JP4680067B2 - Turbine blade repair method and turbine blade - Google Patents

Turbine blade repair method and turbine blade Download PDF

Info

Publication number
JP4680067B2
JP4680067B2 JP2006000607A JP2006000607A JP4680067B2 JP 4680067 B2 JP4680067 B2 JP 4680067B2 JP 2006000607 A JP2006000607 A JP 2006000607A JP 2006000607 A JP2006000607 A JP 2006000607A JP 4680067 B2 JP4680067 B2 JP 4680067B2
Authority
JP
Japan
Prior art keywords
corrosion
turbine blade
base material
resistant film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006000607A
Other languages
Japanese (ja)
Other versions
JP2007182776A (en
Inventor
剛文 櫻井
聡 白塚
剛 松浦
秀行 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006000607A priority Critical patent/JP4680067B2/en
Publication of JP2007182776A publication Critical patent/JP2007182776A/en
Application granted granted Critical
Publication of JP4680067B2 publication Critical patent/JP4680067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、耐食皮膜でコーティングした蒸気タービンのタービン翼の補修方法及びタービン翼に関する。   The present invention relates to a turbine blade repair method and a turbine blade of a steam turbine coated with a corrosion resistant coating.

蒸気タービンの翼、特に中圧初段のノズル翼(静翼)等は、例えば再熱蒸気に同伴する微小固体粒子の衝突等によって表面が侵食されエロージョンが発生し易い。エロージョンの発生した翼は蒸気タービンの性能低下や振動励起等といった様々な不具合の要因になることから、不具合を防止するために交換したり補修して元の形状に復元したりする必要がある。   Steam turbine blades, particularly nozzle blades (stator blades) at the first stage of medium pressure, are eroded easily due to collision of fine solid particles accompanying reheated steam, for example, and erosion is likely to occur. Since eroded blades cause various problems such as performance degradation and vibration excitation of the steam turbine, it is necessary to replace or repair them to restore the original shape in order to prevent the problems.

近年では、ダイヤフラムの性能回復及び延命のため、通常、特許文献1等に記載されているようにCr−C等といった硬質な材料を溶射して翼表面を溶射皮膜でコーティングすることでエロージョン防止策が講じられている。   In recent years, in order to recover the performance of the diaphragm and prolong its life, an erosion prevention measure is usually performed by spraying a hard material such as Cr-C and coating the blade surface with a spray coating as described in Patent Document 1 and the like. Has been taken.

特開平9−170402号公報JP-A-9-170402

しかしながら、Cr−C等で翼表面をコーティングしても完全にエロージョンを抑えることはできず使用に伴って侵食が進行し補修の必要が生じる。Cr−Cコーティングを施したタービン翼を補修する場合、Cr−C溶射皮膜を完全に除去し皮膜を除去した範囲のタービン翼の母材を全て削り落としてから、溶接肉盛によってタービン翼を元の形状に復元した上で再度Cr−Cを溶射していた。このようにCr−C溶射皮膜のような耐食コーティングを施したタービン翼は、エロージョンの発生が部分的であっても溶射皮膜を完全に除去しエロージョン発生部位を切削してから元の状態に復元していた。   However, even if the blade surface is coated with Cr-C or the like, erosion cannot be completely suppressed, and erosion progresses with use, and repair is required. When repairing a turbine blade with a Cr-C coating, the Cr-C spray coating is completely removed, and all the base material of the turbine blade in the range where the coating has been removed is scraped off. After the shape was restored, Cr—C was sprayed again. In this way, a turbine blade with a corrosion-resistant coating such as a Cr-C sprayed coating completely removes the sprayed coating and cuts the erosion-occurring part and restores it to its original state even if erosion is partially generated. Was.

本発明は、このような事情に鑑みてなされたもので、エロージョンが発生した場合に耐食皮膜の除去範囲を最小限にとどめて部分的に補修することができるタービン翼の補修方法及びタービン翼を提供することを目的とする。   The present invention has been made in view of such circumstances, and a turbine blade repair method and a turbine blade that can be partially repaired while minimizing the removal range of the corrosion-resistant coating when erosion occurs. The purpose is to provide.

(1)上記目的を達成するために、本発明は、蒸気タービンのタービン翼の耐食皮膜でコーティングした部分にエロージョンが発生した場合のタービン翼の補修方法において、エロージョン発生部位の耐食皮膜を除去する工程と、タービン翼の母材のエロージョン発生部位を除去する工程と、母材の残存部分の母材表面のうち、前記除去したエロージョン発生部位に隣接する縁部とその周辺部分の耐食皮膜を除去する工程と、タービン翼の母材形状を肉盛溶接により復元する工程と、前記縁部とその周辺部分が除去された既存の耐食皮膜の新たな耐食皮膜との接合面に前記母材よりも硬質な材質のボンディングコートを製膜する工程と、前記母材の復元部分に新たな耐食皮膜を溶射して製膜するとともに前記ボンディングコートを介して既存の耐食皮膜と新たな耐食皮膜とを接合する工程とを有することを特徴とする。 (1) In order to achieve the above-mentioned object, the present invention removes the corrosion-resistant film at the erosion occurrence site in a turbine blade repairing method when erosion occurs in a portion coated with a corrosion-resistant film on the turbine blade of a steam turbine. A step of removing the erosion occurrence site of the base material of the turbine blade, and removing the anticorrosion film on the edge adjacent to the removed erosion occurrence site and the peripheral portion of the base material surface of the remaining part of the base material And a step of restoring the base material shape of the turbine blade by overlay welding , and a new anticorrosion film of the existing anticorrosion film from which the edge portion and its peripheral part have been removed than the base material. A process of forming a bonding coat of a hard material, and a new corrosion-resistant film is sprayed on the restored portion of the base material to form a film, and the existing coating through the bonding coat Characterized by a step of joining the new corrosion resistant coating and corrosion resistant coating.

(2)上記(1)において、好ましくは、前記耐食皮膜が、タービン翼背側の蒸気通路部出口側に形成されていることを特徴とする。   (2) In the above (1), preferably, the corrosion-resistant film is formed on the steam passage portion outlet side on the turbine blade back side.

(3)上記(1)において、好ましくは、前記耐食皮膜が、Cr−C系皮膜、WC系皮膜、Cr−C/WC複合系皮膜、ホウ化物系皮膜を含むサーメット皮膜であることを特徴とする。   (3) In the above (1), preferably, the corrosion-resistant film is a cermet film including a Cr-C film, a WC film, a Cr-C / WC composite film, and a boride film. To do.

(4)上記(3)において、また好ましくは、前記サーメット皮膜は、溶射厚み50〜500μmのコーティング層であることを特徴とする。   (4) In the above (3), preferably, the cermet film is a coating layer having a thermal spray thickness of 50 to 500 μm.

(5)上記(1)において、また好ましくは、前記ボンディングコートが、前記母材の復元部分の周囲に溶射によって施工されていることを特徴とする。   (5) In the above (1), preferably, the bonding coat is applied around the restored portion of the base material by thermal spraying.

(6)上記(1)において、好ましくは、前記ボンディングコートが、MCrAlY系、Ni−Cr系、Ni−Al系、Ni−Cr−Al系の材質であることを特徴とする。   (6) In the above (1), preferably, the bonding coat is made of MCrAlY, Ni—Cr, Ni—Al, or Ni—Cr—Al.

(7)上記(1)において、さらに好ましくは、前記タービン翼が静翼であることを特徴とする。   (7) In the above (1), more preferably, the turbine blade is a stationary blade.

(8)上記(7)において、また好ましくは、前記タービン翼が前記中圧初段の静翼であることを特徴とする。   (8) In the above (7), preferably, the turbine blade is the intermediate pressure first stage stationary blade.

(9)上記目的を達成するために、また本発明は、耐食皮膜でコーティングした蒸気タービンのタービン翼において、エロージョン発生部位の耐食皮膜を除去する工程と、タービン翼の母材のエロージョン発生部位を除去する工程と、母材の残存部分の母材表面のうち、前記除去したエロージョン発生部位に隣接する縁部とその周辺部分の耐食皮膜を除去する工程と、タービン翼の母材形状を肉盛溶接により復元する工程と、前記縁部とその周辺部分が除去された既存の耐食皮膜の新たな耐食皮膜との接合面に前記母材よりも硬質な材質のボンディングコートを製膜する工程と、前記母材の復元部分に新たな耐食皮膜を溶射して製膜するとともに前記ボンディングコートを介して既存の耐食皮膜と新たな耐食皮膜とを接合する工程とを施して形成したことを特徴とする。 (9) In order to achieve the above object, the present invention also includes a step of removing a corrosion-resistant film from an erosion occurrence site in a turbine blade of a steam turbine coated with a corrosion-resistant film, and an erosion occurrence site of a base material of the turbine blade. removing, among the base metal surface of the remaining portion of the base material, the edges adjacent to the erosion occurrence site was the removed and a step of removing the corrosion resistant coating of the peripheral portion, the preform shape of the turbine blade overlay A step of restoring by welding, and a step of forming a bonding coat of a material harder than the base material on the joint surface of the existing corrosion-resistant coating from which the edge portion and its peripheral portion have been removed ; and A process of spraying a new corrosion-resistant film on the restored portion of the base material and forming an existing corrosion-resistant film and a new corrosion-resistant film through the bonding coat It is characterized in that form.

本発明によれば、エロージョンが発生した場合に耐食コーティングの除去範囲を最小限にとどめて部分的に補修することができる。   According to the present invention, when erosion occurs, the repair range of the corrosion-resistant coating can be minimized and partially repaired.

以下に図面を用いて本発明の実施の形態を説明する。
図1は本発明の適用対象の一例である蒸気タービンのノズル翼の段落を抽出して表した組立図である。
図1に示すように、1つの段落には、環状に形成される蒸気通路30の周方向(タービン回転方向)に複数のノズル翼(静翼)31が配列されている。各ノズル翼31の内周側は内スペーサ32を介して内輪34に、外周側は外スペーサ33を介して外輪35に固定されており、一体的に1つのタービン段落が形成されている。このような構成により、蒸気通路30を流れる蒸気の熱エネルギーが速度エネルギーに変換させる。なお、図示されていないが、タービン段落ではこうした静翼翼列の後に動翼翼列が設けられ、実際には一対の静翼翼列と動翼翼列によってタービン段落が形成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an assembly diagram in which a paragraph of a nozzle blade of a steam turbine which is an example of an application target of the present invention is extracted and represented.
As shown in FIG. 1, in one paragraph, a plurality of nozzle blades (static blades) 31 are arranged in the circumferential direction (turbine rotation direction) of an annular steam passage 30. The inner peripheral side of each nozzle blade 31 is fixed to the inner ring 34 via the inner spacer 32, and the outer peripheral side is fixed to the outer ring 35 via the outer spacer 33, so that one turbine stage is integrally formed. With such a configuration, the thermal energy of the steam flowing through the steam passage 30 is converted into velocity energy. Although not shown, in the turbine stage, a moving blade cascade is provided after such a stationary blade cascade, and a turbine stage is actually formed by a pair of stationary blade cascades and the moving blade cascade.

蒸気通路30には、当該蒸気タービンまでの経路の途中にあるボイラーチューブや主蒸気リード管の内面から剥離した酸化スケール等が蒸気とともに流入し、ノズル翼31に衝突して(特にタービン翼背側の蒸気通路部出口側が)エロージョンされる(侵食される)段落がある。中でも中圧初段が激しくエロージョンする傾向にあるが、本実施の形態では、こうした侵食され易い段落のノズル翼31の表面には耐エロージョン対策としてCr−Cコーティング(耐食皮膜)が施工されている。本実施の形態では、耐食皮膜としてCr−Cコーティングを例に挙げて説明するが、例えばCr−C系の材質の他、WC系、Cr−C/WC複合系の材質、ホウ化物系の材質で形成されるサーメット皮膜も適用可能である。各種サーメット皮膜単独でも良いし、複合した皮膜としても良い。このサーメット皮膜は溶射によって形成されるもので、好ましくは溶射厚み50〜500μmのコーティング層である。   In the steam passage 30, oxide scale or the like peeled off from the inner surface of the boiler tube or the main steam lead pipe in the middle of the path to the steam turbine flows together with the steam and collides with the nozzle blade 31 (particularly on the turbine blade back side). There is a paragraph in which the steam passage exit side is eroded (eroded). In particular, the first stage of the medium pressure tends to erode violently, but in the present embodiment, a Cr—C coating (corrosion-resistant film) is applied to the surface of the nozzle blade 31 in such a stage that is easily eroded as a measure against erosion. In the present embodiment, description will be given by taking Cr-C coating as an example of the corrosion resistant film. For example, in addition to Cr-C materials, WC materials, Cr-C / WC composite materials, boride materials A cermet film formed by the above method is also applicable. Various cermet films may be used alone or in combination. This cermet film is formed by thermal spraying, and is preferably a coating layer having a thermal spray thickness of 50 to 500 μm.

Cr−Cコーティングにより耐食性能は向上するが、Cr−C等で翼表面をコーティングしても完全にエロージョンを抑えることはできず使用に伴って侵食が進行し補修の必要が生じる。このとき、エロージョンは翼全体に均一に発生する訳ではなく部分的に発生するため、エロージョン箇所を対象とした部分的な補修が望まれる。ところが、Cr−Cコーティングを施したタービン翼を補修する場合、翼全体のCr−C溶射皮膜を完全に除去しこの皮膜を除去した範囲のタービン翼の母材を全て削り落としてから、溶接肉盛によってタービン翼を元の形状に復元した上で再度Cr−Cを溶射していた。   Corrosion resistance is improved by Cr-C coating, but even if the blade surface is coated with Cr-C or the like, erosion cannot be completely suppressed, and erosion progresses with use and repair is required. At this time, since erosion does not occur uniformly over the entire wing but occurs partially, partial repair for the erosion portion is desired. However, when repairing a turbine blade with a Cr-C coating, the Cr-C sprayed coating on the entire blade is completely removed, and the base material of the turbine blade in the range where this coating is removed is scraped off before welding. After the turbine blades were restored to the original shape by the prime, Cr-C was sprayed again.

このように、一般に耐食皮膜を施したタービン翼を補修する場合、エロージョンの発生が部分的であっても翼全体の溶射皮膜を完全に除去しこの皮膜を除去した範囲のタービン翼の母材を全て削り落としてから元の状態に復元していた。   In general, when repairing turbine blades with a corrosion-resistant coating, it is necessary to completely remove the sprayed coating on the entire blade and remove the turbine blade base material in the range where this coating is removed, even if erosion occurs partially. It was restored to its original state after everything was scraped off.

それに対し、本実施の形態は、上述したようなタービン翼にエロージョンが発生した場合、その翼全体の耐食皮膜を除去することなく、耐食皮膜の除去範囲を最小限にとどめて部分的に補修するタービン翼の補修方法とこの補修方法により元通り修復されたタービン翼を提供するものである。
以下に本発明の一実施の形態に係るタービン翼の補修方法とこの補修方法により元通り修復されたタービン翼を図2及び図3を用いて説明する。
On the other hand, in the present embodiment, when erosion occurs in the turbine blade as described above, the removal range of the corrosion-resistant film is limited to a minimum without partially removing the corrosion-resistant film on the entire blade. A turbine blade repair method and a turbine blade restored by the repair method are provided.
Hereinafter, a turbine blade repair method according to an embodiment of the present invention and a turbine blade restored by the repair method will be described with reference to FIGS. 2 and 3.

図2は本発明の一実施の形態に係るタービン翼の補修方法による補修の各過程におけるタービン動翼の状態を表す斜視図、図3は本発明の一実施の形態に係るタービン翼の補修方法による補修の各過程におけるタービン動翼の断面を表す断面図である。なお、図3の各図は図2(a)のA−A断面による断面である。   FIG. 2 is a perspective view showing the state of the turbine blade in each process of repair by the turbine blade repair method according to the embodiment of the present invention, and FIG. 3 is a turbine blade repair method according to the embodiment of the present invention. It is sectional drawing showing the cross section of the turbine rotor blade in each process of repair by. Each drawing in FIG. 3 is a cross section taken along the line AA in FIG.

本補修方法の対象となるタービン翼は、図2(a)及び図3(a)に示すように、タービン翼の母材10の背側表面に母材より硬質の耐食皮膜11が溶射されて形成されている。この耐食皮膜11は、例えばCrC系サーメット等で形成されたCr−Cコーティングである。こうした蒸気タービンのタービン翼のうち耐食皮膜11でコーティングした部分にエロージョン12が発生した場合、エロージョン12を含むエロージョン発生部位13の耐食皮膜11を例えばグラインダー等で削り落とす等して除去する(図2(b)参照)。 As shown in FIGS. 2 (a) and 3 (a), the turbine blade subject to this repair method is sprayed with a corrosion resistant coating 11 harder than the base material on the back surface of the base material 10 of the turbine blade. Is formed. The corrosion resistant film 11 is a Cr—C coating formed of, for example, Cr 3 C cermet. When erosion 12 occurs in the portion of the turbine blade of the steam turbine coated with the corrosion-resistant coating 11, the corrosion-resistant coating 11 on the erosion generation site 13 including the erosion 12 is removed by, for example, scraping off with a grinder or the like (FIG. 2). (See (b)).

次に、タービン翼の母材10のエロージョン発生部位13を除去し(図3(b)参照)、さらに母材10を削り落とした部分を肉盛溶接によって復元するにあたり、削り落とした部分(エロージョン発生部位13)の周囲、具体的には、母材10の残存部分の母材表面のうち先に削り落とした部分(エロージョン発生部位13)に隣接する縁部とその周辺部分(縁部とその周辺を併せて縁部14と記載する)の耐食皮膜11を除去する(図2(c)及び図3(c)参照)。これは後の肉盛溶接による母材復元の際の熱影響を考慮して実施される工程である。   Next, the erosion occurrence part 13 of the base material 10 of the turbine blade is removed (see FIG. 3B), and further, when the part from which the base material 10 has been scraped is restored by overlay welding, the part that has been scraped off (erosion) The periphery of the generation site 13), specifically, the edge adjacent to the portion (erosion generation site 13) of the remaining portion of the base material 10 that has been scraped off (the erosion generation site 13) and its peripheral portion (edge and its The corrosion-resistant film 11 on the periphery is also described as the edge portion 14 (see FIGS. 2C and 3C). This is a process that is carried out in consideration of the thermal effect in the subsequent restoration of the base material by overlay welding.

残存したタービン翼の縁部14の耐食皮膜11を除去したら、図2(d)及び図3(d)に示すように、タービン翼の母材10を元の形状に復元する(復元部分に符号15を付す)。復元部分15は、母材10の残存部分に溶接肉盛を施して先に削り落とした部分を復元し、グラインダー等で外形を仕上げて形成する。また、後で溶射する新たな耐食皮膜が形成され易いように、復元部分15の背側表面には、前処理としてブラスト加工を施し表面を粗面化しておく。但し、新たに耐食皮膜を溶射すべき対象部位以外の部位にブラス加工が施されないように、対象部位の周囲にマスキング(養生)した上で実施する。   After removing the remaining corrosion-resistant film 11 on the edge 14 of the turbine blade, the base material 10 of the turbine blade is restored to its original shape as shown in FIGS. 2 (d) and 3 (d). 15). The restoration portion 15 is formed by applying a weld overlay to the remaining portion of the base material 10 to restore the portion that has been scraped off first, and finishing the outer shape with a grinder or the like. Further, the back surface of the restored portion 15 is subjected to blasting as a pretreatment to roughen the surface so that a new corrosion-resistant coating that is sprayed later is easily formed. However, it is performed after masking (curing) the periphery of the target part so that the part other than the target part to be thermally sprayed with the corrosion resistant coating is not subjected to the brass processing.

母材10の復元が終了したら、図3(e)に示したように、既存の耐食皮膜11aにおける新たな耐食皮膜との接合面(ラップする部分)に新たな耐食皮膜の剥離防止のためのボンディングコート26を製膜する。ボンディングコート26は、母材10よりも硬質で耐食皮膜よりも軟質な材質、例えばMCrAlYを超高速フレーム(HP/HVOF)溶射により溶射して形成する。   When the restoration of the base material 10 is completed, as shown in FIG. 3E, a new corrosion-resistant film is prevented from being peeled off on a joint surface (a portion to be wrapped) with the new corrosion-resistant film in the existing corrosion-resistant film 11a. A bonding coat 26 is formed. The bonding coat 26 is formed by spraying a material harder than the base material 10 and softer than the corrosion-resistant film, for example, MCrAlY by ultra-high speed flame (HP / HVOF) spraying.

そしてボンディングコート26の製膜を終えたら、図3(f)に示したように、母材10の復元部分15(厳密にはボンディングコート26から復元部分15側の部分)に新たな耐食皮膜27を超高速フレーム(HP/HVOF)溶射により溶射して製膜するとともに、新たな耐食皮膜27が剥離しないようにボンディングコート26を介し既存の耐食皮膜11aと新たな耐食皮膜27とが接合されるようにする。なお本実施の形態において、新たな耐食皮膜27は既存の耐食皮膜11aと同様の材質とするが、耐食皮膜として使用可能な材質であれば異なる材質であっても良い。   When film formation of the bonding coat 26 is completed, as shown in FIG. 3F, a new corrosion-resistant film 27 is applied to the restoration portion 15 of the base material 10 (strictly, the portion on the restoration portion 15 side from the bonding coat 26). Is sprayed by ultra-high-speed flame (HP / HVOF) spraying, and the existing corrosion-resistant film 11a and the new corrosion-resistant film 27 are bonded via the bonding coat 26 so that the new corrosion-resistant film 27 does not peel off. Like that. In the present embodiment, the new corrosion-resistant film 27 is made of the same material as the existing corrosion-resistant film 11a, but may be a different material as long as it can be used as the corrosion-resistant film.

本実施の形態では、耐食皮膜部分が部分的に侵食されたタービン翼を上記のように補修することで、既存のものと新たなものとを含めて複数回の製膜によって耐食皮膜を形成し、継ぎ目部分に母材よりも硬質な材質により製膜されたボンディングコートを介在させて既存の耐食皮膜と新たな耐食皮膜とを接合して補修翼を形成する。このようにしてボンディングコートを介在させて既存の耐食皮膜と新たな耐食皮膜の縁部同士を接合することにより、翼全体の耐食皮膜を除去することなく、耐食皮膜の除去範囲を最小限にとどめて部分的に補修することができる。また、新たな耐食皮膜は圧縮応力を内在しているが、比較的軟質な(例えば翼の母材よりも硬質で耐食皮膜よりも軟質な)材質(MCrAlY等)をボンディングコートとすることにより、剥離を防止することができる。   In this embodiment, by repairing the turbine blade partially eroded in the corrosion-resistant film part as described above, the corrosion-resistant film is formed by multiple times of film formation including the existing and new ones. The repair wing is formed by joining an existing corrosion-resistant film and a new corrosion-resistant film with a bonding coat formed of a material harder than the base material interposed at the joint. In this way, by bonding the edges of the existing corrosion-resistant film and the new corrosion-resistant film with the bonding coat interposed, the removal range of the corrosion-resistant film is minimized without removing the corrosion-resistant film on the entire blade. Can be partially repaired. In addition, although the new corrosion-resistant film has inherent compressive stress, a relatively soft material (for example, MCrAlY or the like that is harder than the wing base material and softer than the corrosion-resistant film) is used as a bonding coat. Peeling can be prevented.

なお、以上において、耐食皮膜の材質として、Cr−C皮膜を例に挙げて説明したが、他のCr−C系皮膜を適用することもできるし、WC系皮膜、Cr−C/WC複合系皮膜、ホウ化物系皮膜等の他のサーメット皮膜を適用することもできる。また、ボンディングコートの材質として、MCrAlYを例に挙げて説明したが、他のMCrAlY系の材質を適用することもできるし、Ni−Cr系、Ni−Al系、Ni−Cr−Al系の材質を適用することもできる。さらに、図1では本発明の適用対象として蒸気タービンの中圧初段の静翼(ノズル翼)を例に挙げて説明したが、これに限らず、本発明はどの段落のタービン翼にも適用でき、静翼に限らず動翼にも適用できる。これらの場合も同様の効果を得ることができる。   In the above description, the Cr-C film has been described as an example of the material of the corrosion-resistant film. However, other Cr-C-based films can be applied, and WC-based films and Cr-C / WC composite systems can be applied. Other cermet coatings such as coatings and boride coatings can also be applied. In addition, although MCrAlY has been described as an example of the material of the bonding coat, other MCrAlY-based materials can be applied, and Ni-Cr-based, Ni-Al-based, and Ni-Cr-Al-based materials can be applied. Can also be applied. Further, in FIG. 1, the present invention has been described with reference to an example of an intermediate pressure first stage stationary blade (nozzle blade) of a steam turbine as an application target, but the present invention is not limited to this, and the present invention can be applied to any stage of turbine blade. It is applicable not only to stationary blades but also to moving blades. In these cases, similar effects can be obtained.

本発明の適用対象の一例である蒸気タービンのノズル翼の段落を抽出して表した組立図である。It is an assembly drawing which extracted and represented the paragraph of the nozzle blade of the steam turbine which is an example of the application object of the present invention. 本発明の一実施の形態に係るタービン翼の補修方法による補修の各過程におけるタービン動翼の状態を表す斜視図である。It is a perspective view showing the state of the turbine rotor blade in each process of the repair by the repair method of the turbine blade which concerns on one embodiment of this invention. 本発明の一実施の形態に係るタービン翼の補修方法による補修の各過程におけるタービン動翼の断面を表す断面図である。It is sectional drawing showing the cross section of the turbine rotor blade in each process of the repair by the repair method of the turbine blade which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

10 母材
11 耐食皮膜
11a 耐食皮膜
12 エロージョン
13 エロージョン発生部位
15 復元部分
26 ボンディングコート
27 耐食皮膜
31 ノズル翼
DESCRIPTION OF SYMBOLS 10 Base material 11 Corrosion-resistant film 11a Corrosion-resistant film 12 Erosion 13 Erosion generation site 15 Restoration part 26 Bonding coat 27 Corrosion-resistant film 31 Nozzle blade

Claims (9)

蒸気タービンのタービン翼の耐食皮膜でコーティングした部分にエロージョンが発生した場合のタービン翼の補修方法において、
エロージョン発生部位の耐食皮膜を除去する工程と、
タービン翼の母材のエロージョン発生部位を除去する工程と、
母材の残存部分の母材表面のうち、前記除去したエロージョン発生部位に隣接する縁部とその周辺部分の耐食皮膜を除去する工程と、
タービン翼の母材形状を肉盛溶接により復元する工程と、
前記縁部とその周辺部分が除去された既存の耐食皮膜の新たな耐食皮膜との接合面に前記母材よりも硬質な材質のボンディングコートを製膜する工程と、
前記母材の復元部分に新たな耐食皮膜を溶射して製膜するとともに前記ボンディングコートを介して既存の耐食皮膜と新たな耐食皮膜とを接合する工程と
を有することを特徴とするタービン翼の補修方法。
In the turbine blade repair method when erosion occurs in the portion coated with the corrosion-resistant coating on the turbine blade of the steam turbine,
Removing the corrosion-resistant film at the erosion site;
Removing the erosion site of the turbine blade base material;
Of the base material surface of the remaining part of the base material, the step of removing the corrosion resistance film on the edge and its peripheral part adjacent to the removed erosion occurrence site, and
Restoring the base material shape of the turbine blade by overlay welding ;
Forming a bonding coat of a material harder than the base material on the bonding surface of the existing corrosion-resistant film from which the edge portion and its peripheral portion have been removed, and a new corrosion-resistant film;
And a step of spraying a new corrosion-resistant film on the restored portion of the base material to form a film and joining the existing corrosion-resistant film and the new corrosion-resistant film through the bonding coat. Repair method.
請求項1のタービン翼の補修方法において、前記耐食皮膜が、タービン翼背側の蒸気通路部出口側に形成されていることを特徴とするタービン翼の補修方法。   The turbine blade repair method according to claim 1, wherein the corrosion-resistant film is formed on a steam passage portion outlet side on a turbine blade back side. 請求項1のタービン翼の補修方法において、前記耐食皮膜が、Cr−C系皮膜、WC系皮膜、Cr−C/WC複合系皮膜、ホウ化物系皮膜を含むサーメット皮膜であることを特徴とするタービン翼の補修方法。   2. The turbine blade repair method according to claim 1, wherein the corrosion-resistant coating is a cermet coating including a Cr-C coating, a WC coating, a Cr-C / WC composite coating, and a boride coating. Turbine blade repair method. 請求項3のタービン翼の補修方法において、前記サーメット皮膜は、溶射厚み50〜500μmのコーティング層であることを特徴とするタービン翼の補修方法。   4. The turbine blade repair method according to claim 3, wherein the cermet coating is a coating layer having a thermal spray thickness of 50 to 500 [mu] m. 請求項1のタービン翼の補修方法において、前記ボンディングコートが、前記母材の復元部分の周囲に溶射によって施工されていることを特徴とするタービン翼の補修方法。   The turbine blade repair method according to claim 1, wherein the bonding coat is applied by spraying around a restored portion of the base material. 請求項1のタービン翼の補修方法において、前記ボンディングコートが、MCrAlY系、Ni−Cr系、Ni−Al系、Ni−Cr−Al系の材質であることを特徴とするタービン翼の補修方法。   2. The turbine blade repair method according to claim 1, wherein the bonding coat is made of MCrAlY-based, Ni-Cr-based, Ni-Al-based, or Ni-Cr-Al-based material. 請求項1のタービン翼の補修方法において、前記タービン翼が静翼であることを特徴とするタービン翼の補修方法。   2. The turbine blade repair method according to claim 1, wherein the turbine blade is a stationary blade. 請求項7のタービン翼の補修方法において、前記タービン翼が前記中圧初段の静翼であることを特徴とするタービン翼の補修方法。   8. The turbine blade repair method according to claim 7, wherein the turbine blade is the intermediate pressure first stage stationary blade. 耐食皮膜でコーティングした蒸気タービンのタービン翼において、
エロージョン発生部位の耐食皮膜を除去する工程と、
タービン翼の母材のエロージョン発生部位を除去する工程と、
母材の残存部分の母材表面のうち、前記除去したエロージョン発生部位に隣接する縁部とその周辺部分の耐食皮膜を除去する工程と、
タービン翼の母材形状を肉盛溶接により復元する工程と、
前記縁部とその周辺部分が除去された既存の耐食皮膜の新たな耐食皮膜との接合面に前記母材よりも硬質な材質のボンディングコートを製膜する工程と、
前記母材の復元部分に新たな耐食皮膜を溶射して製膜するとともに前記ボンディングコートを介して既存の耐食皮膜と新たな耐食皮膜とを接合する工程と
を施して形成したことを特徴とする蒸気タービンのタービン翼。
In the turbine blade of a steam turbine coated with a corrosion-resistant coating,
Removing the corrosion-resistant film at the erosion site;
Removing the erosion site of the turbine blade base material;
Of the base material surface of the remaining part of the base material, the step of removing the corrosion resistance film on the edge and its peripheral part adjacent to the removed erosion occurrence site, and
Restoring the base material shape of the turbine blade by overlay welding ;
Forming a bonding coat of a material harder than the base material on the bonding surface of the existing corrosion-resistant film from which the edge portion and its peripheral portion have been removed, and a new corrosion-resistant film;
It is formed by spraying a new corrosion-resistant film on the restored portion of the base material and forming a new corrosion-resistant film and a step of joining the existing corrosion-resistant film and the new corrosion-resistant film through the bonding coat. Turbine blades of a steam turbine.
JP2006000607A 2006-01-05 2006-01-05 Turbine blade repair method and turbine blade Expired - Fee Related JP4680067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000607A JP4680067B2 (en) 2006-01-05 2006-01-05 Turbine blade repair method and turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000607A JP4680067B2 (en) 2006-01-05 2006-01-05 Turbine blade repair method and turbine blade

Publications (2)

Publication Number Publication Date
JP2007182776A JP2007182776A (en) 2007-07-19
JP4680067B2 true JP4680067B2 (en) 2011-05-11

Family

ID=38339083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000607A Expired - Fee Related JP4680067B2 (en) 2006-01-05 2006-01-05 Turbine blade repair method and turbine blade

Country Status (1)

Country Link
JP (1) JP4680067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396093B2 (en) 2014-06-26 2018-09-26 三菱重工業株式会社 Turbine rotor cascade, turbine stage and axial turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290785A (en) * 1999-04-07 2000-10-17 Tocalo Co Ltd Al-containing film-coated member and its production
JP2001082103A (en) * 1999-09-09 2001-03-27 Toshiba Corp Nozzle diaphragm for steam turbine
JP2001303270A (en) * 2000-02-11 2001-10-31 General Electric Co <Ge> Repairable diffusion aluminide coating
JP2001303903A (en) * 2000-04-24 2001-10-31 Toshiba Corp Repairing method for gas turbine blade
JP2002371346A (en) * 2001-06-13 2002-12-26 Mitsubishi Heavy Ind Ltd METHOD FOR REPAIRING COMPONENT MADE FROM Ni-BASED ALLOY
JP2003096553A (en) * 2001-09-20 2003-04-03 Tocalo Co Ltd Coating member for carbide cermet thermal spraying film having excellent corrosion resistance, and carbide based cermet thermal spray material
JP2003269190A (en) * 2002-03-09 2003-09-25 United Technol Corp <Utc> Repairing method of turbine engine part
JP2004270484A (en) * 2003-03-06 2004-09-30 Toshiba Corp Corrosion/wear resistant coating for steam turbine member and method of forming the coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209735A (en) * 1981-06-19 1982-12-23 Mitsubishi Heavy Ind Ltd Hot plastic working method for metallic material
JP2506162B2 (en) * 1988-09-16 1996-06-12 トーカロ株式会社 Corrosion resistant thermal spray material and method for producing the same, and method for forming corrosion resistant coating
JPH07278780A (en) * 1994-04-13 1995-10-24 Toshiba Corp Material for geothermal steam turbine and thermal spraying material thereof
JPH0860331A (en) * 1994-08-16 1996-03-05 Toshiba Corp Corrosion protective treatment of hydraulic apparatus member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290785A (en) * 1999-04-07 2000-10-17 Tocalo Co Ltd Al-containing film-coated member and its production
JP2001082103A (en) * 1999-09-09 2001-03-27 Toshiba Corp Nozzle diaphragm for steam turbine
JP2001303270A (en) * 2000-02-11 2001-10-31 General Electric Co <Ge> Repairable diffusion aluminide coating
JP2001303903A (en) * 2000-04-24 2001-10-31 Toshiba Corp Repairing method for gas turbine blade
JP2002371346A (en) * 2001-06-13 2002-12-26 Mitsubishi Heavy Ind Ltd METHOD FOR REPAIRING COMPONENT MADE FROM Ni-BASED ALLOY
JP2003096553A (en) * 2001-09-20 2003-04-03 Tocalo Co Ltd Coating member for carbide cermet thermal spraying film having excellent corrosion resistance, and carbide based cermet thermal spray material
JP2003269190A (en) * 2002-03-09 2003-09-25 United Technol Corp <Utc> Repairing method of turbine engine part
JP2004270484A (en) * 2003-03-06 2004-09-30 Toshiba Corp Corrosion/wear resistant coating for steam turbine member and method of forming the coating

Also Published As

Publication number Publication date
JP2007182776A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
CN101163862B (en) Turbine blade with a cover plate and a protective layer applied to the cover plate
US8100640B2 (en) Blade outer air seal with improved thermomechanical fatigue life
JP5226184B2 (en) Repair and reclassification of superalloy parts
EP2494210B1 (en) Machine with abradable ridges and method
USRE35611E (en) Liquid jet removal of plasma sprayed and sintered coatings
JP5244495B2 (en) Parts for rotating machinery
US20140272166A1 (en) Coating system for improved leading edge erosion protection
JP2010038156A (en) Compressor blade leading edge shim and related method
JP2005054801A (en) Method for repairing turbine member
EP3372784B1 (en) Abradable material coating repair and steam turbine stationary component
JP2002508034A (en) Pretreatment method for recoating perforated articles
CA2842589A1 (en) Turbomachine component with an erosion and corrosion resistant coating system and method for manufacturing such a component
JP2016070276A (en) Turbine components with stepped apertures
US20160186626A1 (en) Engine component and methods for an engine component
EP3421732B1 (en) Turbine engine seal for high erosion environment
US20080263864A1 (en) Turbomachine blade and turbomachine comprising this blade
JP4680067B2 (en) Turbine blade repair method and turbine blade
US20160333705A1 (en) Combination of blade tip cladding and erosion-resistant layer and method for the production thereof
US20140193664A1 (en) Recoating process and recoated turbine blade
EP3282034A1 (en) Aluminum fan blade tip prepared for thermal spray deposition of abrasive by laser ablation
JP2003082476A (en) Corrosion and wear resistant turbine member and manufacturing method
JP4509085B2 (en) Coating method and apparatus
US10619513B2 (en) Steam turbine inner casing component and repair method therefor
JPH11240624A (en) Rotary valve and its reconditioning/repairing method
JP2004270484A (en) Corrosion/wear resistant coating for steam turbine member and method of forming the coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4680067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees