JP4680927B2 - Freshness preservation material for cut flowers - Google Patents

Freshness preservation material for cut flowers Download PDF

Info

Publication number
JP4680927B2
JP4680927B2 JP2006539184A JP2006539184A JP4680927B2 JP 4680927 B2 JP4680927 B2 JP 4680927B2 JP 2006539184 A JP2006539184 A JP 2006539184A JP 2006539184 A JP2006539184 A JP 2006539184A JP 4680927 B2 JP4680927 B2 JP 4680927B2
Authority
JP
Japan
Prior art keywords
water
fiber
acrylonitrile
freshness
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006539184A
Other languages
Japanese (ja)
Other versions
JPWO2006038388A1 (en
Inventor
直樹 川中
幸治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Toyobo Co Ltd
Original Assignee
Japan Exlan Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd, Toyobo Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JPWO2006038388A1 publication Critical patent/JPWO2006038388A1/en
Application granted granted Critical
Publication of JP4680927B2 publication Critical patent/JP4680927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N3/00Preservation of plants or parts thereof, e.g. inhibiting evaporation, improvement of the appearance of leaves or protection against physical influences such as UV radiation using chemical compositions; Grafting wax
    • A01N3/02Keeping cut flowers fresh chemically

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、切り花の輸送あるいは販売時に転倒しても水こぼれがなく、且つ輸送、販売、鑑賞時に渡って開花状態を長期間維持できる切り花用鮮度保持材に関するものである。   The present invention relates to a freshness-keeping material for cut flowers that does not spill even if it falls during transport or sale of cut flowers, and that can maintain a flowering state for a long period of time during transport, sale, and appreciation.

一般に切り花を販売する場合、プラスチック製容器に水を張ったところへ切り花を生けた状態で販売されている場合が多い。この方法は切り花をプラスチック製容器から取り出す際に、切り花から水が滴れ落ちて床面を濡らしてしまう。販売店によっては安全面、衛生面から床面が濡れることを敬遠する場合があり、ドライで取扱できる販売方式が要求されている。   In general, when selling cut flowers, they are often sold in a state where cut flowers are placed in a place where water is put on a plastic container. In this method, when the cut flower is taken out from the plastic container, water drops from the cut flower and wets the floor surface. Some dealers may refrain from getting the floor wet from the safety and hygiene aspects, and a sales method that can be handled dry is required.

また、花瓶に切り花を生けた状態で花瓶ごと販売する方式であれば、切り花の取り出しがなくなるため水こぼれはなくなる。しかしながら万一花瓶が転倒した場合、花瓶から水がこぼれるためドライで取扱できるとは言えない。   If the vase is sold with the cut flowers in the vase, the cut flowers will not be taken out, so there will be no water spillage. However, in the unlikely event that the vase falls, it cannot be said that it can be handled dry because water spills from the vase.

ドライで取扱する方法としては、ジェランガムを主剤としたゲル状組成物を防水性の袋体もしくは容器に充填するとともに、このゲル状組成物中に切り花の茎下端部を差し込んだ状態で輸送する方法が提案されている(特許文献1参照)。しかしながらこのゲル状組成物では切り花の茎下端部を差し込む際にゲル状組成物が硬く差し込めない、差し込めてもゲル状組成物が割れ茎下端部とゲル状組成物との接触が不十分で水の供給が不十分になるという問題を有している。   As a method of handling in a dry manner, a gel-like composition containing gellan gum as a main ingredient is filled in a waterproof bag or container, and the gel-like composition is transported with the lower end of a cut flower stem inserted into the gel-like composition. Has been proposed (see Patent Document 1). However, in this gel composition, the gel composition is hard to insert when the lower end of the cut flower stem is inserted. Even if the gel composition is inserted, the contact between the lower end of the cracked stem and the gel composition is insufficient. Has a problem of insufficient supply.

また、水不透過性材料内に吸水性材料として吸水性繊維の適量が内封された切り花用給水材が提案されている(特許文献2参照)。かかる吸水性繊維の形態として、綿状、フェルト状などの繊維が緩く絡み合った状態で提供されるのが良いとし、綿状の吸水性繊維を使用することで茎下端部と吸水性繊維の接触が良好で切り花への給水が可能となっており、2日間では水単独と同等の鮮度保持効果を有することが開示されている。しかしながら、植物の導水管は極めて細い管であり、水中に存在するバクテリア等によっても目詰まりを起こしてしまう。該文献で用いられている吸水性繊維はゲル強度が弱く、吸水性繊維から極微細なゲルが極少量脱落し、導水管が目詰まりを起こしてしまう可能性があり、実際、2日経過後は、水単独の場合に比べ、急速に萎れてしまうという問題を有している。
特開平7―82101号公報 特開平11−165767号公報
In addition, a water supply material for cut flowers in which an appropriate amount of water-absorbing fibers is encapsulated as a water-absorbing material in a water-impermeable material has been proposed (see Patent Document 2). As the form of the water-absorbing fiber, it should be provided in a loosely entangled state such as cotton-like, felt-like, and the contact between the lower end of the stem and the water-absorbing fiber by using the cotton-like water-absorbing fiber. It is disclosed that the water supply to cut flowers is possible and that it has a freshness maintaining effect equivalent to that of water alone in two days. However, plant water conduits are extremely thin and clogged by bacteria and the like present in the water. The water-absorbing fiber used in this document has a weak gel strength, and a very small amount of very fine gel may fall off from the water-absorbing fiber, and the water conduit may be clogged. As compared with the case of water alone, it has a problem that it quickly wilts.
JP-A-7-82101 Japanese Patent Laid-Open No. 11-165767

本発明は、上記従来の問題点に鑑みなされたものであり、その課題は切り花の輸送、販売時の水こぼれを解消し、且つ従来の吸水性繊維を用いた切り花用鮮度保持材より長期間切り花の鮮度を保持し得る鮮度保持材を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the problem is that it eliminates water spillage during transport and sale of cut flowers, and is longer than the freshness-keeping material for cut flowers using conventional water absorbent fibers. An object of the present invention is to provide a freshness retaining material capable of retaining the freshness of cut flowers.

本発明は、以下の構成を有するものである。
1.純水吸水倍率が10〜100倍で、且つ純水吸水倍率を塩型カルボキシル基量(mmol/g)で除した値が5〜50の範囲にある吸水性繊維を含有することを特徴とする切り花用鮮度保持材。
2.吸水性繊維が、共有結合による架橋構造を導入せしめたものであることを特徴とする1記載の切り花用鮮度保持材。
3.吸水性繊維の含有率が30〜100重量%であることを特徴とする1又は2記載の切り花用鮮度保持材。
The present invention has the following configuration.
1. It contains water-absorbing fibers having a pure water absorption ratio of 10 to 100 times and a value obtained by dividing the pure water absorption ratio by the amount of salt-type carboxyl groups (mmol / g) in the range of 5 to 50. A freshness retaining material for cut flowers.
2. The freshness-keeping material for cut flowers according to 1, wherein the water-absorbent fibers are those in which a crosslinked structure by covalent bond is introduced.
3. The freshness-keeping material for cut flowers according to 1 or 2, wherein the water-absorbing fiber content is 30 to 100% by weight.

上記手段を採用することにより、吸水性繊維がゲル化することで水の流動性を抑え、切り花販売、輸送時の水こぼれが解消でき、且つ長期間に及ぶ鮮度保持効果が得られる。   By adopting the above-mentioned means, the water-absorbent fibers are gelled, so that the fluidity of water can be suppressed, water spillage during cut flower sales and transportation can be eliminated, and a long-term freshness maintaining effect can be obtained.

以下に、本発明の実施形態について詳細に説明する。本発明の吸水性繊維とは該吸水性繊維を純水に浸した際に繊維表面あるいは繊維内部あるいは繊維全体が吸水、膨潤する繊維のことをいう。その繊維の純水吸水倍率は吸水性繊維の自重に対して10〜100倍、好ましくは30〜70倍の重量の純水を吸水するものが好適に用いられる。ここで吸水された水はゲル内部に存在するため容易に流出することはなく、一方切り花の茎下端部と接触した部分からは切り花へ適度な給水が行われる。純水吸水倍率が10倍未満であれば、切り花への給水が不足し鮮度保持効果が発現されない。また純水吸水倍率が100倍を超える場合にはゲル強度を強くすることが困難となる。   Hereinafter, embodiments of the present invention will be described in detail. The water-absorbing fiber of the present invention refers to a fiber that absorbs and swells the fiber surface, the inside of the fiber, or the entire fiber when the water-absorbing fiber is immersed in pure water. A fiber that absorbs pure water having a weight of 10 to 100 times, preferably 30 to 70 times the weight of the water-absorbing fiber is suitably used. Since the water absorbed here is present inside the gel, it does not easily flow out. On the other hand, moderate water supply to the cut flower is performed from the portion in contact with the lower end of the stem of the cut flower. If the pure water absorption ratio is less than 10 times, water supply to cut flowers is insufficient, and the effect of maintaining freshness is not exhibited. Further, when the pure water absorption ratio exceeds 100 times, it is difficult to increase the gel strength.

また吸水性繊維の膨潤するゲル部位の官能基は塩型カルボキシル基を含有することが必須で、この塩型カルボキシル基量(mmol/g)で純水吸水倍率を除した値は5〜50の範囲にあることが必須である。純水吸水倍率を塩型カルボキシル基量で除した値は、ゲル強度の目安となる数値で、この数値が低いほどゲル強度は強くなり、数値が高ければゲル強度は弱くなる。この数値が5未満であればゲル強度を高くするために純水吸水性能が大幅に低下してしまい切り花への給水が不十分となる。一方この数値が50を超える場合にはゲル強度が弱く、使用中のゲル脱落による目詰まりのためと思われる鮮度保持効果の低下を招いてしまう。
5〜50の範囲が、ゲルの物理的脱落を低減させ、且つ切り花への給水を可能にする最適範囲であり長期間に及ぶ鮮度保持効果を実現させている。
Moreover, it is essential that the functional group of the gel part which a water absorbing fiber swells contains a salt type carboxyl group, and the value which remove | divided the pure water water absorption magnification | multiplying_factor with this salt type carboxyl group amount (mmol / g) is 5-50. It is essential to be in range. The value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount is a numerical value that is a measure of gel strength. The lower this value, the stronger the gel strength, and the higher the value, the weaker the gel strength. If this value is less than 5, the gel strength is increased and the water absorption performance of the pure water is greatly reduced, and the water supply to the cut flowers becomes insufficient. On the other hand, if this value exceeds 50, the gel strength is weak and the freshness retention effect, which is thought to be due to clogging due to dropping off of the gel during use, is reduced.
The range of 5-50 is the optimal range which reduces the physical drop-off of a gel and enables water supply to a cut flower, and implement | achieves the freshness maintenance effect over a long period of time.

本発明で用いる吸水性繊維の純水吸水倍率の測定方法は、試料約0.5gを25℃の純水300ml中に30分間浸漬した後、遠心脱水(160G×5分、ただしGは重力加速度)して調整した試料の重量(Y1(g))を測定し、次に該試料を80℃の真空乾燥機中で恒量になるまで乾燥した繊維の重量(Y2(g))を測定し、次式によって算出したものである。
吸水性繊維の純水吸水倍率(倍)=(Y1―Y2)/Y2
The method for measuring the water absorption ratio of the water-absorbing fiber used in the present invention is to immerse about 0.5 g of a sample in 300 ml of pure water at 25 ° C. for 30 minutes, and then perform centrifugal dehydration (160 G × 5 minutes, where G is the acceleration of gravity. ) To measure the weight of the prepared sample (Y 1 (g)), and then measure the weight of the dried fiber (Y 2 (g)) in the vacuum dryer at 80 ° C. until a constant weight is obtained. And calculated by the following equation.
Water absorption capacity of water absorption fiber (times) = (Y 1 -Y 2 ) / Y 2

吸水性繊維は上述した純水吸水倍率及び塩型カルボキシル基量(mmol/g)で純水吸水倍率を除した値を満たしていればなんら限定はないが、具体的にはアクリロニトリル系繊維の表面を加水分解することで表面に塩型カルボキシル基を有する吸水層、中心部にアクリロニトリル系繊維部を残した芯鞘構造を有するアクリロニトリル系吸水性繊維や、かかる吸水性繊維に共有結合による架橋構造を導入せしめた芯鞘構造を有する架橋アクリロニトリル系吸水性繊維、カルボン酸基又はそのアルカリ金属塩基などの親水性基含有モノマーとカルボン酸基と反応してエステル架橋構造を形成できるヒドロキシル基含有モノマーなどが共重合され、かつエステル架橋結合が導入されてなるポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維等を挙げることができる。   The water-absorbing fiber is not limited as long as it satisfies the above-mentioned value obtained by dividing the pure water absorption capacity and the salt-type carboxyl group amount (mmol / g) by the pure water absorption capacity, but specifically, the surface of the acrylonitrile fiber. Water-absorbing layer having a salt-type carboxyl group on the surface, acrylonitrile-based water-absorbing fiber having a core-sheath structure with the acrylonitrile-based fiber part remaining in the center, and a crosslinked structure by covalent bonding to the water-absorbing fiber Crosslinked acrylonitrile-based water-absorbing fiber having a core-sheath structure introduced, a hydroxyl group-containing monomer capable of forming an ester crosslinked structure by reacting with a carboxylic acid group and a carboxylic acid group or a hydrophilic group-containing monomer such as an alkali metal base thereof. Polyacrylic acid-based crosslinked fiber and maleic anhydride-based crosslinked product obtained by copolymerization and introduction of an ester crosslinking bond It can be cited Wei, alginate-based crosslinked fibers.

本発明の吸水性繊維に要求される純水吸水倍率及びゲル強度の目安となる塩型カルボキシル基量(mmol/g)で純水吸水倍率を除した値を有する吸水性繊維を製造するためには、共有結合による架橋構造を導入せしめたものであることが望ましく、上述した架橋アクリロニトリル系吸水性繊維、ポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維が望ましい。なかでもアクリロニトリル系繊維を出発繊維とする架橋アクリロニトリル系吸水性繊維は、中心部にアクリロニトリル系繊維部が残るために繊維の物理的強度が強く加工時の取扱性が良好であるとともに膨潤時には繊維の長さ方向への変化が少ないため製品の寸法安定性が良好でありより好ましい。   In order to produce a water-absorbing fiber having a value obtained by dividing the water absorption capacity of pure water by the salt-type carboxyl group amount (mmol / g), which is a measure of the water absorption capacity and gel strength required for the water-absorbing fiber of the present invention. It is desirable to introduce a crosslinked structure by covalent bond, and the above-mentioned crosslinked acrylonitrile-based water-absorbing fiber, polyacrylic acid-based crosslinked fiber, maleic anhydride-based crosslinked fiber, and alginic acid-based crosslinked fiber are desirable. . Among them, the cross-linked acrylonitrile water-absorbing fiber starting from acrylonitrile fiber has a high physical strength of the fiber because the acrylonitrile fiber part remains in the center, and the handling property at the time of processing is good. Since there is little change to a length direction, the dimensional stability of a product is favorable and it is more preferable.

かかる架橋アクリロニトリル系吸水性繊維における共有結合による架橋構造の導入は、上述した繊維表面の加水分解前であっても、加水分解と同時であっても、加水分解後であっても構わない。また、架橋構造の導入においてはアクリロニトリル系繊維が有するニトリル基を、あるいは加水分解により生成したカルボキシル基を利用することができるが、加水分解により生成したカルボキシル基を利用する方法では、加水分解により繊維表面に生成するゲル部位のゲル強度が弱く、共有結合による架橋構造を導入する前の段階でゲルが脱落する、あるいは架橋にかからない一部のカルボキシル基含有ポリマーが流出するのに対し、加水分解前あるいは加水分解中にニトリル基を利用して架橋構造を導入すると、加水分解後のゲル強度が高く、また架橋にかからないカルボキシル基含有ポリマーが減少するため工業的な取扱、環境への影響に対しても有利であることから、ニトリル基を利用して架橋構造を導入する方法が好ましい。   The introduction of the crosslinked structure by covalent bond in the crosslinked acrylonitrile-based water-absorbing fiber may be before the hydrolysis of the fiber surface described above, at the same time as the hydrolysis, or after the hydrolysis. Moreover, in introducing the crosslinked structure, the nitrile group of the acrylonitrile fiber or the carboxyl group generated by hydrolysis can be used. However, in the method using the carboxyl group generated by hydrolysis, the fiber is obtained by hydrolysis. The gel strength of the gel site formed on the surface is weak, and the gel falls off before the introduction of the covalently crosslinked structure, or some of the carboxyl group-containing polymer that does not undergo crosslinking flows out, whereas before hydrolysis Alternatively, if a nitrile group is used during the hydrolysis to introduce a cross-linked structure, the gel strength after hydrolysis is high, and the carboxyl group-containing polymer that does not undergo cross-linking decreases. Therefore, a method of introducing a crosslinked structure using a nitrile group is preferable.

以下にニトリル基を利用して架橋構造を導入した架橋アクリロニトリル系吸水性繊維の製造方法について詳述する。まず、アクリロニトリル系繊維を構成するアクリロニトリル系重合体としては、アクリロニトリルを80重量%以上、好ましくは85重量%以上含む重合体が望ましい。共重合モノマーとしては塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル及びハロゲン化ビニリデン類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のエチレン系不飽和カルボン酸及びこれらの塩類:(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類:ビニルスルホン酸、(メタ)アリルスルホン酸、P-スチレンスルホン酸等のエチレン系不飽和スルホン酸及びこれらの塩類;(メタ)アクリルアミド、シアン化ビニリデン、メタアクリロニトリル等のビニル化合物類等が挙げられる。   Hereinafter, a method for producing a crosslinked acrylonitrile-based water-absorbing fiber having a crosslinked structure introduced using a nitrile group will be described in detail. First, as the acrylonitrile polymer constituting the acrylonitrile fiber, a polymer containing acrylonitrile at 80% by weight or more, preferably 85% by weight or more is desirable. As copolymerizable monomers, vinyl halides and vinylidene halides such as vinyl chloride, vinyl bromide and vinylidene chloride; ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid and their salts: ( (Meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate; vinyl esters such as vinyl acetate and vinyl propionate: vinyl sulfonic acid, (meth) allyl sulfone Examples include acids, ethylenically unsaturated sulfonic acids such as P-styrene sulfonic acid, and salts thereof; vinyl compounds such as (meth) acrylamide, vinylidene cyanide, and methacrylonitrile.

ここで、アクリロニトリル系重合体の分子量としては、一般の衣料用繊維として用いられる程度の分子量のものでも、高強度繊維等に用いられるような高分子量のものでもかまわないが、汎用の衣料用繊維を用いるほうがコスト的に有利であることから、20万以下の重量平均分子量のものが好適に利用できる。   Here, the molecular weight of the acrylonitrile-based polymer may be a molecular weight of a level that is used as a general clothing fiber, or may be a high molecular weight used for high-strength fibers, etc. Since it is more cost-effective to use, those having a weight average molecular weight of 200,000 or less can be suitably used.

繊維直径としては、繊維が細すぎると切り花の茎下端部と接触する部位をゲルが完全に覆い尽くし目詰まりに近い状態になるため、太いものが好ましいが、繊維物性等を考慮すると概ね、10〜100μm、好ましくは50〜80μmのものが推奨される。また繊維の断面形状としては、丸、扁平、三角など限定されることなく用いることができる。   As for the fiber diameter, if the fiber is too thin, the gel is completely covered with the portion that comes into contact with the lower end of the cut flower stalk, resulting in a state close to clogging. A particle size of ˜100 μm, preferably 50˜80 μm is recommended. In addition, the cross-sectional shape of the fiber can be used without being limited to a circle, a flat shape, a triangle, and the like.

次に該アクリロニトリル系繊維を出発物質として使用し、ニトリル基を利用した架橋構造の導入を行い、目的とする純水吸水倍率及び塩型カルボキシル基量(mmol/g)で純水吸水倍率を除した値を有する吸水性繊維を得る方法を詳細に説明するが、この方法としてはニトリル基を利用した架橋処理後に加水分解処理を行う方法とニトリル基を利用した架橋と加水分解を同時処理する方法を挙げることができる。   Next, using the acrylonitrile fiber as a starting material, a crosslinked structure using a nitrile group is introduced, and the pure water absorption capacity and the salt type carboxyl group content (mmol / g) are used to divide the pure water absorption capacity. The method for obtaining a water-absorbing fiber having the above-mentioned value will be described in detail. This method includes a method of performing a hydrolysis treatment after a crosslinking treatment using a nitrile group and a method of simultaneously performing a crosslinking and hydrolysis using a nitrile group. Can be mentioned.

はじめにニトリル基を利用した架橋処理後に加水分解処理を行う方法について説明を行う。アクリロニトリル系繊維にニトリル基を利用した架橋構造を導入する方法としては架橋剤濃度0.1〜10.0重量%、温度50〜120℃で5〜150分間処理する手段が工業的に好ましい。ここで架橋剤濃度、処理温度が下限値を切ると共有結合による架橋構造の導入量が不足し、逆に架橋剤濃度、処理温度が上限を超えると共有結合による架橋構造の導入量が多くなりすぎ、いずれの場合も加水分解後の塩型カルボキシル基量(mmol/g)で純水吸水倍率を除した値が、本発明の範囲にある吸水性繊維を得ることが難しい。   First, a method for performing a hydrolysis treatment after a crosslinking treatment using a nitrile group will be described. As a method for introducing a crosslinked structure using a nitrile group into acrylonitrile fiber, a means of treating at a temperature of 50 to 120 ° C. for 5 to 150 minutes at a crosslinking agent concentration of 0.1 to 10.0% by weight is industrially preferable. Here, if the crosslinker concentration and processing temperature fall below the lower limit, the amount of covalently crosslinked structure introduced will be insufficient. Conversely, if the crosslinker concentration and treatment temperature exceed the upper limit, the amount of covalently crosslinked structure introduced will increase. In any case, it is difficult to obtain a water-absorbing fiber having a value obtained by dividing the water absorption ratio of pure water by the amount of salt-type carboxyl group after hydrolysis (mmol / g) within the scope of the present invention.

架橋剤はニトリル基と化学反応し共有結合を形成しうる官能基を1分子中に2個以上有する多官能性化合物を含有する化合物であれば特に限定はないが、例えば1級アミノ基、エポキシ基等の官能基いずれか1種の官能基を2個以上有する多官能性化合物が挙げられ、具体的には水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、硝酸ヒドラジン、臭素酸ヒドラジン、ジアミノエタン、炭酸グアニジン、1、3-ジアミノプロパン、エチレングリコールジグリシジルエーテル等が挙げられる。   The cross-linking agent is not particularly limited as long as it is a compound containing a polyfunctional compound having two or more functional groups in one molecule capable of chemically reacting with a nitrile group, for example, primary amino group, epoxy Examples include polyfunctional compounds having two or more functional groups of any one of functional groups such as hydrazine, specifically, hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, hydrazine bromate, diaminoethane, carbonic acid. Examples thereof include guanidine, 1,3-diaminopropane, ethylene glycol diglycidyl ether and the like.

なお、アクリロニトリル系繊維をポンプ循環系を備えた容器内に充填し、架橋剤水溶液をポンプより循環しつつ反応を進めて架橋構造を導入する手段が、装置上、安全性、均一反応性等の諸点から望ましい。かかる装置(ポンプ循環系を備えた容器)の代表例としては、オーバーマイヤー染色機が挙げられる。   In addition, means for filling the acrylonitrile fiber in a container equipped with a pump circulation system and introducing a cross-linked structure by advancing the reaction while circulating the aqueous solution of the cross-linking agent from the pump, such as safety, uniform reactivity, etc. Desirable from various points. A representative example of such a device (a container equipped with a pump circulation system) is an Overmeier dyeing machine.

かくして得られた架橋アクリロニトリル系繊維を加水分解する手段は、アルカリ性金属化合物またはその水溶液を該繊維の乾燥重量に対し、純分のアルカリ性金属化合物量が2.5〜10.0(mmol/g)、好ましくは5.0〜10.0(mmol/g)の範囲内になるように付着させた繊維を調整し、該繊維を80℃以上の温度で5〜180分間加熱、好ましくは100〜150℃の湿熱雰囲気下で10〜120分間加熱する手段を採用することが望ましい。   The means for hydrolyzing the crosslinked acrylonitrile fiber thus obtained is that the amount of pure alkaline metal compound is 2.5 to 10.0 (mmol / g) with respect to the dry weight of the alkaline metal compound or its aqueous solution. The fibers are preferably adjusted so as to be in the range of 5.0 to 10.0 (mmol / g), and the fibers are heated at a temperature of 80 ° C. or higher for 5 to 180 minutes, preferably 100 to 150. It is desirable to employ a means of heating for 10 to 120 minutes in a moist heat atmosphere at ℃.

ここで使用するアルカリ性金属化合物とは、アルカリ金属化合物の1.0重量%水溶液のpHが7.5以上を示す物質をいい、かかる物質の例としては、Na、K、Li等のアルカリ金属の水酸化物または炭酸、酢酸、ギ酸等の有機酸のNa、K、Li等のアルカリ金属塩をあげることができる。なお、アルカリ性金属化合物の水性溶液を作成する溶媒としては、工業的は水が好ましいが、アルコール、アセトン、ジメチルホルムアミド等の水混和性有機溶媒と水との混合溶媒でも良い。   The alkaline metal compound used here refers to a substance having a pH of 7.5% or more of a 1.0% by weight aqueous solution of an alkali metal compound. Examples of such substances include alkali metal compounds such as Na, K, and Li. Examples thereof include hydroxides or alkali metal salts of organic acids such as carbonic acid, acetic acid and formic acid such as Na, K and Li. As a solvent for preparing an aqueous solution of an alkaline metal compound, water is industrially preferable, but a mixed solvent of water-miscible organic solvent such as alcohol, acetone, dimethylformamide and water may be used.

続いてニトリル基を利用した架橋と加水分解を同時処理する方法について説明を行う。架橋剤とアルカリ性金属化合物とを共存させた水性溶液を、繊維の乾燥重量に対し、純分のアルカリ性金属化合物量が2.5〜10.0(mmol/g)、好ましくは5.0〜10.0(mmol/g)の範囲、純分の架橋剤が0.1〜1.5重量%、好ましくは0.5〜1.0重量%の範囲内になるように付着させた繊維を調整し、該繊維を80℃以上の温度で5〜180分間加熱、好ましくは100〜150℃の湿熱雰囲気下で10〜120分間加熱する手段を採用することが望ましい。   Next, a method for simultaneously treating crosslinking and hydrolysis using a nitrile group will be described. An aqueous solution in which a crosslinking agent and an alkaline metal compound coexist has a pure alkaline metal compound amount of 2.5 to 10.0 (mmol / g), preferably 5.0 to 10 with respect to the dry weight of the fiber. The fibers are adjusted so that the cross-linking agent in the range of 0.0 (mmol / g) is 0.1 to 1.5% by weight, preferably 0.5 to 1.0% by weight. Then, it is desirable to employ a means for heating the fiber for 5 to 180 minutes at a temperature of 80 ° C. or higher, and preferably for 10 to 120 minutes in a humid heat atmosphere of 100 to 150 ° C.

このようにして、ニトリル基を利用した架橋構造を導入した純水吸水倍率が10〜100倍で、且つ純水吸水倍率を塩型カルボキシル基量(mmol/g)で除した値が5〜50の範囲にある架橋アクリロニトリル系吸水性繊維を製造することができる。   In this way, the pure water absorption ratio introducing a crosslinked structure using a nitrile group is 10 to 100 times, and the value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount (mmol / g) is 5 to 50. It is possible to produce a crosslinked acrylonitrile-based water-absorbing fiber in the range of.

本発明の吸水性繊維は、共有結合による架橋構造を導入せしめたものであることが好ましいが、高分子量の重合体を用いることによって共有結合による架橋構造を導入せしめることなく製造することも可能である。例えば、重量平均分子量が20万を超えるアクリロニトリル系重合体からなるアクリロニトリル系繊維を用い、上述した加水分解処理を施すことで表面は加水分解により生成した塩型カルボキシル基からなる吸水部、中心はアクリロニトリル系繊維からなる2層構造を有するアクリロニトリル系吸水性繊維を製造することができる。   The water-absorbing fiber of the present invention is preferably one having a covalently crosslinked structure introduced therein, but can also be produced without introducing a covalently crosslinked structure by using a high molecular weight polymer. is there. For example, using an acrylonitrile-based fiber composed of an acrylonitrile-based polymer having a weight average molecular weight exceeding 200,000, the surface is a water-absorbing part composed of a salt-type carboxyl group generated by hydrolysis by the above-mentioned hydrolysis treatment, and the center is acrylonitrile. An acrylonitrile-based water-absorbing fiber having a two-layer structure made of a base fiber can be produced.

上述した本発明の吸水性繊維を使用して鮮度保持材を作成する時の吸水性繊維の含有率は30〜100重量%が好ましい。吸水性繊維の含有率が高いほど単位重量あたりの保水量が増加し、切り花への給水量も多くなり給水が効率的に実施できるだけでなく鮮度保持材をコンパクトにすることが可能となる。吸水性繊維の含有率が30重量%以下では単位重量あたりの吸水量が少なく切り花へ給水量を確保するために鮮度保持材を非常に大きくする必要があり実用上の取扱が困難となる。   The content of the water-absorbing fiber when the freshness-keeping material is prepared using the water-absorbing fiber of the present invention described above is preferably 30 to 100% by weight. The higher the water-absorbing fiber content, the greater the amount of water retained per unit weight, the greater the amount of water supplied to the cut flowers, and not only can the water supply be carried out efficiently but also the freshness retaining material can be made compact. When the water-absorbing fiber content is 30% by weight or less, the amount of water absorption per unit weight is small, and it is necessary to make the freshness-keeping material very large in order to secure the amount of water supplied to the cut flowers, making practical handling difficult.

吸水性繊維と他の繊維を混ぜる場合に用いる繊維は、特に限定はないが、コスト面から考えてポリエステル、ナイロン、アクリル、ポリプロピレン、ポリエチレン、ビニロン、コットン、レーヨン、羊毛、ガラス繊維等の汎用繊維を用いるのが好ましい。   The fiber used for mixing the water-absorbing fiber with other fibers is not particularly limited, but general-purpose fibers such as polyester, nylon, acrylic, polypropylene, polyethylene, vinylon, cotton, rayon, wool, glass fiber, etc. Is preferably used.

鮮度保持材は水で膨潤させた状態で使用するため、膨潤前の形態については特に限定はなく、綿状、シート状いずれでもよい。膨潤させる前の取扱性を考えれば綿状よりもシート状であることが好ましい。またシート状であってもできる限り繊維間の交絡は少ない方が好ましい。交絡が少ないと膨潤した際に全体として柔軟な無定形となり茎下端部の差し込みが容易になるが、交絡が多いと膨潤した際に全体として硬くなり、茎下端部の差し込みが困難になり、端部と吸水性繊維の接触が不十分になりやすい。交絡の少ないシートの加工方法としては解繊ウェブを直接エンボッシングする方法、解繊ウェブをニードルパンチ工程のプレパンチ工程のみを通過させる方法等が挙げられる。   Since the freshness-keeping material is used in a state swollen with water, the form before swelling is not particularly limited, and may be either cotton-like or sheet-like. In view of handling properties before swelling, a sheet form is preferable to a cotton form. Moreover, even if it is a sheet form, it is preferable that there are few entanglements between fibers as much as possible. If there is little entanglement, it will be flexible and amorphous when swollen as a whole, and it will be easy to insert the lower end of the stem, but if there is much entanglement, it will become harder overall when swollen, making it difficult to insert the lower end of the stem, The contact between the part and the water-absorbing fiber tends to be insufficient. Examples of the processing method of the sheet with less entanglement include a method of directly embossing the defibrated web, a method of passing the defibrated web through only the pre-punching step of the needle punching step, and the like.

本発明の鮮度保持材に吸収させる水は蒸留水、水道水単独でもよいがチオ硫酸銀錯塩等のエチレン阻害剤あるいは、硝酸銀、硫酸アルミニウム、8−ヒドロキシキノリン、次亜塩素酸ナトリウム等の抗菌剤あるいは、スクロース、グルコース、フルクトース等の糖類あるいは、アルキルベンゼンスルホン酸塩、ポリオキシエチレンラウリルエーテル等の界面活性剤あるいは、ジベレリン、ベンジルアミノプリン等の植物ホルモン等の薬剤を単独で、あるいは複数種添加することが好ましく、かかる薬剤類を含有している、一般に市販されている前処理剤、あるいは鮮度保持剤を適用するのが好ましい。   The water to be absorbed by the freshness-keeping material of the present invention may be distilled water or tap water alone, but an ethylene inhibitor such as silver thiosulfate complex or an antibacterial agent such as silver nitrate, aluminum sulfate, 8-hydroxyquinoline, sodium hypochlorite Alternatively, saccharides such as sucrose, glucose and fructose, surfactants such as alkylbenzene sulfonate and polyoxyethylene lauryl ether, or agents such as plant hormones such as gibberellin and benzylaminopurine are added singly or in combination. It is preferable to apply a commercially available pretreatment agent or a freshness-preserving agent containing such drugs.

これまで述べた鮮度保持材を使用すれば、水こぼれすることなく切り花を輸送、販売することが可能になるだけでなく、従来技術では成し得なかった長期間の鮮度保持が可能となる。   If the freshness-keeping material described so far is used, it becomes possible not only to transport and sell cut flowers without spilling water, but also to maintain freshness for a long period of time that could not be achieved with the prior art.

以下、実施例により本発明を詳細に説明するが、本発明の範囲はこれら実施例のみに限定されるものではない。実施例中の部および百分率は、断りのない限り重量基準で示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited only to these Examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated.

本発明で用いる吸水性繊維の純水吸水倍率の測定方法は、試料約0.5gを25℃の純水300ml中に30分間浸漬した後、遠心脱水(160G×5分、ただしGは重力加速度)して調整した試料の重量(Y1(g))を測定し、次に該試料を80℃の真空乾燥機中で恒量になるまで乾燥した繊維の重量(Y2(g))を測定し、次式によって算出したものである。
吸水性繊維の純水吸水倍率(倍)=(Y1―Y2)/Y2
The method for measuring the water absorption ratio of the water-absorbing fiber used in the present invention is to immerse about 0.5 g of a sample in 300 ml of pure water at 25 ° C. for 30 minutes, and then perform centrifugal dehydration (160 G × 5 minutes, where G is the acceleration of gravity. ) To measure the weight of the prepared sample (Y 1 (g)), and then measure the weight of the dried fiber (Y 2 (g)) in the vacuum dryer at 80 ° C. until a constant weight is obtained. And calculated by the following equation.
Water absorption capacity of water absorption fiber (times) = (Y 1 -Y 2 ) / Y 2

鮮度保持材の吸水量は、鮮度保持材の初期重量(W(g))を測定し、500mlの水あるいは鮮度保持剤に30分間浸漬後、16メッシュの金網の上に移して10分間余剰水の水切りを行い、重量(W(g))を測定する。次式によって鮮度保持材の吸水量を算出する。
鮮度保持材の保水量(g)=W―W
The amount of water absorbed by the freshness-keeping material was measured by measuring the initial weight (W 1 (g)) of the freshness-keeping material, immersed in 500 ml of water or a freshness-keeping agent for 30 minutes, and then transferred onto a 16-mesh wire net for 10 minutes. Drain the water and measure the weight (W 2 (g)). The amount of water absorption of the freshness retaining material is calculated by the following formula.
Water retention amount (g) of freshness retaining material = W 2 −W 1

吸水性繊維の塩型カルボキシル基量(mmol/g)の測定は、はじめに吸水性繊維中の全カルボキシル基量測定を行い、その後H型カルボキシル基量を測定して次式に従って算出する。
塩型カルボキシル基量(mmol/g)=全カルボキシル基量(mmol/g)―H型カルボキシル基量(mmol/g)
The salt-type carboxyl group amount (mmol / g) of the water-absorbent fiber is measured by first measuring the total carboxyl group amount in the water-absorbent fiber and then measuring the H-type carboxyl group amount and calculating according to the following formula.
Salt-type carboxyl group amount (mmol / g) = Total carboxyl group amount (mmol / g) −H-type carboxyl group amount (mmol / g)

全カルボキシル基量測定は、吸水性繊維をpH2〜3の硫酸水溶液に30分浸漬後、十分水洗し80℃乾燥機にて乾燥し、その後、試料約0.4gを秤取り(X1(g))、これを100mlの純水に0.5gの塩化ナトリウムを溶解した液に入れて30分間攪拌する。続いて0.1mol/LのNaOHを30ml滴下した後に、フェノールフタレインを数滴滴下して赤色に着色するのを確認後、引き続き30分間攪拌する。その後、金網メッシュを使用して吸水性繊維と分散液を分離して分散液を回収する。分散液に0.1mol/LのHClを赤色が消失するまで滴下する(X2(ml))。次式に従って全カルボキシル基量を算出する。
全カルボキシル基量(mmol/g)=(30−X2)×0.1/X1
The total amount of carboxyl groups was measured by immersing the water-absorbing fiber in a sulfuric acid aqueous solution having a pH of 2 to 3 for 30 minutes, thoroughly washing with water and drying with an 80 ° C. dryer, and then weighing about 0.4 g of a sample (X 1 (g )), This is put into a solution obtained by dissolving 0.5 g of sodium chloride in 100 ml of pure water and stirred for 30 minutes. Subsequently, 30 ml of 0.1 mol / L NaOH was dropped, and after confirming that several drops of phenolphthalein were dropped and colored red, stirring was continued for 30 minutes. Thereafter, using a wire mesh, the water-absorbent fibers and the dispersion are separated to recover the dispersion. 0.1 mol / L HCl is added dropwise to the dispersion until the red color disappears (X 2 (ml)). The total amount of carboxyl groups is calculated according to the following formula.
Total carboxyl group content (mmol / g) = (30−X 2 ) × 0.1 / X 1

H型カルボキシル基量測定方法は、吸水性繊維を約0.4g秤取り(Z1(g))、これを100mlの純水に0.5gの塩化ナトリウムを溶解した液に入れて30分間攪拌する。続いて0.1mol/LのNaOHを30ml滴下した後に、フェノールフタレインを数滴滴下して赤色に着色するのを確認後、引き続き30分間攪拌する。その後、金網メッシュを使用して吸水性繊維と分散液を分離して分散液を回収する。分散液に0.1mol/LのHClを赤色が消失するまで滴下する(Z2(ml))。次式に従ってH型カルボキシル基量を算出する。
H型カルボキシル基量(mmol/g)=(30−Z2)×0.1/Z1
The method for measuring the amount of H-type carboxyl groups is to weigh about 0.4 g of water-absorbing fiber (Z 1 (g)), put it in a solution of 0.5 g of sodium chloride in 100 ml of pure water, and stir for 30 minutes. To do. Subsequently, 30 ml of 0.1 mol / L NaOH was dropped, and after confirming that several drops of phenolphthalein were dropped and colored red, stirring was continued for 30 minutes. Thereafter, using a wire mesh, the water-absorbent fibers and the dispersion are separated to recover the dispersion. 0.1 mol / L HCl is added dropwise to the dispersion until the red color disappears (Z 2 (ml)). The amount of H-type carboxyl group is calculated according to the following formula.
H-type carboxyl group amount (mmol / g) = (30−Z 2 ) × 0.1 / Z 1

アクリロニトリル系吸水性繊維Aの作成
繊度6.6dtex、繊維長51mmのアクリル繊維表面に35%の水酸化ナトリウム水溶液をアクリル繊維重量と等量付着させ108℃で15分間加水分解することで表面に塩型カルボキシル基を有する吸水層、中心部にアクリロニトリル系繊維部を残した芯鞘構造を有するアクリロニトリル系吸水性繊維Aを作成した。このアクリロニトリル系吸水性繊維Aの純水吸水倍率は220倍で、塩型カルボキシル基量は2.75mmol/g、吸水倍率を塩型カルボキシル基量で除した数値は80であった。 なお、アクリル繊維の製造には、重量平均分子量10万のアクリロニトリル系重合体を用い、吸水性繊維B、C、Dのアクリル繊維も同じアクリロニトリル系重合体を用いた。
Preparation of acrylonitrile-based water-absorbing fiber A 35% sodium hydroxide aqueous solution is attached to the surface of acrylic fiber having a fineness of 6.6 dtex and fiber length of 51 mm, and the surface is salted by hydrolysis at 108 ° C for 15 minutes. An acrylonitrile-based water-absorbing fiber A having a core-sheath structure in which a water-absorbing layer having a carboxylic group and a acrylonitrile-based fiber portion at the center portion was left was prepared. This acrylonitrile-based water-absorbing fiber A had a pure water absorption ratio of 220 times, a salt-type carboxyl group amount of 2.75 mmol / g, and a value obtained by dividing the water absorption ratio by the salt-type carboxyl group amount was 80. In addition, the acrylonitrile type | system | group polymer of the weight average molecular weight 100,000 was used for manufacture of an acrylic fiber, and the acrylonitrile type | system | group polymer was also used for the acrylic fiber of the water absorbing fibers B, C, and D.

架橋アクリロニトリル系吸水性繊維Bの作成
アクリロニトリル系吸水性繊維Aで使用したのと同じアクリル繊維を1.0%のヒドラジン水溶液に浸漬後、85℃で40分保持し共有結合による架橋構造の導入を行った。その後、繊維表面に35%の水酸化ナトリウム水溶液を架橋アクリル繊維重量と等量付着させ113℃で18分間加水分解することで表面に塩型カルボキシル基を有する吸水層、中心部にアクリロニトリル系繊維部を残した芯鞘構造を有する架橋アクリロニトリル系吸水性繊維Bを作成した。この架橋アクリロニトリル系吸水性繊維Bの純水吸水倍率は60倍で、塩型カルボキシル基量は4.3mmol/g、吸水倍率を塩型カルボキシル基量で除した数値は14.0であった。
Preparation of crosslinked acrylonitrile-based water-absorbing fiber B The same acrylic fiber used in acrylonitrile-based water-absorbing fiber A is immersed in 1.0% hydrazine aqueous solution and then held at 85 ° C. for 40 minutes to introduce a crosslinked structure by covalent bonding. went. Thereafter, a 35% aqueous solution of sodium hydroxide is attached to the fiber surface in an amount equal to the weight of the crosslinked acrylic fiber, and hydrolyzed at 113 ° C. for 18 minutes, whereby a water-absorbing layer having a salt-type carboxyl group on the surface and an acrylonitrile fiber part in the center. A cross-linked acrylonitrile-based water-absorbing fiber B having a core-sheath structure with the remaining left was prepared. This crosslinked acrylonitrile-based water-absorbing fiber B had a pure water absorption ratio of 60 times, a salt-type carboxyl group amount of 4.3 mmol / g, and a value obtained by dividing the water absorption ratio by the salt-type carboxyl group amount was 14.0.

架橋アクリロニトリル系吸水性繊維Cの作成
アクリロニトリル系吸水性繊維Aで使用したのと同じアクリル繊維を1.0%のヒドラジン水溶液に浸漬後、85℃で50分保持し共有結合による架橋構造の導入を行った。その後、繊維表面に35%の水酸化ナトリウム水溶液を架橋アクリル繊維重量と等量付着させ113℃で25分間加水分解することで表面に塩型カルボキシル基を有する吸水層、中心部にアクリロニトリル系繊維部を残した芯鞘構造を有する架橋アクリロニトリル系吸水性繊維Cを作成した。この架橋アクリロニトリル系吸水性繊維Cの純水吸水倍率は35倍で、塩型カルボキシル基量は4.8mmol/g、純水吸水倍率を塩型カルボキシル基量で除した数値は7.3であった。
Preparation of cross-linked acrylonitrile-based water-absorbing fiber C The same acrylic fiber used for acrylonitrile-based water-absorbing fiber A is immersed in a 1.0% hydrazine aqueous solution and then held at 85 ° C. for 50 minutes to introduce a crosslinked structure by covalent bonding. went. Thereafter, a 35% aqueous solution of sodium hydroxide is attached to the fiber surface in an amount equal to the weight of the crosslinked acrylic fiber and hydrolyzed at 113 ° C. for 25 minutes to have a water-absorbing layer having a salt-type carboxyl group on the surface, and an acrylonitrile fiber part in the center. A cross-linked acrylonitrile-based water-absorbing fiber C having a core-sheath structure with the remaining left was prepared. This crosslinked acrylonitrile-based water-absorbing fiber C had a pure water absorption ratio of 35 times, a salt-type carboxyl group amount of 4.8 mmol / g, and a value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount was 7.3. It was.

架橋アクリロニトリル系吸水性繊維Dの作成
アクリロニトリル系吸水性繊維Aで使用したのと同じアクリル繊維を2.0%のヒドラジン水溶液に浸漬後、90℃で120分保持し共有結合による架橋構造の導入を行った。その後、繊維表面に35%の水酸化ナトリウム水溶液を架橋アクリル繊維重量と等量付着させ104℃で22分間加水分解することで表面に塩型カルボキシル基を有する吸水層、中心部にアクリロニトリル系繊維部を残した芯鞘構造を有する架橋アクリロニトリル系吸水性繊維Dを作成した。この架橋アクリロニトリル系吸水性繊維Dの純水吸水倍率は9倍で、塩型カルボキシル基量は2.85mmol/g、純水吸水倍率を塩型カルボキシル基量で除した数値は3.2であった。
Preparation of crosslinked acrylonitrile-based water-absorbing fiber D After the same acrylic fiber used in acrylonitrile-based water-absorbing fiber A is immersed in a 2.0% hydrazine aqueous solution, it is held at 90 ° C. for 120 minutes to introduce a crosslinked structure by covalent bonding. went. Then, a 35% aqueous solution of sodium hydroxide is attached to the fiber surface in an amount equal to the weight of the cross-linked acrylic fiber, and hydrolyzed at 104 ° C. for 22 minutes to have a water-absorbing layer having a salt-type carboxyl group on the surface, and an acrylonitrile-based fiber part in the center. A cross-linked acrylonitrile-based water-absorbing fiber D having a core-sheath structure with the remaining left was prepared. The cross-linked acrylonitrile water-absorbing fiber D had a pure water absorption ratio of 9 times, a salt-type carboxyl group amount of 2.85 mmol / g, and a value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount was 3.2. It was.

実施例1
架橋アクリロニトリル系吸水性繊維Bとコットンを重量比で60/40で混合後、カード解繊機で解繊ウェブを作り直接エンボッシングして目付220g/mの鮮度保持材を作成した。この鮮度保持材を10cm×10cmサイズにカット後、切り花用鮮度保持剤である美咲(大塚化学製)500ccに30分浸漬後、16メッシュのふるいに移し替えて10分間放置して余剰水の水切りを行い水こぼれのない状態を作った。水切り後の重量測定を行い浸漬前重量を引いた値を保水量とした。保水量、シート取扱性を評価した結果を表1に示す。シート取扱性はバラ3本を輸送、販売する場合にシート容積として取扱が可能なサイズであるかを判断したものである。
Example 1
After the crosslinked acrylonitrile-based water-absorbing fiber B and cotton were mixed at a weight ratio of 60/40, a defibrating web was formed by a card defibrating machine and directly embossed to prepare a freshness maintaining material having a basis weight of 220 g / m 2 . Cut this freshness-keeping material to 10cm x 10cm size, immerse it in Misaki (made by Otsuka Chemical), a freshness-keeping agent for cut flowers, for 30 minutes, transfer to a 16-mesh sieve and leave for 10 minutes to drain off excess water. And made a state without water spills. The weight was measured after draining, and the value obtained by subtracting the weight before immersion was defined as the water retention amount. Table 1 shows the results of evaluating the water retention and sheet handling properties. The sheet handling property is determined by determining whether or not the size can be handled as a sheet volume when three roses are transported and sold.

Figure 0004680927
Figure 0004680927

この鮮度保持剤吸水後の鮮度保持材を袋に入れて40cmに切り揃えたバラ(品種:ローテローゼ)3本を重量測定後に茎下端部が鮮度保持材に入り込むまで突き刺した。その後、全体をスリーブで包み込んで倒れないようにカップに入れ3日間放置した。この状態は輸送時、あるいは販売時の状態を想定しており、この期間を保管期間と称した。その後、バラを鮮度保持材から取り出して切り戻し後、美咲を入れた花瓶に生け替え5日間放置した。この状態は鑑賞時の状態を想定しており、この期間を鑑賞期間と称した。この保管期間、鑑賞期間でのバラの重量変化率と開花状態を表2に示す。重量変化率は試験開始時のバラの重量に対して重量増減を百分率で表したものである。   The freshness-holding material after water absorption by the freshness-keeping agent was put in a bag and stabbed until the lower end of the stem entered the freshness-keeping material after weighing three roses (variety: rotellose) cut to 40 cm. Thereafter, the whole was wrapped in a sleeve and placed in a cup so as not to fall down, and left for 3 days. This state assumes a state at the time of transportation or sales, and this period is called a storage period. Thereafter, the roses were taken out from the freshness-keeping material, cut back, and then replaced in a vase containing Misaki and left for 5 days. This state assumes a state at the time of viewing, and this period is referred to as a viewing period. Table 2 shows the weight change rate and flowering state of roses during the storage period and the appreciation period. The weight change rate is a percentage change in weight with respect to the weight of the rose at the start of the test.

Figure 0004680927
Figure 0004680927

実施例2
実施例1のうち架橋アクリロニトリル系吸水性繊維Bを架橋アクリロニトリル系吸水性繊維Cに変更し、鮮度保持材サイズを12cm×12cmに変更した以外は実施例1と同じ試験を実施した結果を表1、2に示す。
Example 2
Table 1 shows the results of carrying out the same test as in Example 1 except that the crosslinked acrylonitrile-based water-absorbing fiber B in Example 1 was changed to the crosslinked acrylonitrile-based water-absorbing fiber C and the freshness retaining material size was changed to 12 cm × 12 cm. 2 shows.

実施例3
実施例1のうち鮮度保持材構成を架橋アクリロニトリル系吸水性繊維C/コットン=80/20に変更し、鮮度保持材サイズを12cm×12cmに変更した以外は実施例1と同じ試験を実施した結果を表1、2に示す。
Example 3
Results of performing the same test as in Example 1 except that the freshness-holding material configuration in Example 1 was changed to crosslinked acrylonitrile-based water-absorbing fiber C / cotton = 80/20 and the freshness-holding material size was changed to 12 cm × 12 cm. Are shown in Tables 1 and 2.

実施例4
実施例1のうち鮮度保持材構成を架橋アクリロニトリル系吸水性繊維C/コットン=20/80に変更し、鮮度保持材サイズを23cm×23cmに変更した以外は実施例1と同じ試験を実施した結果を表1、2に示す。
Example 4
Results of performing the same test as in Example 1 except that the freshness-holding material configuration in Example 1 was changed to crosslinked acrylonitrile-based water-absorbing fiber C / cotton = 20/80, and the freshness-holding material size was changed to 23 cm × 23 cm. Are shown in Tables 1 and 2.

比較例1
実施例1のうち架橋アクリロニトリル系吸水性繊維Bをアクリロニトリル系吸水性繊維Aに変更した以外は実施例1と同様の操作をしたときの結果を表1、2に示す。
Comparative Example 1
Tables 1 and 2 show the results when the same operation as in Example 1 was performed except that the crosslinked acrylonitrile-based water absorbent fiber B in Example 1 was changed to the acrylonitrile-based water absorbent fiber A.

比較例2
実施例1のうち架橋アクリロニトリル系吸水性繊維Bを架橋アクリロニトリル系吸水性繊維Dに変更し、鮮度保持材サイズを45cm×45cmに変更した以外は実施例1と同様の操作をしたときの結果を表1、2に示す。
Comparative Example 2
The results when the same operation as in Example 1 was performed except that the crosslinked acrylonitrile-based water absorbent fiber B in Example 1 was changed to the crosslinked acrylonitrile-based water absorbent fiber D and the freshness retaining material size was changed to 45 cm × 45 cm. Shown in Tables 1 and 2.

実施例2、3は水こぼれのない状態で水を十分に保水して、バラに対して適度な給水を行い、3日間の保存期間を経てさらに鑑賞期間5日後という長期間に渡って開花状態を維持している。また該鮮度保持材のサイズは輸送性、販売使用を想定した場合の取扱性にも適した大きさである。純水吸水倍率を塩型カルボキシル基量で除した値が比較的高い実施例1は、水上げ性低下を引き起こし、重量減少の進行が若干早く、鑑賞期間5日後で1本がベントネックに近い状態になっているが長期間の鮮度保持効果は認められる。実施例4は鮮度保持材中の吸水性繊維含有量が少ないため、保水量を確保するためにサイズが大きくなり、実施例1〜3に比べ取扱性にやや劣るが十分実用可能なものである。   In Examples 2 and 3, the water is sufficiently retained in a state without water spilling, and an appropriate amount of water is supplied to the roses. After a storage period of 3 days, the flowering state continues for a long period of 5 days after the viewing period. Is maintained. The size of the freshness-keeping material is also suitable for transportability and handling when assuming sales use. Example 1, which has a relatively high value obtained by dividing the pure water absorption ratio by the amount of salt-type carboxyl groups, caused a decrease in water-raising property, and the progress of weight reduction was slightly faster, and one was close to the vent neck after 5 days of the viewing period. Although it is in a state, a long-term freshness maintaining effect is recognized. In Example 4, since the water-absorbing fiber content in the freshness-keeping material is small, the size is increased in order to secure the water retention amount, which is slightly inferior in handling property compared to Examples 1 to 3, but is sufficiently practical. .

純水吸水倍率を塩型カルボキシル基量を除した値、すなわちゲル強度が低い比較例1は、鑑賞期間5日後では全てがベントネック状態となっている。比較例2は吸水性繊維の純水吸水倍率が低い為に保水量を確保するのに非常に大きなサイズになり取扱性が悪いばかりでなく、鮮度保持材の単位体積あたり水量が少ないため効率的な切り花への給水が困難となりゲル強度に関係なく水上げ不足で萎凋のまま開花に至らず鑑賞期間5日後には枯れた。   The value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount, that is, Comparative Example 1 having low gel strength, is all bent-necked after 5 days of the viewing period. In Comparative Example 2, the water absorption capacity of the water-absorbing fiber is low, so that the water retention amount is very large and the handleability is not only bad, but also the handling property is poor. Water supply to the cut flowers became difficult, regardless of the gel strength, the water deficit caused the dwarfing without flowering and withered after 5 days of the appreciation period.

実施例5
架橋アクリルニトリル系吸水繊維Bとコットンを重量比で50/50で混合後、カード開織機で開繊ウェブ(目付約200g/m)を作り、2本の熱エンボスローラーを通し、切花給水材用エンボスシートを得た。このエンボスシートを10×10cmにカットし、保水量を測定した。保水量は191mlであり、水こぼれもなく、取扱性も良好であった。かかる保水状態の切花給水材用エンボスシートを直径6cm高さ15cmの丸底容器へ入れ、40cmに切りそろえたバラ3本(イエロートップサン)を、切り口が前記保水状態のエンボスシートに刺さる状態で立て、その状態で3日間(保管期間)放置した。その後、水を入れた花瓶へ入れ替え、7日間(鑑賞期間)放置した。この保管期間、鑑賞期間でのバラ3本の重量変化(g)及び外観を表3に示す。
Example 5
Cross-linked acrylonitrile-based water-absorbing fiber B and cotton are mixed at a weight ratio of 50/50, and then a spread web (approx. 200 g / m 2 ) is made with a card weaving machine. An embossed sheet was obtained. This embossed sheet was cut into 10 × 10 cm, and the water retention amount was measured. The water retention amount was 191 ml, there was no water spillage, and the handleability was good. Place the embossed sheet for cut water supply in water holding state into a round bottom container with a diameter of 6 cm and a height of 15 cm, and stand three roses (yellow top sun) trimmed to 40 cm with the cut end stuck in the water retaining state embossed sheet. In that state, it was left for 3 days (storage period). After that, it was replaced with a vase containing water and left for 7 days (viewing period). Table 3 shows the weight change (g) and appearance of the three roses during the storage period and the appreciation period.

Figure 0004680927
Figure 0004680927

比較例3
実施例5のうち保管期間に前記保水状態のエンボスシートを使用する代わりに、水200mlに変更した以外は実施例1と同様の操作を行った。結果は表3に併記した。
Comparative Example 3
In Example 5, instead of using the embossed sheet in the storage state during the storage period, the same operation as in Example 1 was performed except that the water was changed to 200 ml. The results are also shown in Table 3.

比較例4
実施例5のうちエンボスシート構成を架橋アクリルニトリル系吸水繊維Bからアクリロニトリル系吸水繊維Aに変更した以外は実施例5と同様の操作を行った。結果は表3に併記した。
Comparative Example 4
The same operation as in Example 5 was performed except that the embossed sheet configuration in Example 5 was changed from the crosslinked acrylonitrile-based water-absorbing fiber B to the acrylonitrile-based water-absorbing fiber A. The results are also shown in Table 3.

Claims (3)

純水吸水倍率が10〜100倍で、且つ純水吸水倍率を塩型カルボキシル基量(mmol/g)で除した値が5〜50の範囲にある吸水性繊維を含有することを特徴とする切り花用鮮度保持材。  It contains a water-absorbing fiber having a pure water absorption ratio of 10 to 100 times and a value obtained by dividing the pure water absorption ratio by the salt-type carboxyl group amount (mmol / g) in the range of 5 to 50. Freshness retaining material for cut flowers. 吸水性繊維が、共有結合による架橋構造を導入せしめたものであることを特徴とする請求項1記載の切り花用鮮度保持材。  The freshness-keeping material for cut flowers according to claim 1, wherein the water-absorbent fibers are those in which a crosslinked structure by covalent bond is introduced. 吸水性繊維の含有率が30〜100重量%であることを特徴とする請求項1又は2記載の切り花用鮮度保持材。  The freshness-keeping material for cut flowers according to claim 1 or 2, wherein the water-absorbing fiber content is 30 to 100% by weight.
JP2006539184A 2004-09-16 2005-08-23 Freshness preservation material for cut flowers Expired - Fee Related JP4680927B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004270097 2004-09-16
JP2004270097 2004-09-16
PCT/JP2005/015246 WO2006038388A1 (en) 2004-09-16 2005-08-23 Freshness-maintaining material for cut flower

Publications (2)

Publication Number Publication Date
JPWO2006038388A1 JPWO2006038388A1 (en) 2008-05-15
JP4680927B2 true JP4680927B2 (en) 2011-05-11

Family

ID=36142473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006539184A Expired - Fee Related JP4680927B2 (en) 2004-09-16 2005-08-23 Freshness preservation material for cut flowers

Country Status (2)

Country Link
JP (1) JP4680927B2 (en)
WO (1) WO2006038388A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253907B2 (en) * 2018-11-30 2023-04-07 東洋紡せんい株式会社 Spun yarns and woven and knitted fabrics with excellent spinnability and moisture absorption and desorption properties

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246535U (en) * 1988-09-24 1990-03-30
JP2529313Y2 (en) * 1990-04-10 1997-03-19 鐘紡株式会社 Fresh flower preservation material
JP3286229B2 (en) * 1997-12-05 2002-05-27 株式会社伏見製薬所 Water supply material for plants and method of using the same
JPH11165767A (en) * 1997-12-05 1999-06-22 Fushimi Seiyakusho:Kk Water absorbing material for cut flower
JP2000300081A (en) * 1999-04-16 2000-10-31 Nishimura Shokufu Kojo:Kk Cloth for steric plantation and steric plantation method
JP2002097101A (en) * 2000-07-15 2002-04-02 Eiwa Planning:Kk Preserving device for cut flower, method for preserving cut flower, water retaining tool for cut flower and holding member for cut flower

Also Published As

Publication number Publication date
JPWO2006038388A1 (en) 2008-05-15
WO2006038388A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
EP0536087B1 (en) System-container for the prolonged diffusion of an active component
JP3571192B2 (en) Water-degradable cleaning sheet containing modified polyvinyl alcohol
TWI363061B (en) Absorbent composite material and method for manufacturing the same
CN104958779B (en) A kind of wound dressing containing chelating silver fiber
TW201217401A (en) Method for producing water-absorbent resin particles and water-absorbent resin particles
CN102418271B (en) Anti-bacterial textile finishing agent
JP4680927B2 (en) Freshness preservation material for cut flowers
JP2008266829A (en) Functional fiber structure and method for producing the same
JP6339861B2 (en) Filling, and futon and garment containing the filling
JP2003147680A (en) Hygroscopic/water-absorbing heat-generation structure
JP4852782B2 (en) High salt water-absorbing fiber having durability for washing and method for producing the same
JP3369508B2 (en) Hygroscopic fiber
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP2003093529A (en) Hygroscopic/water absorbing heating mask
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP6877700B2 (en) High-bulk, high-heat-sustaining fibers, and fiber structures, deodorant materials, and batting containing the fibers.
KR20190133018A (en) Batting
JPH01299624A (en) Hygroscopic fiber
JP3716984B2 (en) Method for producing hygroscopic fiber
JP2587377Y2 (en) Work wiper
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP6399378B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2003119606A (en) Sportswear
JP4821944B2 (en) Hygiene material base fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees