JPH07278780A - Material for geothermal steam turbine and thermal spraying material thereof - Google Patents

Material for geothermal steam turbine and thermal spraying material thereof

Info

Publication number
JPH07278780A
JPH07278780A JP7493894A JP7493894A JPH07278780A JP H07278780 A JPH07278780 A JP H07278780A JP 7493894 A JP7493894 A JP 7493894A JP 7493894 A JP7493894 A JP 7493894A JP H07278780 A JPH07278780 A JP H07278780A
Authority
JP
Japan
Prior art keywords
geothermal steam
corrosion
based alloy
steam turbine
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7493894A
Other languages
Japanese (ja)
Inventor
Kazuaki Ikeda
田 一 昭 池
Yasuhiro Furukawa
川 康 広 古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7493894A priority Critical patent/JPH07278780A/en
Publication of JPH07278780A publication Critical patent/JPH07278780A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To produce a thermal spraying material for preventing crevice corrosion and uniform corrosion by geothermal steam, by executing coating by thermal spraying to the surface of a geothermal steam turbine member. CONSTITUTION:(1) This is a geothermal steam turbine member characterized by applying the material for a geothermal steam turbine with a metallic coating material constituted of a Co-based alloy or an Ni-based alloy. Moreover, the thermal spraying material is constituted of a Co-based alloy contg., by weight, 0.05 to 0.1% C, 8.0 to 18.0% Cr, 2.5 to 3.5% Si, 25.0 to 35.0% Mo, 0.0001 to 0.01% B, and the balance Co with inevitable impurities and has 40 to 90mum grain size Or, the spraying material is constituted of an Ni-based allay contg., by weight, 0.50 to 1.00% C, 10.0 to 18.0% Cr, 3.0 to 4.5% Si, 3.75 to 5.00% Fe, 1.75 to 4.00% B, and the balance Ni with inevitable impurities and has 40 to 90mum grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地熱蒸気を利用した地
熱蒸気タービンのタービン部材の耐食性を向上させるた
めの溶射材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal spray material for improving the corrosion resistance of turbine members of a geothermal steam turbine using geothermal steam.

【0002】[0002]

【従来の技術】蒸気タービン、特に地熱蒸気を利用して
発電を行う地熱蒸気タービンは、蒸気中に含まれる各種
腐食性成分によりその各部材に腐食による減肉を生じ
る。これらのタービン部材には、Cr−Mo−V鋼や1
2Cr鋼等のフェライト系鋼が適用されているが、経年
使用とともに腐食が進行する。このため、Cr含有量の
低いCr−Mo−V鋼を採用しているタービンロータに
ついては定期的にロータを機械研削して再使用をした
り、また羽根、ノズル等については一定期間使用の後、
新品と交換を行っている。
2. Description of the Related Art In a steam turbine, particularly a geothermal steam turbine that uses geothermal steam for power generation, various corrosive components contained in the steam cause a thinning of each member due to corrosion. These turbine members include Cr-Mo-V steel and 1
Although ferritic steels such as 2Cr steel are applied, corrosion progresses with aging. Therefore, for turbine rotors that use Cr-Mo-V steel with a low Cr content, the rotors are periodically mechanically ground for reuse, and blades, nozzles, etc. are used after a certain period of use. ,
I am replacing it with a new one.

【0003】このように著しく厳しい腐食環境に対して
は防食コーティングや部材の交換等種々の防止策が行わ
れてきたが、地熱蒸気の性状が常に変化するため効果的
な手法がなく一定期間使用後、タービン機器の新しい部
品と交換を行うのが一般的であった。地熱蒸気中におけ
る腐食を防止するためには、現状のフェライト系鋼から
オーステナイト系ステンレス鋼への材料変更が考えられ
るが、大幅なコストアップとともに実機使用中の応力腐
食割れが懸念され、いまだ実用化に至っていない。
Although various preventive measures such as anticorrosion coating and replacement of members have been taken against such a severely corrosive environment, since the properties of geothermal steam constantly change, there is no effective method and it is used for a certain period of time. Later, it was common to replace new parts of turbine equipment. In order to prevent corrosion in geothermal steam, it is conceivable to change the material from the current ferritic steel to austenitic stainless steel, but there is concern about stress corrosion cracking during actual use as well as significant cost increase, and it is still in practical use. Has not reached.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は、フェラ
イト系鋼からなる地熱蒸気タービン部材を保護し、かつ
補修を容易にするために耐食性材料の溶射によるコーテ
ィングに注目した。本発明は、地熱蒸気タービン部材の
表面を溶射によってコーティングすることにより地熱蒸
気による隙間腐食、全面腐食を防止するための溶射材料
を提供することを目的としている。
The present inventors have paid attention to the coating of a corrosion resistant material by thermal spraying in order to protect the geothermal steam turbine member made of ferritic steel and to facilitate the repair. An object of the present invention is to provide a thermal spray material for preventing crevice corrosion and general corrosion due to geothermal steam by coating the surface of a geothermal steam turbine member by thermal spraying.

【0005】[0005]

【課題を解決するための手段】本発明者等は、地熱蒸気
タービンのタービンケーシング、タービンロータ、羽
根、ノズル等のタービン部材の耐食性向上を図るために
種々の表面処理技術を評価・検討し、実際にこれらのタ
ービン部材を地熱蒸気中において腐食試験を行った。そ
して、本発明を完成に至らしめたのである。
The present inventors have evaluated and studied various surface treatment techniques for improving the corrosion resistance of turbine members such as turbine casings, turbine rotors, blades and nozzles of geothermal steam turbines. These turbine members were actually subjected to a corrosion test in geothermal steam. And, the present invention has been completed.

【0006】地熱蒸気中における腐食試験は国内外で幅
広く行われているが、地熱蒸気のように蒸気性状が変化
し易く、硫黄等の腐食性ガスも多量に含む蒸気中では腐
食量を定量的に評価するのは困難であり、表面処理技術
等についても実用化の目途が立っていなかった。このた
め一般的には、自らが犠牲材料として母材を保護する金
属であるAl、Zn等をワイヤーメタライジングにより
コーティングしていたが、エロージョン等による剥離も
あり恒久対策とはなり得なかった。
[0006] Corrosion tests in geothermal steam have been widely conducted both in Japan and overseas, but the steam property is likely to change like geothermal steam, and the amount of corrosion is quantitative in steam containing a large amount of corrosive gas such as sulfur. It was difficult to evaluate it, and there was no prospect of practical application of surface treatment technology. Therefore, in general, Al, Zn or the like, which is a metal that protects the base material as a sacrificial material, is coated by wire metallizing, but peeling due to erosion or the like cannot be a permanent measure.

【0007】本発明者等は、母材を腐食から保護するた
めには、母材をこれらの環境から完全に遮断し、かつ地
熱蒸気中に含まれる岩石によるエロージョンを防止する
ことが重要であることを認識した。そして、金属系のC
o基合金、Ni基合金を高速溶射法でコーティングする
ことにより耐食性を飛躍的に向上させることを見い出す
とともに、特にタービンロータのグランド部、ホイール
間の腐食に対して効果的であることを確認した。
In order to protect the base material from corrosion, it is important for the present inventors to completely shield the base material from these environments and prevent erosion due to rocks contained in the geothermal steam. I realized that. And metallic C
It was found that the corrosion resistance was dramatically improved by coating the o-based alloy and the Ni-based alloy by the high-speed thermal spraying method, and it was confirmed that they were particularly effective against the corrosion between the gland portion of the turbine rotor and the wheels. .

【0008】本発明は、下記の事項をその要旨としてい
る。 地熱蒸気タービン用基材の地熱蒸気と触れる表層域
にCo基合金またはNi基合金からなる金属系耐食材料
を用いて耐食層を形成したことを特徴とする地熱蒸気タ
ービン用材料。 前記表層域に一定厚さの耐食層を溶射により形成し
た地熱蒸気タービン用材料。 地熱蒸気タービン用基材の表層域にCo基合金また
はNi基合金からなる金属系耐食材料を用いて溶射によ
り一定厚さの耐食層を形成したことを特徴とする地熱蒸
気タービン用タービン羽根、ノズル及びロータ。 重量%で、C 0.05〜0.1%、Cr 8.0
〜18.0%、Si2.5〜3.5%、Mo 25.0
〜35.0%、B 0.0001〜0.01%、残部C
oおよび不可避的不純物からなるCo基合金であって、
粒径40〜90μmであることを特徴とする溶射材料。 重量%で、C 0.50〜1.00 %、Cr 1
0.0〜18.0%、Si3.0〜4.5%、Fe
3.75〜5.00%、B 1.75〜4.00%、残
部Niおよび不可避的不純物からなるNi基合金であっ
て、粒径40〜90μmであることを特徴とする溶射材
料。
The gist of the present invention is as follows. A material for a geothermal steam turbine, characterized in that a corrosion resistant layer is formed by using a metal-based corrosion resistant material made of a Co-based alloy or a Ni-based alloy in a surface layer region of the base material for a geothermal steam turbine that comes into contact with the geothermal steam. A material for a geothermal steam turbine in which a corrosion resistant layer having a constant thickness is formed in the surface layer region by thermal spraying. A turbine blade and nozzle for a geothermal steam turbine, characterized in that a corrosion resistant layer having a constant thickness is formed by thermal spraying using a metal-based corrosion resistant material made of a Co-based alloy or a Ni-based alloy on a surface region of a base material for a geothermal steam turbine. And rotor. % By weight, C 0.05-0.1%, Cr 8.0
~ 18.0%, Si2.5-3.5%, Mo 25.0
~ 35.0%, B 0.0001-0.01%, balance C
A Co-based alloy comprising o and unavoidable impurities,
A thermal spray material having a particle size of 40 to 90 μm. % By weight, C 0.50 to 1.00%, Cr 1
0.0-18.0%, Si3.0-4.5%, Fe
A thermal spray material, which is a Ni-based alloy consisting of 3.75 to 5.00%, B 1.75 to 4.00%, the balance Ni and unavoidable impurities and having a particle size of 40 to 90 μm.

【0009】以下に、本発明を詳細に説明する。まず、
本発明の溶射材料であるCo基合金およびNi基合金の
各元素の機能および組成範囲について述べる。 Co基合金:Cは、コーティング層の強度を確保するこ
とと、Crとの炭化物形成のために添加する。0.05
%以下では強度および炭化物量が不足し、また0.10
%以上では脆化とともにCr量が低下するので、0.0
5〜0.1%の範囲に限定した。
The present invention will be described in detail below. First,
The function and composition range of each element of the Co-based alloy and the Ni-based alloy which are the thermal spray material of the present invention will be described. Co-based alloy: C is added to secure the strength of the coating layer and to form a carbide with Cr. 0.05
% Or less, the strength and the amount of carbide are insufficient, and 0.10
%, The Cr content decreases with embrittlement, so 0.0
The range is limited to 5 to 0.1%.

【0010】Crは、耐食性向上に著しい効果がある。
Cr8.0%以下ではフェライト系鋼と変わらず耐食性
が劣り、また18.0%以上では材料のコストアップと
なるので、8.0〜18.0%の範囲に限定した。Si
は、溶射材料の融点を低下させる作用を有する。また、
Siが3.5%以上ではコーティング層の脆化が生じる
ので、2.5〜3.5%の範囲とした。
Cr has a remarkable effect in improving the corrosion resistance.
If the Cr content is 8.0% or less, the corrosion resistance is inferior to that of the ferritic steel, and if the Cr content is 18.0% or more, the material cost is increased. Therefore, the content of Cr is limited to 8.0 to 18.0%. Si
Has the effect of lowering the melting point of the thermal spray material. Also,
When Si is 3.5% or more, embrittlement of the coating layer occurs, so the range is 2.5 to 3.5%.

【0011】Bは、融点を下げる元素であるとともに溶
接阻害元素であるため上限を0.01%とし、0.00
01〜0.01%を適正な組成範囲とした。Moは、C
rと同様、耐食性の効果がある。ただし、Crほどその
効果は期待できないので添加量は大目とした。25.0
%以下では耐食性の効果が小であり、また35.0%以
上ではコーティング層の脆化が生じるので、25.0〜
35.0%の範囲に限定した。
B is an element that lowers the melting point and is a welding inhibition element, so the upper limit is made 0.01% and 0.00
The appropriate composition range was 01 to 0.01%. Mo is C
Similar to r, it has the effect of corrosion resistance. However, since the effect cannot be expected as much as Cr, the addition amount was made large. 25.0
% Or less, the effect of corrosion resistance is small, and if it is 35.0% or more, the coating layer becomes brittle.
The range was limited to 35.0%.

【0012】Ni基合金:Cは、CrおよびFeと炭化
物を形成し、マトリックスの強化に寄与する。0.50
%以下ではその効果がなく、1.0%以上では延性が低
下するので、0.50〜1.0%の範囲に限定した。
Ni-based alloy: C forms carbides with Cr and Fe and contributes to strengthening the matrix. 0.50
% Or less, there is no effect, and if 1.0% or more, the ductility decreases, so the range was limited to 0.50 to 1.0%.

【0013】Crは、耐食性向上に著しい効果がある。
10.0%以下ではフェライト系鋼と変らず耐食性が小
であり、また18.0%以上では材料のコストアップと
なる。Cと炭化物を形成させるため下限値を高めに設定
し、10.0〜18.0%を適正範囲とした。Siは、
溶射材料の融点を低下させる作用を有するので、適正下
限値を設定した。また、4.5%以上ではコーティング
層の脆化が生じるので、3.0〜4.5%を適正範囲と
した。
Cr has a remarkable effect in improving the corrosion resistance.
If it is 10.0% or less, it is not different from ferritic steel and the corrosion resistance is small, and if it is 18.0% or more, the cost of the material increases. The lower limit value was set to a high value in order to form carbides with C, and 10.0 to 18.0% was set as an appropriate range. Si is
Since it has the effect of lowering the melting point of the thermal spray material, an appropriate lower limit value was set. Further, since the coating layer becomes brittle when 4.5% or more, 3.0 to 4.5% is set to an appropriate range.

【0014】Bは、融点を下げる元素であるとともに溶
接阻害元素であるため上限を4.0%とし、1.75〜
4.0%の範囲に限定した。Feは、Cと炭化物を形成
し、マトリックスの強化に寄与する。3.75〜5.0
%を適正範囲として限定した。
B is an element that lowers the melting point and is an element that inhibits welding. Therefore, the upper limit is set to 4.0%, and 1.75 to
It was limited to the range of 4.0%. Fe forms a carbide with C and contributes to strengthening the matrix. 3.75-5.0
% Was defined as an appropriate range.

【0015】次に、溶射材料の粒径について説明する。
溶射材料を溶射時に完全に溶融させるためには、その粒
径を40〜90μmとした。40μmの粒径のものは現
在製造できる最小粒径であり、また90μm以上では未
溶融粒子が残存するからである。
Next, the particle size of the thermal spray material will be described.
In order to completely melt the thermal spray material at the time of thermal spraying, the particle size was set to 40 to 90 μm. The reason is that the particle size of 40 μm is the minimum particle size that can be produced at present, and unmelted particles remain when the particle size is 90 μm or more.

【0016】溶射材料の溶射によるコーティングについ
て述べる。本発明のCo基合金およびNi基合金の溶射
材料を、マッハ2以上の高速溶射により0.15mm以
上にコーティングし、タービン部材の最終研摩後のコー
ティング層の厚さを少なくとも0.2mmに確保する。
また、コーティング層は、地熱蒸気タービンに使用する
場合、その限界温度を400℃に設定した。
Coating by thermal spraying of a thermal spray material will be described. The Co-based alloy and Ni-based alloy thermal spray material of the present invention is coated to a thickness of 0.15 mm or more by high-speed thermal spraying of Mach 2 or more, and the thickness of the coating layer after final polishing of the turbine member is secured to at least 0.2 mm. .
When the coating layer is used in a geothermal steam turbine, the limit temperature is set to 400 ° C.

【0017】[0017]

【実施例】以下に、本発明を実施例に基づいて、さらに
説明する。タービンの各部材、すなわちタービンロー
タ、タービンノズル、羽根およびケーシングに溶射材料
を適用した例を、実施例1〜4にそれぞれ示す。
EXAMPLES The present invention will be further described below based on examples. Examples in which the thermal spray material is applied to each member of the turbine, that is, the turbine rotor, the turbine nozzle, the blades, and the casing are shown in Examples 1 to 4, respectively.

【0018】実施例1 タービンロータの場合、図1に示すように、通常、地熱
蒸気は高圧タービン側から岩石の小片を含んで流入し、
タービンホイール1aに衝突する。この時Al、Zn等
の硬度の低いコーティング材料であると岩石等のエロー
ジョンによりコーティング部が剥離し、母材が露出して
腐食に至る。また、タービンロータグランド部1bやホ
イール間では蒸気が滞溜し、エロージョンよりも腐食が
進行する。このためタービンロータグランド部やホイー
ルとホイールに間にCo基合金あるいはNi基合金をジ
ェットコートやプラズマ溶射により0.3mm厚さに防
食コーティングを施した後、機械加工、研摩により最終
的に0.2mm厚さにして実機に適用した。
Embodiment 1 In the case of a turbine rotor, as shown in FIG. 1, geothermal steam normally flows in from the high-pressure turbine side including small rock pieces,
It collides with the turbine wheel 1a. At this time, if the coating material has a low hardness such as Al or Zn, the coating portion is peeled off due to erosion of rock or the like, and the base material is exposed to cause corrosion. Further, steam accumulates between the turbine rotor gland portion 1b and the wheels, and corrosion progresses more than erosion. For this reason, a Co-based alloy or a Ni-based alloy is applied to the turbine rotor gland and between the wheels by jet coating or plasma spraying to give a 0.3 mm-thick anticorrosion coating, and then finally machined and polished to 0. It was made 2 mm thick and applied to an actual machine.

【0019】実施例2 ノズルの場合、ノズル板2aの出口端の母材(厚さ約
0.4mm)が腐食、エロージョンにより損傷した時、
ノズル出口面積が増大し、羽根への影響も大きくなる。
このため、図2に示すように、腐食、エロージョンがと
もに衝突するノズル板背側全面にコーティングを施すの
が有効である。
Example 2 In the case of the nozzle, when the base material (thickness: about 0.4 mm) at the outlet end of the nozzle plate 2a was damaged by corrosion or erosion,
The nozzle outlet area increases and the effect on the blades also increases.
Therefore, as shown in FIG. 2, it is effective to coat the entire back side of the nozzle plate where corrosion and erosion both collide.

【0020】実施例3 羽根の場合、羽根はノズルを通過した蒸気により、図3
に示すように、有効部3aの入口側3cに損傷を生じ
る。このため、コーティングは入口側のみで行えばよい
が、羽根のバランスを考慮して有効部全周に溶射による
コーティングを施した。
Example 3 In the case of the blade, the blade is caused by the steam passing through the nozzle, as shown in FIG.
As shown in, damage occurs on the inlet side 3c of the effective portion 3a. For this reason, the coating may be performed only on the inlet side, but in consideration of the balance of the blade, the entire circumference of the effective portion was coated by thermal spraying.

【0021】実施例4 タービンケーシングの場合、最も重要なのは、上・下半
ケーシングの合わせ面である水平フランジ面であり、腐
食に伴う蒸気漏洩を防止するためにこの部位に溶射施工
を行った。
Example 4 In the case of the turbine casing, the most important thing is the horizontal flange surface which is the mating surface of the upper and lower half casings, and in order to prevent vapor leakage due to corrosion, thermal spraying was applied to this portion.

【0022】本発明の溶射材料をタービン各部材に適用
した実施例1〜4のまとめを、表1に示す。なお、溶射
を施す前に溶射表面に60番のAlにより約10
〜300秒のブラストを行い、溶射コーティング層の密
着強度の向上を図ることが重要である。
Table 1 shows a summary of Examples 1 to 4 in which the thermal spray material of the present invention is applied to each member of the turbine. Before spraying, the sprayed surface was treated with No. 60 Al 2 O 3 for about 10 times.
It is important to blast for ~ 300 seconds to improve the adhesion strength of the thermal spray coating layer.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例において適用した本発明の溶射材の
組成を比較例とともに、表2に示す。各溶射材料につい
て実機では定量的な評価を行うことができないので、表
2に示す同一組成の溶射を行った腐食試験片をタービン
の使用と同一条件の地熱蒸気中にセットし、400時間
後の腐食減量を測定した。その結果を、表3に示す。
The composition of the thermal spray material of the present invention applied in the examples is shown in Table 2 together with the comparative examples. Since it is not possible to quantitatively evaluate each thermal spray material with an actual machine, set the corrosion test pieces having the same composition shown in Table 2 in geothermal steam under the same conditions as the use of the turbine, and after 400 hours, The corrosion weight loss was measured. The results are shown in Table 3.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】表3から明らかなように、比較材1および
2であるA1および13Cr系の溶射材料は、腐食によ
る重量減ならびに減肉が認められ、従前と同様に1回〜
2回/年で補修施工が必要である。これに対し、本発明
のCo基合金およびNi基合金溶射材料は重量減ならび
に減肉も極めて少なく、優れた耐食性を有していること
が確認された。
As is clear from Table 3, in the comparative materials 1 and 2, the A1 and 13Cr-based thermal sprayed materials showed weight loss and wall thinning due to corrosion.
Repair work is required twice a year. On the other hand, it was confirmed that the Co-based alloy and the Ni-based alloy spray-coated material of the present invention showed extremely small weight loss and extremely small wall thickness, and had excellent corrosion resistance.

【0028】この試験結果から、本発明によるコーティ
ングを行うことにより従来材料の約20倍以上の耐久性
を有することが明らかとなった。また、蒸気中に含まれ
る固体粒子による、エロージョンに対しても優れた効果
を示すことも確認された。
From these test results, it became clear that the coating according to the present invention has a durability about 20 times or more that of conventional materials. It was also confirmed that the solid particles contained in the vapor exhibit an excellent effect on erosion.

【0029】[0029]

【発明の効果】以上説明した通り、本発明によれば、金
属材料の腐食を促進させる蒸気成分を含む地熱蒸気ター
ビン部材の表面にCo基、Ni基合金ならなる溶射材料
をコーティングをすることにより、耐食性、耐エロージ
ョン性に極めて効果がある。
As described above, according to the present invention, by coating the surface of the geothermal steam turbine member containing the steam component that promotes the corrosion of the metallic material with the thermal spray material made of Co-based or Ni-based alloy. It is extremely effective in corrosion resistance and erosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるタービンロータへの溶
射材料のコーティング適用部位を示した説明図である。
FIG. 1 is an explanatory diagram showing a coating application site of a thermal spray material on a turbine rotor in an embodiment of the present invention.

【図2】本発明の実施例におけるタービンノズル背側へ
の溶射材料のコーティング適用部位を示した説明図であ
る。
FIG. 2 is an explanatory view showing a coating application site of a thermal spray material on a back side of a turbine nozzle in an embodiment of the present invention.

【図3】本発明の実施例におけるタービン羽根有効部へ
の溶射材料のコーティング適用部位を示した説明図であ
る。
FIG. 3 is an explanatory view showing a coating application site of a thermal spray material on an effective portion of a turbine blade in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a タービンホイール 1b ロータグランド部 1c ホイールコーティング 1d グランド部コーティング 2a ノズル板断面 2b ノズル板背側コーティング 3a 羽根有効部 3b 羽根有効部コーティング 3c 羽根蒸気入口側 1a Turbine wheel 1b Rotor ground part 1c Wheel coating 1d Ground part coating 2a Nozzle plate cross section 2b Nozzle plate backside coating 3a Blade effective part 3b Blade effective part coating 3c Blade steam inlet side

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01D 9/02 101 F03G 4/00 551 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01D 9/02 101 F03G 4/00 551

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】地熱蒸気タービン用基材の少なくとも地熱
蒸気と触れる表層域に、Co基合金またはNi基合金か
らなる金属系耐食材料を用いて耐食層を形成したことを
特徴とする地熱蒸気タービン用材料。
1. A geothermal steam turbine characterized in that a corrosion resistant layer is formed by using a metal-based corrosion resistant material composed of a Co-based alloy or a Ni-based alloy in at least a surface layer region of a base material for a geothermal steam turbine that comes into contact with geothermal steam. Materials.
【請求項2】前記耐食層を溶射により一定厚さに保って
前記表層域に形成したことを特徴とする請求項1に記載
の地熱蒸気タービン用材料。
2. The material for a geothermal steam turbine according to claim 1, wherein the corrosion resistant layer is formed in the surface layer region while maintaining a constant thickness by thermal spraying.
【請求項3】地熱蒸気タービン用基材の表層域にCo基
合金またはNi基合金からなる金属系耐食材料を用いて
溶射により一定厚さの耐食層を形成したことを特徴とす
る地熱蒸気タービン用タービン羽根。
3. A geothermal steam turbine characterized in that a corrosion-resistant layer having a constant thickness is formed by thermal spraying using a metal-based corrosion-resistant material made of a Co-based alloy or a Ni-based alloy in the surface layer region of a base material for a geothermal steam turbine. Turbine blades.
【請求項4】地熱蒸気タービン用基材の表層域にCo基
合金またはNi基合金からなる金属系耐食材料を用いて
溶射により一定厚さの耐食層を形成したことを特徴とす
る地熱蒸気タービン用ノズル。
4. A geothermal steam turbine characterized in that a corrosion-resistant layer having a constant thickness is formed by thermal spraying using a metal-based corrosion-resistant material composed of a Co-based alloy or a Ni-based alloy in the surface layer region of a base material for a geothermal steam turbine. Nozzle.
【請求項5】地熱蒸気タービン用基材の表層域にCo基
合金またはNi基合金からなる金属系耐食材料を用いて
溶射により一定厚さの耐食層を形成したことを特徴とす
る地熱蒸気タービン用ロータ。
5. A geothermal steam turbine characterized in that a corrosion-resistant layer having a constant thickness is formed by thermal spraying using a metal-based corrosion-resistant material made of a Co-based alloy or a Ni-based alloy in the surface layer region of a base material for a geothermal steam turbine. For rotor.
【請求項6】重量%で、C 0.05〜0.1%、Cr
8.0〜18.0%、Si 2.5〜3.5%、Mo
25.0〜35.0%、B 0.0001〜0.01
%、残部Coおよび不可避的不純物からなるCo基合金
であって、粒径40〜90μmであることを特徴とする
溶射材料。
6. By weight%, C 0.05-0.1%, Cr
8.0-18.0%, Si 2.5-3.5%, Mo
25.0-35.0%, B 0.0001-0.01
%, The balance Co, and unavoidable impurities, and a Co-based alloy having a particle size of 40 to 90 μm.
【請求項7】重量%で、C 0.50〜1.00 %、
Cr 10.0〜18.0%、Si3.0〜4.5%、
Fe 3.75〜5.00%、B 1.75〜4.00
%、残部Niおよび不可避的不純物からなるNi基合金
であって、粒径40〜90μmであることを特徴とする
溶射材料。
7. C. 0.50 to 1.00% by weight,
Cr 10.0-18.0%, Si 3.0-4.5%,
Fe 3.75 to 5.00%, B 1.75 to 4.00
%, The balance Ni, and unavoidable impurities, and a Ni-based alloy having a particle size of 40 to 90 μm.
JP7493894A 1994-04-13 1994-04-13 Material for geothermal steam turbine and thermal spraying material thereof Pending JPH07278780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7493894A JPH07278780A (en) 1994-04-13 1994-04-13 Material for geothermal steam turbine and thermal spraying material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493894A JPH07278780A (en) 1994-04-13 1994-04-13 Material for geothermal steam turbine and thermal spraying material thereof

Publications (1)

Publication Number Publication Date
JPH07278780A true JPH07278780A (en) 1995-10-24

Family

ID=13561798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493894A Pending JPH07278780A (en) 1994-04-13 1994-04-13 Material for geothermal steam turbine and thermal spraying material thereof

Country Status (1)

Country Link
JP (1) JPH07278780A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980960A2 (en) * 1998-08-20 2000-02-23 General Electric Company Bowed nozzle vane with selective thermal barrier coating
US6860718B2 (en) 2002-01-28 2005-03-01 Kabushiki Kaisha Toshiba Geothermal turbine
JP2007182776A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Turbine blade and method for repairing turbine blade
US7422798B2 (en) * 2004-12-23 2008-09-09 General Electric Company Vapour turbine
US7498087B2 (en) * 2004-12-23 2009-03-03 Nuovo Pignone S.P.A. Vapour turbine
US7553555B2 (en) * 2004-12-23 2009-06-30 Nuovo Pignone S.P.A. Vapour turbine
US7556866B2 (en) * 2004-12-23 2009-07-07 Nuovo Pignone S.P.A. Vapour turbine
EP2130933A1 (en) * 2007-03-29 2009-12-09 Mitsubishi Heavy Industries, Ltd. Coating material, method for production thereof, coating method, rotor blade equipped with shroud
WO2012063512A1 (en) 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 Wear-resistant cobalt-based alloy and engine valve coated with same
WO2012063511A1 (en) 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 High-toughness cobalt-based alloy and engine valve coated with same
JP2016070067A (en) * 2014-09-26 2016-05-09 株式会社Gpe Geothermal power generation system
CN111996415A (en) * 2020-07-02 2020-11-27 俞光锋 Cobalt-chromium alloy biological material and preparation method thereof
WO2023277063A1 (en) * 2021-06-30 2023-01-05 Jfeスチール株式会社 Coating material for in-furnace structure, surface coating method, and in-furnace structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980960A2 (en) * 1998-08-20 2000-02-23 General Electric Company Bowed nozzle vane with selective thermal barrier coating
EP0980960A3 (en) * 1998-08-20 2001-04-11 General Electric Company Bowed nozzle vane with selective thermal barrier coating
US6345955B1 (en) 1998-08-20 2002-02-12 General Electric Company Bowed nozzle vane with selective TBC
US6860718B2 (en) 2002-01-28 2005-03-01 Kabushiki Kaisha Toshiba Geothermal turbine
US7165943B2 (en) 2002-01-28 2007-01-23 Kabushiki Kaisha Toshiba Geothermal turbine
US7422798B2 (en) * 2004-12-23 2008-09-09 General Electric Company Vapour turbine
US7498087B2 (en) * 2004-12-23 2009-03-03 Nuovo Pignone S.P.A. Vapour turbine
US7553555B2 (en) * 2004-12-23 2009-06-30 Nuovo Pignone S.P.A. Vapour turbine
US7556866B2 (en) * 2004-12-23 2009-07-07 Nuovo Pignone S.P.A. Vapour turbine
JP2007182776A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Turbine blade and method for repairing turbine blade
EP2130933A1 (en) * 2007-03-29 2009-12-09 Mitsubishi Heavy Industries, Ltd. Coating material, method for production thereof, coating method, rotor blade equipped with shroud
EP2130933A4 (en) * 2007-03-29 2010-10-06 Mitsubishi Heavy Ind Ltd Coating material, method for production thereof, coating method, rotor blade equipped with shroud
WO2012063512A1 (en) 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 Wear-resistant cobalt-based alloy and engine valve coated with same
WO2012063511A1 (en) 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 High-toughness cobalt-based alloy and engine valve coated with same
US9206319B2 (en) 2010-11-09 2015-12-08 Fukuda Metal Foil & Powder Co., Ltd. Wear-resistant cobalt-based alloy and engine valve coated with same
US9206715B2 (en) 2010-11-09 2015-12-08 Fukuda Metal Foil & Powder Co., Ltd. High-toughness cobalt-based alloy and engine valve coated with same
JP2016070067A (en) * 2014-09-26 2016-05-09 株式会社Gpe Geothermal power generation system
CN111996415A (en) * 2020-07-02 2020-11-27 俞光锋 Cobalt-chromium alloy biological material and preparation method thereof
CN111996415B (en) * 2020-07-02 2021-04-27 中怡(深圳)医疗科技集团有限公司 Cobalt-chromium alloy biological material and preparation method thereof
WO2023277063A1 (en) * 2021-06-30 2023-01-05 Jfeスチール株式会社 Coating material for in-furnace structure, surface coating method, and in-furnace structure

Similar Documents

Publication Publication Date Title
EP2088225B1 (en) Erosion and corrosion-resistant coating system and process therefor
US8047775B2 (en) Layer system for a component comprising a thermal barrier coating and metallic erosion-resistant layer, production process and method for operating a steam turbine
JPH07278780A (en) Material for geothermal steam turbine and thermal spraying material thereof
US6468040B1 (en) Environmentally resistant squealer tips and method for making
US6571472B2 (en) Restoration of thickness to load-bearing gas turbine engine components
US20090162207A1 (en) Method For The Manufacture Of An Erosion Protection Layer And A Component With Said Erosion Protection Layer
KR20080063449A (en) Method for treating organs subject to erosion by liquids and anti-erosion coating alloy
Kumar et al. Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note
US4666733A (en) Method of heat treating of wear resistant coatings and compositions useful therefor
JP6389052B2 (en) Erosion resistant coating system and treatment method thereof
EP3395494A1 (en) Treated turbine diaphragm and method for treating a turbine diaphragm
Babu et al. Thermal spray coatings for erosion–corrosion resistant applications
JP2003082476A (en) Corrosion and wear resistant turbine member and manufacturing method
JP2001107833A (en) Hydraulic machine and its manufacturing device
JPH02230902A (en) Method for improving corrosion resistance and erosion resistance of vane for rotating heat engine and protection film
CN100391680C (en) Laser strengthening process for metal leaf
US4188209A (en) Nickel-base alloy
EP3208029B1 (en) Steam turbine inner casing component and repair method therefor
Boy et al. Cavitation-and erosion-resistant thermal spray coatings
EP0500854B1 (en) A coating, and a coating method, for a steam turbine and adjoining steel surfaces
JP3744109B2 (en) Runner for hydraulic machine and method for manufacturing the same
BOY et al. Construction Productivity Advancement Research(CPAR) Program: Cavitation- and Erosion-Resistant Thermal Spray Coatings(Final Report)
JP2977389B2 (en) Gas turbine hot parts coatings
JP2022088828A (en) High corrosion-resistance stationary blade of geothermal turbine, stationary-blade blade row of geothermal turbine and manufacturing method of high corrosion-resistance stationary blade of geothermal turbine
CN1147564A (en) Metal-polymer compound composite coating preventing hot-alkali pressure container from stress and corrosion crack