JP4687797B2 - Resin clay and adhesive using polylactic acid waste - Google Patents
Resin clay and adhesive using polylactic acid waste Download PDFInfo
- Publication number
- JP4687797B2 JP4687797B2 JP2009031570A JP2009031570A JP4687797B2 JP 4687797 B2 JP4687797 B2 JP 4687797B2 JP 2009031570 A JP2009031570 A JP 2009031570A JP 2009031570 A JP2009031570 A JP 2009031570A JP 4687797 B2 JP4687797 B2 JP 4687797B2
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- acid waste
- molecular weight
- adhesive
- recycling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Biological Depolymerization Polymers (AREA)
Description
本発明は、ポリ乳酸廃棄物のリサイクルに係り、特に、ポリ乳酸廃棄物をリサイクルして得た樹脂粘土及び接着剤に関する。 The present invention relates to recycling of polylactic acid waste, and more particularly to a resin clay and an adhesive obtained by recycling polylactic acid waste.
近年、環境への配慮から、廃棄時に環境への負荷の少ない生分解性樹脂、さらには、再生可能資源からつくられるバイオマス由来の樹脂を種々の用途に用いる方法が提案されている。これらの生分解性樹脂やバイオマス由来のプラスチックは、バイオプラスチックと呼ばれ、化石資源の消費を削減し、大気中の二酸化炭素濃度の上昇を抑制するものと期待されている。 In recent years, in consideration of the environment, a method has been proposed in which biodegradable resins having a low environmental impact at the time of disposal, and further, biomass-derived resins made from renewable resources are used for various purposes. These biodegradable resins and biomass-derived plastics are called bioplastics and are expected to reduce the consumption of fossil resources and suppress the increase in the concentration of carbon dioxide in the atmosphere.
バイオプラスチックのうち、現在最も有望な樹脂のひとつがポリ乳酸である。ポリ乳酸は、融点が170℃程度、ガラス転移点が60℃程度、分子量が10〜15万程度の結晶性ポリエステルである。現在では、非耐熱タイプの食用包装材、容器などの使用量が多く、今後も増加していくと思われる。また、ポリ乳酸に耐熱性、高耐久性を付加し、携帯電話の筐体などにも使用され始めているが、その使用量はまだ僅かである。 One of the most promising resins among bioplastics is polylactic acid. Polylactic acid is a crystalline polyester having a melting point of about 170 ° C., a glass transition point of about 60 ° C., and a molecular weight of about 1 to 150,000. Currently, non-heat-resistant food packaging materials and containers are used in large quantities and are expected to increase in the future. In addition, heat resistance and high durability have been added to polylactic acid, and it has begun to be used in mobile phone casings, but the amount used is still small.
ポリ乳酸は、廃棄されても分解性があるという長所はあるものの、廃棄せずにリサイクルすることに関しても研究がされ始めている。プラスチックのリサイクルとしては、回収した廃棄物を破砕して再度溶融・成形するマテリアルリサイクルが最も好ましいが、ポリ乳酸の場合、使用により劣化すること、再度溶融されることにより加水分解が促進されてしまうことなどのため、そのままリサイクルすることは困難である。そのため、ポリ乳酸をモノマーである乳酸やラクチドに分解し、再利用するケミカルリサイクルの研究が盛んに行われている(例えば、特許文献1参照)。 Although polylactic acid has the advantage of being decomposable even when discarded, research has also started on recycling it without discarding it. As for plastic recycling, material recycling is most preferable, because the collected waste is crushed and melted and molded again. However, in the case of polylactic acid, it degrades by use, and when it is melted again, hydrolysis is accelerated. Therefore, it is difficult to recycle as it is. Therefore, research on chemical recycling in which polylactic acid is decomposed into lactic acid or lactide as monomers and reused has been actively conducted (for example, see Patent Document 1).
しかし、ケミカルリサイクルは、分解に大量のエネルギーと大型の装置を必要とするため、コストの面で難点があるとともに、環境負荷の点でも問題がある。 However, since chemical recycling requires a large amount of energy and a large apparatus for decomposition, it has a problem in terms of cost and a problem in terms of environmental load.
そのため、ケミカルリサイクル法に代わる他の方法が望まれている。 Therefore, another method that replaces the chemical recycling method is desired.
本発明は、以上のような事情に鑑みてなされ、低コストで簡易な方法でポリ乳酸廃棄物をリサイクルすることにより樹脂粘土並びに接着剤を提供すること、及びポリ乳酸廃棄物をそのような用途にリサイクルする方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a resin clay and an adhesive by recycling polylactic acid waste by a low-cost and simple method, and uses polylactic acid waste for such use. The purpose is to provide a recycling method.
上記課題を解決するため、本発明の第1の態様は、ポリ乳酸廃棄物を加水分解処理することにより分子量を4,000以下に調整したポリ乳酸を主成分として含むことを特徴とする樹脂粘土を提供する。 In order to solve the above-mentioned problems, a first aspect of the present invention is a resin clay characterized by containing polylactic acid whose molecular weight is adjusted to 4,000 or less by hydrolyzing polylactic acid waste as a main component. I will provide a.
本発明の第2の態様は、ポリ乳酸廃棄物を加水分解処理して、分子量を4,000以下に調整したポリ乳酸を、樹脂粘土に用いることを特徴とするポリ乳酸廃棄物のリサイクル方法を提供する。 According to a second aspect of the present invention, there is provided a recycling method for polylactic acid waste characterized in that polylactic acid having a molecular weight adjusted to 4,000 or less is used for resin clay by hydrolyzing polylactic acid waste. provide.
本発明の第3の態様は、ポリ乳酸廃棄物を加水分解処理して、分子量を3,000以下に調整したポリ乳酸を、接着剤に用いることを特徴とするポリ乳酸廃棄物のリサイクル方法を提供する。 According to a third aspect of the present invention, there is provided a recycling method for polylactic acid waste, characterized in that polylactic acid having a molecular weight adjusted to 3,000 or less is used as an adhesive by hydrolyzing polylactic acid waste. provide.
本発明によると、低コストで簡易な方法で、ポリ乳酸廃棄物をリサイクルして得た樹脂粘土並びに接着剤、及びポリ乳酸廃棄物をそのような用途にリサイクルする方法が提供される。 According to the present invention, there is provided a resin clay and an adhesive obtained by recycling polylactic acid waste and a method for recycling polylactic acid waste for such use by a low-cost and simple method.
以下、本発明の種々の実施形態について説明する。 Hereinafter, various embodiments of the present invention will be described.
本発明者らは、それ自体生分解性を有することから、そのまま廃棄されていたポリ乳酸廃棄物を、様々な用途にリサイクルして用いることを検討した。このようにポリ乳酸廃棄物を様々な用途にリサイクルすることが出来れば、より環境に対する負荷の低い製品を得ることが可能である。ここで、ポリ乳酸廃棄物とは、例えば、使用済の飲料用ポリ乳酸容器や、製造工程で発生する端材である。なお、飲料用ポリ乳酸容器は、ポリ乳酸のペレットを押出機で溶融混練し、射出成形機等により形成することにより製造される。 Since the present inventors themselves have biodegradability, the present inventors have studied recycling and using polylactic acid waste that has been discarded as it is for various uses. Thus, if polylactic acid waste can be recycled for various uses, it is possible to obtain a product with a lower environmental load. Here, the polylactic acid waste is, for example, a used polylactic acid container for beverages or scraps generated in the manufacturing process. In addition, the polylactic acid container for beverages is manufactured by melt-kneading polylactic acid pellets with an extruder and forming the pellets with an injection molding machine or the like.
しかし、通常、このようなポリ乳酸廃棄物は、市販されているポリ乳酸と同様、分子量が高く、混練物の粉砕性が悪いことから、そのままでは、様々な用途に用いることが出来ない。 However, such a polylactic acid waste usually has a high molecular weight and poor pulverizability of the kneaded material, as in the case of commercially available polylactic acid, and thus cannot be used for various purposes as it is.
一般に、汎用樹脂をポリ乳酸に置き換えることを考えた場合、ポリ乳酸の分子量を高くし、光学純度を上げることで結晶性を上げ、耐熱性や耐衝撃性の改善を図る必要があるが、樹脂粘土や接着剤への使用を考えた場合、耐熱性や耐衝撃性は必要ではなく、むしろ分子量が低いほうが、造形性や感圧接着性の点で望まれる。 In general, when replacing general-purpose resins with polylactic acid, it is necessary to increase the molecular weight of polylactic acid and increase the optical purity to increase crystallinity and improve heat resistance and impact resistance. When considering use in clay and adhesives, heat resistance and impact resistance are not necessary, but rather a lower molecular weight is desired in terms of formability and pressure-sensitive adhesiveness.
そこで、本発明者らは、ポリ乳酸廃棄物の分子量を所定の範囲に調整することにより、樹脂粘土や接着剤として用いることが出来ることを見出し、本発明をなすに到った。 Therefore, the present inventors have found that the polylactic acid waste can be used as a resin clay or an adhesive by adjusting the molecular weight of the polylactic acid waste to a predetermined range, and have reached the present invention.
即ち、本発明の第1の実施形態に係る樹脂粘土は、ポリ乳酸廃棄物を加水分解処理することにより分子量を4,000以下に調整したポリ乳酸を主成分として含むことを特徴とする。 That is, the resin clay according to the first embodiment of the present invention includes polylactic acid whose molecular weight is adjusted to 4,000 or less by hydrolyzing polylactic acid waste as a main component.
ポリ乳酸廃棄物を加水分解処理したとしても、4,000を越える分子量に調整されたのでは、得られたポリ乳酸は硬く、粘土のようにこねたり、形を作ることが出来ず、樹脂粘土として用いることが出来ない。 Even if polylactic acid waste is hydrolyzed, if it is adjusted to a molecular weight exceeding 4,000, the resulting polylactic acid is hard and cannot be kneaded or shaped like clay. Can not be used as.
本実施例に係る樹脂粘土は、ポリ乳酸廃棄物から得たポリ乳酸のみから構成されたものであってもよいが、例えば粘度調整のための可塑剤や無機物、接着性向上のための低分子樹脂等の種々の添加剤を含有していてもよい。例えば、着色剤を含有することにより、種々の色彩のカラー粘土を得ることが出来る。 The resin clay according to the present embodiment may be composed only of polylactic acid obtained from polylactic acid waste. For example, a plasticizer or an inorganic substance for viscosity adjustment, a low molecule for improving adhesion Various additives such as a resin may be contained. For example, color clays of various colors can be obtained by containing a colorant.
本発明の第2の実施形態に係る接着剤は、ポリ乳酸廃棄物を加水分解処理することにより分子量を3,000以下に調整したポリ乳酸を主成分として含むことを特徴とする。 The adhesive according to the second embodiment of the present invention is characterized by containing, as a main component, polylactic acid whose molecular weight is adjusted to 3,000 or less by hydrolyzing polylactic acid waste.
ポリ乳酸廃棄物を加水分解処理したとしても、3,000を越える分子量に調整されたのでは、得られたポリ乳酸は感圧接着性が低く、接着剤として用いることが困難である。 Even if polylactic acid waste is hydrolyzed, if the molecular weight is adjusted to exceed 3,000, the resulting polylactic acid has low pressure-sensitive adhesiveness and is difficult to use as an adhesive.
本実施例に係る樹脂粘土は、ポリ乳酸廃棄物から得たポリ乳酸のみにより構成されていてもよいが、例えば粘度調整のための可塑剤や無機物、接着性向上のための低分子樹脂等の種々の添加剤を含有していてもよい。 Resin clay according to the present embodiment may be composed only of polylactic acid obtained from polylactic acid waste, such as plasticizers and inorganics for viscosity adjustment, low molecular resins for improving adhesion, etc. Various additives may be contained.
本実施形態に係る樹脂粘土又は接着剤には、ポリ乳酸廃棄物の加水分解調整物以外に、必要に応じて、従来公知の樹脂を添加することができる。 In addition to the polylactic acid waste hydrolysis-adjusted product, conventionally known resins can be added to the resin clay or adhesive according to the present embodiment, if necessary.
また、用いられるポリ乳酸廃棄物は、その主成分がポリ乳酸であることが必要である。即ち、ポリ乳酸廃棄物中のポリ乳酸の配合量は、好ましくは75〜100質量%、より好ましくは90〜100質量%であることである。ポリ乳酸の配合量が75質量%未満では、原料として使用されるポリ乳酸廃棄物の量が限定されてしまう。 Moreover, the polylactic acid waste used needs that the main component is polylactic acid. That is, the blending amount of polylactic acid in the polylactic acid waste is preferably 75 to 100% by mass, more preferably 90 to 100% by mass. When the blending amount of polylactic acid is less than 75% by mass, the amount of polylactic acid waste used as a raw material is limited.
ポリ乳酸廃棄物の樹脂粘土又は接着剤へのリサイクルは、次のようにして行うことが出来る。 Recycling of polylactic acid waste to resin clay or adhesive can be performed as follows.
まず、ポリ乳酸廃棄物を必要に応じて洗浄し、粉砕機で破砕し、数mm程度のサイズのチップにする。次いで、ポリ乳酸廃棄物チップに加水分解処理を施すことにより、ポリ乳酸廃棄物中のポリ乳酸の分子量を調整する。加水分解処理は、例えば、温度70〜95℃、湿度70〜100%RHの環境下に、数日間〜10数日間、置くことにより行うことが出来る。このような加水分解処理は、恒温恒湿槽中で行うことが、最も簡易である。 First, the polylactic acid waste is washed as necessary, and crushed with a pulverizer to form chips having a size of several millimeters. Next, the molecular weight of polylactic acid in the polylactic acid waste is adjusted by subjecting the polylactic acid waste chip to hydrolysis. The hydrolysis treatment can be performed, for example, by placing it in an environment of a temperature of 70 to 95 ° C. and a humidity of 70 to 100% RH for several days to several tens of days. Such hydrolysis treatment is most easily performed in a constant temperature and humidity chamber.
調整されるポリ乳酸の分子量は、樹脂粘土又は接着剤としての使用に最も重要なパラメータであり、樹脂粘土又は接着剤の品質を左右するものである。ポリ乳酸廃棄物は、様々な種類の形態、履歴のものを含むことを考慮すると、事前に予備試験を行い、加水分解の条件を定めておくことが望ましい。 The molecular weight of the polylactic acid to be adjusted is the most important parameter for use as a resin clay or an adhesive, and affects the quality of the resin clay or the adhesive. Considering that polylactic acid waste includes various types of forms and histories, it is desirable to conduct preliminary tests in advance to determine the conditions for hydrolysis.
なお、加水分解処理は、恒温恒湿槽中で行うこと以外に、バッチ式の混練機で混練しながら適宜、水を足すことにより行うことも可能である。この方法は、混練時の粘性を測定することにより、加水分解レベルを把握することが出来るので、原料として使用履歴が不明なポリ乳酸廃棄物を用いる場合に有効な方法と言える。 The hydrolysis treatment can be performed by adding water as appropriate while kneading with a batch kneader, in addition to being performed in a constant temperature and humidity chamber. This method can be said to be an effective method when using polylactic acid waste whose use history is unknown as a raw material because the hydrolysis level can be grasped by measuring the viscosity at the time of kneading.
このようにポリ乳酸廃棄物を加水分解処理して、分子量を、4,000以下に調整したものをリサイクルすることにより、優れた造形性を示す樹脂粘土を得ることが出来る。また、分子量を、3,000以下に調整したものをリサイクルすることにより、優れた感圧接着性を示す接着剤を得ることが出来る。 Thus, the resin clay which shows the outstanding modeling property can be obtained by hydrolyzing a polylactic acid waste and recycling what adjusted the molecular weight to 4,000 or less. In addition, by recycling a material having a molecular weight adjusted to 3,000 or less, an adhesive exhibiting excellent pressure-sensitive adhesiveness can be obtained.
ポリ乳酸は、乳酸がエステル結合により結合したポリマーであり、近年、環境に優しい生分解性プラスチックとして注目を集めている。即ち、自然界には、エステル結合を切断する酵素(エステラーゼ)が広く分布していることから、ポリ乳酸は環境中でこのような酵素により徐々に分解されて、単量体である乳酸に変換され、最終的には二酸化炭素と水になる。 Polylactic acid is a polymer in which lactic acid is bonded by an ester bond, and has recently attracted attention as an environmentally friendly biodegradable plastic. In other words, in nature, enzymes that cleave ester bonds (esterases) are widely distributed, so polylactic acid is gradually decomposed by such enzymes in the environment and converted into lactic acid, which is a monomer. And eventually carbon dioxide and water.
本発明で使用されるポリ乳酸廃棄物の元のバージンポリ乳酸の製造方法としては、特に限定されず、従来公知の方法により製造されたものでよい。例えば、原料となるとうもろこし等の澱粉を発酵し、乳酸を得た後、乳酸モノマーから直接脱水縮合する方法や乳酸から環状二量体ラクチドを経て、触媒の存在下で開環重合によって合成する方法がある。 The production method of the original virgin polylactic acid of the polylactic acid waste used in the present invention is not particularly limited, and may be produced by a conventionally known method. For example, fermenting starch such as corn as a raw material to obtain lactic acid, then dehydrating and condensing directly from lactic acid monomer, or synthesizing from lactic acid via cyclic dimer lactide and synthesizing by ring-opening polymerization in the presence of a catalyst There is.
以上説明した樹脂粘土又は接着剤には、必要に応じて従来公知の加水分解抑制剤を添加することができる。加水分解抑制剤としては、例えば、カルボジイミド系化合物、イソシアネート系化合物及びオキサゾリン系化合物などが挙げられる。このような加水分解抑制剤により、残存モノマーや分解により生じた水酸基やカルボキシル基末端が封止され、加水分解の連鎖反応を抑制することができる。 A conventionally well-known hydrolysis inhibitor can be added to the resin clay or adhesive agent demonstrated above as needed. Examples of the hydrolysis inhibitor include carbodiimide compounds, isocyanate compounds, and oxazoline compounds. By such a hydrolysis inhibitor, the residual monomer or the terminal of a hydroxyl group or a carboxyl group generated by decomposition can be blocked, and the hydrolysis chain reaction can be suppressed.
具体的な加水分解抑制剤としては、ポリカルボジイミド化合物である日清紡績(株)製の“カルボジライトLA−1”などが市販されている。加水分解抑制剤の添加量は、生分解性樹脂に対し、0.01〜10質量%であることが好ましく、0.05〜5質量%がより好ましい。添加量が多過ぎると、透明性が悪化し、トナーの発色が悪化する傾向となる。 As a specific hydrolysis inhibitor, “Carbodilite LA-1” manufactured by Nisshinbo Co., Ltd., which is a polycarbodiimide compound, is commercially available. It is preferable that the addition amount of a hydrolysis inhibitor is 0.01-10 mass% with respect to biodegradable resin, and 0.05-5 mass% is more preferable. When the amount is too large, the transparency is deteriorated and the color of the toner tends to be deteriorated.
実施例
以下に本発明の実施例と比較例を示し、本発明についてより具体的に説明する。
Examples Examples and comparative examples of the present invention are shown below, and the present invention will be described more specifically.
1.実施例及び比較例で用いた成分の各物性値の測定方法は下記の通りである。 1. The measuring method of each physical property value of the components used in Examples and Comparative Examples is as follows.
(軟化点の測定)
装置:フローテスター(島津製作所(株)製、CFT−500D)
試料:1g
昇温速度:6℃/分
荷重:20kg
ノズル:直径1mm、長さ1mm
1/2法:試料の半分が流出した温度を軟化点とした。
(Measurement of softening point)
Apparatus: Flow tester (manufactured by Shimadzu Corporation, CFT-500D)
Sample: 1g
Temperature increase rate: 6 ° C / min Load: 20kg
Nozzle: 1mm diameter, 1mm length
1/2 method: The temperature at which half of the sample flowed out was taken as the softening point.
(ガラス転移点(Tg)の測定)
装置:示差走査熱量計(島津製作所社製:DSC−60)
試料:8mg
昇温条件:10℃/分で160℃まで昇温し、降温速度10℃/分で35℃まで冷却したあと、再度10℃/分で160℃まで昇温する。
(Measurement of glass transition point (Tg))
Apparatus: Differential scanning calorimeter (manufactured by Shimadzu Corporation: DSC-60)
Sample: 8mg
Temperature raising conditions: The temperature is raised to 160 ° C. at 10 ° C./min, cooled to 35 ° C. at a temperature lowering rate of 10 ° C./min, and then raised again to 160 ° C. at 10 ° C./min.
2回目の昇温時において、転移により得られる曲線部分の2つの接線の交点をガラス転移点とした。 At the second temperature increase, the intersection of two tangents of the curve portion obtained by the transition was taken as the glass transition point.
(分子量の測定)
装置:GPC(島津製作所(株)製)、検出器RI
分子量Mnは、分子量既知のポリスチレン試料によって作成した検量線を標準としてGPC(ゲルパーミエーションクロマトグラフィー)にて測定される数平均分子量である。
(Measurement of molecular weight)
Equipment: GPC (manufactured by Shimadzu Corporation), detector RI
The molecular weight Mn is a number average molecular weight measured by GPC (gel permeation chromatography) using a calibration curve prepared with a polystyrene sample having a known molecular weight as a standard.
2.実施例及び比較例で用いたポリ乳酸廃棄物として、下記のようにして、ポリ乳酸廃棄物を加水分解したものを用いた。 2. As a polylactic acid waste used in Examples and Comparative Examples, a polylactic acid waste hydrolyzed as follows was used.
ポリ乳酸製容器(リスパック社製ニュートボール)を温度80℃、湿度90%RHに設定した恒温恒湿槽内に放置することにより加水分解処理を行った。 Hydrolysis treatment was performed by leaving a polylactic acid container (New Ball, manufactured by Lispack) in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 90% RH.
加水分解処理時間を可変し、分子量の異なる下記表1に示す樹脂1〜12を得た。 Resin 1-12 shown in following Table 1 from which the hydrolysis process time was varied and different molecular weight was obtained.
このようにして得られた12種の樹脂の造形性及び感圧接着性について、下記のように試験し、評価した。 The formability and pressure-sensitive adhesiveness of the 12 kinds of resins thus obtained were tested and evaluated as follows.
1.造形性
樹脂を手でこねて、下記の基準で評価した。
1. Moldability Resin was kneaded by hand and evaluated according to the following criteria.
○:樹脂を粘土のようにこねたり、形を作ることが出来る。 ○: Resin can be kneaded or shaped like clay.
×:樹脂が硬く、こねることが出来ない。 X: Resin is hard and cannot be kneaded.
2.感圧接着性
樹脂を紙に塗布してその上に他の紙を重ね、指で擦った後に、紙を剥がして、下記の基準で評価した。
2. Pressure sensitive adhesive Resin was applied to paper, another paper was layered on it, rubbed with a finger, the paper was peeled off, and evaluated according to the following criteria.
○:容易には剥がれず、接着性を示す。 ○: It does not peel off easily and shows adhesiveness.
△:容易に剥がれ、接着性が低い。 (Triangle | delta): It peels easily and adhesiveness is low.
×:接着性が非常に低い。 X: Adhesiveness is very low.
以上の評価結果を下記表1に示す。
上記表1より、以下のことが明らかである。 From Table 1 above, the following is clear.
ポリ乳酸廃棄物を加水分解処理して、分子量を4,000以下に調整した樹脂9〜12(実施例1〜4)は、いずれも造形性に優れており、樹脂粘土として使用することが出来る。これに対し、分子量が4,000を越える樹脂1〜8(比較例1〜8)は、いずれも造形性が劣っており、樹脂粘土として使用することが出来ない。 Resins 9 to 12 (Examples 1 to 4) prepared by hydrolyzing polylactic acid waste and adjusting the molecular weight to 4,000 or less are excellent in formability and can be used as resin clay. . On the other hand, all of resins 1 to 8 (Comparative Examples 1 to 8) having a molecular weight exceeding 4,000 have poor formability and cannot be used as resin clay.
また、ポリ乳酸廃棄物を加水分解処理して、分子量を3,000以下に調整した樹脂11及び12(実施例5及び6)は、いずれも感圧接着性に優れており、接着剤として使用することが出来る。これに対し、分子量が3,000を越える樹脂1〜10(比較例9〜18)は、いずれも感圧接着性造形性が低く、接着剤として使用することが困難である。特に、分子量が4,000を越える樹脂1〜8(比較例9〜16)は、接着性が非常に低く、接着剤として使用することは不可能である。 In addition, resins 11 and 12 (Examples 5 and 6) whose molecular weight was adjusted to 3,000 or less by hydrolyzing polylactic acid waste were excellent in pressure-sensitive adhesiveness and used as an adhesive. I can do it. On the other hand, any of the resins 1 to 10 (Comparative Examples 9 to 18) having a molecular weight exceeding 3,000 has low pressure-sensitive adhesive formability and is difficult to use as an adhesive. In particular, the resins 1 to 8 (Comparative Examples 9 to 16) having a molecular weight exceeding 4,000 have very low adhesiveness and cannot be used as an adhesive.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009031570A JP4687797B2 (en) | 2009-02-13 | 2009-02-13 | Resin clay and adhesive using polylactic acid waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009031570A JP4687797B2 (en) | 2009-02-13 | 2009-02-13 | Resin clay and adhesive using polylactic acid waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010185046A JP2010185046A (en) | 2010-08-26 |
JP4687797B2 true JP4687797B2 (en) | 2011-05-25 |
Family
ID=42765889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009031570A Expired - Fee Related JP4687797B2 (en) | 2009-02-13 | 2009-02-13 | Resin clay and adhesive using polylactic acid waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4687797B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012219210A (en) * | 2011-04-12 | 2012-11-12 | As R&D合同会社 | Method for producing low-molecular polymer, low-molecular polymer obtained by the method, and coating material, powder coating material, adhesive, fiber and nonwoven fabric using the polymer |
JP6221098B2 (en) * | 2013-11-03 | 2017-11-01 | 環境テクノス株式会社 | Molding composition |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339557A (en) * | 1992-06-11 | 1993-12-21 | Mitsui Toatsu Chem Inc | Hot-melt adhesive composition |
JPH0977904A (en) * | 1995-09-14 | 1997-03-25 | Shimadzu Corp | Method for recovering lactide from high-molecular-weight polylactic acid |
JPH11100459A (en) * | 1997-09-29 | 1999-04-13 | Nippon Shokuhin Kako Co Ltd | Easy degradation treatment of polyester |
JP2000086877A (en) * | 1998-09-08 | 2000-03-28 | Shimadzu Corp | Plasticized polylactic acid composition |
JP2002155197A (en) * | 2000-09-11 | 2002-05-28 | Unitika Ltd | Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom |
JP2003300927A (en) * | 2002-04-12 | 2003-10-21 | Nagoya Industrial Science Research Inst | Method for forming monomer of biodegradable polyester |
JP2003313283A (en) * | 2002-04-25 | 2003-11-06 | Japan Science & Technology Corp | Method for manufacturing polyester |
JP2005132901A (en) * | 2003-10-29 | 2005-05-26 | Teijin Fibers Ltd | Method for removing foreign material from aliphatic polyester |
JP2005330211A (en) * | 2004-05-19 | 2005-12-02 | Toyohashi Univ Of Technology | Method for hydrolyzing biodegradable polyester into monomer, and apparatus for treating biodegradable polyester |
JP2008007611A (en) * | 2006-06-29 | 2008-01-17 | Kumamoto Technology & Industry Foundation | Method for collecting lactic acid and/or water-soluble oligomer from polylactic acid |
-
2009
- 2009-02-13 JP JP2009031570A patent/JP4687797B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339557A (en) * | 1992-06-11 | 1993-12-21 | Mitsui Toatsu Chem Inc | Hot-melt adhesive composition |
JPH0977904A (en) * | 1995-09-14 | 1997-03-25 | Shimadzu Corp | Method for recovering lactide from high-molecular-weight polylactic acid |
JPH11100459A (en) * | 1997-09-29 | 1999-04-13 | Nippon Shokuhin Kako Co Ltd | Easy degradation treatment of polyester |
JP2000086877A (en) * | 1998-09-08 | 2000-03-28 | Shimadzu Corp | Plasticized polylactic acid composition |
JP2002155197A (en) * | 2000-09-11 | 2002-05-28 | Unitika Ltd | Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom |
JP2003300927A (en) * | 2002-04-12 | 2003-10-21 | Nagoya Industrial Science Research Inst | Method for forming monomer of biodegradable polyester |
JP2003313283A (en) * | 2002-04-25 | 2003-11-06 | Japan Science & Technology Corp | Method for manufacturing polyester |
JP2005132901A (en) * | 2003-10-29 | 2005-05-26 | Teijin Fibers Ltd | Method for removing foreign material from aliphatic polyester |
JP2005330211A (en) * | 2004-05-19 | 2005-12-02 | Toyohashi Univ Of Technology | Method for hydrolyzing biodegradable polyester into monomer, and apparatus for treating biodegradable polyester |
JP2008007611A (en) * | 2006-06-29 | 2008-01-17 | Kumamoto Technology & Industry Foundation | Method for collecting lactic acid and/or water-soluble oligomer from polylactic acid |
Also Published As
Publication number | Publication date |
---|---|
JP2010185046A (en) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI443140B (en) | Thermoformed article made from polybutylene succinate (pbs) and modified polybutylene succinate (mpbs) | |
Rivas et al. | Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies | |
JP4063856B2 (en) | Method for producing biodegradable polyester resin composition | |
KR102103095B1 (en) | Aliphatic-aromatic copolyesters and their mixtures | |
JP5794731B2 (en) | Resin composition | |
KR101000749B1 (en) | Biodegradable resin composition, method for production thereof and biodegradable film therefrom | |
CN110408180B (en) | Lignin-starch combined master batch compounded biodegradable polyester material and preparation method thereof | |
AU2009295910A1 (en) | Aliphatic polyester | |
CN105694403A (en) | All-biological-based resin composition | |
JP2005171204A (en) | Resin composition and molded article obtained from the same | |
KR101132382B1 (en) | Biodegradable resin composition, method for production thereof and biodegradable film therefrom | |
TW201609952A (en) | Polyester resin composition and molding | |
JPWO2017138392A1 (en) | Biodegradable polyester resin composition and molded article comprising the resin composition | |
KR20140118881A (en) | Resin composition comprising polyalkylene carbonate | |
ITMI20120250A1 (en) | BIODEGRADABLE POLYMER COMPOSITION FOR THE MANUFACTURE OF ARTICLES WITH HIGH INFLESSION TEMPERATURE UNDER LOAD. | |
KR20130109707A (en) | Biodegradable plastic composition | |
JP4687797B2 (en) | Resin clay and adhesive using polylactic acid waste | |
JPWO2009110171A1 (en) | Biodegradable polyester resin composition and molded article comprising the same | |
JP4503215B2 (en) | Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof | |
JP2004143203A (en) | Injection molded product | |
KR20120073613A (en) | Flexible poly lactic acid composition and manufacturing method thereof | |
JP2009062532A (en) | Thermally molded product and composition containing poly (hydroxyalkanoic acid) and polyoxymethylene | |
AU2010200315A1 (en) | Biodegradable resin composition, method for production thereof and biodegradable film therefrom | |
JP2014234467A (en) | Sheet | |
JP5145531B2 (en) | Polylactic acid composition and polylactic acid molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100816 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100907 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20101007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110131 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |