JP2008166117A - Manufacturing method of membrane-electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane-electrode assembly for fuel cell Download PDF

Info

Publication number
JP2008166117A
JP2008166117A JP2006354375A JP2006354375A JP2008166117A JP 2008166117 A JP2008166117 A JP 2008166117A JP 2006354375 A JP2006354375 A JP 2006354375A JP 2006354375 A JP2006354375 A JP 2006354375A JP 2008166117 A JP2008166117 A JP 2008166117A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
catalyst
membrane
catalyst layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354375A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Kawahara
光泰 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006354375A priority Critical patent/JP2008166117A/en
Publication of JP2008166117A publication Critical patent/JP2008166117A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a membrane-electrode assembly for a fuel cell preventing swelling in the surface direction of an electrolyte membrane in direct applying of catalyst ink to the electrolyte membrane. <P>SOLUTION: The manufacturing method of the membrane-electrode assembly for the fuel cell having a catalyst layer on the surface of an electrolyte membrane contains a process arranging the electrolyte membrane on a substrate which has a surface hardness of pencil hardness 5B or less, and applying catalyst ink containing at least a catalyst component and a solvent to the electrolyte membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用膜・電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane-electrode assembly for a fuel cell.

燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した基本構造を有する単セルを複数積層して構成されており、中でも、電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle and thus exhibit high energy conversion efficiency. A fuel cell is usually configured by laminating a plurality of single cells having a basic structure in which an electrolyte membrane is sandwiched between a pair of electrodes. Among them, a solid polymer electrolyte fuel using a solid polymer electrolyte membrane as an electrolyte membrane Batteries are particularly attracting attention as portable and mobile power sources because of their advantages such as being easy to downsize and operating at low temperatures.

固体高分子電解質型燃料電池において、電解質膜の両面に設けられる電極は、それぞれの電極で進行する電極反応に対して触媒作用を有する触媒成分を含み、通常、固体高分子電解質膜側から順に、触媒成分を含む触媒層と当該触媒層に反応ガスを拡散させるためのガス拡散層とが積層した多層構造を有する。   In the solid polymer electrolyte fuel cell, the electrodes provided on both surfaces of the electrolyte membrane include a catalyst component that has a catalytic action for the electrode reaction that proceeds in each electrode, and usually in order from the solid polymer electrolyte membrane side, It has a multilayer structure in which a catalyst layer containing a catalyst component and a gas diffusion layer for diffusing a reaction gas in the catalyst layer are laminated.

このような多層構造を有する電極を電解質膜の両面に設ける方法としては、例えば、以下のような方法(1)〜(3)が知られている。
(1)まず、ポリテトラフルオロエチレン等の転写基材上に、触媒成分を含有する触媒インクを塗布、乾燥させて作製した触媒層シートを、触媒層が形成された面が電解質膜側となるように電解質膜と熱圧着し、触媒層シートから基材を剥がして触媒層を備える電解質膜を作製し、続いて、触媒層上にガス拡散層を接合する方法、
(2)表面に触媒インクを塗布、乾燥させることによって触媒層が形成されたガス拡散層を、触媒層が電解質膜側となるように電解質膜と熱圧着する方法、
(3)電解質膜上に触媒インクを直接塗布、乾燥させて触媒層を形成し、続いて触媒層上にガス拡散層を接合する方法。
For example, the following methods (1) to (3) are known as a method of providing electrodes having such a multilayer structure on both surfaces of the electrolyte membrane.
(1) First, a catalyst layer sheet prepared by applying and drying a catalyst ink containing a catalyst component on a transfer substrate such as polytetrafluoroethylene, and the surface on which the catalyst layer is formed becomes the electrolyte membrane side. So as to thermocompression-bond with the electrolyte membrane, peel off the substrate from the catalyst layer sheet to produce an electrolyte membrane comprising the catalyst layer, and subsequently join the gas diffusion layer on the catalyst layer,
(2) A method in which a gas diffusion layer having a catalyst layer formed by applying and drying a catalyst ink on the surface and thermocompression bonding with the electrolyte membrane so that the catalyst layer is on the electrolyte membrane side,
(3) A method in which a catalyst ink is directly applied on an electrolyte membrane and dried to form a catalyst layer, and then a gas diffusion layer is bonded onto the catalyst layer.

電解質膜及び/又は電解質膜に隣接する触媒層に含まれる電解質として、ガラス転移温度が高い材料を用いる場合、上記(1)や(2)のように、熱圧着により電解質膜と触媒層を接合する方法では、電解質膜と触媒層とを充分に接合することができない場合がある。ガラス転移温度が高い電解質を充分に軟化させるほど高温に加熱することで、電解質自身やその他の構成材料の劣化を招くおそれがあるからである。その結果、電解質膜と触媒層間の接触抵抗が大きくなり、燃料電池の発電効率は低下する。
これに対して、電解質膜表面に直接、触媒インクを塗布する(3)の方法は、(1)や(2)の方法と比較して、電解質膜と触媒層間の接合性を確保しやすいため、ガラス転移温度の高い電解質を用いる場合に好適な方法といえる。
When a material having a high glass transition temperature is used as the electrolyte contained in the electrolyte membrane and / or the catalyst layer adjacent to the electrolyte membrane, the electrolyte membrane and the catalyst layer are joined by thermocompression bonding as in (1) and (2) above. In this method, the electrolyte membrane and the catalyst layer may not be sufficiently bonded. This is because heating the electrolyte so as to sufficiently soften the electrolyte having a high glass transition temperature may cause deterioration of the electrolyte itself or other constituent materials. As a result, the contact resistance between the electrolyte membrane and the catalyst layer increases, and the power generation efficiency of the fuel cell decreases.
On the other hand, the method (3) in which the catalyst ink is applied directly to the electrolyte membrane surface is easier to secure the bonding property between the electrolyte membrane and the catalyst layer than the methods (1) and (2). It can be said that this method is suitable when an electrolyte having a high glass transition temperature is used.

しかしながら、(3)の方法により電解質膜表面に触媒層を形成する場合、触媒インク塗布時に、電解質膜が触媒インク中の溶媒を吸収して膨潤するという問題がある。触媒インクの塗布工程に続く乾燥工程により、電解質膜に塗布された触媒インク中の溶媒は蒸発するが、このとき、電解質膜中に染み込んだ触媒インクの溶媒が蒸発することによって、膨潤した電解質膜が乾燥し収縮する。以上のような電解質膜の膨潤と収縮は、電解質膜の面方向及び厚さ方向の両方で生じるが、面方向の収縮によって、電解質膜にシワが発生し、これに伴って電解質膜上に形成された触媒層にもシワや割れが発生することとなる。
このように電解質膜や触媒層にシワ等が発生した状態では、続いて触媒層上に形成されるガス拡散層等その他の層との密着性が悪く、燃料電池の性能低下を招いてしまう。また、触媒層の割れは、触媒層に圧力が加わった際に電解質膜に食い込む等の物理的なダメージを与えることによって、燃料電池の性能を低下させてしまうおそれがある。
However, when the catalyst layer is formed on the surface of the electrolyte membrane by the method (3), there is a problem that the electrolyte membrane swells by absorbing the solvent in the catalyst ink when the catalyst ink is applied. The solvent in the catalyst ink applied to the electrolyte membrane evaporates by the drying step subsequent to the catalyst ink application step. At this time, the solvent of the catalyst ink soaked in the electrolyte membrane evaporates, so that the swelled electrolyte membrane Dry and shrink. The swelling and shrinkage of the electrolyte membrane as described above occurs in both the surface direction and the thickness direction of the electrolyte membrane, but wrinkles are generated in the electrolyte membrane due to the shrinkage in the surface direction and are formed on the electrolyte membrane accordingly. Wrinkles and cracks will also occur in the catalyst layer.
Thus, when wrinkles or the like are generated in the electrolyte membrane or the catalyst layer, the adhesion with other layers such as a gas diffusion layer subsequently formed on the catalyst layer is poor, and the performance of the fuel cell is lowered. In addition, the cracking of the catalyst layer may deteriorate the performance of the fuel cell by causing physical damage such as biting into the electrolyte membrane when pressure is applied to the catalyst layer.

上記のような電解質膜の膨潤・収縮による電解質膜及び電極のシワ等を抑制する方法として、例えば、特許文献1には、一定温度に保持した多孔質板上に真空引きにより固体高分子膜を保持した状態で、高分子材料を含むスラリーを固体高分子膜に塗布して電極層を形成する方法が提案されている。   As a method of suppressing wrinkles of the electrolyte membrane and electrodes due to the swelling / shrinkage of the electrolyte membrane as described above, for example, Patent Document 1 discloses that a solid polymer membrane is formed by evacuation on a porous plate kept at a constant temperature. A method of forming an electrode layer by applying a slurry containing a polymer material to a solid polymer film in a held state has been proposed.

特開2003−100314号公報JP 2003-100314 A

特許文献1に記載の方法は、一定温度に保持した多孔質板上に真空引きにより電解質膜を固定した状態で、当該電解質膜に触媒インクを塗布することにより、触媒インクの蒸発を促進し、電解質膜の膨潤を抑制するものである。しかしながら、電解質膜に塗布された触媒インクは、塗布と同時に電解質膜内へと拡散してしまうので、特許文献1に記載の方法では電解質膜の膨潤を充分に抑制することが難しい。その結果、電解質膜や電極のシワ、割れ等が発生してしまうことになる。尚、特許文献1の実施例には、電解質膜がナイロンメッシュを介して多孔質板上に保持される旨の記載があるが、ナイロンメッシュの役割については、何の記載、示唆もされていない。   The method described in Patent Document 1 promotes evaporation of the catalyst ink by applying the catalyst ink to the electrolyte membrane in a state where the electrolyte membrane is fixed on the porous plate maintained at a constant temperature by evacuation. It suppresses swelling of the electrolyte membrane. However, since the catalyst ink applied to the electrolyte membrane diffuses into the electrolyte membrane simultaneously with the application, it is difficult to sufficiently suppress the swelling of the electrolyte membrane by the method described in Patent Document 1. As a result, wrinkles, cracks, etc. of the electrolyte membrane and electrode are generated. In addition, although the Example of patent document 1 has the description that an electrolyte membrane is hold | maintained on a porous board via a nylon mesh, there is no description or suggestion about the role of a nylon mesh. .

本発明は、上記実情を鑑みて成し遂げられたものであり、電解質膜に直接触媒インクを塗布する際の電解質膜の面方向における膨潤を防止することが可能な燃料電池用膜・電極接合体の製造方法を提供することを目的とする。   The present invention has been accomplished in view of the above circumstances, and is a fuel cell membrane / electrode assembly capable of preventing swelling in the surface direction of an electrolyte membrane when a catalyst ink is directly applied to the electrolyte membrane. An object is to provide a manufacturing method.

本発明の燃料電池用膜・電極接合体の製造方法は、表面硬度が鉛筆硬度5B以下である基材上に、前記電解質膜を配置した状態で、少なくとも触媒成分及び溶媒を含む触媒インクを、該電解質膜に塗布する工程を含むことを特徴とするものである。   The method for producing a membrane / electrode assembly for a fuel cell according to the present invention comprises a catalyst ink containing at least a catalyst component and a solvent in a state where the electrolyte membrane is disposed on a substrate having a surface hardness of 5B or less. The method includes a step of applying to the electrolyte membrane.

上記のような表面硬度を有する基材上に電解質膜を配置すると、電解質膜は該基材上に固定され、面方向の変位が制限された状態となる。このように基材に固定された状態の電解質膜に触媒インクを塗布することによって、触媒インクが電解質膜内に吸収されても電解質膜がその面方向に膨潤するのを抑制することができる。
従って、本発明によれば、膨潤しやすい電解質膜を用いる場合であっても、電解質膜や触媒層にしわ等が発生しにくく、均一な触媒層を備えた膜・電極接合体を得ることができる。しかも、本発明の製造方法は、特に温度制御装置等の設備やその条件設定等を必要とせず、非常に簡易的である。
When the electrolyte membrane is disposed on the base material having the surface hardness as described above, the electrolyte membrane is fixed on the base material, and the displacement in the plane direction is limited. By applying the catalyst ink to the electrolyte membrane fixed to the substrate in this way, the electrolyte membrane can be prevented from swelling in the surface direction even if the catalyst ink is absorbed in the electrolyte membrane.
Therefore, according to the present invention, even when an electrolyte membrane that easily swells is used, wrinkles and the like are unlikely to occur in the electrolyte membrane and the catalyst layer, and a membrane / electrode assembly having a uniform catalyst layer can be obtained. it can. In addition, the manufacturing method of the present invention does not require any equipment such as a temperature control device or its condition setting, and is very simple.

前記電解質膜と前記基材との密着性の観点から、前記基材は、弾性体であることが好ましい。   From the viewpoint of adhesion between the electrolyte membrane and the base material, the base material is preferably an elastic body.

本発明の製造方法によれば、電解質膜に触媒インクを直接塗布した際に、電解質膜が触媒インク中の溶媒成分を吸収しても、電解質膜の面方向への膨潤は抑制されている。ゆえに、電解質膜内に吸収された溶媒成分が揮発して電解質膜が収縮した際にも電解質膜にシワがよりにくく、当該電解質膜表面に形成された触媒層のシワや割れ等も発生しにくい。従って、本発明の製造方法によれば、触媒インクを電解質膜に直接塗布することによって、電解質膜と触媒層との接合性を保持しつつ、シワや割れ等の発生が抑制された均一な触媒層を形成することができる。その結果、発電性能及び耐久性に優れた燃料電池を提供することが可能となる。   According to the production method of the present invention, when the catalyst ink is directly applied to the electrolyte membrane, even if the electrolyte membrane absorbs the solvent component in the catalyst ink, swelling in the surface direction of the electrolyte membrane is suppressed. Therefore, even when the solvent component absorbed in the electrolyte membrane volatilizes and the electrolyte membrane contracts, the electrolyte membrane is less likely to wrinkle, and the catalyst layer formed on the electrolyte membrane surface is less likely to be wrinkled or cracked. . Therefore, according to the production method of the present invention, by applying the catalyst ink directly to the electrolyte membrane, the uniform catalyst in which the occurrence of wrinkles and cracks is suppressed while maintaining the bondability between the electrolyte membrane and the catalyst layer. A layer can be formed. As a result, it is possible to provide a fuel cell excellent in power generation performance and durability.

本発明の燃料電池用膜・電極接合体の製造方法は、電解質膜の表面に触媒層を備えた燃料電池用膜・電極接合体の製造方法であって、表面硬度が鉛筆硬度5B以下である基材上に、前記電解質膜を配置した状態で、少なくとも触媒成分と溶媒とを含む触媒インクを該電解質膜に塗布する工程を含むことを特徴とするものである。   The fuel cell membrane / electrode assembly production method of the present invention is a method for producing a fuel cell membrane / electrode assembly comprising a catalyst layer on the surface of an electrolyte membrane, and the surface hardness is 5B or less of pencil hardness. The method includes a step of applying a catalyst ink containing at least a catalyst component and a solvent to the electrolyte membrane in a state where the electrolyte membrane is disposed on a base material.

本発明の製造方法は、電解質膜1の表面に触媒インクを直接塗布する際に、電解質膜1を、表面硬度が低くて軟らかい基材2の上に配することを特徴とする(図1参照)。このような基材上に配置された電解質膜は、該基材との間の密着性により、その面方向における変位が制限され、該基材上に固定された状態となる。   The production method of the present invention is characterized in that when the catalyst ink is directly applied to the surface of the electrolyte membrane 1, the electrolyte membrane 1 is disposed on a soft substrate 2 having a low surface hardness (see FIG. 1). ). The electrolyte membrane disposed on such a base material is in a state of being fixed on the base material due to the adhesiveness between the base material and the displacement in the surface direction is limited.

本発明によれば、このような基材上に電解質膜を配した状態で、該電解質膜に触媒インクを塗布することによって、触媒インク中の溶媒が電解質膜内に染み込んでも、電解質膜が基材上に強く固定されているため、電解質膜の面方向における膨潤を抑制することができる。従って、乾燥工程において触媒インク中の溶媒が電解質膜から除去される際に、電解質膜の面方向における収縮も少ない。   According to the present invention, in a state where the electrolyte membrane is arranged on such a base material, the catalyst membrane is applied to the electrolyte membrane, so that even if the solvent in the catalyst ink soaks into the electrolyte membrane, the electrolyte membrane is based on the electrolyte membrane. Since it is firmly fixed on the material, swelling in the surface direction of the electrolyte membrane can be suppressed. Therefore, when the solvent in the catalyst ink is removed from the electrolyte membrane in the drying step, there is little shrinkage in the surface direction of the electrolyte membrane.

以上のように、本発明によれば、電解質膜や触媒層のシワ、割れ等の大きな原因となる、触媒インク塗布時の電解質膜の面方向における膨潤を抑制することができる。すなわち、本発明の製造方法によれば、触媒インクを電解質膜に塗布することにより電解質膜−触媒層間の接合性を確保しつつ、均一な触媒層を形成することができる。従って、電解質膜及び触媒層のシワや割れによる燃料電池の発電性能の低下を防ぐことが可能である。   As described above, according to the present invention, it is possible to suppress swelling in the surface direction of the electrolyte membrane during application of the catalyst ink, which is a major cause of wrinkles and cracks in the electrolyte membrane and the catalyst layer. That is, according to the production method of the present invention, a uniform catalyst layer can be formed while ensuring the bonding property between the electrolyte membrane and the catalyst layer by applying the catalyst ink to the electrolyte membrane. Therefore, it is possible to prevent a decrease in power generation performance of the fuel cell due to wrinkles or cracks in the electrolyte membrane and the catalyst layer.

また、本発明によれば、従来その膨潤性の高さゆえに、触媒インクを直接塗布することが困難だったような膨潤しやすい電解質膜にも、触媒インクの直接塗布による触媒層の形成が可能となる。
しかも、本発明の製造方法は、電解質膜の温度を制御する装置や電解質膜を真空引きするような装置等を特に備えなくても、電解質膜の面方方向における膨潤を充分に防止することができ、且つ簡易的であることから、コストの削減や製造工程の簡易化が可能である。
In addition, according to the present invention, it is possible to form a catalyst layer by directly applying a catalyst ink even on an electrolyte membrane that swells easily because it has been difficult to apply the catalyst ink directly because of its high swelling property. It becomes.
In addition, the manufacturing method of the present invention can sufficiently prevent swelling in the lateral direction of the electrolyte membrane without particularly providing a device for controlling the temperature of the electrolyte membrane or a device for evacuating the electrolyte membrane. Since it is simple and simple, the cost can be reduced and the manufacturing process can be simplified.

本発明において用いられる基材は、表面硬度が鉛筆硬度5B以下であり、該基材上に配置された電解質膜の面方向における膨潤を抑制することができるものである。
ここで、表面硬度が鉛筆硬度5B以下であるとは、JIS K5600−5−4の引っかき硬度(鉛筆法)に準じて鉛筆硬度を測定した場合に、5B又は5Bより軟らかい鉛筆によって基材表面に傷が付くことをいう。鉛筆硬度は、硬度側から順に、9H〜H、F、H、HB、B〜6Bの17段階で評価される。
The base material used in the present invention has a surface hardness of 5B or less, and can suppress swelling in the surface direction of the electrolyte membrane disposed on the base material.
Here, the surface hardness of 5B or less means that when the pencil hardness is measured according to the scratch hardness (pencil method) of JIS K5600-5-4, the surface of the substrate is softened with a pencil softer than 5B or 5B. It means being scratched. The pencil hardness is evaluated in 17 stages of 9H to H, F, H, HB, and B to 6B in order from the hardness side.

基材は、上記したような表面硬度を有すると共に、溶媒の吸収によりその面方向において電解質膜よりも膨潤することがないことが好ましい。基材と電解質膜間の密着性により、電解質膜の面方向における膨潤が基材上で相対的に抑制されていても、基材が面方向へ伸縮することによって、電解質膜も共に伸縮してしまうからである。   The base material preferably has the surface hardness as described above and does not swell more than the electrolyte membrane in the surface direction due to absorption of the solvent. Even if the swelling in the surface direction of the electrolyte membrane is relatively suppressed on the base material due to the adhesion between the base material and the electrolyte membrane, the electrolyte membrane also expands and contracts as the base material expands and contracts in the surface direction. Because it ends up.

基材は、上記のような性質を有していればよく、材質や形状に特に限定はない。また、基材は、電解質膜を配する装置等の表面に設置してもよいし、電解質膜を配する装置等の表面に一体に成形された形態でもよい。   The base material should just have the above properties, and there is no limitation in particular in a material and a shape. Further, the base material may be installed on the surface of an apparatus or the like for disposing an electrolyte membrane, or may be integrally formed on the surface of an apparatus or the like for disposing an electrolyte membrane.

例えば、基材の材質としては、シリコーンラバー等が挙げられる。シリコーンラバーは耐熱性、耐薬品性等に優れることから好適に用いることができる。また、シリコーンラバーは、表面に接着性に関与する官能基を有し、また、ガラス転移温度が低く、電解質膜を固定しやすい特性を有しており、特に高い電解質膜の膨潤抑制効果を示す。また、シリコーンラバー等の弾性体は、電解質膜の形状になじみ、電解質膜と密着して、より確実に面方向における膨潤を抑制することができる。さらに、シリコーンラバーは、吸水性を有していないため、触媒インク塗布時において面方向に膨潤しないという観点からも基材として好適である。   For example, as a material of the base material, silicone rubber or the like can be used. Silicone rubber can be suitably used because of its excellent heat resistance and chemical resistance. Silicone rubber has a functional group related to adhesion on the surface, has a low glass transition temperature, and has a property of easily fixing the electrolyte membrane, and exhibits a particularly high electrolyte membrane swelling suppression effect. . In addition, an elastic body such as silicone rubber can conform to the shape of the electrolyte membrane and be in close contact with the electrolyte membrane, thereby suppressing swelling in the surface direction more reliably. Furthermore, since the silicone rubber does not have water absorption, it is suitable as a base material from the viewpoint that it does not swell in the surface direction when the catalyst ink is applied.

電解質膜からの溶媒の揮発を促進させるために、電解質膜を真空引きしながら触媒インクを塗布してもよい。電解質膜を真空引きすることにより、電解質膜内に染み込んだ触媒インクの溶媒を速やかに除去することができ、電解質膜の膨潤を抑えることができる。
電解質膜を真空引きする際には、基材として通気性を有するものを用いることとなる。通気性を有する基材としては、貫通孔を設けたものやメッシュ状のもの等が挙げられる。基材に設ける貫通孔の密度、大きさ等は、特に限定されず、電解質膜の強度や基材の強度等を考慮して、適宜設定すればよい。
このような貫通孔を設けた基材2を、例えば、多孔質板3等を通して真空引きすれば、その上に配された電解質膜1も真空引きすることができる(図2参照)。
In order to promote the volatilization of the solvent from the electrolyte membrane, the catalyst ink may be applied while evacuating the electrolyte membrane. By evacuating the electrolyte membrane, the solvent of the catalyst ink soaked into the electrolyte membrane can be quickly removed, and swelling of the electrolyte membrane can be suppressed.
When the electrolyte membrane is evacuated, a substrate having air permeability is used. Examples of the base material having air permeability include those provided with through holes and those having a mesh shape. The density, size, and the like of the through holes provided in the substrate are not particularly limited, and may be set as appropriate in consideration of the strength of the electrolyte membrane, the strength of the substrate, and the like.
If the base material 2 provided with such a through hole is evacuated through, for example, the porous plate 3 or the like, the electrolyte membrane 1 disposed thereon can also be evacuated (see FIG. 2).

本発明の製造方法において、使用することができる電解質膜は、特に限定されず、例えば、ナフィオン(商品名、デュポン社製)に代表されるパーフルオロカーボンスルホン酸樹脂等のフッ素系高分子電解質の他、炭化水素系高分子電解質等も用いることができる。 ここで炭化水素系高分子電解質とは、典型的にはフッ素を全く含まないが、部分的にフッ素置換されていてもよく、具体的には、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリパラフェニレン等のエンジニアリングプラスチックやポリプロピレン、ポリスチレン等の汎用プラスチックにスルホン酸基、カルボン酸基、リン酸基、ボロン酸基等のプロトン伝導性基を導入したもの等が挙げられる。   In the production method of the present invention, the electrolyte membrane that can be used is not particularly limited. For example, in addition to a fluorine-based polymer electrolyte such as perfluorocarbon sulfonic acid resin represented by Nafion (trade name, manufactured by DuPont). Hydrocarbon polymer electrolytes and the like can also be used. Here, the hydrocarbon-based polymer electrolyte typically does not contain any fluorine, but may be partially substituted with fluorine. Specifically, polyether ether ketone, polyether ketone, polyether sulfone may be used. , Engineering plastics such as polyphenylene sulfide, polyphenylene ether, polyparaphenylene, etc. and general purpose plastics such as polypropylene and polystyrene introduced proton conductive groups such as sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, boronic acid groups, etc. Can be mentioned.

上述したように、本発明によれば、電解質膜の面方向における膨潤を抑制することができるため、膨潤しやすい電解質膜であっても、直接触媒インクを塗布して、電解質膜−触媒層接合体を形成することができる。例えば、80℃水中に1時間含浸した際の膨潤率(長さ)が20%以上である電解質膜であっても、本発明の製造方法においては膨潤を防ぐことができ、好適に使用することができる。
膨潤しやすい電解質膜としては、例えば、一般的に、イオン交換容量が高い膜等が挙げられる。
As described above, according to the present invention, since the swelling in the surface direction of the electrolyte membrane can be suppressed, even if the electrolyte membrane is easily swelled, the catalyst ink is directly applied and the electrolyte membrane-catalyst layer bonding is performed. The body can be formed. For example, even an electrolyte membrane having a swelling rate (length) of 20% or more when impregnated in water at 80 ° C. for 1 hour can prevent swelling in the production method of the present invention, and should be suitably used. Can do.
Examples of the electrolyte membrane that easily swells include, generally, a membrane having a high ion exchange capacity.

中でも、イオン交換容量の高いスルホン化ポリエーテルエーテルケトン(スルホン化PEEK)、スルホン化ポリエーテルスルホン(スルホン化PES)等の炭化水素系電解質膜のように、ガラス転移温度が高く、触媒層との熱圧着による接合性が低いため、触媒インクを電解質膜に直接塗布する方法によって触媒層を形成することが好ましいが膨潤しやすい電解質膜を用いる場合であっても、本発明によれば、電解質膜の面方向における膨潤を抑制することによって均一な触媒層を形成することができ、且つ、電解質膜と触媒層とを良好に接合することが可能である。   Among them, glass transition temperature is high, such as sulfonated polyetheretherketone (sulfonated PEEK) and sulfonated polyethersulfone (sulfonated PES) having high ion exchange capacity, and the catalyst layer. Since the bondability by thermocompression bonding is low, it is preferable to form the catalyst layer by a method of directly applying the catalyst ink to the electrolyte membrane, but even when using an electrolyte membrane that easily swells, according to the present invention, the electrolyte membrane By suppressing the swelling in the surface direction, a uniform catalyst layer can be formed, and the electrolyte membrane and the catalyst layer can be bonded well.

触媒インクには、少なくとも触媒成分と溶媒とが含まれる。触媒成分としては、燃料極における水素の酸化反応、酸化剤極における酸素の還元反応に対して触媒作用を有するものであれば特に限定されず、例えば、白金、又は、ルテニウム、鉄、ニッケル、マンガン等の金属と白金との合金等が挙げられる。これらの触媒成分は、通常、炭素粒子や炭素繊維のような炭素材料等の導電性材料に担持させて用いられる。触媒インク中に含まれる触媒成分の量は特に限定されないが、通常、20〜70重量%程度とすればよい。   The catalyst ink contains at least a catalyst component and a solvent. The catalyst component is not particularly limited as long as it has a catalytic action for the hydrogen oxidation reaction at the fuel electrode and the oxygen reduction reaction at the oxidant electrode. For example, platinum, ruthenium, iron, nickel, manganese And an alloy of a metal such as platinum and the like. These catalyst components are usually used by being supported on a conductive material such as a carbon material such as carbon particles or carbon fibers. The amount of the catalyst component contained in the catalyst ink is not particularly limited, but is usually about 20 to 70% by weight.

触媒インクには、触媒成分と溶媒に加えて、通常、イオン伝導性材料が含まれる。イオン伝導性材料としては、電解質膜として用いられる材料の中から、適宜選択することができ、上記したようなフッ素系高分子電解質や炭化水素系高分子電解質が挙げられる。触媒インク中に含まれるイオン伝導性材料の量は、特に限定されないが、通常、5〜30重量%程度とすればよい。   The catalyst ink generally contains an ion conductive material in addition to the catalyst component and the solvent. The ion conductive material can be appropriately selected from materials used for the electrolyte membrane, and examples thereof include the fluorine-based polymer electrolyte and the hydrocarbon-based polymer electrolyte as described above. The amount of the ion conductive material contained in the catalyst ink is not particularly limited, but is usually about 5 to 30% by weight.

触媒インクは、触媒成分、イオン伝導性材料、さらに必要に応じて撥水性高分子や結着剤等その他の材料を溶媒に混合・分散させることにより得られる。溶媒としては、エタノール、メタノール、プロパノール、プロピレングリコール等のアルコール類、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等の有機溶媒、これらアルコール類を含む有機溶媒と水の混合物等を用いることができるが、これらに限定されない。   The catalyst ink is obtained by mixing and dispersing a catalyst component, an ion conductive material, and, if necessary, other materials such as a water repellent polymer and a binder in a solvent. Examples of the solvent include alcohols such as ethanol, methanol, propanol, and propylene glycol, organic solvents such as dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP), and mixtures of organic solvents and water containing these alcohols. However, it is not limited to these.

触媒インクを電解質膜上に塗布する方法としては、一般的な方法でよく、例えば、スプレー法、スクリーン印刷法、ダイコート法等が挙げられる。簡便性が高く、また、得られる燃料電池の発電特性が良好となることから、スプレー法が特に好ましい。   As a method of applying the catalyst ink on the electrolyte membrane, a general method may be used, and examples thereof include a spray method, a screen printing method, and a die coating method. The spray method is particularly preferred because of its high convenience and good power generation characteristics of the resulting fuel cell.

基材上に配した電解質膜に、触媒インクを塗布し、続いて乾燥することによって電解質膜上に触媒層が形成される。通常、さらに、もう一方の面にも同様にして触媒層が形成される。このように触媒層が形成された電解質膜は、一対のガス拡散層シートで挟みこむように接合されて、膜・電極接合体を形成することができる。   A catalyst ink is applied to the electrolyte membrane disposed on the substrate, followed by drying to form a catalyst layer on the electrolyte membrane. Usually, a catalyst layer is also formed on the other surface in the same manner. The electrolyte membrane thus formed with the catalyst layer can be joined so as to be sandwiched between a pair of gas diffusion layer sheets to form a membrane-electrode assembly.

ガス拡散層を形成するガス拡散層シートとしては、触媒層に効率良くガスを供給することができるガス拡散性、導電性、及びガス拡散層を構成する材料として要求される強度を有するもの、例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等の炭素質多孔質体や、チタン、アルミニウム、銅、ニッケル、ニッケル−クロム合金、銅及びその合金、銀、アルミ合金、亜鉛合金、鉛合金、チタン、ニオブ、タンタル、鉄、ステンレス、金、白金等の金属から構成される金属メッシュ又は金属多孔質体等の導電性多孔質体からなるものが挙げられる。導電性多孔質体の厚さは、50〜300μm程度であることが好ましい。   As the gas diffusion layer sheet for forming the gas diffusion layer, a gas diffusion property that can efficiently supply gas to the catalyst layer, conductivity, and strength required as a material constituting the gas diffusion layer, for example, Carbonaceous porous bodies such as carbon paper, carbon cloth, carbon felt, titanium, aluminum, copper, nickel, nickel-chromium alloy, copper and its alloys, silver, aluminum alloy, zinc alloy, lead alloy, titanium, niobium , Tantalum, iron, stainless steel, gold, platinum, and the like, and those made of a conductive porous material such as a metal mesh or a metal porous material. The thickness of the conductive porous body is preferably about 50 to 300 μm.

ガス拡散層シートは、上記したような導電性多孔質体の単層からなるものであってもよいが、触媒層に面する側に撥水層を設けることもできる。撥水層は、通常、炭素粒子や炭素繊維等の導電性粉粒体、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂等を含む多孔質構造を有するものである。撥水層は、必ずしも必要なものではないが、触媒層及び電解質膜内の水分量を適度に保持しつつ、ガス拡散層の排水性を高めることができる上に、触媒層とガス拡散層間の電気的接触を改善することができるという利点がある。   The gas diffusion layer sheet may be composed of a single layer of the conductive porous body as described above, but a water repellent layer may be provided on the side facing the catalyst layer. The water-repellent layer usually has a porous structure containing conductive particles such as carbon particles and carbon fibers, water-repellent resin such as polytetrafluoroethylene (PTFE), and the like. The water-repellent layer is not necessarily required, but it can improve the drainage of the gas diffusion layer while maintaining an appropriate amount of water in the catalyst layer and the electrolyte membrane. There is an advantage that electrical contact can be improved.

撥水層を導電性多孔質体上に形成する方法は特に限定されない。例えば、炭素粒子等の導電性粉粒体と撥水性樹脂、及び必要に応じてその他の成分を、エタノール、プロパノール、プロピレングリコール等の有機溶剤、水又はこれらの混合物等の溶剤と混合した撥水層インクを、導電性多孔質体の少なくとも触媒層に面する側に塗布し、その後、乾燥及び/又は焼成すればよい。   The method for forming the water repellent layer on the conductive porous body is not particularly limited. For example, water repellent obtained by mixing conductive particles such as carbon particles, water repellent resin, and other components as necessary with an organic solvent such as ethanol, propanol, propylene glycol, water or a mixture thereof. The layer ink may be applied to at least the side of the conductive porous body facing the catalyst layer, and then dried and / or fired.

撥水層の形状は特に限定されず、例えば、導電性多孔質層の触媒層側の面全体を覆うような形状でもよいし、格子状等の所定パターンを有する形状でもよい。撥水層の厚さは、通常、1〜50μm程度でよい。撥水層インクを導電性多孔質体に塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。   The shape of the water repellent layer is not particularly limited, and may be, for example, a shape that covers the entire surface of the conductive porous layer on the catalyst layer side or a shape having a predetermined pattern such as a lattice shape. The thickness of the water repellent layer may usually be about 1 to 50 μm. Examples of the method for applying the water repellent layer ink to the conductive porous body include a screen printing method, a spray method, a doctor blade method, a gravure printing method, and a die coating method.

また、導電性多孔質体は、触媒層と面する側に、ポリテトラフルオロエチレン等の撥水性樹脂をバーコーター等によって含浸塗布することによって、触媒層内の水分がガス拡散層の外へ効率良く排出されるように加工されていてもよいし、上記以外の層を設けることもできる。   In addition, the conductive porous body is formed by impregnating and applying a water-repellent resin such as polytetrafluoroethylene to the side facing the catalyst layer with a bar coater or the like, so that the moisture in the catalyst layer is efficiently removed from the gas diffusion layer. It may be processed so as to be discharged well, or a layer other than the above can be provided.

(実施例)
カーボンブラックに平均粒径3nmの白金系触媒粒子を45重量%担持させたものを電極触媒とした。この電極触媒とパーフルオロカーボンスルホン酸樹脂溶液(Aldrich製)とを、カーボンブラック:パーフルオロカーボンスルホン酸樹脂(重量比)=1:1となるように混合した。ここにエタノールを添加し、超音波洗浄装置を用いて所定時間攪拌し、触媒インクを作製した。
(Example)
An electrode catalyst was prepared by supporting 45% by weight of platinum-based catalyst particles having an average particle diameter of 3 nm on carbon black. This electrode catalyst and perfluorocarbon sulfonic acid resin solution (manufactured by Aldrich) were mixed so that carbon black: perfluorocarbon sulfonic acid resin (weight ratio) = 1: 1. Ethanol was added here, and it stirred for predetermined time using the ultrasonic cleaning apparatus, and produced the catalyst ink.

スルホン化ポリエーテルエーテルケトン膜(Victrex製、スルホン化率50%、膜厚50μm)をシリコーンラバー(表面硬度:鉛筆硬度5B)上に設置した。
上記にて得られた触媒インクをスルホン化ポリエーテルエーテルケトン膜表面に、直接吹き付け、50℃で24時間乾燥させ、触媒層を形成した。
得られた触媒層は、スルホン化ポリエーテルエーテルケトン膜表面に均一に形成され、膜及び触媒層にしわは発生していなかった。
A sulfonated polyetheretherketone membrane (Victrex, sulfonation rate 50%, film thickness 50 μm) was placed on a silicone rubber (surface hardness: pencil hardness 5B).
The catalyst ink obtained above was sprayed directly on the surface of the sulfonated polyether ether ketone membrane and dried at 50 ° C. for 24 hours to form a catalyst layer.
The obtained catalyst layer was uniformly formed on the surface of the sulfonated polyether ether ketone membrane, and no wrinkles were generated on the membrane and the catalyst layer.

(比較例)
実施例において、スルホン化ポリエーテルエーテルケトン膜を、シリコーンラバー上に配置する代わりにナイロンメッシュ(表面硬度:鉛筆硬度F)上に配置してクリップで固定した以外は、同様の方法によりスルホン化ポリエーテルエーテルケトン膜上に触媒層を形成した。
得られた膜及び触媒層には多数のシワが見られた。これは、触媒インクを塗布した際に、膜が充分固定されていなかったために、触媒インク中の溶媒を吸収した膜が面方向に膨潤し、そのご乾燥によって収縮したからである。
(Comparative example)
In the examples, the sulfonated poly (ether ether ketone) membrane was placed on a nylon mesh (surface hardness: pencil hardness F) instead of being placed on the silicone rubber and fixed with a clip. A catalyst layer was formed on the ether ether ketone membrane.
Many wrinkles were seen in the obtained membrane and catalyst layer. This is because when the catalyst ink was applied, the film was not sufficiently fixed, so the film that absorbed the solvent in the catalyst ink swelled in the surface direction and contracted by drying.

本発明の燃料電池の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the fuel cell of this invention. 本発明の燃料電池の製造方法の他の例を説明する図である。It is a figure explaining the other example of the manufacturing method of the fuel cell of this invention.

符号の説明Explanation of symbols

1…電解質膜
2…基材
3…多孔質板
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Base material 3 ... Porous board

Claims (2)

電解質膜の表面に触媒層を備えた燃料電池用膜・電極接合体の製造方法であって、
表面硬度が鉛筆硬度5B以下である基材上に、前記電解質膜を配置した状態で、少なくとも触媒成分及び溶媒を含む触媒インクを、該電解質膜に塗布する工程を含むことを特徴とする、燃料電池用膜・電極接合体の製造方法。
A method for producing a membrane / electrode assembly for a fuel cell comprising a catalyst layer on the surface of an electrolyte membrane,
A fuel comprising a step of applying a catalyst ink containing at least a catalyst component and a solvent to the electrolyte membrane in a state where the electrolyte membrane is disposed on a substrate having a surface hardness of 5B or less in pencil hardness. Manufacturing method of battery membrane / electrode assembly.
前記基材が、弾性体である請求項1に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to claim 1, wherein the substrate is an elastic body.
JP2006354375A 2006-12-28 2006-12-28 Manufacturing method of membrane-electrode assembly for fuel cell Pending JP2008166117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354375A JP2008166117A (en) 2006-12-28 2006-12-28 Manufacturing method of membrane-electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354375A JP2008166117A (en) 2006-12-28 2006-12-28 Manufacturing method of membrane-electrode assembly for fuel cell

Publications (1)

Publication Number Publication Date
JP2008166117A true JP2008166117A (en) 2008-07-17

Family

ID=39695306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354375A Pending JP2008166117A (en) 2006-12-28 2006-12-28 Manufacturing method of membrane-electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP2008166117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081866A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Method for manufacturing fuel cell
KR20240016053A (en) 2022-07-28 2024-02-06 코오롱인더스트리 주식회사 Polymer electrolyte membrane and membrane-electrode assembly comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081866A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Method for manufacturing fuel cell
KR20240016053A (en) 2022-07-28 2024-02-06 코오롱인더스트리 주식회사 Polymer electrolyte membrane and membrane-electrode assembly comprising the same

Similar Documents

Publication Publication Date Title
US8546043B2 (en) Method for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP3866077B2 (en) Method for preparing a membrane electrode assembly
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP5165205B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
KR100709220B1 (en) Polymer electrolyte membrane for fuel cell, preparing method thereof and fuel cell system comprising same
JP2007287663A (en) Direct oxidation type fuel cell and its manufacturing method
JP2007234359A (en) Membrane electrode assembly for solid polymer fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
JP2009140652A (en) Membrane-electrode assembly manufacturing method
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP2006286560A (en) Membrane for solid polymer fuel cell and manufacturing method of electrode jointed conjugate
JP2009123356A (en) Method of manufacturing membrane-electrode assembly, and membrane-electrode assembly
JP2008166117A (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2008262822A (en) Starting and stopping method of fuel cell, and starting and stopping system of fuel cell
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP2008204950A (en) Solid polymer fuel cell and its manufacturing method
JP2009176523A (en) Membrane-electrode assembly
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
JP2009026533A (en) Electrolyte membrane for fuel cell, and manufacturing method thereof
JP2006100092A (en) Catalyst layer precursor, mount, and electrolyte membrane-catalyst layer joining method using them
JP2008112598A (en) Membrane-electrode assembly for fuel cell