JP4687077B2 - Proton conductive polymer composition and method for producing the same - Google Patents

Proton conductive polymer composition and method for producing the same Download PDF

Info

Publication number
JP4687077B2
JP4687077B2 JP2004323742A JP2004323742A JP4687077B2 JP 4687077 B2 JP4687077 B2 JP 4687077B2 JP 2004323742 A JP2004323742 A JP 2004323742A JP 2004323742 A JP2004323742 A JP 2004323742A JP 4687077 B2 JP4687077 B2 JP 4687077B2
Authority
JP
Japan
Prior art keywords
resin
polymer composition
acid
sulfonic acid
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323742A
Other languages
Japanese (ja)
Other versions
JP2006131800A (en
Inventor
明良 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004323742A priority Critical patent/JP4687077B2/en
Publication of JP2006131800A publication Critical patent/JP2006131800A/en
Application granted granted Critical
Publication of JP4687077B2 publication Critical patent/JP4687077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、プロトン伝導性高分子組成物およびその製造方法に関するものであり、さらに詳しくは、固体高分子電解質型燃料電池の電解質膜などとして有用なプロトン伝導性高分子組成物およびその製造方法に関するものである。   The present invention relates to a proton conductive polymer composition and a method for producing the same, and more particularly to a proton conductive polymer composition useful as an electrolyte membrane of a solid polymer electrolyte fuel cell and a method for producing the same. Is.

従来、プロトン伝導性電解質膜としては、パーフルオロスルホン酸樹脂(例えば、デュポン社製、商品名ナフィオン膜)を代表とするフッ素系イオン交換樹脂膜(例えば特許文献1参照)が用いられており、分子中にプロトン交換基を有しており、80℃、100%RHで0.1(S/cm)程度のプロトン伝導率を示し、プロトン伝導性電解質として機能する。
特開2000−119420号公報
Conventionally, as a proton conductive electrolyte membrane, a fluorine-based ion exchange resin membrane (for example, see Patent Document 1) typified by a perfluorosulfonic acid resin (for example, a product name Nafion membrane manufactured by DuPont) is used. It has a proton exchange group in the molecule, exhibits proton conductivity of about 0.1 (S / cm) at 80 ° C. and 100% RH, and functions as a proton conductive electrolyte.
JP 2000-119420 A

しかし、従来のパーフルオロスルホン酸樹脂系材料からなるイオン交換樹脂膜は最高作動温度が約80℃程度と低く、また製造プロセスが複雑で非常に高価であるという問題があった。
本発明の第1の目的は、従来のパーフルオロスルホン酸樹脂系材料からなるイオン交換樹脂膜と同等以上のプロトン伝導率を示すとともに、最高作動温度が約80〜120℃程度と高く、安価で高性能のプロトン伝導性高分子組成物を提供することであり、
本発明の第2の目的は、簡単な製造プロセスによりそのような安価で高性能のプロトン伝導性高分子組成物を製造する方法を提供することである。
However, ion exchange resin membranes made of conventional perfluorosulfonic acid resin-based materials have a problem that the maximum operating temperature is as low as about 80 ° C., and the manufacturing process is complicated and very expensive.
The first object of the present invention is to exhibit proton conductivity equivalent to or higher than that of an ion exchange resin membrane made of a conventional perfluorosulfonic acid resin material, and has a high maximum operating temperature of about 80 to 120 ° C., which is inexpensive. Providing a high performance proton conducting polymer composition;
The second object of the present invention is to provide a method for producing such an inexpensive and high-performance proton conducting polymer composition by a simple production process.

前記課題を解決するための本発明の請求項1記載のプロトン伝導性高分子組成物は、分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂とを含み、かつ有機アミンを含まないプロトン伝導性高分子組成物であって、
前記スルホン酸基を有する有機酸が均一に前記樹脂中に分散して前記樹脂と化学的に結合した状態で膜状に形成されていることを特徴とするものである。
The proton-conductive polymer composition according to claim 1 of the present invention for solving the above-described problem is a benzenesulfonic acid, naphthalenesulfonic acid, or a plurality of sulfonic acid groups that do not contain a polymerizable functional group in the molecule. look contains a resin having no functional group and chelate groups reactive with organic acid and a sulfonic acid group having at least is one sulfonic group selected from an organic acid having, and no organic amine A proton conducting polymer composition comprising:
The organic acid having a sulfonic acid group is uniformly dispersed in the resin and is formed into a film shape in a state of being chemically bonded to the resin.

(削除) (Delete)

本発明の請求項2記載のプロトン伝導性高分子組成物は、請求項1記載のプロトン伝導性高分子組成物において、前記樹脂がポリエーテルスルホン(PES)であることを特徴とするものである。 Proton-conducting polymer composition according to claim 2 Symbol mounting of the present invention is the proton-conducting polymer composition according to claim 1 Symbol placement, which is characterized in that said resin is a polyether sulfone (PES) It is.

本発明の請求項3は、下記の工程(1)〜(4)からなることを特徴とする請求項1あるいは請求項2記載のプロトン伝導性高分子組成物の製造方法である。
(1)分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と、前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂を共通する溶媒にそれぞれ溶解した後、両者を混合して液状高分子組成物を形成する。
(2)前記高分子液状組成物中の前記溶媒を揮発させて粘度調整する。
(3)粘度調整した前記高分子液状組成物を基板上に適用して膜状に形成し、乾燥する。(4)乾燥後、電子線を照射して、前記樹脂と前記有機酸を化学的に結合させる。
A third aspect of the present invention is the method for producing a proton conductive polymer composition according to the first or second aspect, comprising the following steps (1) to (4).
(1) an organic acid having at least one sulfonic acid group selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, which does not contain a polymerizable functional group in the molecule ; A resin that does not have a functional group that reacts with a sulfonic acid group and a chelating functional group is dissolved in a common solvent, and then both are mixed to form a liquid polymer composition.
(2) The viscosity of the polymer liquid composition is adjusted by volatilizing the solvent.
(3) The viscosity of the polymer liquid composition is applied on a substrate to form a film and dried. (4) After drying, the resin is irradiated with an electron beam to chemically bond the resin and the organic acid.

本発明の請求項は、請求項3記載の製造方法において、前記溶媒がN−メチル−1−ピロリドン(NMP)であることを特徴とするものである。 Claim 4 of the present invention is the manufacturing method according to claim 3 Symbol placement, is characterized in that said solvent is N- methyl-1-pyrrolidone (NMP).

本発明の請求項1記載のプロトン伝導性高分子組成物は、分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂とを含み、かつ有機アミンを含まないプロトン伝導性高分子組成物であって、
前記スルホン酸基を有する有機酸が均一に前記樹脂中に分散して前記樹脂と化学的に結合した状態で膜状に形成されていることを特徴とするものであり、
従来のパーフルオロスルホン酸樹脂系材料からなるイオン交換樹脂膜と同等以上のプロトン伝導率を示すとともに、最高作動温度が約80〜120℃程度と高く、安価で耐久性に優れ信頼性が高いなど高性能であるという、顕著な効果を奏する。
前記有機酸がベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであると、これらの有機酸を用いて容易に高性能のプロトン伝導性高分子組成物を得ることができる上、取り扱い易く、安価で入手も容易であるという、さらなる顕著な効果を奏する。
The proton conductive polymer composition according to claim 1 of the present invention is at least selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, which does not contain a polymerizable functional group in the molecule. look contains a resin having no functional group and chelate groups reactive with organic acid and a sulfonic acid group with is one sulfonic acid group, and the proton-conducting polymer composition containing no organic amine Because
The organic acid having the sulfonic acid group is uniformly dispersed in the resin and is formed into a film shape in a state of being chemically bonded to the resin,
The proton conductivity is equivalent to or better than that of conventional ion-exchange resin membranes made of perfluorosulfonic acid resin materials, and the maximum operating temperature is as high as about 80-120 ° C. It is inexpensive, durable, and highly reliable. There is a remarkable effect of high performance.
When the organic acid is at least one selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, a high-performance proton conductive polymer composition can be easily obtained using these organic acids. In addition to being able to obtain a product, it is easy to handle, inexpensive, and easily available.

(削除) (Delete)

本発明の請求項記載のプロトン伝導性高分子組成物は、請求項1記載のプロトン伝導性高分子組成物において、前記樹脂がポリエーテルスルホン(PES)であることを特徴とするものであり、
耐熱性により優れた高性能のプロトン伝導性高分子組成物を得ることができる上、取り扱い易く入手も容易であるという、さらなる顕著な効果を奏する。
Proton-conducting polymer composition according to claim 2 of the present invention is the proton-conducting polymer composition according to claim 1 Symbol mounting, characterized in that said resin is a polyether sulfone (PES) Yes,
In addition to obtaining a high-performance proton conductive polymer composition that is superior in heat resistance, it is possible to obtain a further remarkable effect that it is easy to handle and obtain.

本発明の請求項3は、前記の工程(1)〜(4)からなることを特徴とする請求項1あるいは請求項2記載のプロトン伝導性高分子組成物の製造方法であり、例えば分子内に重合性官能基を含まない、スルホン酸基を有する有機酸と、前記樹脂を共通する溶媒にそれぞれ溶解した後、両者を混合して均一化して液状高分子組成物を形成した後、高分子液状組成物中の前記溶媒を揮発させて基板上に塗布するなどして膜状に形成し易い粘度に調整し、そしてこの高分子液状組成物を基板上に塗布するなどして膜状に形成し、乾燥した後、電子線を照射して、前記樹脂と前記有機酸を化学的に結合させるという簡単な製造プロセスにより本発明の安価で高性能のプロトン伝導性高分子組成物を容易に製造できるという、顕著な効果を奏する。 A third aspect of the present invention is the method for producing a proton conductive polymer composition according to the first or second aspect, comprising the steps (1) to (4), for example, intramolecularly. The organic acid having no polymerizable functional group and the sulfonic acid group- containing organic acid and the resin are dissolved in a common solvent, and then mixed together to form a liquid polymer composition. The solvent in the liquid composition is volatilized and applied to the substrate to adjust the viscosity to be easily formed into a film, and the polymer liquid composition is applied to the substrate to form a film. Then, after drying, the low-cost and high-performance proton-conductive polymer composition of the present invention is easily manufactured by a simple manufacturing process in which the resin and the organic acid are chemically bonded by irradiation with an electron beam. There is a remarkable effect of being able to.

本発明の請求項は、請求項3記載の製造方法において、前記溶媒がN−メチル−1−ピロリドン(NMP)であることを特徴とするものであり、
NMPはスルホン酸基を有する有機酸と、前記樹脂をいずれも溶解し易い上、取り扱い易く入手も容易であるという、さらなる顕著な効果を奏する。
Claim 4 of the present invention is the manufacturing method according to claim 3 Symbol mounting, and characterized in that said solvent is N- methyl-1-pyrrolidone (NMP),
NMP has an even more remarkable effect that both the organic acid having a sulfonic acid group and the resin are easily dissolved, and easy to handle and obtain.

次に本発明のプロトン伝導性高分子組成物の製造方法を詳細に説明する。
工程(1)において、分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と、前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂を共通する溶媒にそれぞれ溶解する。すなわち前記有機酸と前記樹脂を同じ溶媒を用いて別々に溶解できる溶媒が存在する場合に本発明の製造方法により本発明のプロトン伝導性高分子組成物を製造することができる。前記有機酸と前記樹脂を別々に十分に溶解してから、両者を混合して液状高分子組成物を形成する。溶解の濃度、温度、時間、装置などは前記有機酸と前記樹脂の種類や組み合わせなどにより異なる。
Next, the method for producing the proton conductive polymer composition of the present invention will be described in detail.
In step (1), an organic acid having a sulfonic acid group which is at least one selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, which does not contain a polymerizable functional group in the molecule The resin having no functional group that reacts with the sulfonic acid group and no chelating functional group is dissolved in a common solvent. That is, when there is a solvent capable of separately dissolving the organic acid and the resin using the same solvent, the proton conductive polymer composition of the present invention can be produced by the production method of the present invention. The organic acid and the resin are sufficiently dissolved separately and then mixed to form a liquid polymer composition. The concentration, temperature, time, apparatus, etc. of dissolution differ depending on the type and combination of the organic acid and the resin.

工程(2)において、均一に溶解した液状高分子組成物を例えば真空乾燥機などを用いて前記有機酸が揮発して散逸しない温度、例えば80℃以下の温度で真空乾燥して前記高分子液状組成物中の前記溶媒を揮発させると、濃縮されて粘度が上昇するので、基板上に塗布するなどして適用して膜状に形成するのに適した粘度に調整することができる。そのような粘度になったところで前記溶媒の揮発を停止する。基板上に適用して膜状に形成する方法によっても最適な粘度が異なるが、前記方法でそれぞれに適切な粘度に調整する。   In the step (2), the uniformly polymerized liquid polymer composition is vacuum-dried at a temperature at which the organic acid does not volatilize and dissipate using, for example, a vacuum dryer, for example, at a temperature of 80 ° C. or less, and the polymer liquid When the solvent in the composition is volatilized, the solvent is concentrated to increase the viscosity. Therefore, it can be adjusted to a viscosity suitable for forming a film by applying it on a substrate. When such a viscosity is reached, the volatilization of the solvent is stopped. The optimum viscosity varies depending on the method of forming a film by applying on the substrate, but the viscosity is adjusted to an appropriate viscosity by the above method.

工程(3)において、粘度調整した前記高分子液状組成物を基板上に適用して膜状に形成する。その後、オーブン乾燥あるいは真空乾燥するなどして膜中の前記溶媒を除去することにより、乾燥した状態のフィルム状の膜あるいはシート状の膜を得ることができる。真空度、温度、時間などは使用する溶媒などにより異なる。溶媒がNMPの場合、例えば、80〜120℃、1〜10時間、排気しながら乾燥する。しかしこの状態では前記樹脂のマトリックス中に前記有機酸や極微量残留する前記溶媒が前記樹脂と化学的な結合をしていないので、例えば放置すると極微量の前記有機酸や前記溶媒が前記樹脂から浸出する。   In the step (3), the polymer liquid composition whose viscosity is adjusted is applied on a substrate to form a film. Then, the film-like film | membrane or sheet-like film | membrane of a dried state can be obtained by removing the said solvent in a film | membrane by oven drying or vacuum drying. The degree of vacuum, temperature, time, etc. vary depending on the solvent used. When the solvent is NMP, for example, drying is performed while exhausting at 80 to 120 ° C. for 1 to 10 hours. However, in this state, the organic acid and the trace amount of the solvent remaining in the resin matrix are not chemically bonded to the resin. For example, if left to stand, the trace amount of the organic acid or the solvent is removed from the resin. Leaching.

そこで工程(4)において、工程(3)で得た乾燥した状態のフィルム状あるいはシート状の膜に例えば数百〜数千電子ボルトのエネルギーを有する電子線を照射することにより、前記スルホン酸基を有する有機酸が均一に前記樹脂中に分散して前記樹脂と前記スルホン酸基以外のサイトで化学的に結合した状態で膜状に形成された本発明のプロトン伝導性高分子組成物を得ることができる。得られた本発明のプロトン伝導性高分子組成物は、そのまま放置しても、あるいは水中に浸漬しても前記有機酸などが前記樹脂から浸出することがなく、安定で耐久性に優れ、前記有機酸と前記樹脂の種類や組み合わせなどにより異なるが、最高作動温度約80〜120℃程度と高くすることができる。   Therefore, in the step (4), the sulfonic acid group is irradiated by irradiating an electron beam having an energy of, for example, several hundred to several thousand electron volts to the dried film-like or sheet-like membrane obtained in the step (3). The proton-conducting polymer composition of the present invention is obtained in which the organic acid having a hydrogen atom is uniformly dispersed in the resin and formed into a film in a state where the organic acid is chemically bonded to sites other than the resin and the sulfonic acid group. be able to. The obtained proton-conductive polymer composition of the present invention is stable and excellent in durability without being leached out of the resin even when left as it is or immersed in water. The maximum operating temperature can be as high as about 80 to 120 ° C., depending on the type and combination of the organic acid and the resin.

本発明で使用する樹脂は熱可塑性樹脂でも熱硬化性樹脂でもあるいはこれらの2種以上の混合物でもよく、例えば、耐熱性や機械的特性が高く、化学的安定性の高いエンジニアリングプラスチック、エンジニアリングプラスチックなどから選択されるものが好ましく使用できる。
具体的にはポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、フッ素系樹脂、ポリエーテルニトリル(PEN)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド(PI)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(mPPE)、ポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、シンジオタクチック・ポリスチレン(SPS)なを挙げることができる。
The resin used in the present invention may be a thermoplastic resin, a thermosetting resin, or a mixture of two or more thereof. For example, engineering plastics, engineering plastics, etc. that have high heat resistance, mechanical properties, and high chemical stability. Those selected from can be preferably used.
Specifically, polyetheretherketone (PEEK), liquid crystal polymer (LCP), fluororesin, polyethernitrile (PEN), polysulfone (PSF), polyethersulfone (PES), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), thermoplastic polyimide (PI), polycarbonate (PC), modified polyphenylene ether (mPPE), polyamide (PA), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate ( PET) and syndiotactic polystyrene (SPS).

本発明で使用するスルホン酸基を有する有機酸の具体例としては、例えば、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、2−ナフタレンスルホン酸、1,5−ナフタレンジスルホン酸、2,6−ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸、1,3,5,7−ナフタレンテトラスルホン酸あるいはこれらの2つ以上の混合物を挙げることができる。   Specific examples of the organic acid having a sulfonic acid group used in the present invention include, for example, benzenesulfonic acid, dodecylbenzenesulfonic acid, 2-naphthalenesulfonic acid, 1,5-naphthalenedisulfonic acid, and 2,6-naphthalenedisulfonic acid. 1,3,6-naphthalene trisulfonic acid, 1,3,5,7-naphthalene tetrasulfonic acid, or a mixture of two or more thereof.

本発明で使用するスルホン酸基を有する有機酸の配合量はその種類によるが、前記樹脂に対して10〜90質量%である。10質量%未満ではプロトン伝導率が劣る恐れがあり、90質量%を超えると耐熱性や機械的特性などが損なわれる恐れがある。   Although the compounding quantity of the organic acid which has a sulfonic acid group used by this invention is based on the kind, it is 10-90 mass% with respect to the said resin. If it is less than 10% by mass, the proton conductivity may be inferior, and if it exceeds 90% by mass, the heat resistance and mechanical properties may be impaired.

本発明で使用する溶媒は本発明で使用する前記有機酸および前記樹脂をよく溶解できる溶媒であればよく、特に限定されるものではない。具体例としては、例えば、NMPがあるが、NMPは前記有機酸と、前記樹脂をいずれも溶解し易いので本発明において好ましく使用できる。   The solvent used in the present invention is not particularly limited as long as it is a solvent that can well dissolve the organic acid and the resin used in the present invention. Specific examples include NMP. NMP can be preferably used in the present invention because it easily dissolves both the organic acid and the resin.

本発明で使用する基板は本発明で使用する液状高分子組成物を塗布するなどして適用して膜状に形成でき、乾燥や電子線照射などに耐えられるものであれば有機物でも無機物でも、天然品でも合成品でも、あるいはこれらの2つ以上の混合物でもよく、形状や形態、大きさ、表面状態など特に限定されるものではない。具体例としては、例えば、SUS316製の板(表面仕上げは鏡面仕上げでも、粗仕上げでもよい)を挙げることができる。   The substrate used in the present invention can be formed into a film by applying the liquid polymer composition used in the present invention or the like, and can be organic or inorganic as long as it can withstand drying and electron beam irradiation. It may be a natural product, a synthetic product, or a mixture of two or more thereof, and is not particularly limited in shape, form, size, surface condition, and the like. As a specific example, for example, a plate made of SUS316 (the surface finish may be a mirror finish or a rough finish) may be mentioned.

次に実施例により本発明を詳しく説明するが、本発明の主旨を逸脱しない限りこれらの実施例に限定されるものではない。
(実施例1)
PES(ポリエーテルスルホン、商品名:スミカエクセル、住友化学(株)製)をNMPに常温で5質量%となるように溶解した溶液を調製する。一方、ナフタレンスルホン酸をNMPに常温で5質量%となるように溶解した溶液を調製する。そして、両溶液を等量とって混合し攪拌することにより液状高分子組成物を作成した(液状高分子組成物中に溶解したPESとナフタレンスルホン酸の質量比は1:1である)。
EXAMPLES Next, although an Example demonstrates this invention in detail, unless it deviates from the main point of this invention, it is not limited to these Examples.
Example 1
A solution in which PES (polyether sulfone, trade name: Sumika Excel, manufactured by Sumitomo Chemical Co., Ltd.) is dissolved in NMP so as to be 5% by mass at normal temperature is prepared. On the other hand, a solution in which naphthalenesulfonic acid is dissolved in NMP so as to be 5% by mass at room temperature is prepared. Then, an equal amount of both solutions were mixed and stirred to prepare a liquid polymer composition (the mass ratio of PES dissolved in the liquid polymer composition to naphthalenesulfonic acid is 1: 1).

このようにして作成した液状高分子組成物の粘度は、NMPの粘度とあまり変わらなかったため、バーコーターなどによる塗布には適さない。そこで、真空乾燥機中で40℃、10時間乾燥させ、NMPをある程度除去することにより5000mPa・s前後の粘度を有する液状高分子組成物とした。   The viscosity of the liquid polymer composition thus prepared was not very different from that of NMP, and thus is not suitable for application by a bar coater or the like. Therefore, it was dried in a vacuum dryer at 40 ° C. for 10 hours, and NMP was removed to some extent to obtain a liquid polymer composition having a viscosity of about 5000 mPa · s.

この液状高分子組成物を親水性の基板であるアルミ箔表面にバーコーターにて塗布した。そしてオーブン中150℃、10時間乾燥して、厚さ約50μmのフィルムを得た。   This liquid polymer composition was applied to the surface of an aluminum foil, which is a hydrophilic substrate, with a bar coater. Then, it was dried in an oven at 150 ° C. for 10 hours to obtain a film having a thickness of about 50 μm.

このフィルムに常温、空気中で電子線照射装置(岩崎電気株式会社製、型式LB4008)にて電子線を50Mrad照射した。得られたフィルムは、130℃程度に加熱してもナフタレンスルホン酸などがPES樹脂から浸出することがなく、水中に浸漬してもナフタレンスルホン酸などがPES樹脂から浸出することがなかった。   This film was irradiated with an electron beam at 50 Mrad in an electron beam irradiation device (Iwasaki Electric Co., Ltd., model LB4008) in normal temperature and air. When the obtained film was heated to about 130 ° C., naphthalene sulfonic acid or the like did not leach out of the PES resin, and even when immersed in water, naphthalene sulfonic acid or the like did not leach out of the PES resin.

(プロトン伝導率の測定)
図1は前記フィルムの両面に電極触媒層を形成した膜電極結合体の断面説明図である。
電子線を50Mrad照射して得られた前記フィルム1をプロトン伝導性固体高分子電解質膜としその両面に常法により電極触媒層2、3を接合・積層して膜電極結合体12が形成されている。
(Measurement of proton conductivity)
FIG. 1 is a cross-sectional explanatory view of a membrane electrode assembly in which electrode catalyst layers are formed on both surfaces of the film.
The film 1 obtained by irradiating the electron beam with 50 Mrad is used as a proton conductive solid polymer electrolyte membrane, and electrode catalyst layers 2 and 3 are joined and laminated on both sides by a conventional method to form a membrane electrode assembly 12. Yes.

図2は、この膜電極結合体12を装着した固体高分子型燃料電池の単セルの構成を示す分解断面図である。膜電極結合体12の電極触媒層2および電極触媒層3と対向して、それぞれカーボンペーパーにカーボンブラックとポリテトラフルオロエチレン(PTFE)の混合物を塗布した構造を持つ空気極側ガス拡散層4および燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6および燃料極7が構成される。そして、単セルに面して反応ガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつガス不透過性の材料よりなる一組のセパレータ10により挟持して単セル11が構成される。
そして、測定条件40℃、相対湿度100%で、燃料極7に水素ガスを100sccm(Standard Cubic Centimeter、25℃、1気圧におけるガス流量、cm3 /sec)、空気極6に空気を300sccm流して、電気化学反応を生じさせることで直流電力を発生させた。そして交流インピーダンス法にて前記フィルム1の抵抗値を測定した。その結果、前記フィルム1の抵抗値は50mΩ、膜厚は50μm、電極面積は5cm2 であったので、プロトン伝導率は2×10-2S/cmであった。
FIG. 2 is an exploded cross-sectional view showing the configuration of a single cell of a polymer electrolyte fuel cell equipped with the membrane electrode assembly 12. The air electrode side gas diffusion layer 4 having a structure in which a mixture of carbon black and polytetrafluoroethylene (PTFE) is applied to carbon paper, facing the electrode catalyst layer 2 and the electrode catalyst layer 3 of the membrane electrode assembly 12, and The fuel electrode side gas diffusion layer 5 is disposed. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. A set of conductive and gas-impermeable materials having a gas flow path 8 for reaction gas flow facing a single cell and a cooling water flow path 9 for cooling water flow on the opposing main surface. A single cell 11 is formed by being sandwiched by the separator 10.
Then, under the measurement conditions of 40 ° C. and relative humidity of 100%, hydrogen gas is supplied to the fuel electrode 7 at 100 sccm (Standard Cubic Centimeter, 25 ° C., gas flow rate at 1 atm, cm 3 / sec) and air is supplied to the air electrode 6 at 300 sccm. DC power was generated by causing an electrochemical reaction. And the resistance value of the said film 1 was measured with the alternating current impedance method. As a result, the resistance value of the film 1 was 50 mΩ, the film thickness was 50 μm, and the electrode area was 5 cm 2 , so the proton conductivity was 2 × 10 −2 S / cm.

(実施例2)
PESの代わりにラダー構造を有する有機・無機ハイブリッドポリマー(Glass
Resin 950F、米国、Techne Glas社製)をNMPに常温で5質量%となるように溶解した溶液を調製する。一方、ナフタレンスルホン酸をNMPに常温で5質量%となるように溶解した溶液を調製する。そして両溶液を等量とって混合し攪拌することにより液状高分子組成物を作成した(液状高分子組成物中に溶解した有機・無機ハイブリッドポリマーとナフタレンスルホン酸の質量比は1:1である)。
(Example 2)
Organic-inorganic hybrid polymer with ladder structure instead of PES (Glass
Resin 950F (manufactured by Techne Glass, Inc., USA) is dissolved in NMP so as to be 5% by mass at room temperature. On the other hand, a solution in which naphthalenesulfonic acid is dissolved in NMP so as to be 5% by mass at room temperature is prepared. Then, an equal amount of both solutions were mixed and stirred to prepare a liquid polymer composition (the mass ratio of the organic / inorganic hybrid polymer dissolved in the liquid polymer composition to naphthalenesulfonic acid is 1: 1). ).

このようにして作成した液状高分子組成物をPTFE製容器に入れて空気中で200℃、5時間乾燥させることにより、PTFE製容器の底部に厚さ0.5mm程度のシートを得た。   The liquid polymer composition thus prepared was placed in a PTFE container and dried in air at 200 ° C. for 5 hours to obtain a sheet having a thickness of about 0.5 mm at the bottom of the PTFE container.

このシートに常温、空気中で電子線照射装置(岩崎電気株式会社製、型式LB4008)にて電子線を50Mrad照射した。得られたシートは、130℃程度に加熱してもナフタレンスルホン酸などが有機・無機ハイブリッドポリマー樹脂から浸出することがなく、水中に浸漬してもナフタレンスルホン酸などが有機・無機ハイブリッドポリマー樹脂から浸出することがなかった。
電子線を50Mrad照射して得られた前記シートに水分を含ませて抵抗測定装置を用いて抵抗を測定したところ1MΩ前後の初期抵抗値を示し、徐々に抵抗値が上昇していき、プロトン伝導性を有することが認められた。
This sheet was irradiated with an electron beam by 50 Mrad in an electron beam irradiation device (Iwasaki Electric Co., Ltd., model LB4008) in normal temperature and air. The obtained sheet does not leach naphthalene sulfonic acid from the organic / inorganic hybrid polymer resin even when heated to about 130 ° C., and naphthalene sulfonic acid etc. from the organic / inorganic hybrid polymer resin even when immersed in water. There was no leaching.
The sheet obtained by irradiating the electron beam with 50 Mrad was moistened with water and measured for resistance using a resistance measuring device. As a result, an initial resistance value of about 1 MΩ was shown, and the resistance value gradually increased, and proton conduction It was found to have sex.

本発明のプロトン伝導性高分子組成物は、従来のパーフルオロスルホン酸樹脂系材料からなるイオン交換樹脂膜と同等以上のプロトン伝導率を示すとともに、最高作動温度が約80〜120℃程度と高く、安価で耐久性に優れ信頼性が高いなど高性能であり、本発明の製造方法により容易に製造できるという、顕著な効果を奏するので、産業上の利用価値は甚だ大きい。   The proton conductive polymer composition of the present invention exhibits a proton conductivity equivalent to or higher than that of a conventional ion exchange resin membrane made of a perfluorosulfonic acid resin material, and has a high maximum operating temperature of about 80 to 120 ° C. It has a high performance such as low cost, excellent durability and high reliability, and has a remarkable effect that it can be easily manufactured by the manufacturing method of the present invention.

本発明のプロトン伝導性高分子組成物のフィルムの両面に電極触媒層を形成した膜電極結合体の断面説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional explanatory view of a membrane electrode assembly in which electrode catalyst layers are formed on both surfaces of a proton conductive polymer composition film of the present invention. 図1に示した膜電極結合体を装着した固体高分子型燃料電池の単セルの構成を示す分解断面図である。FIG. 2 is an exploded cross-sectional view showing the configuration of a single cell of a polymer electrolyte fuel cell equipped with the membrane electrode assembly shown in FIG.

1 本発明のプロトン伝導性高分子組成物のフィルム
2、3 電極触媒層
4 空気極側ガス拡散層
5 燃料極側ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレータ
11 単セル
12 膜電極結合体
DESCRIPTION OF SYMBOLS 1 Film 2 of proton-conductive polymer composition of this invention, 3 Electrode catalyst layer 4 Air electrode side gas diffusion layer 5 Fuel electrode side gas diffusion layer 6 Air electrode 7 Fuel electrode 8 Gas flow path 9 Cooling water flow path 10 Separator 11 Single cell 12 Membrane electrode assembly

Claims (4)

分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂とを含み、かつ有機アミンを含まないプロトン伝導性高分子組成物であって、
前記スルホン酸基を有する有機酸が均一に前記樹脂中に分散して前記樹脂と化学的に結合した状態で膜状に形成されていることを特徴とするプロトン伝導性高分子組成物。
An organic acid having at least one sulfonic acid group selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, which does not contain a polymerizable functional group in the molecule ; look contains a resin having no functional group and chelate groups react, and a proton-conducting polymer composition free of organic amines,
A proton-conducting polymer composition, wherein the organic acid having a sulfonic acid group is uniformly dispersed in the resin and formed into a film in a state of being chemically bonded to the resin.
前記樹脂がポリエーテルスルホン(PES)であることを特徴とする請求項1記載のプロトン伝導性高分子組成物。   The proton conductive polymer composition according to claim 1, wherein the resin is polyethersulfone (PES). 下記の工程(1)〜(4)からなることを特徴とする請求項1あるいは請求項2記載のプロトン伝導性高分子組成物の製造方法。
(1)分子内に重合性官能基を含まない、ベンゼンスルホン酸、ナフタレンスルホン酸、あるいは複数のスルホン酸基を有する有機酸から選ばれる少なくとも1つであるスルホン酸基を有する有機酸と、前記スルホン酸基と反応する官能基およびキレート性官能基を有していない樹脂を共通する溶媒にそれぞれ溶解した後、両者を混合して液状高分子組成物を形成する。
(2)前記高分子液状組成物中の前記溶媒を揮発させて粘度調整する。
(3)粘度調整した前記高分子液状組成物を基板上に適用して膜状に形成し、乾燥する。(4)乾燥後、電子線を照射して、前記樹脂と前記有機酸を化学的に結合させる。
3. The method for producing a proton conductive polymer composition according to claim 1 or 2, comprising the following steps (1) to (4).
(1) an organic acid having at least one sulfonic acid group selected from benzenesulfonic acid, naphthalenesulfonic acid, or an organic acid having a plurality of sulfonic acid groups, which does not contain a polymerizable functional group in the molecule ; A resin that does not have a functional group that reacts with a sulfonic acid group and a chelating functional group is dissolved in a common solvent, and then both are mixed to form a liquid polymer composition.
(2) The viscosity of the polymer liquid composition is adjusted by volatilizing the solvent.
(3) The viscosity of the polymer liquid composition is applied on a substrate to form a film and dried. (4) After drying, the resin is irradiated with an electron beam to chemically bond the resin and the organic acid.
前記溶媒がN−メチル−1−ピロリドン(NMP)であることを特徴とする請求項3記載の製造方法。   The process according to claim 3, wherein the solvent is N-methyl-1-pyrrolidone (NMP).
JP2004323742A 2004-11-08 2004-11-08 Proton conductive polymer composition and method for producing the same Expired - Fee Related JP4687077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323742A JP4687077B2 (en) 2004-11-08 2004-11-08 Proton conductive polymer composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323742A JP4687077B2 (en) 2004-11-08 2004-11-08 Proton conductive polymer composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006131800A JP2006131800A (en) 2006-05-25
JP4687077B2 true JP4687077B2 (en) 2011-05-25

Family

ID=36725634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323742A Expired - Fee Related JP4687077B2 (en) 2004-11-08 2004-11-08 Proton conductive polymer composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4687077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257669A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306280A (en) * 1992-06-30 1994-11-01 Nitto Denko Corp Organic polymer solution composition and production of conductive organic polymer using the same
JP2001223015A (en) * 1999-11-29 2001-08-17 Toyota Central Res & Dev Lab Inc Highly durable solid polyelectrolyte and electrode- electrolyte joint body using it as well as electrochemical device using the electrode-electrolyte joint body
WO2003074595A1 (en) * 2002-03-06 2003-09-12 Pemeas Gmbh Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
JP2006054156A (en) * 2004-08-11 2006-02-23 Keiichi Uno Proton conductive filmy material and polymer electrolyte fuel cell using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306280A (en) * 1992-06-30 1994-11-01 Nitto Denko Corp Organic polymer solution composition and production of conductive organic polymer using the same
JP2001223015A (en) * 1999-11-29 2001-08-17 Toyota Central Res & Dev Lab Inc Highly durable solid polyelectrolyte and electrode- electrolyte joint body using it as well as electrochemical device using the electrode-electrolyte joint body
WO2003074595A1 (en) * 2002-03-06 2003-09-12 Pemeas Gmbh Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
JP2006054156A (en) * 2004-08-11 2006-02-23 Keiichi Uno Proton conductive filmy material and polymer electrolyte fuel cell using it

Also Published As

Publication number Publication date
JP2006131800A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
CN104247118B (en) Polymer dielectric film and manufacture method thereof and comprise the membrane electrode assembly of this polymer dielectric film
Lue et al. Permeant transport properties and cell performance of potassium hydroxide doped poly (vinyl alcohol)/fumed silica nanocomposites
WO2004051776A1 (en) Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JPWO2004093228A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
Miyake et al. Reinforced polyphenylene ionomer membranes exhibiting high fuel cell performance and mechanical durability
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
EP2276095B1 (en) Electrolyte film for a solid polymer type fuel cell and method for producing same
JP2002298867A (en) Solid polymer fuel cell
Mochizuki et al. Double-layer ionomer membrane for improving fuel cell performance
JP2009172475A (en) Gas decomposing element
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP4687077B2 (en) Proton conductive polymer composition and method for producing the same
KR20090132214A (en) Membrane and electrode assembly for fuel cell, manufacturing method, and fuel cell using the same
JP2003178770A (en) Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2002298855A (en) Solid macromolecule type fuel cell
JP2013020753A (en) Method for correcting catalyst layer sheet
JP4852828B2 (en) Electrolyte membrane / electrode structure
JP2006299075A (en) Proton conductive polymer composition and its producing method
JP2010027271A (en) Fuel cell catalyst layer forming method
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
JP4632717B2 (en) Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
JP2008166117A (en) Manufacturing method of membrane-electrode assembly for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees