JP4685382B2 - Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model - Google Patents

Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model Download PDF

Info

Publication number
JP4685382B2
JP4685382B2 JP2004224326A JP2004224326A JP4685382B2 JP 4685382 B2 JP4685382 B2 JP 4685382B2 JP 2004224326 A JP2004224326 A JP 2004224326A JP 2004224326 A JP2004224326 A JP 2004224326A JP 4685382 B2 JP4685382 B2 JP 4685382B2
Authority
JP
Japan
Prior art keywords
model
reference plane
vector
arrangement
cylindrical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004224326A
Other languages
Japanese (ja)
Other versions
JP2006048147A (en
Inventor
司 松岡
恒治 新垣
敏明 佐藤
正夫 河野
智洋 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004224326A priority Critical patent/JP4685382B2/en
Publication of JP2006048147A publication Critical patent/JP2006048147A/en
Application granted granted Critical
Publication of JP4685382B2 publication Critical patent/JP4685382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Description

本発明は、三次元形状モデルの配置装置、配置方法に関し、さらに詳しくは、三次元形状モデルを指定した1つの平面に接触するように配置するための事前計算を不要にする三次元形状モデルの配置装置に関するものである。   The present invention relates to a three-dimensional shape model placement apparatus and placement method, and more particularly, to a three-dimensional shape model that eliminates the need for pre-computation for placing the three-dimensional shape model so as to contact one designated plane. The present invention relates to a placement device.

三次元形状モデルを配置する方法としては、ユーザーが三次元CADを操作して、座標値をキーボード入力やマウス操作により、三次元形状モデルを任意の位置や向きに指定する方法が一般的である。一方、実際の運用においては、配置するモデル(配置モデル、元モデル)と基準となるモデル(基準モデル、先モデル)の位置関係を、ユーザーの望むような位置関係になるように、配置モデルの位置や向きを予めユーザーが計算しておいて配置する方法が一般的であった。例えば、球状のモデル(元モデル)を別の平面を持つモデル(先モデル)に球の部分が接するように配置する場合、球の中心座標を平面から球の半径の距離の位置を計算した上で、三次元CADを操作し配置することで、望む配置を行っていた。
また従来技術として特開2000−020756公報には、三次元形状モデル内の要素の三次元空間上の位置や方向を、指定した配置が可能な技術について開示されている。また、特開平08−016826号公報においては、画面上のカーソル位置を指定して、基準平面上に対応する三次元空間上の位置に三次元形状モデルを配置できる技術について開示されている。
特開2000−020756公報 特開平08−016826号公報
As a method for arranging a three-dimensional shape model, a method in which a user operates a three-dimensional CAD and designates a three-dimensional shape model at an arbitrary position and orientation by inputting a coordinate value with a keyboard or a mouse is generally used. . On the other hand, in actual operation, the position of the placement model is set so that the position relationship between the model to be placed (placement model, original model) and the reference model (reference model, previous model) is as desired by the user. A method in which the user calculates and arranges the position and orientation in advance is common. For example, when a spherical model (original model) is placed so that the sphere part touches a model (destination model) with another plane, the center coordinate of the sphere is calculated from the position of the radius of the sphere from the plane. Thus, the desired arrangement was performed by manipulating and arranging the three-dimensional CAD.
As a conventional technique, Japanese Patent Application Laid-Open No. 2000-020756 discloses a technique that allows a specified arrangement of positions and directions of elements in a three-dimensional shape model in a three-dimensional space. Japanese Patent Application Laid-Open No. 08-016826 discloses a technique that allows a three-dimensional shape model to be arranged at a position in a three-dimensional space corresponding to a reference plane by designating a cursor position on a screen.
JP 2000-020756 A Japanese Patent Laid-Open No. 08-016826

このように従来の三次元形状モデルを配置する方法は、事前計算が必要なため作業効率の点で問題があった。
また、特許文献1、2に開示されている従来技術は、いずれの方法も三次元形状モデル内の要素が平面に接するような位置への配置は事前計算なしには不可能である。
本発明は、かかる課題に鑑み、配置モデルが指定した基準平面と接触するような配置を配置モデルと基準平面を指定することにより、事前計算なしにモデル配置を可能とした三次元形状モデルの配置装置を提供することを目的とする。
As described above, the conventional method of arranging the three-dimensional shape model has a problem in terms of work efficiency because it requires pre-calculation.
In addition, according to the conventional techniques disclosed in Patent Documents 1 and 2, it is impossible to place the elements in the three-dimensional shape model at positions where they contact the plane without prior calculation.
In view of such a problem, the present invention provides an arrangement of a three-dimensional shape model that enables model arrangement without prior calculation by designating an arrangement model and a reference plane such that the arrangement model contacts a reference plane designated by the arrangement model. An object is to provide an apparatus.

本発明はかかる課題を解決するために、請求項1は、三次元形状モデルを配置する三次元形状モデルの配置装置であって、配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備え、前記円柱面指定部により円柱面を入力し、前記第1基準平面指定部及び第2基準平面指定部により、それぞれ前記第1の基準平面と前記第2の基準平面を指定し、前記モデル移動部により、前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動することを特徴とする。
本発明の他の特徴は、円柱面を2つの基準面に対して同時に接触して配置できる点である。そのために円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動する。
請求項2は、柱面指定部、第1基準平面指定部、第2基準平面指定部、及びモデル移動部と、を備えた配置装置に係る三次元形状モデルの配置方法であって、前記円柱面指定部が配置モデルと該配置モデルの円柱面を入力として受け付けるステップと、前記第1基準平面指定部が第1の基準平面を入力として受け付けるステップと、前記第2基準平面指定部が第2の基準平面を入力として受け付けるステップと、前記モデル移動部が、前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動するステップとを含むことを特徴とする。
In order to solve this problem, the present invention provides a three-dimensional shape model placement apparatus for placing a three-dimensional shape model, and accepts a placement model and a cylindrical surface of the placement model as input. A first reference plane designating unit that accepts a first reference plane as an input, a second reference plane designating unit that accepts a second reference plane as an input, and the first reference plane and the second reference plane A model moving unit that moves the arrangement model by calculating a movement vector of the arrangement model by a predetermined method so that the cylinder surface is in contact, and inputs the cylinder surface by the cylinder surface designation unit, by the first reference plane specifying unit and the second reference plane specifying unit, respectively specify the second reference plane and the first reference plane, by the model moving portion, the first reference plane and the first A direction vector parallel to the intersection line of the reference plane is calculated, and the placement model is centered on the center point of the bounding box of the placement model, with the outer product of the center axis vector of the cylindrical surface and the direction vector as an axis, The arrangement model is rotated by an angle formed by the center axis vector and the intersection line vector so that the center axis vector and the intersection line vector are in the same direction, and the first reference plane and the second reference plane are rotated. The arrangement model is moved by calculating a movement vector of the arrangement model such that the cylindrical surface is in contact with the arrangement model .
Another feature of the present invention is that the cylindrical surface can be placed in contact with two reference surfaces simultaneously. For this purpose, a cylindrical surface is input, a first reference surface and a second reference surface are designated, a movement vector is calculated so that the cylindrical surface is in contact with these surfaces, and the arrangement model is moved.
Claim 2, the circular cylindrical surface specifying portion, the first reference plane specifying unit, a second reference plane specifying unit, a method of arranging the three-dimensional shape model of the deployment device having a及beauty model mobile unit, the The cylindrical surface designating unit accepting an arrangement model and the cylindrical surface of the arrangement model as input, the first reference plane designating unit accepting a first reference plane as input, and the second reference plane designating unit Receiving a second reference plane as an input, and the model moving unit calculates a direction vector parallel to an intersection line of the first reference plane and the second reference plane, and Centering on the center point of the bounding box of the placement model, the placement model is arranged so that the center axis vector and the intersecting line vector are in the same direction with the outer product of the center axis vector and the direction vector of the cylindrical surface in front The arrangement model is calculated by calculating a movement vector of the arrangement model so as to rotate by an angle formed by a central axis vector and the intersection line vector, and so that the cylindrical surface is in contact with the first reference plane and the second reference plane. The step of moving is included.

請求項3は、コンピュータを、配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動するモデル移動部と、として機能させる、ことを特徴とする。
請求項4は、請求項3に記載の三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする。
According to a third aspect of the present invention, the computer includes a placement model, a cylindrical surface designating unit that accepts the cylindrical surface of the placement model as input, a first reference plane designating unit that accepts the first reference plane as input, and a second reference plane. Calculating a direction vector parallel to the intersection of the second reference plane designating unit, the first reference plane and the second reference plane, which is accepted as an input, and determining the placement model as the center point of the bounding box of the placement model Centering on the center axis vector and the direction vector, and the center axis vector and the intersection line vector have the same direction as the center line vector and the direction line vector. The arrangement model is rotated by calculating the movement vector of the arrangement model so that the cylindrical surface is in contact with the first reference plane and the second reference plane. And model moving unit for moving, to function as, and wherein the.
According to a fourth aspect of the present invention, the three-dimensional shape model arrangement program according to the third aspect is recorded in a computer-readable format.

また請求項1、2では、円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動するので、三次元形状モデルを指定した2つの平面に接触するように配置することができる。
また請求項では、本発明の三次元形状モデルの配置方法をコンピュータが制御可能なOSに従ってプログラミングすることにより、そのOSを備えたコンピュータであれば同じ処理方法により制御することができる。
また請求項では、三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録媒体に記録することにより、この記録媒体を持ち運ぶことにより何処でもプログラムを稼動することができる。
Further, in claims 1 and 2 , a cylindrical surface is input, a first reference surface and a second reference surface are designated, and a movement vector is calculated so that the cylindrical surface is in contact with these surfaces to move the arrangement model. Therefore, the three-dimensional shape model can be arranged so as to contact two designated planes.
Further in claim 3, by programming according to the OS arrangement method capable of controlling a computer to take a three-dimensional shape model of the present invention can be controlled by the same processing method as long as the computer with its OS.
According to a fourth aspect of the present invention, by recording the three-dimensional shape model arrangement program on a recording medium in a computer-readable format, the program can be operated anywhere by carrying the recording medium.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の三次元形状モデルの配置装置の構成を示す図である。この三次元形状モデルの配置装置100は、配置モデルとこの配置モデルの配置要素(平面、円柱面、球面、頂点の何れか)を指定するモデル指定部1と、配置要素と平行な基準平面を入力として受け付ける平面指定部2と、操作者12が入力した配置要素の移動方向を入力として受け付ける方向指定部3と、配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部4と、配置モデルの移動ベクトルを基準平面と配置要素が接触するように、若しくは配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して配置モデルを移動するモデル移動部5と、三次元形状データ10を読み込み、三次元形状データを保持する三次元形状データ処理部6と、三次元形状データをディスプレイ11に表示する表示処理部7とを備えて構成される。
本実施形態の三次元形状モデルの配置装置100は、モデル指定部1、平面指定部2、方向指定部3、オフセット値指定部4、及びモデル移動部5を備えている。これにより、配置すべきモデルとその要素、例えば平面、円柱面、球面といった配置要素を入力する。また配置モデルに対して基準となる基準面を入力し、その基準面に対して配置モデルをどの方向に移動するかを指定する。また配置モデルと基準面との間にはオフセット値があるのでその値を指定しておき、配置モデルの移動ベクトルを配置モデルと基準面が接触するように計算したり、オフセット値だけ離れるように計算して配置モデルを移動して配置する。これにより、三次元形状モデルを指定した1つの平面に接触するように配置することができる。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a diagram showing a configuration of a three-dimensional shape model arrangement apparatus according to the present invention. The three-dimensional shape model placement apparatus 100 includes a model designating unit 1 that designates a placement model and a placement element (any one of a plane, a cylindrical surface, a spherical surface, and a vertex) of the placement model, and a reference plane parallel to the placement element. The plane designation unit 2 that accepts as an input, the direction designation unit 3 that accepts the movement direction of the placement element input by the operator 12 as an input, and the offset value designation unit 4 that accepts an offset value between the placement element and the reference plane as an input Then, the movement model of the placement model is calculated by a predetermined method so that the reference plane and the placement element are in contact with each other, or the placement element and the reference plane are separated by an offset value, and the placement model is moved. The model moving unit 5, the 3D shape data 10 is read, the 3D shape data processing unit 6 that holds the 3D shape data, and the 3D shape data is decoded. It constituted a display unit 7 for displaying the spray 11.
The three-dimensional shape model arrangement apparatus 100 according to the present embodiment includes a model specifying unit 1, a plane specifying unit 2, a direction specifying unit 3, an offset value specifying unit 4, and a model moving unit 5. As a result, the model to be placed and its elements, for example, placement elements such as a plane, a cylindrical surface, and a spherical surface are input. Also, a reference plane serving as a reference is input to the arrangement model, and a direction in which the arrangement model is moved with respect to the reference plane is designated. Also, since there is an offset value between the placement model and the reference plane, specify that value and calculate the movement vector of the placement model so that the placement model and the reference plane are in contact, or so that the offset value is separated. Calculate and move the placement model to place it. As a result, the three-dimensional shape model can be arranged so as to contact one designated plane.

図2は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは平面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその平面(配置平面)を入力として受け付ける(S1)。次に平面指定部2が配置平面と平行な基準平面を入力として受け付ける(S2)。次に方向指定部3が移動方向を入力として受け付ける(S3)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S4)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S5)。
図3は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは円柱面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその円柱面を入力として受け付ける(S11)。次に平面指定部2が円柱面の中心軸に平行な基準平面を入力として受け付ける(S12)。次に方向指定部3が移動方向を入力として受け付ける(S13)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S14)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−r−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S15)。
FIG. 2 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a plane.
First, the model designating unit 1 accepts an arrangement model and its plane (placement plane) as inputs (S1). Next, the plane designating unit 2 receives a reference plane parallel to the arrangement plane as an input (S2). Next, the direction specifying unit 3 receives the moving direction as an input (S3). Next, the offset value specifying unit 4 receives the offset value as an input (S4). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −f) / ip (M, −N) * M (provided that the origin coordinate of the reference plane is H, the reference Normal vector of plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, vector X And the vector inner product of the vector Y: ip (X, Y)) and the arrangement model is moved (S5).
FIG. 3 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a cylindrical surface.
First, the model designating unit 1 accepts an arrangement model and its cylindrical surface as input (S11). Next, the plane designating unit 2 accepts as input a reference plane parallel to the central axis of the cylindrical surface (S12). Next, the direction designating unit 3 accepts the moving direction as an input (S13). Next, the offset value specifying unit 4 receives the offset value as an input (S14). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −r−f) / ip (M, −N) * M (where the origin coordinate of the reference plane is H , Normal vector of reference plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, The inner model of the vector X and the vector Y: ip (X, Y)) is calculated and the placement model is moved (S15).

図4は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは球面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその球面を入力として受け付ける(S21)。次に平面指定部2が球面の中心軸に平行な基準平面を入力として受け付ける(S22)。次に方向指定部3が移動方向を入力として受け付ける(S23)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S24)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−r−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S25)。
図5は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは頂点を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその頂点を入力として受け付ける(S31)。次に平面指定部2が頂点の中心軸に平行な基準平面を入力として受け付ける(S32)。次に方向指定部3が移動方向を入力として受け付ける(S33)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S34)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S35)。
FIG. 4 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a spherical surface.
First, the model designating unit 1 accepts an arrangement model and its spherical surface as input (S21). Next, the plane designating unit 2 receives a reference plane parallel to the central axis of the spherical surface as an input (S22). Next, the direction designating unit 3 accepts the moving direction as an input (S23). Next, the offset value specifying unit 4 receives the offset value as an input (S24). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −r−f) / ip (M, −N) * M (where the origin coordinate of the reference plane is H , Normal vector of reference plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, The inner model of the vector X and the vector Y: ip (X, Y)) is calculated and the placement model is moved (S25).
FIG. 5 is an operation flowchart of the three-dimensional shape model arrangement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having vertices.
First, the model designating unit 1 accepts an arrangement model and its vertex as input (S31). Next, the plane designating unit 2 accepts as input a reference plane parallel to the central axis of the vertex (S32). Next, the direction designating unit 3 accepts the moving direction as an input (S33). Next, the offset value specifying unit 4 receives the offset value as an input (S34). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −f) / ip (M, −N) * M (provided that the origin coordinate of the reference plane is H, the reference Normal vector of plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, vector X And the vector inner product of the vector Y: ip (X, Y)) and the arrangement model is moved (S35).

図6は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは円柱面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその頂点を入力として受け付ける(S41)。次に平面指定部2が円柱面の中心軸に平行な基準平面1を入力として受け付ける(S42)。次に平面指定部2が円柱面の中心軸に平行な基準平面2を入力として受け付ける(S43)。基準平面1と基準平面2の交線に平行な方向ベクトルDを、D=op(N1、N2)(但し、ベクトルXとベクトルYのベクトル外積をop(X、Y))により計算する(S44)。次に配置モデルをその境界箱の中心点Bを中心に、円柱面の中心軸ベクトルLと交線ベクトルDの外積を軸としてLとDが同じ方向になるように配置モデルをLとDが成す角度だけ回転する(S45)。配置モデルを構成する各点Pは、以下の式に基づき回転する。Pr=R(B、op(L、D)、arccos(ip(L、D)))*(P−B)+B(但し、配置モデルの境界箱の中心点:B、円柱面の中心点:C、円柱面の中心軸ベクトル:L、円柱面の半径:r、基準平面1の原点座標H1、法線ベクトルN1、基準平面2の原点座標H2、法線ベクトルN2、中心点がo、回転軸ベクトルv、a度回転する行列をR(o、v、a)、ベクトルXとベクトルYのベクトル外積をop(X、Y)、逆余弦関数をarccos()、行列RとベクトルXの積をR*X)とする。次に配置モデルの移動ベクトルTを、T=(r−ip(H1−C’、N1))*N1+(r−ip(H2−C’、N2))*N2(但し、基準平面1の原点座標H1、法線ベクトルN1、基準平面2の原点座標H2、法線ベクトルN2、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y)、回転後の円柱面の中心点をC’、円柱面の半径をr)により計算し配置モデルを移動する(S46)。
このように本発明の他の特徴は、円柱面を2つの基準面に対して同時に接触して配置できる点である。そのために円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動する。
FIG. 6 is an operation flowchart of the three-dimensional shape model arrangement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a cylindrical surface.
First, the model designating unit 1 accepts an arrangement model and its vertex as input (S41). Next, the plane designating unit 2 receives the reference plane 1 parallel to the central axis of the cylindrical surface as an input (S42). Next, the plane designating unit 2 receives the reference plane 2 parallel to the central axis of the cylindrical surface as an input (S43). A direction vector D parallel to the intersection line of the reference plane 1 and the reference plane 2 is calculated by D = op (N1, N2) (where the vector outer product of the vector X and the vector Y is op (X, Y)) (S44). ). Next, the placement models L and D are arranged so that L and D are in the same direction around the center point B of the bounding box and the outer product of the center axis vector L and the intersection vector D of the cylindrical surface. It rotates by the angle formed (S45). Each point P constituting the placement model rotates based on the following equation. Pr = R (B, op (L, D), arccos (ip (L, D))) * (P−B) + B (However, the center point of the bounding box of the arrangement model: B, the center point of the cylindrical surface: C, center axis vector of cylindrical surface: L, radius of cylindrical surface: r, origin coordinate H1 of reference plane 1, normal vector N1, origin coordinate H2 of reference plane 2, normal vector N2, center point o, rotation The axis vector v, a matrix rotating by a degrees is R (o, v, a), the vector outer product of the vector X and the vector Y is op (X, Y), the inverse cosine function is arccos (), and the product of the matrix R and the vector X Is R * X). Next, the movement vector T of the arrangement model is set to T = (r−ip (H1−C ′, N1)) * N1 + (r−ip (H2−C ′, N2)) * N2 (however, the origin of the reference plane 1) Coordinate H1, normal vector N1, origin coordinate H2 of reference plane 2, normal vector N2, product of scalar a and vector X: a * X, vector inner product of vector X and vector Y: ip (X, Y), rotation The center point of the subsequent cylindrical surface is calculated by C ′, and the radius of the cylindrical surface is calculated by r) to move the arrangement model (S46).
Thus, another feature of the present invention is that the cylindrical surface can be placed in contact with two reference surfaces simultaneously. For this purpose, a cylindrical surface is input, a first reference surface and a second reference surface are designated, a movement vector is calculated so that the cylindrical surface is in contact with these surfaces, and the arrangement model is moved.

図7は円柱面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。図7(a)は配置前の画面例を示す図であり、図7(b)は配置後の画面例を示す図である。符号20は配置する円柱面を含むパーツを表し、符号21は基準面を含むパーツを表し、矢印22は移動方向を表す。
図8は球面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。図8(a)は配置前の画面例を示す図であり、図8(b)は配置後の画面例を示す図である。符号25は配置モデルと球面を表し、符号26はその移動方向を表し、符号27は基準平面を表す。
図9は円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。図9(a)は配置前の画面例を示す上面図であり、図9(b)は配置前の画面例を示す斜視図であり、図9(c)は配置後の画面例を示す上面図であり、図9(d)は配置後の画面例を示す斜視図である。符号30は基準平面1を表し、符号31は基準平面2を表し、符号32は配置モデルと円柱面を表す。
図10は円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。図10(a)は配置前の画面例を示す図であり、図10(b)は配置後の画面例を示す図である。符号35は配置する円柱面を含むパーツを表し、符号36は基準面1を含むパーツを表し、符号37は基準面2を含むパーツを表す。
FIG. 7 is a diagram showing an example of a screen on which an arrangement model having a cylindrical surface is arranged so as to contact one plane. FIG. 7A is a diagram illustrating a screen example before arrangement, and FIG. 7B is a diagram illustrating a screen example after arrangement. Reference numeral 20 represents a part including a cylindrical surface to be arranged, reference numeral 21 represents a part including a reference surface, and an arrow 22 represents a moving direction.
FIG. 8 is a diagram showing an example of a screen on which an arrangement model having a spherical surface is arranged so as to contact one plane. FIG. 8A is a diagram showing an example of a screen before arrangement, and FIG. 8B is a diagram showing an example of a screen after arrangement. Reference numeral 25 represents an arrangement model and a spherical surface, reference numeral 26 represents a moving direction thereof, and reference numeral 27 represents a reference plane.
FIG. 9 is a diagram illustrating a screen example in which an arrangement model having a cylindrical surface is arranged so as to be in contact with two planes. FIG. 9A is a top view showing a screen example before placement, FIG. 9B is a perspective view showing a screen example before placement, and FIG. 9C is a top view showing a screen example after placement. FIG. 9D is a perspective view showing an example of the screen after arrangement. Reference numeral 30 represents the reference plane 1, reference numeral 31 represents the reference plane 2, and reference numeral 32 represents the arrangement model and the cylindrical surface.
FIG. 10 is a diagram illustrating an example of a screen on which an arrangement model having a cylindrical surface is arranged so as to contact two planes. FIG. 10A is a diagram illustrating a screen example before arrangement, and FIG. 10B is a diagram illustrating a screen example after arrangement. Reference numeral 35 represents a part including a cylindrical surface to be arranged, reference numeral 36 represents a part including the reference plane 1, and reference numeral 37 represents a part including the reference plane 2.

本発明の三次元形状モデルの配置装置の構成を示す図である。It is a figure which shows the structure of the arrangement | positioning apparatus of the three-dimensional shape model of this invention. 本発明の三次元形状モデルの配置装置100の動作フローチャートである(平面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a plane). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(円柱面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a cylindrical surface). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(球面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a spherical surface). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(頂点を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a vertex). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(円柱面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a cylindrical surface). 円柱面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that it may touch 1 plane. 球面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a spherical surface so that it may touch 1 plane. 円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that two planes may be contacted. 円柱面を持つ配置モデルを2平面に接触するように配置する他の画面例を示す図である。It is a figure which shows the other example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that two planes may be contacted.

符号の説明Explanation of symbols

1 モデル指定部、2 平面指定部、3 方向指定部、4 オフセット値指定部、5 モデル移動部、6 三次元形状データ処理部、7 表示処理部、10 三次元形状データ、10 三次元形状データ、11 ディスプレイ、100 三次元形状モデルの配置装置   1 model specification unit, 2 plane specification unit, 3 direction specification unit, 4 offset value specification unit, 5 model moving unit, 6 3D shape data processing unit, 7 display processing unit, 10 3D shape data, 10 3D shape data 11 Display, 100 Three-dimensional shape model placement device

Claims (4)

三次元形状モデルを配置する三次元形状モデルの配置装置であって、配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備え、
前記円柱面指定部により円柱面を入力し、前記第1基準平面指定部及び第2基準平面指定部により、それぞれ前記第1の基準平面と前記第2の基準平面を指定し、
前記モデル移動部により、前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動する、
ことを特徴とする三次元形状モデルの配置装置。
A three-dimensional shape model placement device for placing a three-dimensional shape model, a cylindrical surface designating unit that accepts a placement model and a cylindrical surface of the placement model as input, and a first reference plane that accepts a first reference plane as input The movement vector of the arrangement model is set in advance so that the cylindrical surface is in contact with the designation unit, the second reference plane designation unit that receives the second reference plane as an input, and the first reference plane and the second reference plane. A model moving unit that calculates and moves the arrangement model by a determined method,
A cylindrical surface is input by the cylindrical surface specifying unit, the first reference plane and the second reference plane are respectively specified by the first reference plane specifying unit and the second reference plane specifying unit,
The model moving unit calculates a direction vector parallel to an intersection line of the first reference plane and the second reference plane, and the placement model is centered on a center point of a bounding box of the placement model. Centering on the outer product of the central axis vector of the cylindrical surface and the direction vector as an axis, the arrangement model is only an angle formed by the central axis vector and the intersection line vector so that the central axis vector and the intersection line vector have the same direction. Rotating, moving the placement model by calculating a movement vector of the placement model so that the cylindrical surface is in contact with the first reference plane and the second reference plane;
An apparatus for arranging a three-dimensional shape model.
柱面指定部、第1基準平面指定部、第2基準平面指定部、及びモデル移動部と、を備えた配置装置に係る三次元形状モデルの配置方法であって、前記円柱面指定部が配置モデルと該配置モデルの円柱面を入力として受け付けるステップと、
前記第1基準平面指定部が第1の基準平面を入力として受け付けるステップと、
前記第2基準平面指定部が第2の基準平面を入力として受け付けるステップと、
前記モデル移動部が、前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動するステップと、
を含むことを特徴とする三次元形状モデルの配置方法。
Circular cylindrical surface specifying portion, the first reference plane specifying unit, a second reference plane specifying unit, a method of arranging the three-dimensional shape model of the deployment device having a及beauty model moving portion, the cylindrical surface designated Receiving a placement model and a cylindrical surface of the placement model as input;
The first reference plane designating unit accepting a first reference plane as input;
The second reference plane designating unit accepting a second reference plane as input;
The model moving unit calculates a direction vector parallel to an intersection line of the first reference plane and the second reference plane, and the placement model is centered on a center point of a bounding box of the placement model. Centering on the outer product of the central axis vector of the cylindrical surface and the direction vector as an axis, the arrangement model is only an angle formed by the central axis vector and the intersection line vector so that the central axis vector and the intersection line vector have the same direction. Rotating to move the placement model by calculating a movement vector of the placement model so that the cylindrical surface is in contact with the first reference plane and the second reference plane;
A method for arranging a three-dimensional shape model, comprising:
コンピュータを、
配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、
第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、
前記第1の基準平面及び前記第2の基準平面の交線に平行な方向ベクトルを計算し、前記配置モデルを、当該配置モデルの境界箱の中心点を中心に、前記円柱面の中心軸ベクトルと前記方向ベクトルの外積を軸として、前記中心軸ベクトルと前記交線ベクトルが同じ方向となるように、前記配置モデルを前記中心軸ベクトルと前記交線ベクトルが成す角度だけ回転し、前記第1の基準平面及び前記第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを計算して前記配置モデルを移動するモデル移動部と、
として機能させることを特徴とする三次元形状モデルの配置プログラム。
Computer
A cylindrical surface designating unit that accepts the arrangement model and the cylindrical surface of the arrangement model as input;
A first reference plane designating unit that accepts a first reference plane as an input, a second reference plane designating unit that accepts a second reference plane as an input,
A direction vector parallel to an intersection line of the first reference plane and the second reference plane is calculated, and the arrangement model is centered on a center point of a boundary box of the arrangement model, and a central axis vector of the cylindrical surface And rotating the arrangement model by an angle formed by the central axis vector and the intersection line vector so that the central axis vector and the intersection line vector are in the same direction. A model moving unit that moves the placement model by calculating a movement vector of the placement model so that the cylindrical surface is in contact with the reference plane and the second reference plane;
An arrangement program for a three-dimensional shape model characterized by functioning as
請求項3に記載の三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする記録媒体。   4. A recording medium in which the three-dimensional shape model arrangement program according to claim 3 is recorded in a computer-readable format.
JP2004224326A 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model Expired - Fee Related JP4685382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224326A JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224326A JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Publications (2)

Publication Number Publication Date
JP2006048147A JP2006048147A (en) 2006-02-16
JP4685382B2 true JP4685382B2 (en) 2011-05-18

Family

ID=36026658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224326A Expired - Fee Related JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Country Status (1)

Country Link
JP (1) JP4685382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224084B (en) 2015-09-30 2018-04-24 深圳多新哆技术有限责任公司 Determine the method and device of virtual article position in Virtual Space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129764A (en) * 1988-11-10 1990-05-17 Nec Corp Three-dimensional shape model operating device
JPH03288274A (en) * 1990-04-04 1991-12-18 Hitachi Ltd Graphic position designating method for graphic processing system
JPH05242175A (en) * 1992-03-03 1993-09-21 Chubu Nippon Denki Software Kk Shape arrangement system
JPH06215050A (en) * 1993-01-13 1994-08-05 Ricoh Co Ltd Graphic moving system
JPH0844908A (en) * 1994-07-26 1996-02-16 Fujitsu Ltd Processor and method for three-dimensional image processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129764A (en) * 1988-11-10 1990-05-17 Nec Corp Three-dimensional shape model operating device
JPH03288274A (en) * 1990-04-04 1991-12-18 Hitachi Ltd Graphic position designating method for graphic processing system
JPH05242175A (en) * 1992-03-03 1993-09-21 Chubu Nippon Denki Software Kk Shape arrangement system
JPH06215050A (en) * 1993-01-13 1994-08-05 Ricoh Co Ltd Graphic moving system
JPH0844908A (en) * 1994-07-26 1996-02-16 Fujitsu Ltd Processor and method for three-dimensional image processing

Also Published As

Publication number Publication date
JP2006048147A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP2020179466A (en) Trajectory planning device and trajectory planning method and program
US20160328887A1 (en) Systems and methods for providing assistance for manipulating objects using virtual proxies and virtual replicas
JP2018134703A (en) Robot simulator, robot system, and simulation method
JP2007286976A (en) Robot simulation apparatus
JP2018008347A (en) Robot system and operation region display method
JP2008257467A (en) Information processor and display method
JP2016093869A (en) Teaching data creation method, creation device, and creation program, and, data structure of teaching data, and recording medium
EP3295303B1 (en) Annotation creation system and method
JP5549716B2 (en) Robot system and teaching method
JP3663219B2 (en) Geometric constraint display device
JP4685382B2 (en) Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model
JP2005526310A (en) System and method for identifying elliptic parameters
TWI827887B (en) Method and head-mounted device for capturing real-world information into virtual environment
JP2009086842A (en) Harness design support device, method and program
JP6526851B2 (en) Graphic processing apparatus and graphic processing program
EP3295291B1 (en) Drawing object inferring system and method
JP2006209656A (en) Local coordinate system determination program
JP2010044440A (en) Three-dimensional shape processing apparatus and processing method
JP4525632B2 (en) Outline point drawing method and apparatus
JP2007101229A (en) Method and system for 3-dimensional measurement and control method and device of manipulator
JPH09185455A (en) Method and device for graphic data processing
JP4946936B2 (en) Three-dimensional model joint setting method and joint setting program
Chang et al. CoFabs: An Interactive Fabrication Process Framework
US20160334971A1 (en) Object Manipulation System and Method
WO2001035239A1 (en) Computerized mechanical synthesis and modeling in cad applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees