343A (en) * 2006-10-04 2008-04-17 Shin Etsu Chem Co Ltd Polymeric compound, resist material, and pattern forming method
JP4678413B2 (en) 2008-03-13 2011-04-27 信越化学工業株式会社 Resist material and pattern forming method
JP4678419B2 (en) 2008-05-02 2011-04-27 信越化学工業株式会社 Resist material and pattern forming method
JP6116358B2 (en) * 2013-05-16 2017-04-19 富士フイルム株式会社 Pattern forming method and electronic device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026446A (en) * 1998-07-03 2000-01-25 Nec Corp (meth)acrylate derivative having lactone structure, polymer, photoresist composition, and formation of pattern
JP2000122295A (en) * 1998-05-25 2000-04-28 Daicel Chem Ind Ltd Compound for photoresist and resin composition for photoresist

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131062B2 (en) * 1998-09-25 2008-08-13 信越化学工業株式会社 Novel lactone-containing compound, polymer compound, resist material, and pattern forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122295A (en) * 1998-05-25 2000-04-28 Daicel Chem Ind Ltd Compound for photoresist and resin composition for photoresist
JP2000026446A (en) * 1998-07-03 2000-01-25 Nec Corp (meth)acrylate derivative having lactone structure, polymer, photoresist composition, and formation of pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200008924A (en) 2018-07-17 2020-01-29 에스케이씨 주식회사 Decoration film with embossing design and manufacturing method thereof
KR20210115505A (en) 2020-03-13 2021-09-27 에스케이씨 주식회사 Decoration sheet containing polyester layer and preperation method of decoration sheet
KR20210115503A (en) 2020-03-13 2021-09-27 에스케이씨 주식회사 Decoration sheet containing polyester layer and preperation method of decoration sheet

Also Published As

Publication number Publication date
JP2002169289A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
KR101547873B1 (en) chemically amplified resist composition
JP4835052B2 (en) Star polymer, method for producing the same, and chemically amplified positive resist composition
JP5449909B2 (en) Positive resist composition and resist pattern forming method
JP2009223300A (en) Positive resist composition, method of forming resist pattern, and polymeric compound
JP2010204187A (en) Positive resist composition, method for forming resist pattern, and polymer compound
JP5285882B2 (en) POLYMER COMPOUND, POSITIVE RESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
JP5462681B2 (en) Positive resist composition, resist pattern forming method, polymer compound, compound
JP4688282B2 (en) Polymer for photoresist and resin composition for photoresist
JP2009265332A (en) Positive resist composition, resist pattern forming method, and polymer compound
KR20100009492A (en) Resist composition, method of forming resist pattern, and novel compound and acid generator
JP5173642B2 (en) Positive resist composition and resist pattern forming method
JP5500925B2 (en) Positive resist composition, resist pattern forming method, polymer compound
JP5597677B2 (en) COMPOUND, POLYMER COMPOUND, POSITIVE RESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
JP2006285228A (en) Positive photosensitive composition and pattern-forming method using same
JP5308877B2 (en) Positive resist composition and resist pattern forming method
JP5314996B2 (en) Positive resist composition, polymer compound, and resist pattern forming method
JP2003270787A (en) Radiation sensitive resin composition
JP2009288504A (en) Positive resist composition, resist pattern forming method, and high molecular compound
JP7180199B2 (en) Polymers, resist compositions, and methods of making patterned substrates
JP5238399B2 (en) Positive resist composition, resist pattern forming method, polymer compound, compound
JP5238400B2 (en) Positive resist composition, resist pattern forming method, polymer compound, compound
JP2006036893A (en) alpha-UNSATURATED ACYLOXY-gamma-BUTYLOLACTONE DERIVATIVE, POLYMER COMPOUND AND RESIN COMPOSITION FOR PHOTORESIST
JP6705286B2 (en) Method for producing polymerizable monomer, method for producing polymer for lithography and method for producing resist composition
JP2002169290A (en) Polymer for resist and resin composition for resist
TWI354867B (en) Positive resist composition and method for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term