JP4679457B2 - Subcool cryogenic device - Google Patents

Subcool cryogenic device Download PDF

Info

Publication number
JP4679457B2
JP4679457B2 JP2006195414A JP2006195414A JP4679457B2 JP 4679457 B2 JP4679457 B2 JP 4679457B2 JP 2006195414 A JP2006195414 A JP 2006195414A JP 2006195414 A JP2006195414 A JP 2006195414A JP 4679457 B2 JP4679457 B2 JP 4679457B2
Authority
JP
Japan
Prior art keywords
refrigerant
container
refrigerant liquid
liquid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006195414A
Other languages
Japanese (ja)
Other versions
JP2008025858A (en
Inventor
安見 大谷
孝 矢澤
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006195414A priority Critical patent/JP4679457B2/en
Publication of JP2008025858A publication Critical patent/JP2008025858A/en
Application granted granted Critical
Publication of JP4679457B2 publication Critical patent/JP4679457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超電導体を用いた機器を冷却する冷媒液をサブクール状態に冷却するサブクール低温装置に関する。   The present invention relates to a subcool low-temperature apparatus that cools a refrigerant liquid that cools equipment using a superconductor to a subcooled state.

高温超電導体を用いた限流器、ケーブル、電力貯蔵装置、変圧器、モーター等の電力機器においては、冷媒である液体窒素をサブクール状態(その圧力における飽和温度以下に冷却された状態)にしておくことが、線材の特性と絶縁特性の向上につながりメリットがある(特許文献1)。その際、液体窒素を外部の冷却装置で冷却する必要がある。例えば液体窒素温度以下に冷却が可能な単段の蓄冷式冷凍機を用いる発明が開示されている(特許文献2)。   In power devices such as current limiters, cables, power storage devices, transformers, and motors using high-temperature superconductors, liquid nitrogen, which is a refrigerant, is in a subcooled state (cooled below the saturation temperature at that pressure). This leads to improvement of the characteristics and insulation characteristics of the wire material, and has a merit (Patent Document 1). At that time, it is necessary to cool the liquid nitrogen with an external cooling device. For example, an invention using a single-stage regenerative refrigerator that can be cooled below the temperature of liquid nitrogen is disclosed (Patent Document 2).

従来の低温装置は、図10に示すように冷凍機1の最下部の冷却ステージ1aから下側に冷却ヘッド4を接続しているため、冷媒液10を冷却する熱負荷がある場合、最も低い温度となる箇所は冷却ヘッド4の上部となる。一方、冷媒液10は、鉛直方向で上側ほど低密度の液体、つまり温度の高い液体となり、冷却ヘッド4の温度勾配とは逆方向となる。したがって図11に示すように液面に近いところで冷却ヘッド4と冷媒液10に大きな温度差がつき、冷却ヘッド4の下部では冷媒液10と冷却ヘッド4の温度差は小さくなる。冷却ヘッド4での熱流束は温度差に比例するため、冷却ヘッド4の全体にわたって冷媒液10を冷却することはできず、冷却ステージ1aに近い部分で集中的に冷却している。つまり冷却ヘッド4の下部は冷却にあまり寄与していない。
特開平10−325661号公報 特開2001−289546号公報
As shown in FIG. 10, the conventional low-temperature apparatus has the cooling head 4 connected to the lower side from the cooling stage 1a at the bottom of the refrigerator 1, so that it is lowest when there is a heat load for cooling the refrigerant liquid 10. The part that becomes the temperature is the upper part of the cooling head 4. On the other hand, the refrigerant liquid 10 becomes a low-density liquid, that is, a liquid having a higher temperature toward the upper side in the vertical direction, and is in a direction opposite to the temperature gradient of the cooling head 4. Therefore, as shown in FIG. 11, a large temperature difference is generated between the cooling head 4 and the refrigerant liquid 10 near the liquid surface, and the temperature difference between the refrigerant liquid 10 and the cooling head 4 is reduced below the cooling head 4. Since the heat flux in the cooling head 4 is proportional to the temperature difference, the refrigerant liquid 10 cannot be cooled over the entire cooling head 4 and is intensively cooled in a portion near the cooling stage 1a. That is, the lower part of the cooling head 4 does not contribute much to cooling.
Japanese Patent Laid-Open No. 10-325661 JP 2001-289546 A

サブクール低温装置に求められる特性としては、冷却効率、液面の安定性および簡便性が挙げられる。冷却効率に関しては、冷凍機の性能を十分に生かして冷媒液を冷却する能力を持つことが要求される。一般的に冷凍機の冷凍効率は冷却ステージが低温になるほど低下するため、冷凍機と冷媒液の間を結ぶ伝熱部材で生じる温度差が大きいと、装置としての冷却効率が低下する。   The characteristics required for the subcool low temperature apparatus include cooling efficiency, liquid surface stability, and simplicity. Regarding the cooling efficiency, it is required to have the ability to cool the refrigerant liquid by fully utilizing the performance of the refrigerator. In general, the refrigeration efficiency of the refrigerator decreases as the cooling stage becomes lower in temperature. Therefore, if the temperature difference generated in the heat transfer member connecting the refrigerator and the refrigerant liquid is large, the cooling efficiency of the apparatus decreases.

液面の安定性に関しては、次のような課題がある。ガス相がない冷媒液のみが充填された容器では、液面がないため冷媒液全体を冷却、加圧することで温度一定のサブクール状態を安定して得ることができる。しかし、ガス相を有する容器では液面が存在し、ガスと冷媒液が同じ組成のものであるときには、液面温度はその圧力での飽和温度となる。例えば窒素の場合、容器内を大気圧に保った場合の温度は77Kとなる。冷媒液内部を外部冷却装置で冷却した場合、冷媒液の内部と液面には温度差が生じ、温度勾配をもつ層が液面近くにできる。重力下においては、低温ほど液体の密度は高くなるため低温の冷媒液は下方に下がり、高温の冷媒液は液面近くに上がり、安定する。そこで、冷媒液に擾乱(例えば熱負荷を与えて部分的に温度上昇させたり、動的に揺らす等)を与えた場合、安定した温度勾配層が乱され、液面に飽和温度以下のサブクールの冷媒液層が現われる。そのため、液面でガスの凝縮が起こり、容器内の圧力が低下する。   Regarding the stability of the liquid level, there are the following problems. In a container filled only with a refrigerant liquid having no gas phase, since there is no liquid level, a subcooled state with a constant temperature can be stably obtained by cooling and pressurizing the entire refrigerant liquid. However, a liquid surface exists in a container having a gas phase, and when the gas and the refrigerant liquid have the same composition, the liquid surface temperature becomes the saturation temperature at that pressure. For example, in the case of nitrogen, the temperature when the inside of the container is maintained at atmospheric pressure is 77K. When the inside of the refrigerant liquid is cooled by an external cooling device, a temperature difference occurs between the inside of the refrigerant liquid and the liquid level, and a layer having a temperature gradient can be formed near the liquid level. Under gravity, the lower the temperature, the higher the density of the liquid, so the low-temperature refrigerant liquid falls downward, and the high-temperature refrigerant liquid rises near the liquid surface and stabilizes. Therefore, if the refrigerant liquid is disturbed (for example, when the temperature is increased by applying a heat load, or when it is shaken dynamically), the stable temperature gradient layer is disturbed, and the subcooling below the saturation temperature occurs on the liquid surface. A refrigerant liquid layer appears. Therefore, gas condensation occurs at the liquid level, and the pressure in the container decreases.

簡便性に関しては、冷凍機の設置について、開口部が広い容器にそのまま冷凍機を取り付ける構成と、密閉した容器の一部を冷却する構成、および冷凍機を容器の外部に設け、循環ポンプ、加圧等で冷媒液を容器に移送する構成がある。第1の構成は、冷凍機の取り付けおよび容器の構成が簡便であり、被冷却機器を容器の中に設けるのも容易である。しかし、液面が広くなり、前記温度勾配層の擾乱による影響や、開口部からの熱侵入量の問題がある。これに対してあとの2つの構成は、液面を持つ空間を擾乱の起きにくい、例えば圧力調整用の別容器の一箇所に集中させることが可能であるため、擾乱に対する圧力の安定性がよい。しかし、装置が複雑となり、被冷却体の取り付けも比較的複雑となる。
そこで本発明は、簡易な構成によって冷媒液のサブクール状態を容易に達成し安定的に維持することのできるサブクール低温装置を提供することを目的とする。
Concerning convenience, with regard to the installation of the refrigerator, a configuration in which the refrigerator is directly attached to a container having a wide opening, a configuration in which a part of the sealed container is cooled, and a refrigerator is provided outside the container to provide a circulation pump, There is a configuration in which the refrigerant liquid is transferred to the container by pressure or the like. The first configuration is simple in mounting the refrigerator and the configuration of the container, and it is easy to provide the apparatus to be cooled in the container. However, the liquid level becomes wide, and there are problems of the influence of disturbance of the temperature gradient layer and the amount of heat penetration from the opening. On the other hand, the latter two configurations make it possible to concentrate the space having the liquid level in one place where the disturbance is unlikely to occur, for example, in a separate container for pressure adjustment. . However, the apparatus becomes complicated, and the attachment of the object to be cooled becomes relatively complicated.
Therefore, an object of the present invention is to provide a subcool low temperature apparatus that can easily achieve and stably maintain a subcooled state of the refrigerant liquid with a simple configuration.

上記課題を解決するために本発明のサブクール低温装置は、冷媒液を貯留する低温容器と、前記低温容器に取り付けられ前記低温容器内に貫入する冷却ステージを備えた冷凍機と、前記冷媒液の液面下において前記冷却ステージの下端に取り付けられ外側面が上方向に伸びる方向に接続され前記冷媒液の温度勾配と同じ方向の温度勾配を有する冷却ヘッドとを備えている構成とする。 In order to solve the above problems, a subcool cryogenic apparatus of the present invention includes a cryogenic container for storing a refrigerant liquid, a refrigerator equipped with a cooling stage attached to the cryogenic container and penetrating into the cryogenic container, A cooling head attached to the lower end of the cooling stage below the liquid level and connected in a direction in which the outer surface extends upward is provided with a cooling head having a temperature gradient in the same direction as the temperature gradient of the refrigerant liquid.

また、本発明のサブクール低温装置は、冷媒液を貯留する冷媒保持容器と、前記冷媒保持容器を包囲する断熱真空容器と、前記断熱真空容器に取り付けられ断熱真空容器に貫入する冷却ステージを備えた冷凍機と、前記冷媒保持容器と前記断熱真空容器の間の空間において前記冷媒保持容器に接続され前記冷媒液を通流させて前記冷却ステージによって冷却される配管とを備え、前記配管の前記冷媒保持容器に接続された部分と前記冷却ステージに接続された部分の間に前記冷凍機の停止時に前記冷媒保持容器と冷却に関与する前記配管を切り離すために閉じられるバルブが設けられている構成とする。 In addition, the subcool low temperature apparatus of the present invention includes a refrigerant holding container that stores a refrigerant liquid, a heat insulating vacuum container that surrounds the refrigerant holding container, and a cooling stage that is attached to the heat insulating vacuum container and penetrates into the heat insulating vacuum container. and refrigerator, e Bei pipes and which is cooled by the refrigerant storage container and the heat insulating vacuum vessel and the cooling stage connected to said refrigerant holding vessel flowed through the refrigerant liquid in the space between the said of the pipe A configuration in which a valve that is closed to disconnect the refrigerant holding container and the piping involved in cooling when the refrigerator is stopped is provided between the part connected to the refrigerant holding container and the part connected to the cooling stage . And

さらにまた本発明のサブクール低温装置は、冷媒液を貯留する低温容器と、冷凍機の冷却ステージが貫入された断熱容器と、前記冷却ステージに取り付けられた熱交換部に接続されて前記断熱容器と前記低温容器の間に前記冷媒液よりも沸点の低い冷媒を循環させる冷媒配管と、前記低温容器内において前記冷媒配管に接続され前記冷媒液を冷却する熱交換部とを備えている構成とする。   Furthermore, the subcool low-temperature apparatus of the present invention includes a low-temperature container that stores a refrigerant liquid, a heat-insulating container in which a cooling stage of a refrigerator is inserted, and a heat-exchanging container that is connected to a heat exchange unit attached to the cooling stage. A refrigerant pipe that circulates a refrigerant having a boiling point lower than that of the refrigerant liquid between the low-temperature containers and a heat exchange unit that is connected to the refrigerant pipe and cools the refrigerant liquid in the low-temperature container. .

本発明によれば、簡易な構成によって冷媒液のサブクール状態を容易に達成し安定的に維持することのできるサブクール低温装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the subcool low temperature apparatus which can achieve the subcooled state of a refrigerant | coolant liquid easily and can be maintained stably with simple structure can be provided.

以下、本発明に係るサブクール低温装置の第1ないし第3の実施の形態を図面を参照して説明する。
(第1の実施の形態)
本発明の第1の実施の形態の第1の実施例のサブクール低温装置を図1に示す。すなわち、断熱真空容器3aと冷媒保持容器3bからなる低温容器2には、冷媒液10の蒸発を低減あるいはゼロとするための冷凍機1が取り付けられている。冷凍機1は通常、メンテナンス性等を考慮して低温容器2の上部から取り付けられ、下側に設けられた冷却ステージ1aに取り付けられた冷却ヘッド4aで冷媒液10を冷却する。冷却ヘッド4aは上部が開いた容器またはかごの形状をなし、底部が冷却ステージ1aの下端に取り付けられている。すなわち、冷却ヘッド4aは、冷却ステージ1aの下端に取り付けられ、外側面が上方向に伸びる方向に取り付けられている。
DESCRIPTION OF EMBODIMENTS Hereinafter, first to third embodiments of a subcool low temperature apparatus according to the present invention will be described with reference to the drawings.
(First embodiment)
The subcool low temperature apparatus of the 1st Example of the 1st Embodiment of this invention is shown in FIG. That is, the refrigerator 1 for reducing or eliminating the evaporation of the refrigerant liquid 10 is attached to the low temperature container 2 including the heat insulating vacuum container 3a and the refrigerant holding container 3b. The refrigerator 1 is usually attached from the upper part of the cryogenic container 2 in consideration of maintainability and the like, and the refrigerant liquid 10 is cooled by the cooling head 4a attached to the cooling stage 1a provided on the lower side. The cooling head 4a has a shape of a container or a cage having an open top, and the bottom is attached to the lower end of the cooling stage 1a. That is, the cooling head 4a is attached to the lower end of the cooling stage 1a, and is attached in a direction in which the outer surface extends upward.

この構成によれば、図2に示すように、冷却ヘッド4aの温度勾配の方向と、冷媒液10の液面近くでの温度勾配の方向が一致し、各位置の冷却ヘッド4aと冷媒液10の間でほぼ同じ温度差となるため、冷却ヘッド4a全体が冷媒液10の冷却に寄与し、均一的で効率の良い伝熱特性が得られる。こうして冷媒液10への伝熱特性を含めた冷却の効率向上を図ることができ、さらに、冷媒液10の液面近くの温度勾配の安定化にもつながり、熱負荷変動における冷媒液10の擾乱による低温容器2内の圧力異常(急激な低下、増加等)を防ぐことができる。   According to this configuration, as shown in FIG. 2, the direction of the temperature gradient of the cooling head 4a coincides with the direction of the temperature gradient near the liquid surface of the refrigerant liquid 10, and the cooling head 4a and the refrigerant liquid 10 at each position are aligned. Therefore, the entire cooling head 4a contributes to the cooling of the refrigerant liquid 10, and uniform and efficient heat transfer characteristics can be obtained. Thus, the cooling efficiency including the heat transfer characteristics to the refrigerant liquid 10 can be improved, and further, the temperature gradient near the liquid surface of the refrigerant liquid 10 can be stabilized, and the disturbance of the refrigerant liquid 10 due to fluctuations in the heat load. It is possible to prevent an abnormal pressure (abrupt decrease, increase, etc.) in the cryogenic container 2 due to.

図3は、本実施の形態のサブクール低温装置の第2の実施例を示す。本実施例は、冷却ヘッド4bが冷媒保持容器3bの外側に接続されている構成であり、冷凍機1は、冷媒液10を直接冷却しておらず、冷媒液10を保持している容器3bの側面から冷却している。この構成では低温容器2の上部に冷凍機1がないため、被冷却機器20を冷却する空間が増加するメリットがある。この実施例においても、冷媒保持容器3bの側面に取り付けた冷却ヘッド4bの下部を冷却ステージ1aに取り付けることで、冷却ヘッド4bの温度勾配と冷媒液10の温度勾配が同じ方向となり、第1の実施例と同様の効果が得られる。   FIG. 3 shows a second example of the subcool low temperature apparatus of the present embodiment. In the present embodiment, the cooling head 4b is connected to the outside of the refrigerant holding container 3b, and the refrigerator 1 does not directly cool the refrigerant liquid 10, but the container 3b holding the refrigerant liquid 10. Cooling from the side. In this configuration, since the refrigerator 1 is not provided above the cryogenic container 2, there is an advantage that a space for cooling the cooled device 20 is increased. Also in this embodiment, by attaching the lower part of the cooling head 4b attached to the side surface of the refrigerant holding container 3b to the cooling stage 1a, the temperature gradient of the cooling head 4b and the temperature gradient of the refrigerant liquid 10 are in the same direction. The same effect as the embodiment can be obtained.

なお本実施例は、冷凍機1を断熱真空容器3aの側面に取り付けた構成としてもよい。このようにすると、低温容器2の上面に高電圧が加わり上面にアクセスすることが危険なサブクール低温装置においても、冷凍機1のメンテナンス等を安全に行うことができる。   In addition, a present Example is good also as a structure which attached the refrigerator 1 to the side surface of the heat insulation vacuum vessel 3a. If it does in this way, maintenance of the refrigerator 1 etc. can be performed safely also in a subcool low temperature apparatus which a high voltage applies to the upper surface of cryogenic container 2, and it is dangerous to access the upper surface.

図4は、本実施の形態の第3の実施例を示す。本実施例は、冷媒液10に浸漬するフィン5を備えた冷却ヘッド4cを冷却ステージ1aの先端に取り付けた構成である。本実施例によれば、冷媒液10の温度勾配を持つ層が内的な擾乱に対し安定し、冷媒液10内の擾乱による低温容器2内の圧力の不安定性を抑えることができる。   FIG. 4 shows a third example of the present embodiment. In this embodiment, a cooling head 4c having fins 5 immersed in the refrigerant liquid 10 is attached to the tip of the cooling stage 1a. According to the present embodiment, the layer having the temperature gradient of the refrigerant liquid 10 is stable against internal disturbance, and instability of the pressure in the cryogenic container 2 due to the disturbance in the refrigerant liquid 10 can be suppressed.

図5は、本実施の形態の第4の実施例を示す。本実施例は第1の実施例(図1)に液面高さ調節装置である埋め子6を追加した構成である。埋め子6の高さはハンドル7によって低温容器2の外から変化させることができる。第1および第3の実施例では、冷媒液10をある温度からより低温に冷却する際、冷媒液10の密度の温度依存性により、体積が減少していくため、液面が低下していく。したがって冷却ヘッド4a,4cと液面の相対的な位置関係もずれていく。そのため、効果的に冷媒液10を冷却できる位置を維持できない。本実施例では、外部から上下移動できる埋め子6により、液面を上下に制御でき、効果的な冷却を行うことができる。通常、液面近くの温度勾配層は、被冷却機器20を設置する場所ではないため、これにより被冷却機器20の設置空間を減少させることはない。   FIG. 5 shows a fourth example of the present embodiment. In this embodiment, a padding 6 which is a liquid level adjusting device is added to the first embodiment (FIG. 1). The height of the padding 6 can be changed from the outside of the cryogenic container 2 by the handle 7. In the first and third embodiments, when the refrigerant liquid 10 is cooled from a certain temperature to a lower temperature, the volume decreases due to the temperature dependence of the density of the refrigerant liquid 10, so the liquid level decreases. . Therefore, the relative positional relationship between the cooling heads 4a and 4c and the liquid level also shifts. Therefore, the position where the refrigerant liquid 10 can be effectively cooled cannot be maintained. In this embodiment, the liquid level can be controlled up and down by the padding 6 that can move up and down from the outside, and effective cooling can be performed. Usually, since the temperature gradient layer near the liquid surface is not a place where the cooled device 20 is installed, this does not reduce the installation space of the cooled device 20.

なお、本実施の形態においては、冷媒液10を直接冷却する冷却ヘッド4a,4cの部材として、高電圧に対応したサファイア等の部材を使用し、あるいは、表面の形状に電界集中を緩和するための処置を施した構成とするのがよい。   In the present embodiment, a member such as sapphire corresponding to a high voltage is used as a member of the cooling heads 4a and 4c that directly cools the refrigerant liquid 10, or the electric field concentration is reduced in the shape of the surface. It is good to have a configuration with the above treatment.

(第2の実施の形態)
図6は、本発明の第2の実施の形態を示す。本実施の形態のサブクール低温装置は、冷媒保持容器3bにバルブ9a,9b付きの配管8を接続し、配管8に冷却ヘッド4dを接続した構成である。冷凍機1による冷媒液10の冷却を、冷媒保持容器3bから分岐し元に戻る配管8の一部で行う。配管8の一部で冷却された冷媒液10は、密度が高くなるため下方向に降下し、元の容器3bに戻る(自然対流)ため、冷媒液10の冷却を行うことができる。
(Second Embodiment)
FIG. 6 shows a second embodiment of the present invention. The subcool low temperature apparatus of the present embodiment has a configuration in which a pipe 8 with valves 9a and 9b is connected to the refrigerant holding container 3b, and a cooling head 4d is connected to the pipe 8. Cooling of the refrigerant liquid 10 by the refrigerator 1 is performed in a part of the pipe 8 branched from the refrigerant holding container 3b and returning to the original state. Since the refrigerant liquid 10 cooled in a part of the pipe 8 has a high density, it drops downward and returns to the original container 3b (natural convection), so that the refrigerant liquid 10 can be cooled.

本実施の形態のメリットは特に、配管8にバルブ9a,9bを設けることによって得られる。すなわち、図6のように、配管8の2箇所にバルブ9a,9bを設けることで、冷媒保持容器3bと、冷却に関与する配管8を切り離すことができる。2つのバルブ9a,9bを閉じ、配管8側(冷凍機1側)の配管内の冷媒液を何らかの方法で排除すると冷凍機1と冷媒保持容器3bとは熱的に分離される。特に配管8をステンレス等の熱伝導率の低い材料のものとした場合は断熱特性が増す。切離した後に冷凍機1を停止すれば、冷媒液10に大きな熱負荷をかけず、冷凍機1の冷却ステージ1aを室温にまで昇温させることが可能で、冷凍機1のメンテナンスを短時間に行うことができる。このような構成でない場合には、冷媒保持容器3b内の冷媒液10をすべて排除して温度を上げなければ冷凍機1のメンテナンスはできないため、メンテナンスに必要な時間が増大し、かつ、被冷却機器20の温度も上昇するため、例えば超電導コイル等では通電ができず、装置の稼動を停止せざるを得ない。   The merit of the present embodiment can be obtained particularly by providing the pipes 8 with valves 9a and 9b. That is, as shown in FIG. 6, by providing valves 9a and 9b at two locations on the pipe 8, the refrigerant holding container 3b and the pipe 8 involved in cooling can be separated. When the two valves 9a and 9b are closed and the refrigerant liquid in the pipe 8 side (the refrigerator 1 side) is removed by some method, the refrigerator 1 and the refrigerant holding container 3b are thermally separated. In particular, when the pipe 8 is made of a material having a low thermal conductivity such as stainless steel, the heat insulating property is increased. If the refrigerator 1 is stopped after the separation, it is possible to raise the temperature of the cooling stage 1a of the refrigerator 1 to room temperature without applying a large heat load to the refrigerant liquid 10, and the maintenance of the refrigerator 1 can be performed in a short time. It can be carried out. In the case of such a configuration, the refrigerator 1 cannot be maintained unless all the refrigerant liquid 10 in the refrigerant holding container 3b is removed and the temperature is raised, so that the time required for the maintenance increases and the object to be cooled is cooled. Since the temperature of the device 20 also rises, for example, the superconducting coil or the like cannot be energized, and the operation of the device must be stopped.

また、本実施の形態では、冷凍機1の設置方向を、低温容器2の側面側から取り付けることができるため、例えば低温容器2の上面に高電圧が加わる構成で上面にアクセスすることが危険な装置においても、危険な場所から離れた位置に冷凍機1が設置できるためメンテナンス性が良い。   Moreover, in this Embodiment, since the installation direction of the refrigerator 1 can be attached from the side surface side of the cryogenic container 2, for example, it is dangerous to access the upper surface in a configuration in which a high voltage is applied to the upper surface of the cryogenic container 2. Even in the apparatus, since the refrigerator 1 can be installed at a position away from a dangerous place, the maintainability is good.

(第3の実施の形態)
図7は、本発明の第3の実施の形態の第1の実施例を示す。この実施例では冷凍機1は、被冷却機器20を収容する低温容器2とは別の断熱真空容器15内に設置し、その間を、断熱配管14で往復接続している。断熱配管14内には冷媒配管11が設けられ、冷媒配管11内には冷媒保持容器3b内の冷媒液10よりも沸点の低い冷媒が気体あるいは超臨界状態として封入されている。冷媒配管11の冷凍機1側には冷却ヘッド4との熱交換部13が設けられ、冷媒保持容器3b側には冷媒液10に浸漬した配管により熱交換部13aが構成されている。また、冷媒配管11の一部に、冷媒の循環を促進する低温循環ポンプ12が設置されている。本実施例によれば、冷凍機1を低温容器2から離れた位置に置くことができ、メンテナンス性に優れたサブクール低温装置を提供することができる。
(Third embodiment)
FIG. 7 shows a first example of the third embodiment of the present invention. In this embodiment, the refrigerator 1 is installed in a heat-insulated vacuum container 15 different from the low-temperature container 2 that houses the device to be cooled 20, and the space between them is reciprocally connected by a heat-insulating pipe 14. A refrigerant pipe 11 is provided in the heat insulation pipe 14, and a refrigerant having a boiling point lower than that of the refrigerant liquid 10 in the refrigerant holding container 3b is sealed in the refrigerant pipe 11 as a gas or a supercritical state. A heat exchanging portion 13 with the cooling head 4 is provided on the refrigerant pipe 11 on the refrigerator 1 side, and a heat exchanging portion 13a is constituted by a pipe immersed in the refrigerant liquid 10 on the refrigerant holding container 3b side. In addition, a low-temperature circulation pump 12 that promotes the circulation of the refrigerant is installed in a part of the refrigerant pipe 11. According to the present embodiment, the refrigerator 1 can be placed at a position away from the cryogenic container 2, and a subcool low temperature apparatus excellent in maintainability can be provided.

図8は、本発明の第3の実施の形態の第2の実施例を示す。本実施例は、冷媒液10を貯留する冷媒保持容器3bの外側に冷媒配管11を巻き付けて熱交換部13bを構成している。巻き付け方法としては、冷凍機1からの最も温度の低い冷媒の配管を冷媒保持容器3bの下部側から巻き、冷媒液10を冷却しながら温度上昇する冷媒配管11を順次冷媒保持容器3bの上方向に巻き付けていく構成とする。このようにすると、冷媒保持容器3b側面における冷媒配管11の温度勾配と冷媒液10の温度勾配とが一致し、冷媒液10を効率的に冷却し安定性を向上することができる。   FIG. 8 shows a second example of the third embodiment of the present invention. In the present embodiment, the refrigerant pipe 11 is wound around the outside of the refrigerant holding container 3b that stores the refrigerant liquid 10 to constitute the heat exchange unit 13b. As a winding method, the refrigerant pipe 11 having the lowest temperature from the refrigerator 1 is wound from the lower side of the refrigerant holding container 3b, and the refrigerant pipe 11 that rises in temperature while cooling the refrigerant liquid 10 is sequentially directed upward in the refrigerant holding container 3b. It is set as the structure wound around. If it does in this way, the temperature gradient of the refrigerant | coolant piping 11 in the refrigerant | coolant holding | maintenance container 3b side surface and the temperature gradient of the refrigerant | coolant liquid 10 correspond, the refrigerant | coolant liquid 10 can be cooled efficiently and stability can be improved.

図9は、本発明の第3の実施の形態の第3実施例を示す。本実施例は、冷媒配管11上の循環ポンプ17を室温部に設け、室温の配管と低温の配管の間に向流熱交換器16を設けた構成である。本実施例ではメンテナンスの必要な循環ポンプ17を室温部に置くことによって、装置のメンテナンス性が向上する。   FIG. 9 shows a third example of the third embodiment of the present invention. In this embodiment, the circulation pump 17 on the refrigerant pipe 11 is provided in the room temperature portion, and the counterflow heat exchanger 16 is provided between the room temperature pipe and the low temperature pipe. In this embodiment, the maintainability of the apparatus is improved by placing the circulating pump 17 requiring maintenance in the room temperature portion.

本発明の第1の実施の形態の第1の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 1st Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の実施例のサブクール低温装置の冷却作用を説明するグラフ。The graph explaining the cooling effect | action of the subcool low-temperature apparatus of the 1st Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第2の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 2nd Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第3の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 3rd Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第4の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 4th Example of the 1st Embodiment of this invention. 本発明の第2の実施の形態のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の第1の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 1st Example of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第2の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 2nd Example of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第3の実施例のサブクール低温装置の構成を示す断面図。Sectional drawing which shows the structure of the subcool low-temperature apparatus of the 3rd Example of the 3rd Embodiment of this invention. 従来のサブクール低温装置を示す断面図。Sectional drawing which shows the conventional subcool low temperature apparatus. 従来のサブクール低温装置の冷却作用を説明するグラフ。The graph explaining the cooling effect | action of the conventional subcool low temperature apparatus.

符号の説明Explanation of symbols

1…冷凍機、1a…冷却ステージ、2…低温容器、3a…断熱真空容器、3b…冷媒保持容器、4,4a,4b,4c,4d…冷却ヘッド、5…フィン、6…埋め子、7…ハンドル、8…配管、9a,9b…バルブ、10…冷媒液、11…冷媒配管、12…低温循環ポンプ、13,13a,13b…熱交換部、14…断熱配管、15…断熱真空容器、16…向流熱交換器、17…室温循環ポンプ、20…被冷却機器。

DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 1a ... Cooling stage, 2 ... Low-temperature container, 3a ... Adiabatic vacuum container, 3b ... Refrigerant holding container, 4, 4a, 4b, 4c, 4d ... Cooling head, 5 ... Fin, 6 ... Filler, 7 DESCRIPTION OF SYMBOLS ... Handle, 8 ... Pipe, 9a, 9b ... Valve, 10 ... Refrigerant liquid, 11 ... Refrigerant pipe, 12 ... Low-temperature circulation pump, 13, 13a, 13b ... Heat exchange part, 14 ... Insulated pipe, 15 ... Insulated vacuum vessel, 16 ... Counterflow heat exchanger, 17 ... Room temperature circulation pump, 20 ... Cooled equipment.

Claims (10)

冷媒液を貯留する低温容器と、前記低温容器に取り付けられ前記低温容器内に貫入する冷却ステージを備えた冷凍機と、前記冷媒液の液面下において前記冷却ステージの下端に取り付けられ外側面が上方向に伸びる方向に接続され前記冷媒液の温度勾配と同じ方向の温度勾配を有する冷却ヘッドとを備えていることを特徴とするサブクール低温装置。 A cryogenic container for storing the refrigerant liquid, a refrigerator having a cooling stage attached to the cryogenic container and penetrating into the cryogenic container, and an outer surface attached to the lower end of the cooling stage below the liquid level of the refrigerant liquid. A subcooling low-temperature apparatus comprising: a cooling head connected in a direction extending upward and having a temperature gradient in the same direction as a temperature gradient of the refrigerant liquid. 前記冷却ヘッドは開口を有する容器またはかごの形状をなし、前記容器またはかごの底部が前記冷却ステージに取り付けられていることを特徴とする請求項1記載のサブクール低温装置。   The subcooling low-temperature apparatus according to claim 1, wherein the cooling head has a shape of a container or a car having an opening, and a bottom of the container or the car is attached to the cooling stage. 前記冷却ヘッドは、熱伝達を促進するフィンを備えていることを特徴とする請求項1記載のサブクール低温装置。   The subcooling low-temperature apparatus according to claim 1, wherein the cooling head includes a fin that promotes heat transfer. 前記冷媒液に浸漬されて鉛直方向に移動し前記冷媒液の液面の高さを調整する液面高さ調整手段を備えていることを特徴とする請求項1記載のサブクール低温装置。   2. The subcool low temperature apparatus according to claim 1, further comprising a liquid level height adjusting unit that is immersed in the refrigerant liquid and moves in a vertical direction to adjust a liquid level of the refrigerant liquid. 冷媒液を貯留する冷媒保持容器と、前記冷媒保持容器を包囲する断熱真空容器と、前記断熱真空容器に取り付けられ断熱真空容器に貫入する冷却ステージを備えた冷凍機と、前記冷媒保持容器と前記断熱真空容器の間の空間において前記冷媒保持容器に接続され前記冷媒液を通流させて前記冷却ステージによって冷却される配管とを備え、
前記配管の前記冷媒保持容器に接続された部分と前記冷却ステージに接続された部分の間に前記冷凍機の停止時に前記冷媒保持容器と冷却に関与する前記配管を切り離すために閉じられるバルブが設けられていることを特徴とするサブクール低温装置。
A refrigerant holding container for storing a refrigerant liquid; a heat insulating vacuum container surrounding the refrigerant holding container; a refrigerator provided with a cooling stage attached to the heat insulating vacuum container and penetrating into the heat insulating vacuum container; the refrigerant holding container; Bei example a pipe and which is cooled by the connected to the refrigerant storage container the cooling stage flowed through the refrigerant liquid in the space between the heat insulating vacuum vessel,
A valve that is closed between the portion of the pipe connected to the refrigerant holding container and the portion connected to the cooling stage to close the refrigerant holding vessel and the pipe involved in cooling is provided when the refrigerator is stopped. A subcool cryogenic device characterized by that.
前記冷凍機は前記断熱真空容器の側面に取り付けられていることを特徴とする請求項5記載のサブクール低温装置。   The subcool low temperature apparatus according to claim 5, wherein the refrigerator is attached to a side surface of the heat insulating vacuum vessel. 冷媒液を貯留する低温容器と、冷凍機の冷却ステージが貫入された断熱容器と、前記冷却ステージに取り付けられた熱交換部に接続されて前記断熱容器と前記低温容器の間に前記冷媒液よりも沸点の低い冷媒を循環させる冷媒配管と、前記低温容器内において前記冷媒配管に接続され前記冷媒液を冷却する熱交換部とを備えていることを特徴とするサブクール低温装置。   The refrigerant liquid is connected between the low temperature container for storing the refrigerant liquid, the heat insulating container in which the cooling stage of the refrigerator is inserted, and the heat exchange unit attached to the cooling stage, and between the heat insulating container and the low temperature container. A subcooling low-temperature apparatus comprising: a refrigerant pipe that circulates a refrigerant having a low boiling point; and a heat exchange section that is connected to the refrigerant pipe and cools the refrigerant liquid in the low-temperature container. 前記冷媒液を冷却する熱交換部は前記冷媒液に浸漬されていることを特徴とする請求項記載のサブクール低温装置。 The subcool low temperature apparatus according to claim 7, wherein a heat exchanging portion for cooling the refrigerant liquid is immersed in the refrigerant liquid. 前記冷媒液を冷却する熱交換部は、前記低温容器内において前記冷媒液を貯留する冷媒保持容器に結合されていることを特徴とする請求項記載のサブクール低温装置。 The subcool low temperature apparatus according to claim 7 , wherein the heat exchanging section for cooling the refrigerant liquid is coupled to a refrigerant holding container for storing the refrigerant liquid in the low temperature container. 前記冷媒配管上に冷媒循環用のポンプを備えていることを特徴とする請求項記載のサブクール低温装置。 The subcool low temperature apparatus according to claim 7, further comprising a refrigerant circulation pump on the refrigerant pipe.
JP2006195414A 2006-07-18 2006-07-18 Subcool cryogenic device Expired - Fee Related JP4679457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195414A JP4679457B2 (en) 2006-07-18 2006-07-18 Subcool cryogenic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195414A JP4679457B2 (en) 2006-07-18 2006-07-18 Subcool cryogenic device

Publications (2)

Publication Number Publication Date
JP2008025858A JP2008025858A (en) 2008-02-07
JP4679457B2 true JP4679457B2 (en) 2011-04-27

Family

ID=39116670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195414A Expired - Fee Related JP4679457B2 (en) 2006-07-18 2006-07-18 Subcool cryogenic device

Country Status (1)

Country Link
JP (1) JP4679457B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038330A (en) * 2008-08-07 2010-02-18 Kobe Steel Ltd Hot water bath type vaporizer
JP5916517B2 (en) * 2012-05-29 2016-05-11 古河電気工業株式会社 Cooling container
EP3279764A4 (en) * 2015-03-30 2018-12-05 Exascaler Inc. Electronic-device cooling system
EP3279765A4 (en) * 2015-03-30 2018-12-05 Exascaler Inc. Electronic-device cooling system
JP2016217616A (en) * 2015-05-20 2016-12-22 株式会社 フジヒラ Cryogenic temperature cooling device
JP5956100B1 (en) * 2015-07-02 2016-07-20 株式会社ExaScaler Immersion cooling device
JP6064083B1 (en) * 2015-08-31 2017-01-18 株式会社ExaScaler Electronic equipment cooling system
JP6843343B2 (en) * 2016-10-26 2021-03-17 富士平工業株式会社 Mammalian embryo freezer
JP6939034B2 (en) * 2017-04-05 2021-09-22 富士通株式会社 Cooling systems, cooling devices, and electronic systems
JP7244747B2 (en) * 2019-02-28 2023-03-23 富士通株式会社 Liquid immersion tank and liquid immersion cooling device
JP7299575B2 (en) * 2019-04-04 2023-06-28 有限会社北九州メディアシステム Separable cooling device and cooling method
KR102481736B1 (en) * 2020-09-22 2022-12-27 주식회사 수퍼제닉스 A superconducting magnet cooling system for magnetic resonance imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986276A (en) * 1982-11-10 1984-05-18 Hitachi Ltd Cryostat
JPH03114279A (en) * 1989-09-28 1991-05-15 Toshiba Corp Cryogenic cooling machine
JP2000114030A (en) * 1998-10-06 2000-04-21 Fuji Electric Co Ltd Superconducting device
JP2001066029A (en) * 1999-08-25 2001-03-16 Toshiba Corp Cryogenic cooling system
JP2002270913A (en) * 2001-03-09 2002-09-20 Hitachi Ltd Superconductive coil unit and mri device
JP2005048966A (en) * 2003-07-29 2005-02-24 Toshiba Corp Cooling container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986276A (en) * 1982-11-10 1984-05-18 Hitachi Ltd Cryostat
JPH03114279A (en) * 1989-09-28 1991-05-15 Toshiba Corp Cryogenic cooling machine
JP2000114030A (en) * 1998-10-06 2000-04-21 Fuji Electric Co Ltd Superconducting device
JP2001066029A (en) * 1999-08-25 2001-03-16 Toshiba Corp Cryogenic cooling system
JP2002270913A (en) * 2001-03-09 2002-09-20 Hitachi Ltd Superconductive coil unit and mri device
JP2005048966A (en) * 2003-07-29 2005-02-24 Toshiba Corp Cooling container

Also Published As

Publication number Publication date
JP2008025858A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4679457B2 (en) Subcool cryogenic device
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
JP4937563B2 (en) System for cooling a superconducting rotating machine
Mito et al. Achievement of high heat removal characteristics of superconducting magnets with imbedded oscillating heat pipes
US20180315530A1 (en) Method and apparatus for cooling a superconducting device immersed in liquid nitrogen
JPH11288809A (en) Superconducting magnet
US10082549B2 (en) System and method for cooling a magnetic resonance imaging device
JP5972368B2 (en) Cooling container
JPS607396B2 (en) superconducting device
JP5833284B2 (en) Cooling system
JP5191800B2 (en) Cooling vessel and superconducting device
WO2014157084A1 (en) Cooling device for superconductive cable
JP5540642B2 (en) Cooling device for superconducting equipment
KR102616056B1 (en) Cooling control device for superconducting fault current limiter
JP6082531B2 (en) Cooling container
JP2003303713A (en) Cryogenic device
JP2013245907A (en) Cooling container
JP5217308B2 (en) Superconducting part cooling device and its operation method
KR102618452B1 (en) Cooling apparatus for superconducting fault current limiter
JP2006292319A (en) Cryostat
JPH0584651B2 (en)
JPH06163251A (en) Cryogenic vessel
KR20230139118A (en) Superconducting current fault limiter with direct cooling structure
JP2009243820A (en) Cryogenic cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees