JP4686887B2 - Deposition method - Google Patents

Deposition method Download PDF

Info

Publication number
JP4686887B2
JP4686887B2 JP2001109943A JP2001109943A JP4686887B2 JP 4686887 B2 JP4686887 B2 JP 4686887B2 JP 2001109943 A JP2001109943 A JP 2001109943A JP 2001109943 A JP2001109943 A JP 2001109943A JP 4686887 B2 JP4686887 B2 JP 4686887B2
Authority
JP
Japan
Prior art keywords
wafer
film
reaction vessel
wafers
batch mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001109943A
Other languages
Japanese (ja)
Other versions
JP2002313728A (en
Inventor
浩一 坂本
永哲 朴
文凌 王
富士雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001109943A priority Critical patent/JP4686887B2/en
Publication of JP2002313728A publication Critical patent/JP2002313728A/en
Application granted granted Critical
Publication of JP4686887B2 publication Critical patent/JP4686887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、成膜方法に関する。
【0002】
【従来の技術】
多数枚の半導体ウエハ(以下ウエハという)に対して一括して成膜処理を行う装置として例えば縦型熱処理装置が知られている。この装置は、図6に示すようにウエハ保持具であるウエハボ−ト91に多数枚のウエハWを棚状に保持し、縦型の反応容器92内に下方側から搬入して下端開口部を塞ぎ、反応容器92の周囲に設けられたヒ−タ93によりウエハWを所定のプロセス温度に加熱しながら処理ガスを供給してウエハWに対してCVDによる成膜処理を行うものである。
ところで最近にあっては多種多様な半導体デバイスが要求されることから小ロットで多品種のウエハWに対して熱処理が必要とされる場合がある。このため例えば製品ウエハとしてフル枚数である例えば150枚の処理を行う時にウエハボ−ト91が満載状態になるフルバッチ状態であるとすると、それよりも少ない枚数、例えば100枚、50枚あるいは25枚の製品ウエハをウエハボ−ト91に搭載して熱処理を行うショ−トバッチモ−ドをレシピの中に持たせることがある。図6に示すウエハWの搭載状態はショ−トバッチモ−ドに対応するものであり、ウエハWを下詰めにして上部側を空き領域としている。
【0003】
このようなショ−トバッチモ−ドを行う場合、不足枚数だけダミ−ウエハを用いてウエハボ−ト91を満載することはコスト面からは得策ではない。その理由は、ダミ−ウエハが高価であり、繰り返し使用により最終的に廃棄されるため、ランニングコストが高騰するからである。そこで製品ウエハの載置の仕方、ショ−トバッチに対応した圧力調整、少しのダミ−ウエハを用いるといった種々の工夫を行うことにより、ウエハボ−ト91を満載状態とせずに空き領域を形成しながら均一性の高い熱処理を行うことを検討している。
【0004】
【発明が解決しようとする課題】
ところで熱処理雰囲気にさらされる装置部品であるウエハボ−ト91及び反応容器92の内壁に薄膜が付着して膜厚が大きくなると、膜剥がれが起こってパ−ティクルが発生するおそれが大きくなるため、製品ウエハの目標膜厚に基づいてウエハボ−ト91及び反応容器92の内壁の累積膜厚を予測し、その予測結果に基づいてウエハボ−ト91及び反応容器92を洗浄するタイミングを決めるようにしている。しかしながらショ−トバッチでウエハを成膜処理する場合、空き領域においては成膜ガスを消費するウエハが無いため、ウエハボート91及び反応容器92における空き領域に位置する部分での成膜速度が、ウエハが載置されている領域に位置する部分の成膜速度よりも大きくなる。このため図6に反応容器92についてイメ−ジ的に示すように、前者の薄膜90の累積膜厚が後者の薄膜90の累積膜厚よりも大きくなってしまう。この結果予め決めた洗浄のタイミングよりも前に反応容器92を洗浄する必要があり、メンテナンスサイクルが短くなるという課題がある。またウエハボート91及び反応容器92における空き領域に位置する部分の累積膜厚を把握できないため、メンテナンスサイクルを予測することが困難である。
【0005】
本発明は、このような事情のもとになされたものであり、その目的は、保持具に基板を満載せずに空き領域が存在するショ−トバッチモ−ドで基板の成膜処理を行うにあたって、適切なタイミングでメンテナンスを行うことができる技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、多数の基板を反応容器の長さ方向に配列保持する保持具に基板を満載して反応容器内に搬入し、反応容器内を加熱すると共に反応容器内に処理ガスを供給して基板に成膜処理を行うフルバッチモ−ドと、前記保持具における基板の載置領域の一部に基板を保持させ、残りの載置領域を空き領域とした状態で成膜処理を行うショ−トバッチモ−ドと、を備えた成膜処理装置を用いて成膜処理を行う方法において、
前記空き領域にモニタ−基板を載置してショ−トバッチモ−ドを行う工程と、 この工程の後、前記モニタ−基板の膜厚を測定する工程と、
この工程における膜厚の測定結果に基づいて、空き領域に対応する位置にある装置部品の累積膜厚を予測する工程と、
累積膜厚の予測結果に基づいて、装置部品を洗浄するタイミングを決める工程と、を含むことを特徴とする。
【0007】
この発明における「空き領域にモニタ−基板を載置してショ−トバッチモ−ドを行う工程」は、実際に製品ウエハに対して成膜処理を行う前の調整工程に行ってもよいし、あるいは製品ウエハに対して成膜処理を行う工程において行ってもよい。この発明によれば、空き領域に対応する位置にある装置部品(実施の形態では反応容器及びウエハボ−ト4)に付着する膜の累積膜厚を予測することができ、従って適切なタイミングでメンテナンスを行うことができるので、装置部品からの膜剥がれによるパ−ティクル汚染を防止できる。
【0012】
【発明の実施の形態】
以下に本発明の成膜方法を縦型熱処理装置で実施する例を挙げて、発明の実施の形態を説明する。先ず図1及び図2を参照しながら縦型熱処理装置の構成を説明しておくと、この装置は、例えば両端が開口している内管1a及び上端が閉塞している外管1bからなる例えば石英製の二重管構造の反応管1を備えている。この反応管1内の熱処理雰囲気は制御系から見ると例えば5段のゾ−ンに分割されている。そして反応管1の周囲には例えば抵抗発熱体からなる加熱手段であるヒ−タ2が例えば上下に複数分割例えば5段に分割されており、各段のヒ−タ2a,2b,2c,2d,2eは夫々前記5段のゾ−ンの加熱制御を受け持つように構成されている。
【0013】
内管1a及び外管1bは下部側にて筒状のマニホ−ルド3の上に支持され、このマニホ−ルド3には、内管1aの内側の下部領域に供給口が開口するように複数のガス供給管31(図では便宜上2本のガス供給管31a,31bを示してある。)が設けられると共に、内管1aと外管1bとの間から排気するように図示しない真空ポンプに一端側が接続された排気管32が接続されている。この例では内管1a、外管1b及びマニホ−ルド3により反応容器が構成される。
【0014】
更にマニホ−ルド3の下端開口部を塞ぐように蓋体11が設けられており、この蓋体11はボ−トエレベ−タ12の上に設けられている。蓋体11の上には図示しない駆動部により回転する回転軸13を介して回転台14が設けられ、この回転台14の上には例えば保温筒からなる断熱ユニット15を介して基板保持具であるウエハボ−ト4が搭載されている。ウエハボ−ト4は、図2に示すように天板41及び底板42の間に複数の支柱43を設けて構成され、多数の基板であるウエハWを各ウエハWの周縁を前記支柱43に形成された保持溝44に保持することにより棚状に載置できるように構成されている。ウエハボ−ト4は、製品ウエハWをできるでけ均一な加熱雰囲気に置くためにフルバッチ時には上端側と下端側とにサイドウエハと呼ばれるウエハが載置されると共に処理の状態をモニタ−するモニタ−ウエハも散在して置かれることから、製品ウエハに加えてこれらウエハを見込んだ数の溝が設置され、例えば150枚の製品ウエハWを搭載するものにあっては、170枚分の保持溝44が形成されている。なお図2において30で示す部位はヒ−タ2を含む加熱炉である。
【0015】
更に縦型熱処理装置は図1に示すように制御部5を備えている。この制御部5は簡単に一つのブロックで示してあるが、実際にはレシピやパラメ−タの設定などを行うタッチパネルなどの入力操作部、この入力操作部で指定されたプログラムに応じてヒ−タ2(2a〜2e)の発熱量、処理ガスの流量、反応管1内の圧力などを制御する各コントロ−ラなどを含んでいる。また後述するようにウエハボ−ト4にウエハを搭載するモ−ドとしてフルバッチモ−ド及びショ−トバッチモ−ドが設定できるようになっており、制御部5はこれらモ−ドに応じた各ゾ−ンの温度設定値をメモリから読み出して、この読み出した値と例えば反応管1の内外に設けた温度検出部の検出値とに基づいて例えばPID制御系により各段のヒ−タ2(2a〜2e)の発熱量を制御する機能を備えている。
【0016】
次に、製品ウエハに対して成膜処理を実施する前に行われる調整工程について説明する。上述の縦型熱処理装置では、既述のようにフルバッチモ−ドとショ−トバッチモ−ドとを設定できるようになっており、ここでいうフルバッチモ−ドとは、この例ではウエハボ−ト4に製品ウエハ150枚を含むウエハWを満載した状態である。具体的にはウエハボ−ト4の上段側に6枚のサイドウエハを、また下段側に7枚のサイドウエハを夫々載置すると共に、その間に150枚の製品ウエハを搭載し、更にこの製品ウエハ群の中に7枚のモニタ−ウエハを散在させている。これに対してショ−トバッチモ−ドとは、図3に一例を示すように下段側に7枚のサイドウエハSWを載置し、その上に例えば100枚の製品ウエハPWを載置し、更にその上に5枚のダミ−ウエハDWを載置し、このようにウエハW(総括的にウエハを記載する時には「W」の符号を付すものとする)を下詰めでウエハボ−ト4に搭載するモ−ドであり、これらウエハWの載置領域よりも上段側は、保持溝44にウエハWが載置されない空き領域(未載置領域)となる。
【0017】
この例では、ショ−トバッチモ−ドの種類として100枚の製品ウエハPWを載置する場合の他、50枚の製品ウエハPWを載置する場合、25枚の製品ウエハPWを載置する場合と3種類用意されている。図4はフルバッチモ−ド時におけるウエハWの搭載の態様及び各ショ−トバッチ時におけるウエハWの態様を模式的に示す図であり、いずれの場合も製品ウエハPW群の中に、製品ウエハPWに対する処理の状態を評価するためにモニタ−ウエハMWを介在させている。またショ−トバッチモ−ドにおいても製品ウエハPW群の中にバッチサイズに応じてモニタ−ウエハMWを介在させてあるが、この例では更に製品ウエハPW群における処理ガスの流れの下流側に相当する上方側にダミ−ウエハDWを例えば5枚載置して熱処理の均一性を確保している。なお図のエリアの制限から図4において全体の段数(170段)とウエハの載置領域の割合は揃えていない。
【0018】
そしてフルバッチモ−ド及びショ−トバッチモ−ドにおける各ゾ−ンの設定温度を調整する。図4では、実際の製品を得る場合の態様として製品ウエハPWを記載してあるが、この温度調整工程では製品ウエハPWの代わりにダミ−ウエハDWを用いている。この工程では各モ−ドに対応してウエハボ−ト4にウエハWを搭載し、反応容器内に搬入して実際に製品ウエハに対して行う処理と同じ処理条件で成膜処理(プロセス)を行い、モニタ−ウエハMWに成膜された薄膜の膜厚を調べ、その結果に基づいて各ゾ−ンの設定温度、即ち各段のヒ−タ2(2a〜2e)の制御系に入力される設定温度などのパラメ−タを調整する。なお成膜処理の一例については、製品ウエハの処理の箇所で記載する。
【0019】
そしてショ−トバッチモ−ドにおける調整工程では、空き領域にも図4で点線で示すようにモニタ−ウエハMWを載置し、このモニタ−ウエハMWに成膜された薄膜の膜厚の測定結果と下詰めされたウエハW群内つまり製品ウエハPWが配置される領域(この場合ダミ−ウエハDWが配置されているが)に介在されたモニタ−ウエハMWに成膜された薄膜の膜厚の測定結果とに基づいて、空き領域のモニタ−ウエハMWの成膜速度が、ウエハWが下詰めされた領域の成膜速度と同等かまたは小さくなるように、空き領域に対応するゾ−ンの設定温度を調整する。つまりこの設定温度は、フルバッチモ−ド時における当該ヒ−タ2の設定温度よりも小さくなる。この場合、製品ウエハPWが配置される領域のモニタ−ウエハMWについてウエハ面内の膜厚の均一性、ウエハ間の膜厚の面内均一性を損なわないように温度調整をすることが必要である。また空き領域にモニタ−ウエハMWを載置する場合、その数が多すぎると当該モニタ−ウエハMWにより処理ガスが消費される量が多くなって、実際のプロセス時における空き領域に対応する反応容器の内壁に付着する薄膜の量が評価しにくくなるので、例えば1個のゾ−ンに1枚のモニタ−ウエハMWを配置する。
【0020】
このようにして決めた各段のヒ−タ2の設定温度の一例を図4に示す。ここで説明の便宜上、製品ウエハPWをn枚載置してショ−トバッチを行う場合をLnと記載することにすると、空き領域のモニタ−ウエハMWは、L100では上から7段目に載置され、L50及びL25ではいずれも上から7段目及び46段目に載置されている。図4において、TOPは最上段のゾ−ン、C−Tは上から2段目のゾ−ン、CBは3段目のゾ−ン、C−Bは4段目のゾ−ン、BTMは5段目のゾ−ンである。TOPの設定温度はフルバッチモ−ドでは780℃であるが、L100、L50、L25では775℃と低くなっている。またC−Tの設定温度はフルバッチモ−ドでは770℃であるが、L50、L25では夫々768℃、766℃に設定してある。
【0021】
フルバッチモ−ドの設定温度から分かるように、この例では処理ガスの流れ方向の上流側から下流側にいくに従ってつまりウエハボ−ト43の下から上にいくに従ってプロセス温度770℃を中心として次第に温度が高くなるように傾斜をつけたいわゆるチルト温度制御を行うようにしている。このようにすることによってウエハW間の膜厚の均一性が高くなる。
【0022】
次に上述の縦型熱処理装置を用いて製品ウエハに対して成膜処理を行う様子について述べる。先ずバッチサイズのモ−ド、例えば図4に示したフルバッチ、L100、L50、L25の中から選択したモ−ドを制御部5に入力し、このモ−ドに応じてウエハボ−ト4に図示しない搬送ア−ムからウエハが移載される。ウエハの配列の状態は図4に記載した通りであるが、ショ−トバッチモ−ド(L100、L50、L25)においては、空き領域にモニタ−ウエハMWは配置されない。そしてボ−トエレベ−タ12を上昇させてウエハボ−ト4を反応容器内に搬入し、各ゾ−ンの設定温度を図4に示した値まで所定の昇温速度で大きくする。反応容器内の各ゾ−ンの温度が目標温度に安定した後、ガス供給管31(31a,31b)から所定の処理ガス、例えばジクロルシランガス及びアンモニアガスを所定の流量で供給し、更に不活性ガスとして窒素ガスを所定の流量で供給する。これら処理ガスはウエハボ−ト4の下から上昇し、内管1aで折り返して内管1a及び外管1bの隙間を通って排気管32から排気され、反応容器内は図示しない真空ポンプで真空排気されることにより所定の真空度に維持される。このときウエハボ−ト4は鉛直軸まわりに回転し、ジクロルシランガス及びアンモニアガスが反応してその反応生成物である窒化シリコン膜がウエハW上に堆積して成膜処理が行われる。
【0023】
上述実施の形態によれば、ショ−トバッチモ−ドを行うにあたって予め空き領域にモニタ−ウエハMWを配置し、当該モニタ−ウエハMWの膜厚を測定してその膜厚(成膜速度)が製品ウエハPWの載置領域に置いたウエハWの膜厚(成膜速度)と同等になるように空き領域の設定温度を調整している。空き領域ではウエハWを満載した場合に比べてウエハWが存在しない分だけ装置部品に、この例では反応容器及びウエハボ−ト4に膜が多く付着するが、このように設定温度を調整することにより空き領域とウエハWの載置領域とにおける反応容器及びウエハボ−ト4の累積膜厚が揃うため、メンテナンスサイクル(洗浄サイクル)が短くなることを抑えることができる。
【0024】
以上においてショ−トバッチモ−ドは、ウエハWをウエハボ−ト4に上述のように下詰め配置する場合に限られず、図5(a)に示すようにウエハWをウエハボ−ト4に上詰配置して下側を空き領域とする場合であってもよいし、あるいは図5(b)に示すようにウエハWをウエハボ−ト4の中央部に寄せてその上側及び下側を空き領域とする場合であってもよい。
【0025】
また本発明は、空き領域に配置したモニタ−ウエハMWの膜厚の測定結果に基づいて、上述実施の形態のように設定温度を調整せずに、空き領域に対応する位置にある反応容器及びウエハボ−ト4の累積膜厚を予測するだけの手法も権利範囲に含まれるものである。更に空き領域の設定温度の調整は、空き領域のモニタ−ウエハMWの成膜速度が製品ウエハPWの載置領域に置いたウエハWの成膜速度よりも小さくなるようしてもよい。更にまた温度調整工程だけでなく、製品ウエハPWに対してプロセスを行う場合においても空き領域にモニタ−ウエハMWを配置してその膜厚をモニタ−してもよい。なお本発明は、縦型熱処理装置に限らず横型熱処理装置にも適用できる。
【0026】
【発明の効果】
本発明によれば、基板保持具に基板の最大搭載枚数よりも少ない枚数の基板を搭載するショ−トバッチにより成膜処理を行うにあたって、空き領域にモニタ−ウエハMWを配置して膜厚を測定しているので、空き領域に対応する位置にある装置部品(実施の形態では反応容器及びウエハボ−ト4)に付着する膜の累積膜厚を予測することができ、従って適切なタイミングでメンテナンスを行うことができるので、装置部品からの膜剥がれによるパ−ティクル汚染を防止できる。また前記モニタ−ウエハMWの膜厚の測定結果に基づいて、当該モニタ−ウエハMWの成膜速度が製品ウエハPWの載置領域に置いたウエハWの成膜速度と同等あるいはそれよりも小さくなるように空き領域の設定温度を調整しているため、メンテナンスサイクルが短くなることを抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に用いられる縦型熱処理装置を示す縦断側面図である。
【図2】上記の縦型熱処理装置を示す概観図である。
【図3】ショ−トバッチモ−ドにおけるウエハの載置の態様の一例を示す側面図である。
【図4】フルバッチモ−ド及びショ−トバッチモ−ドにおけるウエハの載置の態様と反応容器内のゾ−ンの設定温度とを対応づけて示す説明図である。
【図5】ショ−トバッチモ−ドにおけるウエハの載置の態様の他の例を示す説明図である。
【図6】従来の手法でショ−トバッチモ−ドにより成膜処理した場合の反応容器の内壁の薄膜の付着の様子を示す説明図である。
【符号の説明】
1 反応管
11 蓋体
2(2a〜2e) ヒ−タ
3 マニホ−ルド
31 ガス供給管
32 排気管
4 ウエハボ−ト
44 保持溝
5 制御部
W ウエハ
PW 製品ウエハ
MW モニタウエハ
DW ダミ−ウエハ
[0001]
[Industrial application fields]
The present invention relates to a film forming method .
[0002]
[Prior art]
For example, a vertical heat treatment apparatus is known as an apparatus that collectively performs a film forming process on a large number of semiconductor wafers (hereinafter referred to as wafers). As shown in FIG. 6, this apparatus holds a large number of wafers W on a wafer boat 91, which is a wafer holder, and loads the wafer W into a vertical reaction vessel 92 from the lower side to open a lower end opening. The wafer W is closed and heated by a heater 93 provided around the reaction vessel 92 to supply a processing gas while heating the wafer W to a predetermined process temperature.
Recently, since a wide variety of semiconductor devices are required, a heat treatment may be required for a wide variety of wafers W in a small lot. For this reason, for example, if processing is performed for 150 wafers as a full product wafer, for example, when the wafer board 91 is in a full batch state in which the wafer boat 91 is fully loaded, a smaller number of wafers, for example, 100, 50, or 25 wafers. A recipe batch mode may be included in the recipe in which a product wafer is mounted on the wafer boat 91 and heat treatment is performed. The mounting state of the wafer W shown in FIG. 6 corresponds to the short batch mode, and the upper side is set as an empty area by lowering the wafer W.
[0003]
When such a short batch mode is performed, it is not advantageous from the viewpoint of cost to fill the wafer boat 91 with a sufficient number of dummy wafers. The reason is that the dummy wafer is expensive and is finally discarded after repeated use, so that the running cost increases. Therefore, by making various arrangements such as placing the product wafer, adjusting the pressure corresponding to the short batch, and using a few dummy wafers, the wafer boat 91 is not fully loaded while forming an empty area. We are considering heat treatment with high uniformity.
[0004]
[Problems to be solved by the invention]
By the way, if a thin film adheres to the inner walls of the wafer boat 91 and the reaction vessel 92 which are apparatus parts exposed to a heat treatment atmosphere and the film thickness increases, the film may be peeled off and a particle may be generated. Accumulated film thicknesses of the inner wall of the wafer boat 91 and the reaction vessel 92 are predicted based on the target film thickness of the wafer, and the timing for cleaning the wafer boat 91 and the reaction vessel 92 is determined based on the prediction result. . However, in the case where a wafer is formed in a short batch, since there is no wafer that consumes the film forming gas in the empty region, the film forming speed in the portion located in the empty region in the wafer boat 91 and the reaction vessel 92 is high. Becomes higher than the film forming speed of the portion located in the region where the film is placed. For this reason, as shown in an image of the reaction vessel 92 in FIG. 6, the accumulated film thickness of the former thin film 90 becomes larger than the accumulated film thickness of the latter thin film 90. As a result, it is necessary to clean the reaction vessel 92 before the predetermined cleaning timing, and there is a problem that the maintenance cycle is shortened. In addition, it is difficult to predict the maintenance cycle because the accumulated film thickness of the portion located in the empty area in the wafer boat 91 and the reaction vessel 92 cannot be grasped.
[0005]
The present invention has been made under such circumstances, and an object of the present invention is to perform a film forming process on a substrate in a short batch mode in which an empty region is present without full loading of the substrate in the holder. It is to provide a technique capable of performing maintenance at an appropriate timing .
[0006]
[Means for Solving the Problems]
In the present invention , the substrate is fully loaded into a holder for arranging and holding a large number of substrates in the length direction of the reaction vessel, the substrate is loaded into the reaction vessel, the inside of the reaction vessel is heated, and a processing gas is supplied into the reaction vessel. A full batch mode for forming a film on the substrate, and a short batch mode for holding the substrate in a part of the mounting area of the substrate in the holder and performing the film forming process with the remaining mounting area as an empty area. In a method for performing a film forming process using a film forming apparatus provided with
A step of placing a monitor substrate in the empty area and performing a shot batch mode; a step of measuring the film thickness of the monitor substrate after this step;
Based on the measurement result of the film thickness in this step, a step of predicting the cumulative film thickness of the device parts at the position corresponding to the empty area;
And a step of determining the timing for cleaning the device parts based on the predicted result of the accumulated film thickness .
[0007]
In the present invention, the “process of placing the monitor substrate in the vacant area and performing the shot batch mode” may be performed in an adjustment process before the film forming process is actually performed on the product wafer. You may perform in the process of performing the film-forming process with respect to a product wafer. According to the present invention, it is possible to predict the accumulated film thickness of the film adhering to the apparatus parts (in the embodiment, the reaction vessel and the wafer boat 4) located at the position corresponding to the empty area, and therefore, maintenance can be performed at an appropriate timing. Therefore, it is possible to prevent particle contamination due to film peeling from the device parts.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to an example in which the film forming method of the present invention is carried out by a vertical heat treatment apparatus. First, the configuration of the vertical heat treatment apparatus will be described with reference to FIGS. 1 and 2. This apparatus is composed of, for example, an inner tube 1a having both ends open and an outer tube 1b having both upper ends closed. A reaction tube 1 having a quartz double tube structure is provided. When viewed from the control system, the heat treatment atmosphere in the reaction tube 1 is divided into, for example, five zones. Around the reaction tube 1, for example, a heater 2 made of a resistance heating element is divided into, for example, a plurality of upper and lower parts, for example, five stages, and the heaters 2a, 2b, 2c, 2d at each stage are divided. , 2e are configured to take charge of heating control of the five zones.
[0013]
The inner pipe 1a and the outer pipe 1b are supported on a cylindrical manifold 3 on the lower side, and a plurality of supply ports are provided in the manifold 3 so that supply ports are opened in a lower region inside the inner pipe 1a. Gas supply pipe 31 (two gas supply pipes 31a and 31b are shown in the figure for the sake of convenience) and one end of a vacuum pump (not shown) is evacuated from between the inner pipe 1a and the outer pipe 1b. An exhaust pipe 32 to which the side is connected is connected. In this example, a reaction vessel is constituted by the inner tube 1a, the outer tube 1b and the manifold 3.
[0014]
Further, a lid 11 is provided so as to close the lower end opening of the manifold 3, and the lid 11 is provided on the boat elevator 12. A rotating table 14 is provided on the lid 11 via a rotating shaft 13 that is rotated by a drive unit (not shown). A substrate holder is provided on the rotating table 14 via a heat insulating unit 15 made of, for example, a heat insulating cylinder. A certain wafer boat 4 is mounted. As shown in FIG. 2, the wafer boat 4 is configured by providing a plurality of support columns 43 between the top plate 41 and the bottom plate 42, and a plurality of wafers W are formed on the support columns 43 at the periphery of each wafer W. By being held in the holding groove 44, it can be placed in a shelf shape. In order to place the product wafer W in a uniform heating atmosphere as much as possible, the wafer boat 4 is a monitor for monitoring a processing state while wafers called side wafers are placed on the upper end side and the lower end side during full batch. Since the wafers are also scattered and arranged, a number of grooves that allow for these wafers are provided in addition to the product wafers. For example, in the case of mounting 150 product wafers W, 170 holding grooves 44 are provided. Is formed. In FIG. 2, a portion indicated by 30 is a heating furnace including the heater 2.
[0015]
Further, the vertical heat treatment apparatus includes a control unit 5 as shown in FIG. Although this control unit 5 is simply shown as one block, in reality, an input operation unit such as a touch panel for setting recipes and parameters, etc., and a program according to a program designated by this input operation unit. Each controller for controlling the calorific value of the heater 2 (2a to 2e), the flow rate of the processing gas, the pressure in the reaction tube 1 and the like is included. As will be described later, a full batch mode and a short batch mode can be set as modes for mounting a wafer on the wafer boat 4, and the control unit 5 can select each zone according to these modes. The temperature setting value is read from the memory, and the heaters 2 (2a to 2a) of each stage are read by the PID control system, for example, based on the read value and the detection value of the temperature detection unit provided inside and outside the reaction tube 1, for example. 2e) is provided.
[0016]
Next, an adjustment process performed before the film forming process is performed on the product wafer will be described. In the above-described vertical heat treatment apparatus, the full batch mode and the short batch mode can be set as described above. In this example, the full batch mode is a product on the wafer board 4. In this state, the wafer W including 150 wafers is fully loaded. Specifically, six side wafers are placed on the upper side of the wafer board 4 and seven side wafers are placed on the lower side, respectively, and 150 product wafers are mounted between them. Seven monitor wafers are scattered in the group. On the other hand, in the short batch mode, as shown in FIG. 3, for example, seven side wafers SW are placed on the lower side, for example, 100 product wafers PW are placed thereon, and further, On this, five dummy wafers DW are mounted, and thus the wafers W (which will be denoted by the symbol “W” when describing the wafers as a whole) are mounted on the wafer boat 4 in a bottom-down manner. The upper stage side of the wafer W mounting area is an empty area (unmounted area) in which the wafer W is not mounted in the holding groove 44.
[0017]
In this example, in addition to the case where 100 product wafers PW are placed as types of the short batch mode, the case where 50 product wafers PW are placed, the case where 25 product wafers PW are placed, and Three types are available. FIG. 4 is a diagram schematically showing a mounting mode of the wafer W in the full batch mode and a mode of the wafer W in each shot batch. In either case, the product wafer PW is included in the product wafer PW group. A monitor-wafer MW is interposed to evaluate the processing state. Also in the short batch mode, the monitor wafer MW is interposed in the product wafer PW group according to the batch size. In this example, it corresponds to the downstream side of the flow of the processing gas in the product wafer PW group. For example, five dummy wafers DW are placed on the upper side to ensure the uniformity of the heat treatment. Note that the total number of stages (170 stages) and the ratio of the wafer placement area are not uniform in FIG.
[0018]
Then, the set temperature of each zone in the full batch mode and the short batch mode is adjusted. In FIG. 4, a product wafer PW is described as an embodiment in the case of obtaining an actual product, but in this temperature adjustment process, a dummy wafer DW is used instead of the product wafer PW. In this step, a wafer W is mounted on the wafer boat 4 corresponding to each mode, and a film formation process (process) is performed under the same processing conditions as those carried into the reaction container and actually performed on the product wafer. The thickness of the thin film formed on the monitor wafer MW is checked, and the set temperature of each zone, that is, the control system of the heaters 2 (2a to 2e) of each stage is input based on the result. Adjust parameters such as set temperature. An example of the film forming process will be described in the processing section of the product wafer.
[0019]
In the adjustment process in the short batch mode, the monitor wafer MW is also placed in the empty area as shown by the dotted line in FIG. 4, and the measurement result of the film thickness of the thin film formed on the monitor wafer MW Measurement of the film thickness of the thin film formed on the monitor wafer MW interposed in the bottom wafer W group, that is, the region where the product wafer PW is disposed (in this case, the dummy wafer DW is disposed). Based on the result, the setting of the zone corresponding to the empty area is set so that the film forming speed of the monitor wafer MW in the empty area is equal to or smaller than the film forming speed of the area in which the wafer W is bottomed. Adjust the temperature. That is, this set temperature is lower than the set temperature of the heater 2 in the full batch mode. In this case, it is necessary to adjust the temperature of the monitor wafer MW in the region where the product wafer PW is disposed so as not to impair the uniformity of the film thickness within the wafer surface and the uniformity of the film thickness between the wafers. is there. When the monitor wafers MW are placed in the empty area, if the number of the monitor wafers MW is too large, the amount of processing gas consumed by the monitor wafer MW increases, and the reaction container corresponding to the empty area in the actual process. Since it is difficult to evaluate the amount of the thin film adhering to the inner wall, for example, one monitor wafer MW is arranged in one zone.
[0020]
An example of the set temperature of the heater 2 at each stage determined in this manner is shown in FIG. Here, for convenience of explanation, when a short batch is performed by placing n product wafers PW, the empty area monitor wafer MW is placed in the seventh row from the top in L100. In L50 and L25, they are placed on the seventh and 46th stages from the top. In FIG. 4, TOP is the uppermost zone, CT is the second zone from the top, CB is the third zone, CB is the fourth zone, and BTM. Is the fifth zone. The set temperature of TOP is 780 ° C. in the full batch mode, but is as low as 775 ° C. in L100, L50, and L25. The set temperature of CT is 770 ° C. in the full batch mode, but is set to 768 ° C. and 766 ° C. in L50 and L25, respectively.
[0021]
As can be seen from the set temperature of the full batch mode, in this example, the temperature gradually increases around the process temperature of 770 ° C. as it goes from the upstream side to the downstream side in the process gas flow direction, that is, from the bottom to the top of the wafer boat 43. So-called tilt temperature control is performed so as to increase the inclination. By doing so, the uniformity of the film thickness between the wafers W increases.
[0022]
Next, a state in which a film forming process is performed on a product wafer using the above-described vertical heat treatment apparatus will be described. First, a batch size mode, for example, a full batch shown in FIG. 4, a mode selected from L100, L50, and L25 is input to the control unit 5 and shown in the wafer boat 4 in accordance with this mode. Wafers are transferred from the transfer arm that does not. The wafer arrangement state is as described in FIG. 4, but in the short batch mode (L100, L50, L25), the monitor wafer MW is not arranged in the empty area. Then, the boat elevator 12 is raised and the wafer boat 4 is carried into the reaction vessel, and the set temperature of each zone is increased to the value shown in FIG. 4 at a predetermined temperature increase rate. After the temperature of each zone in the reaction vessel is stabilized at the target temperature, a predetermined processing gas, such as dichlorosilane gas and ammonia gas, is supplied from the gas supply pipe 31 (31a, 31b) at a predetermined flow rate. Nitrogen gas is supplied as an active gas at a predetermined flow rate. These processing gases rise from under the wafer boat 4, are folded by the inner pipe 1 a, are exhausted from the exhaust pipe 32 through the gap between the inner pipe 1 a and the outer pipe 1 b, and the inside of the reaction vessel is evacuated by a vacuum pump (not shown). As a result, a predetermined degree of vacuum is maintained. At this time, the wafer boat 4 rotates around the vertical axis, the dichlorosilane gas and the ammonia gas react with each other, and a silicon nitride film as a reaction product is deposited on the wafer W to perform a film forming process.
[0023]
According to the above-described embodiment, when the short batch mode is performed, the monitor wafer MW is arranged in advance in the empty area, the film thickness of the monitor wafer MW is measured, and the film thickness (film formation speed) is the product. The set temperature of the vacant area is adjusted so as to be equal to the film thickness (film formation speed) of the wafer W placed in the mounting area of the wafer PW. In the empty area, as much as the wafer W does not exist compared to the case where the wafer W is fully loaded, more film is attached to the apparatus parts, in this example, the reaction vessel and the wafer boat 4. In this way, the set temperature is adjusted. As a result, the accumulated film thicknesses of the reaction vessel and the wafer boat 4 in the empty region and the wafer W mounting region are aligned, so that the maintenance cycle (cleaning cycle) can be prevented from being shortened.
[0024]
In the above, the shot batch mode is not limited to the case where the wafers W are placed under the wafer board 4 as described above, but the wafers W are placed over the wafer board 4 as shown in FIG. In this case, the lower side may be a free area, or the wafer W may be moved to the center of the wafer board 4 as shown in FIG. It may be the case.
[0025]
Further, the present invention is based on the measurement result of the film thickness of the monitor-wafer MW arranged in the empty area, and does not adjust the set temperature as in the above embodiment, and the reaction container at the position corresponding to the empty area, A method of simply predicting the accumulated film thickness of the wafer boat 4 is also included in the scope of rights. Furthermore, the adjustment of the set temperature of the empty area may be such that the film formation speed of the monitor-wafer MW in the empty area is lower than the film formation speed of the wafer W placed in the placement area of the product wafer PW. Furthermore, not only the temperature adjustment step, but also when the process is performed on the product wafer PW, the monitor wafer MW may be arranged in the empty area and the film thickness thereof may be monitored. The present invention can be applied not only to a vertical heat treatment apparatus but also to a horizontal heat treatment apparatus.
[0026]
【The invention's effect】
According to the present invention, when the film forming process is performed by the short batch in which the number of substrates smaller than the maximum number of substrates can be mounted on the substrate holder, the monitor wafer MW is arranged in the empty area and the film thickness is measured. Therefore, it is possible to predict the accumulated film thickness of the film adhering to the device parts (in the embodiment, the reaction vessel and the wafer boat 4) at the position corresponding to the empty area. Therefore, particle contamination due to film peeling from the device parts can be prevented. Further, based on the measurement result of the film thickness of the monitor-wafer MW, the film-forming speed of the monitor-wafer MW is equal to or less than the film-forming speed of the wafer W placed on the product wafer PW mounting area. Since the set temperature of the empty area is adjusted as described above, it is possible to suppress the maintenance cycle from being shortened.
[Brief description of the drawings]
FIG. 1 is a vertical side view showing a vertical heat treatment apparatus used in an embodiment of the present invention.
FIG. 2 is a schematic view showing the vertical heat treatment apparatus.
FIG. 3 is a side view showing an example of a mode of placing a wafer in the short batch mode.
FIG. 4 is an explanatory view showing a state in which a wafer is placed in a full batch mode and a short batch mode and a set temperature of a zone in a reaction vessel in association with each other.
FIG. 5 is an explanatory view showing another example of a wafer mounting mode in a short batch mode.
FIG. 6 is an explanatory view showing a state of adhesion of a thin film on the inner wall of a reaction vessel when a film is formed in a short batch mode by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tube 11 Lid 2 (2a-2e) Heater 3 Manifold 31 Gas supply tube 32 Exhaust tube 4 Wafer boat 44 Holding groove 5 Control part W Wafer PW Product wafer MW Monitor wafer DW Dummy wafer

Claims (1)

多数の基板を反応容器の長さ方向に配列保持する保持具に基板を満載して反応容器内に搬入し、反応容器内を加熱すると共に反応容器内に処理ガスを供給して基板に成膜処理を行うフルバッチモ−ドと、前記保持具における基板の載置領域の一部に基板を保持させ、残りの載置領域を空き領域とした状態で成膜処理を行うショ−トバッチモ−ドと、を備えた成膜処理装置を用いて成膜処理を行う方法において、
空き領域にモニタ−基板を載置してショ−トバッチモ−ドを行う工程と、
この工程の後、前記モニタ−基板の膜厚を測定する工程と、
この工程における膜厚の測定結果に基づいて、空き領域に対応する位置にある装置部品の累積膜厚を予測する工程と、
累積膜厚の予測結果に基づいて、装置部品を洗浄するタイミングを決める工程と、を含むことを特徴とする成膜方法。
The substrate is packed in a holder that holds a large number of substrates in the length direction of the reaction vessel, loaded into the reaction vessel, heated inside the reaction vessel and supplied with processing gas into the reaction vessel to form a film on the substrate. A full batch mode for performing the processing, a short batch mode for performing the film forming process in a state where the substrate is held in a part of the mounting region of the substrate in the holder and the remaining mounting region is an empty region, In a method of performing a film forming process using a film forming apparatus comprising:
A process of placing a monitor substrate in the empty area and performing a shot batch mode;
After this step, measuring the film thickness of the monitor substrate,
Based on the measurement result of the film thickness in this step, a step of predicting the cumulative film thickness of the device parts at the position corresponding to the empty area;
And a step of determining a timing for cleaning the device parts based on a predicted result of the accumulated film thickness .
JP2001109943A 2001-04-09 2001-04-09 Deposition method Expired - Fee Related JP4686887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109943A JP4686887B2 (en) 2001-04-09 2001-04-09 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109943A JP4686887B2 (en) 2001-04-09 2001-04-09 Deposition method

Publications (2)

Publication Number Publication Date
JP2002313728A JP2002313728A (en) 2002-10-25
JP4686887B2 true JP4686887B2 (en) 2011-05-25

Family

ID=18961803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109943A Expired - Fee Related JP4686887B2 (en) 2001-04-09 2001-04-09 Deposition method

Country Status (1)

Country Link
JP (1) JP4686887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133413B1 (en) * 2007-09-26 2012-04-09 도쿄엘렉트론가부시키가이샤 Substrate treatment system, control method of substrate treatment apparatus, and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869892B1 (en) 2004-01-30 2005-03-22 Tokyo Electron Limited Method of oxidizing work pieces and oxidation system
JP4893045B2 (en) * 2006-03-22 2012-03-07 富士通セミコンダクター株式会社 Thin film manufacturing method and thin film manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189465A (en) * 1996-12-26 1998-07-21 Dainippon Screen Mfg Co Ltd Heat treating apparatus for substrate and thin film forming apparatus provided with the apparatus
JP2000340554A (en) * 1999-03-23 2000-12-08 Tokyo Electron Ltd Operation method of batch-type thermal treatment apparatus
JP2001144019A (en) * 1999-11-10 2001-05-25 Tokyo Electron Ltd Batch type heat treatment device
JP2001338883A (en) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device
JP2002025997A (en) * 2000-07-06 2002-01-25 Tokyo Electron Ltd Batch type heat treatment equipment and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189465A (en) * 1996-12-26 1998-07-21 Dainippon Screen Mfg Co Ltd Heat treating apparatus for substrate and thin film forming apparatus provided with the apparatus
JP2000340554A (en) * 1999-03-23 2000-12-08 Tokyo Electron Ltd Operation method of batch-type thermal treatment apparatus
JP2001144019A (en) * 1999-11-10 2001-05-25 Tokyo Electron Ltd Batch type heat treatment device
JP2001338883A (en) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device
JP2002025997A (en) * 2000-07-06 2002-01-25 Tokyo Electron Ltd Batch type heat treatment equipment and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133413B1 (en) * 2007-09-26 2012-04-09 도쿄엘렉트론가부시키가이샤 Substrate treatment system, control method of substrate treatment apparatus, and storage medium

Also Published As

Publication number Publication date
JP2002313728A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP3497450B2 (en) Batch heat treatment apparatus and control method thereof
JP3853302B2 (en) Heat treatment method and heat treatment apparatus
TWI396946B (en) Method of cleaning thin film deposition system, thin film deposition system and program
US7144823B2 (en) Thermal treatment apparatus
KR20070090957A (en) Substrate processing method and substrate processing apparatus
WO2008015912A1 (en) Substrate processing apparatus, program, recording medium and conditioning necessity determining method
TW201546905A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and thermocouple support
JP2002184671A (en) Method and system for substrate treatment
JP2000306850A (en) Wafer-heating apparatus and control method
JP3688264B2 (en) Heat treatment method and heat treatment apparatus
TWI303083B (en)
US20090229634A1 (en) Substrate processing apparatus
WO2005043609A1 (en) Heat treatment apparatus and heat treatment method
JP4686887B2 (en) Deposition method
JP7189326B2 (en) SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
JP6980125B2 (en) Manufacturing method of substrate processing equipment and semiconductor equipment
JP2001144019A (en) Batch type heat treatment device
JP4262908B2 (en) Heat treatment apparatus and heat treatment method
JP6784848B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
TWI777146B (en) Substrate processing apparatus, reaction tube, and manufacturing method of semiconductor device
JP6992156B2 (en) Manufacturing method of processing equipment, exhaust system, semiconductor equipment
JP3400996B1 (en) Heat treatment apparatus and heat treatment method
JP2001160554A (en) Heat treatment apparatus and method thereof
JP5875809B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4246416B2 (en) Rapid heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees