JP2006048147A - Three-dimensional shape model arrangement device, arrangement method, arrangement program, and recording medium - Google Patents

Three-dimensional shape model arrangement device, arrangement method, arrangement program, and recording medium Download PDF

Info

Publication number
JP2006048147A
JP2006048147A JP2004224326A JP2004224326A JP2006048147A JP 2006048147 A JP2006048147 A JP 2006048147A JP 2004224326 A JP2004224326 A JP 2004224326A JP 2004224326 A JP2004224326 A JP 2004224326A JP 2006048147 A JP2006048147 A JP 2006048147A
Authority
JP
Japan
Prior art keywords
model
arrangement
reference plane
placement
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004224326A
Other languages
Japanese (ja)
Other versions
JP4685382B2 (en
Inventor
Tsukasa Matsuoka
司 松岡
Koji Aragaki
恒治 新垣
Toshiaki Sato
敏明 佐藤
Masao Kono
正夫 河野
Tomohiro Tamura
智洋 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004224326A priority Critical patent/JP4685382B2/en
Publication of JP2006048147A publication Critical patent/JP2006048147A/en
Application granted granted Critical
Publication of JP4685382B2 publication Critical patent/JP4685382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shape model arrangement device which can arrange an arrangement model without prior computation by designating the arrangement model in which an arrangement may get in contact with a reference plane designated by the arrangement model and the reference plane. <P>SOLUTION: The three-dimensional shape model arrangement device 100 comprises a model designation part 1 which designates an arrangement model and its arrangement element (plane, columnar surface, spherical surface, or vertex), a plane designation part 2 which receives as input a reference plane parallel to the arrangement element, a direction designation part 3 which receives as an input the moving direction of an arrangement element which an operator 12 inputs, an offset value designation part 4 which receives as an input an offset value between the arrangement element and the reference plane, a model moving part 5 which computes the motion vector of the arrangement model by using a preliminarily determined method so that the reference plane may get in contact with the arrangement element or the arrangement element may be at a distance corresponding to an offset value from the reference plane, a three-dimensional data processing part 6 which reads and holds three-dimensional data 10, and a display processing part 7 which displays the three-dimensional data on a display 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、三次元形状モデルの配置装置、配置方法に関し、さらに詳しくは、三次元形状モデルを指定した1つの平面に接触するように配置するための事前計算を不要にする三次元形状モデルの配置装置に関するものである。   The present invention relates to a three-dimensional shape model placement apparatus and placement method, and more particularly, to a three-dimensional shape model that eliminates the need for pre-computation for placing the three-dimensional shape model so as to contact one specified plane. The present invention relates to a placement device.

三次元形状モデルを配置する方法としては、ユーザーが三次元CADを操作して、座標値をキーボード入力やマウス操作により、三次元形状モデルを任意の位置や向きに指定する方法が一般的である。一方、実際の運用においては、配置するモデル(配置モデル、元モデル)と基準となるモデル(基準モデル、先モデル)の位置関係を、ユーザーの望むような位置関係になるように、配置モデルの位置や向きを予めユーザーが計算しておいて配置する方法が一般的であった。例えば、球状のモデル(元モデル)を別の平面を持つモデル(先モデル)に球の部分が接するように配置する場合、球の中心座標を平面から球の半径の距離の位置を計算した上で、三次元CADを操作し配置することで、望む配置を行っていた。
また従来技術として特開2000−020756公報には、三次元形状モデル内の要素の三次元空間上の位置や方向を、指定した配置が可能な技術について開示されている。また、特開平08−016826号公報においては、画面上のカーソル位置を指定して、基準平面上に対応する三次元空間上の位置に三次元形状モデルを配置できる技術について開示されている。
特開2000−020756公報 特開平08−016826号公報
As a method for arranging a three-dimensional shape model, a method in which a user operates a three-dimensional CAD and designates a three-dimensional shape model at an arbitrary position and orientation by inputting a coordinate value with a keyboard or a mouse is generally used. . On the other hand, in actual operation, the position of the placement model is set so that the position relationship between the model to be placed (placement model, original model) and the reference model (reference model, previous model) is as desired by the user. A method in which the user calculates and arranges the position and orientation in advance is common. For example, when a spherical model (original model) is placed so that the sphere part touches a model (destination model) with another plane, the center coordinate of the sphere is calculated from the position of the radius of the sphere from the plane. Thus, the desired arrangement was performed by manipulating and arranging the three-dimensional CAD.
As a conventional technique, Japanese Patent Application Laid-Open No. 2000-020756 discloses a technique that allows a specified arrangement of positions and directions of elements in a three-dimensional shape model in a three-dimensional space. Japanese Patent Application Laid-Open No. 08-016826 discloses a technique that allows a three-dimensional shape model to be arranged at a position in a three-dimensional space corresponding to a reference plane by designating a cursor position on a screen.
JP 2000-020756 A Japanese Patent Laid-Open No. 08-016826

このように従来の三次元形状モデルを配置する方法は、事前計算が必要なため作業効率の点で問題があった。
また、特許文献1、2に開示されている従来技術は、いずれの方法も三次元形状モデル内の要素が平面に接するような位置への配置は事前計算なしには不可能である。
本発明は、かかる課題に鑑み、配置モデルが指定した基準平面と接触するような配置を配置モデルと基準平面を指定することにより、事前計算なしにモデル配置を可能とした三次元形状モデルの配置装置を提供することを目的とする。
As described above, the conventional method of arranging the three-dimensional shape model has a problem in terms of work efficiency because it requires pre-calculation.
In addition, according to the conventional techniques disclosed in Patent Documents 1 and 2, it is impossible to place the elements in the three-dimensional shape model at positions where they contact the plane without prior calculation.
In view of such a problem, the present invention provides an arrangement of a three-dimensional shape model that enables model arrangement without prior calculation by designating an arrangement model and a reference plane such that the arrangement model contacts a reference plane designated by the arrangement model. An object is to provide an apparatus.

本発明はかかる課題を解決するために、請求項1は、三次元形状モデルを配置する三次元形状モデルの配置装置であって、配置モデルと該配置モデルの配置要素を指定するモデル指定部と、前記配置要素と平行な基準平面を入力として受け付ける平面指定部と、前記配置要素の移動方向を入力として受け付ける方向指定部と、前記配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部と、前記配置モデルの移動ベクトルを前記基準平面と配置要素が接触するように、若しくは前記配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする。
本発明の三次元形状モデルの配置装置は、モデル指定部、平面指定部、方向指定部、オフセット値指定部、及びモデル移動部を備えている。これにより、配置すべきモデルとその要素、例えば平面、円柱面、球面といった配置要素を入力する。また配置モデルに対して基準となる基準面を入力し、その基準面に対して配置モデルをどの方向に移動するかを指定する。また配置モデルと基準面との間にはオフセット値があるのでその値を指定しておき、配置モデルの移動ベクトルを配置モデルと基準面が接触するように計算したり、オフセット値だけ離れるように計算して配置モデルを移動して配置する。
請求項2は、前記配置要素は、平面、円柱面、球面、及び頂点の何れかであることを特徴とする。
本発明の配置要素として平面、円柱面、球面、及び頂点の何れかを配置モデルの要素とする。これによりほとんどの形状モデルが配置可能となる。
請求項3は、三次元形状モデルを配置する三次元形状モデルの配置装置であって、配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする。
本発明の他の特徴は、円柱面を2つの基準面に対して同時に接触して配置できる点である。そのために円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動する。
In order to solve this problem, the present invention provides a three-dimensional shape model placement apparatus for placing a three-dimensional shape model, and a model designation unit for designating a placement model and a placement element of the placement model; A plane designating unit that accepts a reference plane parallel to the arrangement element as an input, a direction designation unit that accepts a movement direction of the arrangement element as an input, and an offset that accepts an offset value between the arrangement element and the reference plane as an input The value designation unit and the movement vector of the placement model are calculated by a predetermined method so that the reference plane and the placement element are in contact with each other, or the distance between the placement element and the reference plane is an offset value. And a model moving unit that moves the arrangement model.
The arrangement device for a three-dimensional shape model of the present invention includes a model specifying unit, a plane specifying unit, a direction specifying unit, an offset value specifying unit, and a model moving unit. As a result, the model to be placed and its elements, for example, placement elements such as a plane, a cylindrical surface, and a spherical surface are input. Also, a reference plane serving as a reference is input to the arrangement model, and a direction in which the arrangement model is moved with respect to the reference plane is designated. Also, since there is an offset value between the placement model and the reference plane, specify that value and calculate the movement vector of the placement model so that the placement model and the reference plane are in contact, or so that the offset value is separated. Calculate and move the placement model to place it.
According to a second aspect of the present invention, the arrangement element is any one of a plane, a cylindrical surface, a spherical surface, and a vertex.
Any one of a plane, a cylindrical surface, a spherical surface, and a vertex is used as an element of the arrangement model as the arrangement element of the present invention. As a result, most shape models can be arranged.
A third aspect of the present invention is a three-dimensional shape model placement device for placing a three-dimensional shape model, wherein a cylindrical surface designating unit that receives a placement model and a cylindrical surface of the placement model as input, and a first reference plane as input A first reference plane designating unit that accepts, a second reference plane designating unit that accepts a second reference plane as input, and the arrangement model so that the cylindrical surface is in contact with the first reference plane and the second reference plane. And a model moving unit for moving the arrangement model by calculating a movement vector of the above by a predetermined method.
Another feature of the present invention is that the cylindrical surface can be placed in contact with two reference surfaces simultaneously. For this purpose, a cylindrical surface is input, a first reference surface and a second reference surface are designated, a movement vector is calculated so that the cylindrical surface is in contact with these surfaces, and the arrangement model is moved.

請求項4は、三次元形状モデルを配置する三次元形状モデルの配置方法であって、配置モデルと該配置モデルの配置要素を指定するモデル指定部と、前記配置要素と平行な基準平面を入力として受け付ける平面指定部と、前記配置要素の移動方向を入力として受け付ける方向指定部と、前記配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部と、前記配置モデルの移動ベクトルを前記基準平面と配置要素が接触するように、若しくは前記配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする。
本発明は請求項1と同様の作用効果を奏する。
請求項5は、前記配置要素は、平面、円柱面、球面、及び頂点の何れかであることを特徴とする。
本発明は請求項2と同様の作用効果を奏する。
請求項6は、三次元形状モデルを配置する三次元形状モデルの配置方法であって、配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする。
本発明は請求項3と同様の作用効果を奏する。
請求項7は、請求項4乃至6の何れか一項に記載の三次元形状モデルの配置方法をコンピュータが制御可能にプログラミングしたことを特徴とする。
請求項8は、請求項7に記載の三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする。
Claim 4 is a method for arranging a three-dimensional shape model for arranging a three-dimensional shape model, and inputs a placement model, a model designating unit for designating a placement element of the placement model, and a reference plane parallel to the placement element A plane designating unit that accepts as an input, a direction designating unit that accepts as input the movement direction of the placement element, an offset value designation unit that accepts as input an offset value between the placement element and a reference plane, and a movement vector of the placement model A model moving unit that moves the placement model by calculating a predetermined method so that the reference plane and the placement element are in contact with each other, or so that the placement element and the reference plane are separated by an offset value; , Provided.
The present invention has the same effect as that of the first aspect.
According to a fifth aspect of the present invention, the arrangement element is any one of a plane, a cylindrical surface, a spherical surface, and a vertex.
The present invention has the same effect as that of the second aspect.
Claim 6 is a three-dimensional shape model placement method for placing a three-dimensional shape model, wherein the placement model, a cylindrical surface designation unit that receives the cylindrical surface of the placement model as input, and a first reference plane as input A first reference plane designating unit that accepts, a second reference plane designating unit that accepts a second reference plane as input, and the arrangement model so that the cylindrical surface is in contact with the first reference plane and the second reference plane. And a model moving unit for moving the arrangement model by calculating a movement vector of the above by a predetermined method.
The present invention has the same effect as that of the third aspect.
A seventh aspect is characterized in that the computer-programmable programming method for arranging the three-dimensional shape model according to any one of the fourth to sixth aspects is provided.
An eighth aspect of the invention is characterized in that the three-dimensional shape model arrangement program according to the seventh aspect is recorded in a computer-readable format.

請求項1、4の発明によれば、三次元形状モデルの配置装置は、モデル指定部、平面指定部、方向指定部、オフセット値指定部、及びモデル移動部を備えているので、三次元形状モデルを指定した1つの平面に接触するように配置することができる。
また請求項2、5では、配置要素として平面、円柱面、球面、及び頂点の何れかを配置モデルの要素とするので、ほとんどの形状モデルが配置可能となる。
また請求項3、6では、円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動するので、三次元形状モデルを指定した2つの平面に接触するように配置することができる。
また請求項7では、本発明の三次元形状モデルの配置方法をコンピュータが制御可能なOSに従ってプログラミングすることにより、そのOSを備えたコンピュータであれば同じ処理方法により制御することができる。
また請求項8では、三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録媒体に記録することにより、この記録媒体を持ち運ぶことにより何処でもプログラムを稼動することができる。
According to the first and fourth aspects of the present invention, the three-dimensional shape model placement apparatus includes a model designating unit, a plane designating unit, a direction designating unit, an offset value designating unit, and a model moving unit. The model can be placed in contact with one designated plane.
Further, in claims 2 and 5, since any one of a plane, a cylindrical surface, a spherical surface, and a vertex is used as an arrangement element as an arrangement element, almost any shape model can be arranged.
Further, in claims 3 and 6, the cylindrical surface is input, the first reference surface and the second reference surface are specified, and the movement model is calculated so that the cylindrical surface is in contact with these surfaces, and the arrangement model is moved. Therefore, the three-dimensional shape model can be arranged so as to contact two designated planes.
According to the seventh aspect of the present invention, by programming the 3D shape model arrangement method of the present invention in accordance with an OS that can be controlled by a computer, any computer equipped with the OS can be controlled by the same processing method.
According to another aspect of the present invention, the three-dimensional shape model arrangement program is recorded on a recording medium in a computer-readable format, so that the program can be operated anywhere by carrying the recording medium.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の三次元形状モデルの配置装置の構成を示す図である。この三次元形状モデルの配置装置100は、配置モデルとこの配置モデルの配置要素(平面、円柱面、球面、頂点の何れか)を指定するモデル指定部1と、配置要素と平行な基準平面を入力として受け付ける平面指定部2と、操作者12が入力した配置要素の移動方向を入力として受け付ける方向指定部3と、配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部4と、配置モデルの移動ベクトルを基準平面と配置要素が接触するように、若しくは配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して配置モデルを移動するモデル移動部5と、三次元形状データ10を読み込み、三次元形状データを保持する三次元形状データ処理部6と、三次元形状データをディスプレイ11に表示する表示処理部7とを備えて構成される。
本実施形態の三次元形状モデルの配置装置100は、モデル指定部1、平面指定部2、方向指定部3、オフセット値指定部4、及びモデル移動部5を備えている。これにより、配置すべきモデルとその要素、例えば平面、円柱面、球面といった配置要素を入力する。また配置モデルに対して基準となる基準面を入力し、その基準面に対して配置モデルをどの方向に移動するかを指定する。また配置モデルと基準面との間にはオフセット値があるのでその値を指定しておき、配置モデルの移動ベクトルを配置モデルと基準面が接触するように計算したり、オフセット値だけ離れるように計算して配置モデルを移動して配置する。これにより、三次元形状モデルを指定した1つの平面に接触するように配置することができる。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a diagram showing a configuration of a three-dimensional shape model arrangement apparatus according to the present invention. The three-dimensional shape model placement apparatus 100 includes a model designating unit 1 that designates a placement model and a placement element (any one of a plane, a cylindrical surface, a spherical surface, and a vertex) of the placement model, and a reference plane parallel to the placement element. The plane designation unit 2 that accepts as an input, the direction designation unit 3 that accepts the movement direction of the placement element input by the operator 12 as an input, and the offset value designation unit 4 that accepts an offset value between the placement element and the reference plane as an input Then, the movement model of the placement model is calculated by a predetermined method so that the reference plane and the placement element are in contact with each other, or the placement element and the reference plane are separated by an offset value, and the placement model is moved. The model moving unit 5, the 3D shape data 10 is read, the 3D shape data processing unit 6 that holds the 3D shape data, and the 3D shape data is decoded. It constituted a display unit 7 for displaying the spray 11.
The three-dimensional shape model arrangement apparatus 100 according to the present embodiment includes a model designating unit 1, a plane designating unit 2, a direction designating unit 3, an offset value designating unit 4, and a model moving unit 5. As a result, the model to be placed and its elements, for example, placement elements such as a plane, a cylindrical surface, and a spherical surface are input. Also, a reference plane serving as a reference is input to the arrangement model, and a direction in which the arrangement model is moved with respect to the reference plane is designated. Also, since there is an offset value between the placement model and the reference plane, specify that value and calculate the movement vector of the placement model so that the placement model and the reference plane are in contact, or so that the offset value is separated. Calculate and move the placement model to place it. As a result, the three-dimensional shape model can be arranged so as to contact one designated plane.

図2は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは平面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその平面(配置平面)を入力として受け付ける(S1)。次に平面指定部2が配置平面と平行な基準平面を入力として受け付ける(S2)。次に方向指定部3が移動方向を入力として受け付ける(S3)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S4)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S5)。
図3は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは円柱面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその円柱面を入力として受け付ける(S11)。次に平面指定部2が円柱面の中心軸に平行な基準平面を入力として受け付ける(S12)。次に方向指定部3が移動方向を入力として受け付ける(S13)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S14)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−r−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S15)。
FIG. 2 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a plane.
First, the model designating unit 1 accepts an arrangement model and its plane (placement plane) as inputs (S1). Next, the plane designating unit 2 receives a reference plane parallel to the arrangement plane as an input (S2). Next, the direction specifying unit 3 receives the moving direction as an input (S3). Next, the offset value specifying unit 4 receives the offset value as an input (S4). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −f) / ip (M, −N) * M (provided that the origin coordinate of the reference plane is H, the reference Normal vector of plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, vector X And the vector inner product of the vector Y: ip (X, Y)) and the arrangement model is moved (S5).
FIG. 3 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a cylindrical surface.
First, the model designating unit 1 accepts an arrangement model and its cylindrical surface as input (S11). Next, the plane designating unit 2 accepts as input a reference plane parallel to the central axis of the cylindrical surface (S12). Next, the direction designating unit 3 accepts the moving direction as an input (S13). Next, the offset value specifying unit 4 receives the offset value as an input (S14). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −r−f) / ip (M, −N) * M (where the origin coordinate of the reference plane is H , Normal vector of reference plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, The inner model of the vector X and the vector Y: ip (X, Y)) is calculated and the placement model is moved (S15).

図4は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは球面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその球面を入力として受け付ける(S21)。次に平面指定部2が球面の中心軸に平行な基準平面を入力として受け付ける(S22)。次に方向指定部3が移動方向を入力として受け付ける(S23)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S24)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−r−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S25)。
図5は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは頂点を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその頂点を入力として受け付ける(S31)。次に平面指定部2が頂点の中心軸に平行な基準平面を入力として受け付ける(S32)。次に方向指定部3が移動方向を入力として受け付ける(S33)。次にオフセット値指定部4がオフセット値を入力として受け付ける(S34)。次にモデル移動部5が配置モデルの移動ベクトルTをT=(ip(C−H、N)−f)/ip(M、−N)*M(但し、基準平面の原点座標:H、基準平面の法線ベクトル:N、移動方向ベクトル:M、オフセット値:f、配置平面の原点座標:C、配置平面の法線ベクトル:L、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y))により計算し配置モデルを移動する(S35)。
FIG. 4 is an operation flowchart of the three-dimensional shape model placement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a spherical surface.
First, the model designating unit 1 accepts an arrangement model and its spherical surface as input (S21). Next, the plane designating unit 2 receives a reference plane parallel to the central axis of the spherical surface as an input (S22). Next, the direction designating unit 3 accepts the moving direction as an input (S23). Next, the offset value specifying unit 4 receives the offset value as an input (S24). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −r−f) / ip (M, −N) * M (where the origin coordinate of the reference plane is H , Normal vector of reference plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, The inner model of the vector X and the vector Y: ip (X, Y)) is calculated and the placement model is moved (S25).
FIG. 5 is an operation flowchart of the three-dimensional shape model arrangement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having vertices.
First, the model designating unit 1 accepts an arrangement model and its vertex as input (S31). Next, the plane designating unit 2 accepts as input a reference plane parallel to the central axis of the vertex (S32). Next, the direction designating unit 3 accepts the moving direction as an input (S33). Next, the offset value specifying unit 4 receives the offset value as an input (S34). Next, the model moving unit 5 sets the movement vector T of the arrangement model as T = (ip (C−H, N) −f) / ip (M, −N) * M (provided that the origin coordinate of the reference plane is H, the reference Normal vector of plane: N, moving direction vector: M, offset value: f, origin coordinate of arrangement plane: C, normal vector of arrangement plane: L, product of scalar a and vector X: a * X, vector X And the vector inner product of the vector Y: ip (X, Y)) and the arrangement model is moved (S35).

図6は本発明の三次元形状モデルの配置装置100の動作フローチャートである。本フローチャートで対象とする配置モデルは円柱面を持つ形状モデルとする。
まずモデル指定部1が配置モデルとその頂点を入力として受け付ける(S41)。次に平面指定部2が円柱面の中心軸に平行な基準平面1を入力として受け付ける(S42)。次に平面指定部2が円柱面の中心軸に平行な基準平面2を入力として受け付ける(S43)。基準平面1と基準平面2の交線に平行な方向ベクトルDを、D=op(N1、N2)(但し、ベクトルXとベクトルYのベクトル外積をop(X、Y))により計算する(S44)。次に配置モデルをその境界箱の中心点Bを中心に、円柱面の中心軸ベクトルLと交線ベクトルDの外積を軸としてLとDが同じ方向になるように配置モデルをLとDが成す角度だけ回転する(S45)。配置モデルを構成する各点Pは、以下の式に基づき回転する。Pr=R(B、op(L、D)、arccos(ip(L、D)))*(P−B)+B(但し、配置モデルの境界箱の中心点:B、円柱面の中心点:C、円柱面の中心軸ベクトル:L、円柱面の半径:r、基準平面1の原点座標H1、法線ベクトルN1、基準平面2の原点座標H2、法線ベクトルN2、中心点がo、回転軸ベクトルv、a度回転する行列をR(o、v、a)、ベクトルXとベクトルYのベクトル外積をop(X、Y)、逆余弦関数をarccos()、行列RとベクトルXの積をR*X)とする。次に配置モデルの移動ベクトルTを、T=(r−ip(H1−C’、N1))*N1+(r−ip(H2−C’、N2))*N2(但し、基準平面1の原点座標H1、法線ベクトルN1、基準平面2の原点座標H2、法線ベクトルN2、スカラaとベクトルXの積:a*X、ベクトルXとベクトルYのベクトル内積:ip(X、Y)、回転後の円柱面の中心点をC’、円柱面の半径をr)により計算し配置モデルを移動する(S46)。
このように本発明の他の特徴は、円柱面を2つの基準面に対して同時に接触して配置できる点である。そのために円柱面を入力し、第1の基準面と第2の基準面を指定し、これらの面に円柱面が接触するように移動ベクトルを計算して配置モデルを移動する。
FIG. 6 is an operation flowchart of the three-dimensional shape model arrangement apparatus 100 of the present invention. The arrangement model targeted in this flowchart is a shape model having a cylindrical surface.
First, the model designating unit 1 accepts an arrangement model and its vertex as input (S41). Next, the plane designating unit 2 receives the reference plane 1 parallel to the central axis of the cylindrical surface as an input (S42). Next, the plane designating unit 2 receives the reference plane 2 parallel to the central axis of the cylindrical surface as an input (S43). A direction vector D parallel to the intersection line of the reference plane 1 and the reference plane 2 is calculated by D = op (N1, N2) (where the vector outer product of the vector X and the vector Y is op (X, Y)) (S44). ). Next, the placement models L and D are arranged so that L and D are in the same direction around the center point B of the bounding box and the outer product of the center axis vector L and the intersection vector D of the cylindrical surface. It rotates by the angle formed (S45). Each point P constituting the placement model rotates based on the following equation. Pr = R (B, op (L, D), arccos (ip (L, D))) * (P−B) + B (However, the center point of the bounding box of the arrangement model: B, the center point of the cylindrical surface: C, center axis vector of cylindrical surface: L, radius of cylindrical surface: r, origin coordinate H1 of reference plane 1, normal vector N1, origin coordinate H2 of reference plane 2, normal vector N2, center point o, rotation The axis vector v, a matrix rotating by a degrees is R (o, v, a), the vector outer product of the vector X and the vector Y is op (X, Y), the inverse cosine function is arccos (), and the product of the matrix R and the vector X Is R * X). Next, the movement vector T of the arrangement model is set to T = (r−ip (H1−C ′, N1)) * N1 + (r−ip (H2−C ′, N2)) * N2 (however, the origin of the reference plane 1) Coordinate H1, normal vector N1, origin coordinate H2 of reference plane 2, normal vector N2, product of scalar a and vector X: a * X, vector inner product of vector X and vector Y: ip (X, Y), rotation The center point of the subsequent cylindrical surface is calculated by C ′, and the radius of the cylindrical surface is calculated by r) to move the arrangement model (S46).
Thus, another feature of the present invention is that the cylindrical surface can be placed in contact with two reference surfaces simultaneously. For this purpose, a cylindrical surface is input, a first reference surface and a second reference surface are designated, a movement vector is calculated so that the cylindrical surface is in contact with these surfaces, and the arrangement model is moved.

図7は円柱面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。図7(a)は配置前の画面例を示す図であり、図7(b)は配置後の画面例を示す図である。符号20は配置する円柱面を含むパーツを表し、符号21は基準面を含むパーツを表し、矢印22は移動方向を表す。
図8は球面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。図8(a)は配置前の画面例を示す図であり、図8(b)は配置後の画面例を示す図である。符号25は配置モデルと球面を表し、符号26はその移動方向を表し、符号27は基準平面を表す。
図9は円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。図9(a)は配置前の画面例を示す上面図であり、図9(b)は配置前の画面例を示す斜視図であり、図9(c)は配置後の画面例を示す上面図であり、図9(d)は配置後の画面例を示す斜視図である。符号30は基準平面1を表し、符号31は基準平面2を表し、符号32は配置モデルと円柱面を表す。
図10は円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。図10(a)は配置前の画面例を示す図であり、図10(b)は配置後の画面例を示す図である。符号35は配置する円柱面を含むパーツを表し、符号36は基準面1を含むパーツを表し、符号37は基準面2を含むパーツを表す。
FIG. 7 is a diagram showing an example of a screen on which an arrangement model having a cylindrical surface is arranged so as to contact one plane. FIG. 7A is a diagram illustrating a screen example before arrangement, and FIG. 7B is a diagram illustrating a screen example after arrangement. Reference numeral 20 represents a part including a cylindrical surface to be arranged, reference numeral 21 represents a part including a reference surface, and an arrow 22 represents a moving direction.
FIG. 8 is a diagram showing an example of a screen on which an arrangement model having a spherical surface is arranged so as to contact one plane. FIG. 8A is a diagram showing an example of a screen before arrangement, and FIG. 8B is a diagram showing an example of a screen after arrangement. Reference numeral 25 represents an arrangement model and a spherical surface, reference numeral 26 represents a moving direction thereof, and reference numeral 27 represents a reference plane.
FIG. 9 is a diagram illustrating a screen example in which an arrangement model having a cylindrical surface is arranged so as to be in contact with two planes. FIG. 9A is a top view showing a screen example before placement, FIG. 9B is a perspective view showing a screen example before placement, and FIG. 9C is a top view showing a screen example after placement. FIG. 9D is a perspective view showing an example of the screen after arrangement. Reference numeral 30 represents the reference plane 1, reference numeral 31 represents the reference plane 2, and reference numeral 32 represents the arrangement model and the cylindrical surface.
FIG. 10 is a diagram illustrating an example of a screen on which an arrangement model having a cylindrical surface is arranged so as to contact two planes. FIG. 10A is a diagram illustrating a screen example before arrangement, and FIG. 10B is a diagram illustrating a screen example after arrangement. Reference numeral 35 represents a part including a cylindrical surface to be arranged, reference numeral 36 represents a part including the reference plane 1, and reference numeral 37 represents a part including the reference plane 2.

本発明の三次元形状モデルの配置装置の構成を示す図である。It is a figure which shows the structure of the arrangement | positioning apparatus of the three-dimensional shape model of this invention. 本発明の三次元形状モデルの配置装置100の動作フローチャートである(平面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a plane). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(円柱面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a cylindrical surface). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(球面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a spherical surface). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(頂点を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a vertex). 本発明の三次元形状モデルの配置装置100の動作フローチャートである(円柱面を持つ形状モデルの場合)。It is an operation | movement flowchart of the arrangement | positioning apparatus 100 of the three-dimensional shape model of this invention (in the case of the shape model with a cylindrical surface). 円柱面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that it may touch 1 plane. 球面を持つ配置モデルを1平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a spherical surface so that it may touch 1 plane. 円柱面を持つ配置モデルを2平面に接触するように配置する画面例を示す図である。It is a figure which shows the example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that two planes may be contacted. 円柱面を持つ配置モデルを2平面に接触するように配置する他の画面例を示す図である。It is a figure which shows the other example of a screen which arrange | positions the arrangement | positioning model with a cylindrical surface so that two planes may be contacted.

符号の説明Explanation of symbols

1 モデル指定部、2 平面指定部、3 方向指定部、4 オフセット値指定部、5 モデル移動部、6 三次元形状データ処理部、7 表示処理部、10 三次元形状データ、10 三次元形状データ、11 ディスプレイ、100 三次元形状モデルの配置装置   1 model specification unit, 2 plane specification unit, 3 direction specification unit, 4 offset value specification unit, 5 model moving unit, 6 3D shape data processing unit, 7 display processing unit, 10 3D shape data, 10 3D shape data 11 Display, 100 Three-dimensional shape model placement device

Claims (8)

三次元形状モデルを配置する三次元形状モデルの配置装置であって、
配置モデルと該配置モデルの配置要素を指定するモデル指定部と、前記配置要素と平行な基準平面を入力として受け付ける平面指定部と、前記配置要素の移動方向を入力として受け付ける方向指定部と、前記配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部と、前記配置モデルの移動ベクトルを前記基準平面と配置要素が接触するように、若しくは前記配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする三次元形状モデルの配置装置。
A three-dimensional shape model placement device for placing a three-dimensional shape model,
A model designating unit for designating a placement model, a placement element of the placement model, a plane designating unit for accepting a reference plane parallel to the placement element as an input, a direction designating unit for accepting a moving direction of the placement element as an input, An offset value designating unit that accepts an offset value between the placement element and the reference plane as an input, and a movement vector of the placement model so that the reference plane and the placement element are in contact with each other, or the placement element and the reference plane are offset values A three-dimensional shape model placement apparatus, comprising: a model moving unit that moves the placement model by a predetermined method so as to be a distance apart from each other.
前記配置要素は、平面、円柱面、球面、及び頂点の何れかであることを特徴とする請求項1に記載の三次元形状モデルの配置装置。   The apparatus for arranging a three-dimensional shape model according to claim 1, wherein the arrangement element is any one of a plane, a cylindrical surface, a spherical surface, and a vertex. 三次元形状モデルを配置する三次元形状モデルの配置装置であって、
配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする三次元形状モデルの配置装置。
A three-dimensional shape model placement device for placing a three-dimensional shape model,
A cylinder surface designation unit that accepts as input an arrangement model, and a cylinder surface of the arrangement model, a first reference plane designation part that accepts a first reference plane as input, and a second reference plane designation that accepts a second reference plane as input A model moving unit that moves the arrangement model by calculating a movement vector of the arrangement model by a predetermined method so that the cylindrical surface is in contact with the first reference plane and the second reference plane. An apparatus for arranging a three-dimensional shape model.
三次元形状モデルを配置する三次元形状モデルの配置方法であって、
配置モデルと該配置モデルの配置要素を指定するモデル指定部と、前記配置要素と平行な基準平面を入力として受け付ける平面指定部と、前記配置要素の移動方向を入力として受け付ける方向指定部と、前記配置要素と基準平面との間のオフセット値を入力として受け付けるオフセット値指定部と、前記配置モデルの移動ベクトルを前記基準平面と配置要素が接触するように、若しくは前記配置要素と基準平面がオフセット値だけ離れた距離になるように予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする三次元形状モデルの配置方法。
A 3D shape model placement method for placing a 3D shape model,
A model designating unit for designating a placement model, a placement element of the placement model, a plane designating unit for accepting a reference plane parallel to the placement element as an input, a direction designating unit for accepting a moving direction of the placement element as an input, An offset value designating unit that accepts an offset value between the placement element and the reference plane as an input, and a movement vector of the placement model so that the reference plane and the placement element are in contact with each other, or the placement element and the reference plane are offset values A three-dimensional shape model arrangement method, comprising: a model moving unit that moves the arrangement model by calculating by a predetermined method so as to be a distance apart from each other.
前記配置要素は、平面、円柱面、球面、及び頂点の何れかであることを特徴とする請求項3に記載の三次元形状モデルの配置方法。   The three-dimensional shape model arrangement method according to claim 3, wherein the arrangement element is any one of a plane, a cylindrical surface, a spherical surface, and a vertex. 三次元形状モデルを配置する三次元形状モデルの配置方法であって、
配置モデルと該配置モデルの円柱面を入力として受け付ける円柱面指定部と、第1の基準平面を入力として受け付ける第1基準平面指定部と、第2の基準平面を入力として受け付ける第2基準平面指定部と、前記第1の基準平面と第2の基準平面に前記円柱面が接触するように前記配置モデルの移動ベクトルを予め決められた方法により計算して前記配置モデルを移動するモデル移動部と、を備えたことを特徴とする三次元形状モデルの配置方法。
A 3D shape model placement method for placing a 3D shape model,
A cylinder surface designation unit that accepts as input an arrangement model, and a cylinder surface of the arrangement model, a first reference plane designation part that accepts a first reference plane as input, and a second reference plane designation that accepts a second reference plane as input A model moving unit that moves the arrangement model by calculating a movement vector of the arrangement model by a predetermined method so that the cylindrical surface is in contact with the first reference plane and the second reference plane. A method of arranging a three-dimensional shape model, comprising:
請求項4乃至6の何れか一項に記載の三次元形状モデルの配置方法をコンピュータが制御可能にプログラミングしたことを特徴とする三次元形状モデルの配置プログラム。   7. A three-dimensional shape model arrangement program, wherein the computer programs the three-dimensional shape model arrangement method according to claim 4 in a controllable manner. 請求項7に記載の三次元形状モデルの配置プログラムをコンピュータが読み取り可能な形式で記録したことを特徴とする記録媒体。   A recording medium in which the three-dimensional shape model arrangement program according to claim 7 is recorded in a computer-readable format.
JP2004224326A 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model Expired - Fee Related JP4685382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224326A JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224326A JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Publications (2)

Publication Number Publication Date
JP2006048147A true JP2006048147A (en) 2006-02-16
JP4685382B2 JP4685382B2 (en) 2011-05-18

Family

ID=36026658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224326A Expired - Fee Related JP4685382B2 (en) 2004-07-30 2004-07-30 Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model

Country Status (1)

Country Link
JP (1) JP4685382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536916A (en) * 2015-09-30 2018-12-13 シェンチェン ドゥロドゥロ テクノロジーズ カンパニー リミテッドShenzhen Dlodlo Technologies Co., Ltd. Method and apparatus for determining the position of a virtual object in virtual space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129764A (en) * 1988-11-10 1990-05-17 Nec Corp Three-dimensional shape model operating device
JPH03288274A (en) * 1990-04-04 1991-12-18 Hitachi Ltd Graphic position designating method for graphic processing system
JPH05242175A (en) * 1992-03-03 1993-09-21 Chubu Nippon Denki Software Kk Shape arrangement system
JPH06215050A (en) * 1993-01-13 1994-08-05 Ricoh Co Ltd Graphic moving system
JPH0844908A (en) * 1994-07-26 1996-02-16 Fujitsu Ltd Processor and method for three-dimensional image processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129764A (en) * 1988-11-10 1990-05-17 Nec Corp Three-dimensional shape model operating device
JPH03288274A (en) * 1990-04-04 1991-12-18 Hitachi Ltd Graphic position designating method for graphic processing system
JPH05242175A (en) * 1992-03-03 1993-09-21 Chubu Nippon Denki Software Kk Shape arrangement system
JPH06215050A (en) * 1993-01-13 1994-08-05 Ricoh Co Ltd Graphic moving system
JPH0844908A (en) * 1994-07-26 1996-02-16 Fujitsu Ltd Processor and method for three-dimensional image processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536916A (en) * 2015-09-30 2018-12-13 シェンチェン ドゥロドゥロ テクノロジーズ カンパニー リミテッドShenzhen Dlodlo Technologies Co., Ltd. Method and apparatus for determining the position of a virtual object in virtual space
US10957065B2 (en) 2015-09-30 2021-03-23 Shenzhen Dlodlo Technologies Co., Ltd. Method and device for determining position of virtual object in virtual space

Also Published As

Publication number Publication date
JP4685382B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US20160328887A1 (en) Systems and methods for providing assistance for manipulating objects using virtual proxies and virtual replicas
Pai et al. Augmented reality–based programming, planning and simulation of a robotic work cell
JP2020179466A (en) Trajectory planning device and trajectory planning method and program
US20070242073A1 (en) Robot simulation apparatus
JP2018008347A (en) Robot system and operation region display method
JP2009274148A (en) Simulation device
Pai et al. Virtual planning, control, and machining for a modular-based automated factory operation in an augmented reality environment
JP5549716B2 (en) Robot system and teaching method
Kang et al. Numerical methods to simulate and visualize detailed crane activities
JP3663219B2 (en) Geometric constraint display device
JP4685382B2 (en) Arrangement apparatus, arrangement method, arrangement program, and recording medium for three-dimensional shape model
KR20040082430A (en) System and method for drawing an elliptical arc
US10102310B2 (en) Precise object manipulation system and method
US9292165B2 (en) Multiple-mode interface for spatial input devices
JP7046531B2 (en) Robot control method, robot control device, information processing method, information processing device, teaching method, teaching device, manufacturing method of articles using robot control method, program and recording medium
JP2009086842A (en) Harness design support device, method and program
JP4868044B2 (en) Object attribute change processing device, object attribute change processing method, and 3D model processing device and 3D model processing method
JP4364133B2 (en) Local coordinate system determination program
JP2006346840A (en) Information processor
JP2007101229A (en) Method and system for 3-dimensional measurement and control method and device of manipulator
WO2023007621A1 (en) Simulation device
US9916061B2 (en) Drawing object inferring system and method
Chang et al. CoFabs: An Interactive Fabrication Process Framework
JP4946936B2 (en) Three-dimensional model joint setting method and joint setting program
JP5239746B2 (en) Model bending operation input device and model bending method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees