JP4686927B2 - Heat-sealable polyester short fiber for air-blended cotton and method for producing the same - Google Patents

Heat-sealable polyester short fiber for air-blended cotton and method for producing the same Download PDF

Info

Publication number
JP4686927B2
JP4686927B2 JP2001231176A JP2001231176A JP4686927B2 JP 4686927 B2 JP4686927 B2 JP 4686927B2 JP 2001231176 A JP2001231176 A JP 2001231176A JP 2001231176 A JP2001231176 A JP 2001231176A JP 4686927 B2 JP4686927 B2 JP 4686927B2
Authority
JP
Japan
Prior art keywords
fiber
heat
polyester
cotton
fusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001231176A
Other languages
Japanese (ja)
Other versions
JP2003049326A (en
Inventor
晃一郎 前田
大儀 横田
健一 豊永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001231176A priority Critical patent/JP4686927B2/en
Publication of JP2003049326A publication Critical patent/JP2003049326A/en
Application granted granted Critical
Publication of JP4686927B2 publication Critical patent/JP4686927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、熱融着性ポリエステル短繊維に関し、さらに詳しくは、風送等の手段により綿の開繊や混綿をする際に、従来の綿に比較して、開繊性に優れかつ均一に混綿されることができ、これにより、該熱融着性ポリエステル短繊維を用いた高次加工繊維製品として、他繊維と混綿された繊維塊に熱処理を施して、繊維構造物を製造する際に、安定した性能を有する繊維構造体を得ることを可能にする熱接着性ポリエステル短繊維とその製造方法に関するものである。
【0002】
【従来の技術】
枕や寝装資材の詰め物、キルティング等の詰め物、マットレスの詰め物等を主に構成する繊維(主体繊維)を接着する目的で、ホットメルト型のバインダー繊維と呼ばれる熱融着性の短繊維が用いられている。
【0003】
かかるバインダー繊維は、適宜に主体繊維と混綿されて、所定の立体形状を保った状態で加熱されて熱接着機能を発揮されて所定形状の繊維塊とされる等により使用される。該所定形状とは、通常は3次元的な立体構造であり、直方体や立方体のような単純な形状のものもあるが、最終的に使用される場所に応じた複雑な立体形状をなすものもある。
【0004】
一方、近年、自動車用フロアサイレンサーやダッシュサイレンサー等の車輌用内装材、あるいは各種用途の防音材においては、保形性やその他必要な物理的特性を備えつつ、しかもより嵩密度の低い軽量なものが取扱い性・施工性等の容易さからも望ましく、上述のような所定の形状に作成された繊維塊(繊維構造物)を利用することが検討されている。
【0005】
これらの繊維塊の製造課程において、主体繊維とバインダー短繊維を簡易的な開繊をした後、風送をすること等により綿の供給と同時に混綿を行い、さらに所定形状下に熱処理して繊維構造物製品となす方法が用いられている。
【0006】
しかし、かかる方法により繊維構造物製品を製造する際、均一に混綿されていないことや熱融着繊維の開繊不良による繊維構造物製品の剛性不足、形状不良等の問題や、風送ライン中における綿詰まり等による生産性の低下等の問題があった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上述した問題点を解決し、風送等により綿の開繊と混綿を行い、混合繊維塊を得て、さらに熱処理を行って繊維構造物を製造する際に、開繊性に優れ、かつ均一に混綿されて、安定した性能を有する繊維構造体を得ることのできる熱接着性ポリエステル短繊維とその製造方法、該短繊維を用いた繊維構造体を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明に達した。
【0009】
すなわち、本発明にかかる風送混綿用熱融着性ポリエステル短繊維は、以下の(1)〜(2)のとおり特定される
(1)融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステル(B)とを複合紡糸して得られる複合繊維の表面の少なくとも一部が前記低融点ポリエステル(A)からなる熱融着性の短繊維であって、他の短繊維と風送により混綿した後に熱処理して固綿状繊維構造物を製造する用途で用いられる熱融着性短繊維であり、該繊維は3山/25mm以上のけん縮を有し、該繊維の電気比抵抗が1.0×10Ω以下であり、かつ該繊維の繊維長が5mm以上15mm以下であることを特徴とする風送混綿用熱融着性ポリエステル複合短繊維。
(2)けん縮が少なくとも5山/25mm以上付与されている上記(1)記載の風送混綿用熱融着性ポリエステル複合短繊維。
【0010】
また、本発明にかかる熱融着性ポリエステル複合短繊維を用いる固綿状繊維構造体の製造方法は、以下の(3)のとおり特定される
(3)上記(1)または(2)記載の風送混綿用熱融着性ポリエステル複合短繊維と他の短繊維とを風送により混綿した後に熱処理することにより、熱融着性ポリエステル複合短繊維を10〜90重量%含有する固綿状繊維構造物を製造することを特徴とする固綿状繊維構造体の製造方法
【0011】
また、本発明にかかる熱融着性ポリエステル短繊維の製造方法は、以下の(4)のとおり特定される
(4)融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステルとを複合紡糸して、複合繊維表面の少なくとも一部が該低融点ポリエステル(A)からなるポリエステル複合長繊維を製糸し、さらに油剤あるいは処理剤を用いた油分を繊維重量対比0.12〜0.30%の油分付着量となるように付与し、3山/25mm以上のけん縮の付与を行った後、繊維長が5mm以上15mm以下に短カットすることにより、電気比抵抗が1.0×10 Ω以下であって、かつ、他の短繊維と風送により混綿した後に熱処理して固綿状繊維構造物を製造する用途で用いられる熱融着性短繊維を製造することを特徴とする風送混綿用熱融着性ポリエステル複合短繊維の製造方法。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0013】
本発明者らは、上述した目的を達成すべく鋭意検討した結果、特に、熱融着性繊維が静電気を発生することが開繊性を悪くし、混綿が不均一になったり風送ライン中における綿詰まりなどを発生させるという知見を得たものである。
【0014】
本発明に係る繊維は、かかる観点から、融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステルとを複合紡糸して得られる複合繊維の表面の少なくとも一部が前記低融点ポリエステル(B)からなる熱融着性の短繊維を、他の短繊維と風送により混綿した後に熱処理して固綿状繊維構造物を製造する用途で用いる場合には、該繊維は3山/25mm以上のけん縮を有し、該繊維の電気比抵抗が1.0×10Ω以下、該繊維の繊維長が5mm以上15mm以下であることが必要である。
【0015】
本発明において、熱融着性繊維とは、他繊維(主体繊維、マトリックス繊維)と混綿された状態で繊維塊を構成し得て、該繊維塊に対して熱処理を施すことにより接着剤として機能して、該他繊維を接合させて、全体として固綿状態の繊維構造物を製造することを可能にする繊維をいうものである。
【0016】
本発明においては、融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステル(B)とを複合紡糸して得られる複合繊維表面の少なくとも一部が前記低融点ポリエステル(A)からなる複合繊維で構成されることが重要である。
【0017】
かかるポリエステル(A)としては、特に限定されるものではないが、テレフタル酸またはそのエステル形成性誘導体、イソフタル酸またはそのエステル形成性誘導体、低級アルキレングリコール、並びにポリアルキレングリコール及び/またはそのモノエーテルからなる共重合ポリエステルを使用することが好ましい。また、ポリエステル(B)としては、融点が200℃以上のものが通常用いられ、具体的にはポリエチレンテレフタレートやポリブチレンテレフタレートが好ましく使用されるが、強度特性の面からポリエチレンテレフタレートが最も好ましい。
【0018】
本発明に係るポリエステル複合繊維は、繊維表面の少なくとも一部がポリエステル(A)で形成されていればよく、その形態としては、貼合わせ型、芯鞘型、海島型などの複合形態であり、該複合繊維の繊維表面を占める部分の一部または全部がポリエステル(A)で形成されていればよい。特に芯鞘型とするのが、製糸性や製品性能から好ましい。
【0019】
複合割合は、ポリエステル(A)が20〜80重量%となるようにするのが望ましい。ポリエステル(A)が20重量%未満であると十分な接着性を得ることが難しく、一方、80重量%よりも多いと、一般に製糸性が悪化するとともに、繊維強度が低下するなどの問題も生じてくるので好ましくない。
【0020】
本発明に係る熱融着性ポリエステル複合短繊維は、ポリエステル(A)とポリエステル(B)とを複合して溶融紡糸し、延伸し、所定長に切断することにより製造することができる。
【0021】
本発明の熱融着性繊維の場合、特に限定されるものではないが、単繊維デニール1〜10dtex程度のものが好ましい。主成分繊維(主体繊維)との混綿時の均一分散性および接着性の面から1〜5dtexがより好ましい。
【0022】
熱融着性繊維は3山/25mm以上のけん縮を持っている。そのけん縮付与法については、特に限定されないが、いわゆる2次元のクリンプ繊維の方が好ましい。付与されるけん縮数は、5山/25mm以上15山/25mm以下の範囲内が好ましく、風送時の該繊維の開繊性をより考慮すると、さらに好ましくは7山/25mm以上10山/25mm以下がよい。
【0023】
けん縮が付与されていない場合には、該熱融着性繊維の製造工程および繊維構造体の製造工程において繊維の飛散が多くなる。また、繊維にけん縮を付与することで、混綿処理する他繊維(主成分繊維)との絡合性も良くなるため、構造体の剛性、かさ高等の特性も良好なものを得ることができる。
【0024】
本発明に係る熱融着性繊維は、その繊維長が5mm以上15mm以下であることが重要であり、開繊性および主成分繊維との混綿および絡合等から好ましくは8mm以上12mm以下であることが良いものである。
【0025】
繊維長が5mm未満であると、主成分繊維(主体繊維)との絡みが悪くなったり、繊維が飛散し、作業環境の悪化を招く。また15mmよりも長い繊維では、該熱融着性短繊維の開繊性が悪く、製品の剛性等の特性を損なったり、形状不良の原因となる。
【0026】
本発明の熱融着性繊維は、電気比抵抗が1.0×109 Ω以下であることが肝要であり、好ましくは5.0×108 Ω以下であり、さらに、操業性の面からより好ましくは1.0×108Ω以下がよい。該繊維の電気比抵抗が1.0×109 Ωより大きいものでは繊維間の摩擦等により静電気が発生し、風送ライン内の綿詰まりの原因となったり、繊維の開繊不良による製品の特性を損なう原因となる。
【0027】
繊維の電気比抵抗を1.0×109 Ω以下とする手段としては、特に限定されるものではないが、繊維表面に適宜の油剤あるいは処理剤を用いて調整する方法、あるいは繊維原料に制電剤等を練込みする等の方法が挙げられる。油剤付与による繊維の電気比抵抗の調整としては、イオン性界面活性剤(アニオン系界面活性剤、カチオン系界面活性剤)等の油分をその油剤有効成分が繊維重量対比0.12〜0.30%付着するように付与する方法が挙げられる。油分の付与は、製糸中あるいは製糸後の適宜の時点で行うことができる。
【0028】
【実施例】
以下に実施例により本発明をより具体的に説明するが、本発明はこれらの具体例に限定されるものではない。
(1)繊度: JIS L−1015に示される方法により繊度(dtex)で示す。
(2)繊維長: JIS L−1015に示される方法により繊維長(mm)で示す。
(3)けん縮数: カット前の熱融着繊維をJIS L−1015に示される方法により測定されるけん縮数(山/25mm)で示す。
(4)電気比抵抗: カットされた熱融着性繊維の試料10gを、標準状態(温度20±2℃、相対湿度65±2%)で4時間以上放置し、東亜電波株式会社製SM−5型超絶縁計を用いて、試料筒(アクリル製:内径80mm)に繊維を入れ、重鎮電極(ステンレス製)を乗せてから2分後の電気比抵抗値を測定した。
(5)開繊性: 簡易開繊機(大和機工株式会社製の簡易開繊機(型式0250))を通過した短繊維の開繊度合いを、開繊機を通過する前の開繊状態と目視により比較し判定した。
(6)形状: 熱処理された繊維構造体の形状について、表面の均一性について目視により判定した。
(7)剛軟度: JIS 1085−1998・6−10に示される方法により測定される剛軟度(Br)で示す。
(8)融点: JIS L−1015に示される方法により測定される融点(℃)で示す。
実施例1
成分としてテレフタル酸ジメチル60mol%およびイソフタル酸40mol%と、グリコール成分としてエチレングリコールを88mol%およびジエチレングリコールを12mol%とをエステル交換反応させ、次いで、重縮合反応させて得られる固有粘度[η]が0.64である共重合ポリエステル(A成分、融点110℃)と、固有粘度[η]が0.64でかつ融点が260℃のポリエチレンテレフタレート(B成分、融点260℃)とを複合紡糸し、芯成分がポリエチレンテレフタレート(B成分)からなり、かつ鞘成分が共重合ポリエステル(A成分)からなる芯鞘複合未延伸糸を得た。
【0029】
次いで、該未延伸糸を温水中で3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.18wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長10mmに切断した。
【0030】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0031】
得られた熱融着性繊維30重量%と開繊機により開繊せしめた繊維長51mm、繊度14.4dtexのポリエチレンフタレート繊維70重量%とを風送、混綿処理して、次いで140℃にて15分間熱処理し固綿を得た。得られた固綿の評価結果について表1に示した。綿の開繊性も良好であり、また得られた固綿の形状、表面品位ともに良好なものであった。また固綿としての剛性も優れたものを得ることができた。
実施例2
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.18wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長6mmに切断した。
【0032】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0033】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0034】
得られた固綿の評価結果について表1に示した。実施例1と同様、綿の開繊性も良好であり、また得られた固綿の形状も良好であり、固綿としての剛性も優れたものを得ることができた。
実施例3
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.17wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長6mmに切断した。
【0035】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0036】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0037】
得られた固綿の評価結果について表1に示した。綿の開繊性も良好であり、また得られた固綿の形状も良好であり、固綿としての剛性も優れたものを得ることができた。
実施例4
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、4.4dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.18wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長10mmに切断した。
【0038】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0039】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0040】
得られた固綿の評価結果について表1に示した。綿の開繊性も良好でありかつ得られた固綿の形状も良好であり、固綿としての剛性も優れたものを得ることができた。
実施例5
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.18wt%付着するよう付与した後、クリンプ処理(けん縮数:3山/25mm)を施し、次いで繊維長10mmに切断した。
【0041】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0042】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0043】
得られた固綿の評価結果について表1に示した。開繊機後の綿の状態はけん縮数が若干低いため、若干綿の開きが大きいものの、これに伴う風送ダクト内での詰まり発生等を伴うレベルではなく、生産上問題となるものでなかった。また、得られた固綿の表面品位も良好であり、剛性の面でも必要とする特性を有し、優れたものを得ることができた。
比較例1
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.09wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長10mmに切断した。
【0044】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0045】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0046】
得られた固綿の評価結果について表1に示した。電気発生に伴い玉状に綿が丸まり、開繊性不良なものであった。また、得られた固綿も表面に凹凸があり不良のものであり、更に、接着強力にも測定バラツキも大きく、固綿の場所によっても接着強力のバラツキが大きい。また剛性の面でも必要とする特性が得られなかった。
比較例2
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.09wt%付着するよう付与した後、クリンプ処理(けん縮数:3山/25mm)を施し、次いで繊維長10mmに切断した。
【0047】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0048】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0049】
得られた固綿の評価結果について表1に示した。電気発生に伴い玉状に綿が丸まり、開繊性不良なものであった。また、一部の綿は開きすぎ、開繊機周辺に飛散した。得られた固綿も表面に凹凸があり不良のものであり、剛性の面でも必要とする特性が得られなかった。
比較例3
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.10wt%付着するよう付与した後、クリンプ処理(けん縮数:8山/25mm)を施し、次いで繊維長38mmに切断した。
【0050】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0051】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0052】
得られた固綿の評価結果について表1に示した。開繊機での綿の開繊が悪く、また、得られた固綿も表面に凹凸があり不良のものであった。剛性の面でも必要とする特性が得られなかった。
比較例4
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.18wt%付着するよう付与した後、クリンプ処理(けん縮数:3山/25mm)を施し、次いで繊維長38mmに切断した。
【0053】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0054】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0055】
得られた固綿の評価結果について表1に示した。開繊機出の綿の開繊が悪く、また、得られた固綿も表面に凹凸があり不良のものであった。剛性の面でも必要とする特性が得られなかった。
比較例5、6
実施例1と同様のポリマーを用いて得られた芯鞘複合未延伸糸を3倍に延伸し、2.2dtexの延伸糸とし、油剤(アニオン系界面活性剤)を油剤有効成分が繊維重量対比0.09wt%付着するよう付与した後、クリンプ処理((けん縮数:8山/25mm(比較例6)、3山/25mm(比較例7))を施し、次いで繊維長38mmに切断した。
【0056】
得られた熱融着性繊維の電気比抵抗について表1に示した。
【0057】
得られた熱融着性繊維を実施例1と同様の方法にて固綿を得た。
【0058】
得られた固綿の評価結果について表1に示した。得られた固綿も表面に凹凸があり不良のものであった。剛性の面でも必要とする特性が得られなかった。
【0059】
【表1】

Figure 0004686927
【0060】
【発明の効果】
本発明の熱接着性ポリエステル短繊維によれば、開繊性に優れ、かつ均一に混綿されて、安定した性能を有する繊維構造体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-fusible polyester staple fiber, and more specifically, when opening or blending cotton by means of air blowing or the like, it has excellent spreadability and uniformity compared to conventional cotton. When a fiber structure is manufactured by heat-treating a fiber lump mixed with other fibers as a high-order processed fiber product using the heat-fusible polyester staple fiber, the fiber structure can be blended. The present invention relates to a heat-adhesive polyester staple fiber that makes it possible to obtain a fiber structure having stable performance and a method for producing the same.
[0002]
[Prior art]
Heat-bonding short fibers called hot-melt binder fibers are used to bond fibers (main fibers) that mainly form pillows, bedding materials, quilting, mattresses, etc. It has been.
[0003]
Such a binder fiber is appropriately mixed with the main fiber, heated in a state of maintaining a predetermined three-dimensional shape, and used as a fiber lump having a predetermined shape by exhibiting a thermal bonding function. The predetermined shape is usually a three-dimensional solid structure, and there is a simple shape such as a rectangular parallelepiped or a cube, but there is also a complicated three-dimensional shape depending on the place where it is finally used. is there.
[0004]
On the other hand, in recent years, automotive interior materials such as floor silencers and dash silencers for automobiles, and soundproofing materials for various uses have a shape retaining property and other necessary physical characteristics, and are lighter in weight with lower bulk density. However, it is also desirable from the viewpoint of ease of handling, workability, and the like, and it has been studied to use a fiber lump (fiber structure) created in a predetermined shape as described above.
[0005]
In the production process of these fiber masses, the main fibers and short binder fibers are simply opened, then mixed with cotton by air blowing, etc., and mixed with heat, and further heat treated under a predetermined shape. The method of structuring the structure product is used.
[0006]
However, when manufacturing a fiber structure product by such a method, problems such as not being blended uniformly, insufficient rigidity of the fiber structure product due to poor opening of the heat-fusible fiber, defective shape, etc. There were problems such as a decrease in productivity due to cotton clogging.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems, open and blend cotton by air blowing, etc. to obtain a mixed fiber lump, and further heat treatment to produce a fiber structure. An object of the present invention is to provide a heat-adhesive polyester staple fiber that is excellent in properties and can be uniformly mixed to obtain a fiber structure having stable performance, a method for producing the same, and a fiber structure using the staple fiber. .
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention.
[0009]
That is, the heat- fusible polyester staple fiber for air-blended cotton according to the present invention is specified as the following (1) to (2).
(1) and low melting point polyester having a melting point is 200 ° C. or less (A), at least the melting point of the low melting polyester (A) of the high-melting-point polyester (B) and the surface of the composite fiber obtained by composite spinning in applications where part of the production of the I short fiber維Dea heat-fusible consisting of low-melting polyester (a), other short fibers and solid flocculent fibrous structure was heat treated after cotton mixing by aeolian a heat-fusible short fibers used, the fibers have a crimp of above 3 peaks / 25 mm, the electrical resistivity of the fibers is not more than 1.0 × 10 9 Ω, and the fibers of the fiber A heat- fusible polyester composite short fiber for air-blended cotton having a length of 5 mm to 15 mm.
(2) The heat- fusible polyester composite short fiber for air-blended cotton according to the above (1), wherein crimps are applied at least 5 threads / 25 mm or more.
[0010]
Moreover, the manufacturing method of the solid cotton-like fiber structure using the heat-fusible polyester composite short fiber according to the present invention is specified as (3) below .
(3) The heat- fusible polyester composite short fiber by heat- blending the heat- fusible polyester composite short fiber for air-blended cotton and other short fibers described in (1) or (2) above after air-blending. method for producing Katawatajo fiber structure, characterized in that to produce a solid cotton-like fiber structure containing the fibers 10 to 90 wt%.
[0011]
In addition, the method for producing the heat-fusible polyester staple fiber according to the present invention is specified as (4) below .
A low-melting polyester (A) to (4) melting point is 200 ° C. or less, and conjugate spinning the high melting point polyester than the melting point of the low melting polyester (A), at least part of the composite fiber surface low A polyester composite long fiber made of polyester having a melting point (A) is made into a yarn, and an oil component using an oil agent or a treatment agent is further applied so that an oil adhesion amount is 0.12 to 0.30% relative to the fiber weight. after Tsu lines to grant more than 25mm tendon of contraction, by fiber length is short cut in 5mm or 15mm or less, equal to or less than the electrical resistivity of 1.0 × 10 9 Ω, and the other short fibers Manufacture of heat- fusible polyester composite short fibers for air-blended cotton , characterized by producing heat-fusible short fibers for use in the production of solid cotton-like fiber structures by heat treatment after blending by air-feeding Method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
As a result of intensive studies to achieve the above-described object, the present inventors have made it difficult to generate static electricity, particularly when heat-fusible fibers generate static electricity, resulting in non-uniform blending or in the air-feeding line. It has been found that cotton clogging occurs in
[0014]
Fibers according to the present invention, a composite from this point of view, the low-melting polyester (A) having a melting point is 200 ° C. or less, obtained by conjugate spinning a high melting point polyester than the melting point of the low melting polyester (A) Use of producing a solid cotton-like fiber structure by heat-bonding short fibers having a heat-fusible property comprising at least a part of the surface of the low-melting polyester (B) with other short fibers by air blowing. when used, the said fibers have a crimp of above 3 peaks / 25 mm, the electrical resistivity of the fibers is 1.0 × 10 9 Ω or less, and the fiber length of the fibers is 5mm or more 15mm or less Is necessary .
[0015]
In the present invention, the heat-fusible fiber can form a fiber lump in a state of being mixed with other fibers (main fibers, matrix fibers), and functions as an adhesive by performing heat treatment on the fiber lump. Then, the other fibers are bonded to each other to make it possible to produce a fiber structure in a solid cotton state as a whole.
[0016]
In the present invention, a low-melting polyester (A) having a melting point is 200 ° C. or less, the melting point of the low melting polyester (A) of the high-melting-point polyester (B) and the composite fiber surface obtained by composite spinning It is important that at least a part is composed of a composite fiber made of the low-melting polyester (A).
[0017]
The polyester (A) is not particularly limited, but includes terephthalic acid or an ester-forming derivative thereof, isophthalic acid or an ester-forming derivative thereof, a lower alkylene glycol, and a polyalkylene glycol and / or a monoether thereof. It is preferable to use a copolymerized polyester. As the polyester (B), those having a melting point of 200 ° C. or higher are usually used. Specifically, polyethylene terephthalate and polybutylene terephthalate are preferably used, but polyethylene terephthalate is most preferable from the viewpoint of strength characteristics.
[0018]
The polyester composite fiber according to the present invention is only required that at least a part of the fiber surface is formed of polyester (A), and the form thereof is a composite form such as a bonded type, a core-sheath type, a sea-island type, It is only necessary that a part or all of the portion occupying the fiber surface of the composite fiber is formed of polyester (A). In particular, the core-sheath type is preferable from the standpoint of yarn production and product performance.
[0019]
The composite ratio is desirably 20 to 80% by weight of the polyester (A). When the polyester (A) is less than 20% by weight, it is difficult to obtain sufficient adhesiveness. On the other hand, when the polyester (A) is more than 80% by weight, generally, the yarn-making property is deteriorated and the fiber strength is lowered. Because it comes, it is not preferable.
[0020]
The heat-fusible polyester composite short fiber according to the present invention can be produced by combining polyester (A) and polyester (B), melt spinning, drawing, and cutting to a predetermined length.
[0021]
In the case of the heat-fusible fiber of the present invention, although it is not particularly limited, a single fiber denier of about 1 to 10 dtex is preferable. 1 to 5 dtex is more preferable from the viewpoint of uniform dispersibility and adhesiveness during blending with the main component fibers (main fibers).
[0022]
The heat-fusible fiber has a crimped three or more mountain / 25mm. For the only N shrinkage of imparting method is not particularly limited, towards the so-called 2-dimensional crimp fiber is preferred. The number of crimps to be imparted is preferably in the range of 5 peaks / 25 mm to 15 peaks / 25 mm, and more preferably 7 peaks / 25 mm to 10 peaks / in consideration of the fiber-opening property during air blowing. 25 mm or less is good.
[0023]
If the crimp is not given, scattering of the fibers may turn many in the manufacturing process of the manufacturing process and the fiber structure of the heat-fusible fibers. Further, by imparting crimps to the fibers, the entanglement with other fibers (main component fibers) to be mixed is improved, so that it is possible to obtain a structure having good characteristics such as rigidity and bulkiness. .
[0024]
It is important that the heat-fusible fiber according to the present invention has a fiber length of 5 mm or more and 15 mm or less, and is preferably 8 mm or more and 12 mm or less from the viewpoint of openability and blending and entanglement with the main component fibers. That is a good thing.
[0025]
If the fiber length is less than 5 mm, or entanglement becomes worse as the main component fiber (main fiber), fiber scatters, invited rather a worsening of the working environment. In the longer fibers than 15 mm, openability of the heat-fusible short fibers is poor, or impair the properties such as rigidity of a product, ing the cause of shape defects.
[0026]
It is important that the heat-fusible fiber of the present invention has an electrical resistivity of 1.0 × 10 9 Ω or less, preferably 5.0 × 10 8 Ω or less, and from the viewpoint of operability. More preferably, it is 1.0 × 10 8 Ω or less. If the electrical resistivity of the fiber is greater than 1.0 × 10 9 Ω, static electricity is generated due to friction between the fibers, which may cause clogging of the cotton in the air feed line or the product due to poor fiber opening. It causes damage to the characteristics.
[0027]
The means for setting the electrical resistivity of the fiber to 1.0 × 10 9 Ω or less is not particularly limited, but it is limited to a method of adjusting the fiber surface with an appropriate oil or treatment agent, or a fiber raw material. Examples thereof include a method of kneading an electric agent or the like. The adjustment of the electrical resistivity of the fiber by the addition of the oil agent is such that the oil component of the ionic surfactant (anionic surfactant, cationic surfactant) is 0.12 to 0.30 compared to the fiber weight. %, And the method of giving so that it may adhere. The oil component can be applied at an appropriate time during or after the yarn production.
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these specific examples.
(1) Fineness: The fineness (dtex) is indicated by the method shown in JIS L-1015.
(2) Fiber length: The fiber length (mm) is indicated by the method shown in JIS L-1015.
(3) Number of crimps: The number of crimps (crests / 25 mm) measured by the method described in JIS L-1015 indicates the heat-sealed fiber before cutting.
(4) Electrical resistivity: 10 g of the cut heat-fusible fiber sample was left in a standard state (temperature 20 ± 2 ° C., relative humidity 65 ± 2%) for 4 hours or longer, and SM-made by Toa Denpa Inc. Using a type 5 superinsulator, the fiber was placed in a sample tube (made of acrylic: inner diameter 80 mm), and the electric resistivity value was measured 2 minutes after placing the heavy metal electrode (made of stainless steel).
(5) Opening property: The degree of opening of short fibers that have passed through a simple opening machine (a simple opening machine manufactured by Daiwa Kiko Co., Ltd. (model 0250)) is visually compared with the opening state before passing through the opening machine. Judged.
(6) Shape: The shape of the heat-treated fiber structure was determined visually for surface uniformity.
(7) Bending softness: It is shown by bending softness (Br) measured by the method shown in JIS 1085-1998 · 6-10.
(8) Melting point: The melting point (° C.) measured by the method shown in JIS L-1015.
Example 1
Dimethyl terephthalate 60 mol% and 40 mol% of isophthalic acid as an acid component, and a 12 mol% to 88 mol% and diethylene glycol ethylene glycol as the glycol component is an ester exchange reaction, then, intrinsic viscosity obtained by polycondensation reaction [eta ] Is a composite spinning of copolymer polyester (component A, melting point 110 ° C.) having a viscosity of 0.64 and polyethylene terephthalate (component B, melting point 260 ° C.) having an intrinsic viscosity [η] of 0.64 and a melting point of 260 ° C. and the core component is polyethylene terephthalate (B ingredients), and to obtain a core-sheath composite undrawn yarn the sheath component is composed of copolymerized polyester (a component).
[0029]
Subsequently, the undrawn yarn is drawn three times in warm water to obtain a drawn yarn of 2.2 dtex, and an oil agent (anionic surfactant) is applied so that the active ingredient of the oil agent adheres to the fiber weight by 0.18 wt%. Crimp treatment (crimp number: 8 crests / 25 mm) was performed, and then the fiber length was cut to 10 mm.
[0030]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0031]
30% by weight of the obtained heat-fusible fiber and 70% by weight of polyethylene phthalate fiber having a fiber length of 51 mm and a fineness of 14.4 dtex opened by a spreader were blown and mixed, and then treated at 140 ° C. for 15%. Heat treatment was performed for a minute to obtain solid cotton. The evaluation results of the obtained solid cotton are shown in Table 1. The openability of the cotton was good, and the shape and surface quality of the obtained solid cotton were good. Moreover, the thing which was excellent also in the rigidity as solid cotton was able to be obtained.
Example 2
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.18 wt%, crimping (crimp number: 8 crests / 25 mm) was applied, and then the fiber length was cut to 6 mm.
[0032]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0033]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0034]
The evaluation results of the obtained solid cotton are shown in Table 1. As in Example 1, the openability of cotton was good, the shape of the obtained solid cotton was also good, and a product having excellent rigidity as solid cotton could be obtained.
Example 3
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.17 wt%, crimping (crimp number: 8 crests / 25 mm) was applied, and then cut to a fiber length of 6 mm.
[0035]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0036]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0037]
The evaluation results of the obtained solid cotton are shown in Table 1. The openability of the cotton was good, the shape of the obtained solid cotton was also good, and a product having excellent rigidity as the solid cotton could be obtained.
Example 4
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn 3 times to obtain a 4.4 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active agent of the oil agent compared to the fiber weight. After imparting 0.18 wt%, crimping (crimp number: 8 crests / 25 mm) was applied, and then cut to a fiber length of 10 mm.
[0038]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0039]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0040]
The evaluation results of the obtained solid cotton are shown in Table 1. The openability of the cotton was good, the shape of the obtained solid cotton was also good, and a product with excellent rigidity as the solid cotton could be obtained.
Example 5
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.18 wt%, crimping (crimp number: 3 ridges / 25 mm) was applied, and then cut to a fiber length of 10 mm.
[0041]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0042]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0043]
The evaluation results of the obtained solid cotton are shown in Table 1. The condition of the cotton after the opening machine is slightly lower than the number of crimps, so the opening of the cotton is slightly large, but this is not a level that causes clogging in the air duct, etc., and this is not a problem in production. It was. Moreover, the surface quality of the obtained solid cotton was also good, and it had the characteristics required in terms of rigidity, and an excellent product could be obtained.
Comparative Example 1
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After giving 0.09 wt% adhesion, crimping (crimp number: 8 ridges / 25 mm) was applied, and then cut to a fiber length of 10 mm.
[0044]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0045]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0046]
The evaluation results of the obtained solid cotton are shown in Table 1. With the generation of electricity, the cotton was curled in a ball shape and the openability was poor. Also, the obtained solid cotton has irregularities on the surface and is defective. Furthermore, the adhesive strength and the measurement variation are large, and the adhesive strength varies greatly depending on the location of the solid cotton. Also, the required characteristics were not obtained in terms of rigidity.
Comparative Example 2
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.09 wt%, crimping (crimp number: 3 ridges / 25 mm) was applied, and then the fiber length was cut to 10 mm.
[0047]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0048]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0049]
The evaluation results of the obtained solid cotton are shown in Table 1. With the generation of electricity, the cotton was curled in a ball shape and the openability was poor. Some cotton was too open and scattered around the opening machine. The obtained solid cotton also had irregularities on the surface and was defective, and required characteristics were not obtained even in terms of rigidity.
Comparative Example 3
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.10 wt%, crimping (crimp number: 8 ridges / 25 mm) was applied, and then cut to a fiber length of 38 mm.
[0050]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0051]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0052]
The evaluation results of the obtained solid cotton are shown in Table 1. The opening of the cotton with the opening machine was poor, and the obtained solid cotton also had irregularities on the surface and was poor. The required characteristics were not obtained even in terms of rigidity.
Comparative Example 4
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After imparting 0.18 wt%, crimping (crimp number: 3 crests / 25 mm) was applied, and then cut to a fiber length of 38 mm.
[0053]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0054]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0055]
The evaluation results of the obtained solid cotton are shown in Table 1. The opening of the cotton from the opening machine was poor, and the obtained solid cotton was uneven with irregularities on the surface. The required characteristics were not obtained even in terms of rigidity.
Comparative Examples 5 and 6
The core-sheath composite undrawn yarn obtained using the same polymer as in Example 1 was drawn three times to obtain a 2.2 dtex drawn yarn, and the oil agent (anionic surfactant) was used as the active ingredient of the oil agent compared to the fiber weight. After applying 0.09 wt%, crimping ((crimp number: 8 ridges / 25 mm (Comparative Example 6), 3 ridges / 25 mm (Comparative Example 7)) was applied, and then the fiber length was cut to 38 mm.
[0056]
Table 1 shows the electrical resistivity of the obtained heat-fusible fiber.
[0057]
Solid cotton was obtained from the obtained heat-fusible fiber in the same manner as in Example 1.
[0058]
The evaluation results of the obtained solid cotton are shown in Table 1. The obtained solid cotton also had irregularities on the surface and was poor. The required characteristics were not obtained even in terms of rigidity.
[0059]
[Table 1]
Figure 0004686927
[0060]
【The invention's effect】
According to the heat-adhesive polyester staple fiber of the present invention, a fiber structure having excellent performance can be obtained that is excellent in fiber opening property and is uniformly mixed.

Claims (4)

融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステル(B)とを複合紡糸して得られる複合繊維の表面の少なくとも一部が前記低融点ポリエステル(A)からなる熱融着性の短繊維であって、他の短繊維と風送により混綿した後に熱処理して固綿状繊維構造物を製造する用途で用いられる熱融着性短繊維であり、該繊維は3山/25mm以上のけん縮を有し、該繊維の電気比抵抗が1.0×10Ω以下であり、かつ該繊維の繊維長が5mm以上15mm以下であることを特徴とする風送混綿用熱融着性ポリエステル複合短繊維。Melting point and low melting point polyester (A) which is at 200 ° C. or less, at least part of the melting point of the low melting polyester (A) of the high-melting-point polyester (B) and the surface of the composite fiber obtained by composite spinning wherein a short textiles heat-fusible consisting of low-melting polyester (a), heat to be used in applications to produce a to solid flocculent fiber structure heat treatment after cotton mixing by other short fibers and aeolian a wear-resistant staple fibers, said fibers have a crimp of above 3 peaks / 25 mm, the electrical resistivity of the fibers is not more than 1.0 × 10 9 Ω, and the fiber length of the fibers than 5mm A heat- fusible polyester composite short fiber for air-blended cotton, which is 15 mm or less. けん縮が5山/25mm以上付与されていることを特徴とする請求項1記載の風送混綿用熱融着性ポリエステル複合短繊維。The heat- fusible polyester composite staple fiber for air-blended cotton according to claim 1, wherein crimps are applied at 5 peaks / 25 mm or more. 請求項1または請求項2記載の風送混綿用熱融着性ポリエステル複合短繊維と他の短繊維とを風送により混綿した後に熱処理することにより、熱融着性ポリエステル複合短繊維を10〜90重量%含有する固綿状繊維構造物を製造することを特徴とする固綿状繊維構造体の製造方法。 The heat- fusible polyester composite staple fiber according to claim 1 or claim 2 is heat treated and then heat-treated after blending the heat- fusible polyester composite staple fiber for air-blend cotton and other short fibers by air-feeding. method for producing Katawatajo fiber structure, characterized in that to produce a solid cotton-like fiber structure containing 90 wt%. 融点が200℃以下である低融点ポリエステル(A)と、該低融点ポリエステル(A)の融点よりも高融点のポリエステルとを複合紡糸して、複合繊維表面の少なくとも一部が該低融点ポリエステル(A)からなるポリエステル複合長繊維を製糸し、さらに油剤あるいは処理剤を用いた油分を繊維重量対比0.12〜0.30%の油分付着量となるように付与し、3山/25mm以上のけん縮の付与を行った後、繊維長が5mm以上15mm以下に短カットすることにより、電気比抵抗が1.0×10 Ω以下であって、かつ、他の短繊維と風送により混綿した後に熱処理して固綿状繊維構造物を製造する用途で用いられる熱融着性短繊維を製造することを特徴とする風送混綿用熱融着性ポリエステル複合短繊維の製造方法。And a melting point of low melting point polyester which is 200 ° C. or less (A), the melting point of the low melting polyester (A) by composite spinning a high melting point polyester, at least a portion of the composite fiber surface low melting point polyester ( A polyester composite long fiber comprising A) is produced, and an oil component using an oil agent or a treatment agent is applied so that an oil adhesion amount of 0.12 to 0.30% with respect to the fiber weight is provided, and 3 threads / 25 mm or more after Tsu row condensation of imparting tendon, by fiber length is short cut in 5mm or 15mm or less, equal to or less than the electrical resistivity of 1.0 × 10 9 Ω, and the other short fibers and aeolian A method for producing a heat- fusible polyester composite short fiber for air-blended cotton , characterized by producing a heat-fusible short fiber used for the purpose of producing a solid cotton-like fiber structure by heat treatment after blending .
JP2001231176A 2001-07-31 2001-07-31 Heat-sealable polyester short fiber for air-blended cotton and method for producing the same Expired - Lifetime JP4686927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231176A JP4686927B2 (en) 2001-07-31 2001-07-31 Heat-sealable polyester short fiber for air-blended cotton and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231176A JP4686927B2 (en) 2001-07-31 2001-07-31 Heat-sealable polyester short fiber for air-blended cotton and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003049326A JP2003049326A (en) 2003-02-21
JP4686927B2 true JP4686927B2 (en) 2011-05-25

Family

ID=19063263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231176A Expired - Lifetime JP4686927B2 (en) 2001-07-31 2001-07-31 Heat-sealable polyester short fiber for air-blended cotton and method for producing the same

Country Status (1)

Country Link
JP (1) JP4686927B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865699A4 (en) 2005-03-30 2012-02-01 Fujitsu Ltd Portable telephone and forwarding program
CN103352320B (en) * 2013-07-31 2016-03-23 浏阳市南方椰棕厂 A kind of fiberboard and preparation method thereof
CN106811828B (en) * 2017-01-10 2019-08-09 扬州富威尔复合材料有限公司 A kind of coloured low melting point polyester fiber and preparation method thereof
CN106811827B (en) * 2017-01-10 2019-08-27 扬州富威尔复合材料有限公司 A kind of ultrashort low melting point polyester fiber and preparation method thereof
CN106811826B (en) * 2017-01-10 2018-12-11 扬州富威尔复合材料有限公司 A kind of three-dimensional crimp low melting point polyester fiber and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325937A (en) * 1995-05-31 1996-12-10 Teijin Ltd Thermally fused conjugated fiber having hydrophobic property
JPH09310292A (en) * 1996-05-22 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325937A (en) * 1995-05-31 1996-12-10 Teijin Ltd Thermally fused conjugated fiber having hydrophobic property
JPH09310292A (en) * 1996-05-22 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production

Also Published As

Publication number Publication date
JP2003049326A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
US4794038A (en) Polyester fiberfill
DE60036462T2 (en) RIBBED POLYESTER FIBER AND FIBER STRUCTURE
CN107407027B (en) Fiber ball batting and article including same
EP0811710B1 (en) Heat-bondable conjugated fiber and high-modulus fiber globoid made thereof
JP2003003334A (en) Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same
JP4686927B2 (en) Heat-sealable polyester short fiber for air-blended cotton and method for producing the same
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
JPS63295712A (en) Modified cross-section heat fusible fiber
JPH09273096A (en) Polyester-based wet nonwoven fabric
JP4711033B2 (en) Nonwoven fabric suitable for rugs
JP2006207110A (en) Hard stuffing structure having improved fatigue resistance
JP4351100B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JPH02191759A (en) High-tenacity sheet
JP2508833B2 (en) Thermal adhesive composite fiber
JP3011760B2 (en) Short fiber non-woven sheet
JP4326083B2 (en) Polyester-based heat-adhesive composite staple fiber and nonwoven fabric
JPH05161765A (en) Cushion material
JP7112632B2 (en) Composite fibers and batting
JPH06327856A (en) Wadding for futon
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JP2581826B2 (en) Far infrared radiation polyester composite fiber
JPH09228218A (en) Production of polyester-based elastic solid staple
JPH09105055A (en) Production of polyester-based elastic hard fiber
JP2003041439A (en) Heat bonding conjugated fiber and nonwoven fabric using the same
JPH06134150A (en) Ball wadding for padding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4686927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

EXPY Cancellation because of completion of term