JP4678992B2 - Sea water pumping device and ocean fertilizer using the same - Google Patents

Sea water pumping device and ocean fertilizer using the same Download PDF

Info

Publication number
JP4678992B2
JP4678992B2 JP2001178376A JP2001178376A JP4678992B2 JP 4678992 B2 JP4678992 B2 JP 4678992B2 JP 2001178376 A JP2001178376 A JP 2001178376A JP 2001178376 A JP2001178376 A JP 2001178376A JP 4678992 B2 JP4678992 B2 JP 4678992B2
Authority
JP
Japan
Prior art keywords
seawater
water
main body
intake pipe
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001178376A
Other languages
Japanese (ja)
Other versions
JP2002370690A (en
Inventor
誠功 荻原
裕治 粟島
宏彰 宮部
一之 大内
Original Assignee
社団法人マリノフォーラム二十一
株式会社大内海洋コンサルタント
株式会社アイ・エイチ・アイ マリンユナイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 社団法人マリノフォーラム二十一, 株式会社大内海洋コンサルタント, 株式会社アイ・エイチ・アイ マリンユナイテッド filed Critical 社団法人マリノフォーラム二十一
Priority to JP2001178376A priority Critical patent/JP4678992B2/en
Publication of JP2002370690A publication Critical patent/JP2002370690A/en
Application granted granted Critical
Publication of JP4678992B2 publication Critical patent/JP4678992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所定深度から海水を汲み上げる海水汲み上げ装置及びそれを用いる海洋肥沃化装置に関する。
【0002】
【従来の技術】
海洋深層水は、その低温性や清浄性、硝酸塩・ケイ酸塩・リン酸塩等の栄養塩に富むといった特徴を有しており、近時、このような海洋深層水を汲み上げて温度差発電,飲料水,海洋の肥沃化による漁養殖場等の種々用途に供することが行われている。
【0003】
海洋深層水を汲み上げる構成としては、陸上施設から深層水取水管を所定深度まで延設して汲み上げるものや、洋上に浮かべた船舶や専用の浮体構造物から所定深度に達する深層水取水管を垂下して汲み上げるものが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、陸上施設から深層水取水管を所定深度まで延設して汲み上げるものでは、陸上施設の建築や設置場所によっては数キロメートルの長さ深層水取水管が必要となるために建設コストが高い共に、深層水取水管の径に強度的な制限があるために取水量が限られるといった問題があった。
【0005】
また、船舶や専用の浮体構造物から所定深度に達する深層水取水管を垂下して汲み上げるものでは、浮体構造物が波浪によって揺れを生ずるため、浮体構造物から垂下した深層水取水管及びその取付部を強固に構成しなければならず、その結果、大型化すると共に製造コストも高いという問題があった。
【0006】
本発明は、上記問題に鑑みてなされたものであって、波浪の影響を極力排除して洋上に設置することができ、低コストに構成することのできる海水汲み上げ装置及びそれを用いた海洋肥沃化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の海水汲み上げ装置は、汲み上げ機構を備え水没しても浸水することのない密閉可能な装置本体の上端中心部に、少なくとも上端が常時海面上に突出する管状の管塔部が設けられ、前記装置本体の下端に、所定深度に至る海水取水管が垂下接続されると共に、前記装置本体の外側周囲の周方向に海水の注入・排水により浮力を調節し得る浮力調節手段となるバラストタンクを設け、前記浮力調節手段によるバラストタンクへの海水の注入・排出による浮力調節によって、汲み上げ作用時には前記装置本体を水面下所定深度に位置させて前記海水取水管を介して栄養塩を含んだ海水を汲み上げると共に、保守点検時には前記装置本体を水面上に位置させ得るように構成されていることを特徴とする。
【0009】
更に、その海水汲み上げ装置を用いた海洋肥沃化装置として、上記装置本体に、間隔をあけた2枚の流路板で構成され略水平の周方向全域に開口する放水口が設けられると共に、温度調節手段を備え、上記海水取水管を介して汲み上げた栄養塩を含んだ海水を前記温度調節手段によって所定温度に温度調節して所定深度の有光層中に前記放水口から略水平の周方向全域に放流するよう構成されていることを特徴とする。
【0010】
また、上記装置本体には、上部に開口する表層水取水口を有する表層取水機構が設けられており、上記温度調節手段は、前記表層取水機構によって取り入れた表層水と上記汲み上げられた栄養塩を含んだ海水とを混合して温度調節するように構成されていることを特徴とする。
【0011】
【発明の実施の形態】
以下、添付図面を参照して本願発明の実施の形態について説明する。
【0012】
図1は本願発明に係る海水汲み上げ装置を用いた海洋肥沃化装置の一構成例の外観を示す正面図であり、図2はその平面図である。
【0013】
図示海洋肥沃化装置1は、所定厚さの略円盤状を呈する装置本体としての本体部10の上側に所定高さの管塔部20が立設されると共に下側に海洋取水管としての深層水取水管30が接続されていわゆる独楽のような形状に構成され、管塔部20を介して取り入れた表層水と深層水取水管30を介して汲み上げた栄養塩を含む深層水とを混合・温度調節して周囲側方に密度流として放流・拡散し、人工的な湧昇流を形成してそこに新たな漁場を創出するものである。
【0014】
本体部10は、その縦断面図である図3,図1のA−A断面図である図4(A),B−B断面図である図4(B),図1のC−C断面図である図4(C),図1のD−D断面図である図5及び図1のE−E断面図である図6に示すように、所定容積で平面形状が八角形の機器室11を中心として、周囲に浮力調節手段としてのバラストタンク12が配設され、下側にウェイト室13が設けられて構成されている。
【0015】
機器室11は、平面形状八角形で所定容積を有し、所定水深に水没しても浸水することのないように密閉可能に構成され、中央に取水管路14が縦に貫通配設されている。その内部には、詳細は示さないが当該海洋肥沃化装置1の備える各種器機及び装置を自動的又は無線通信を介して陸上の指令施設から送られる指令に基づいて制御する制御装置が設置されている。
【0016】
バラストタンク12は、機器室11と同一高さ(厚さ)で、機器室11の外側全周に均等の幅で形成され、従って、本体部10の全体外形はこのバラストタンク12によって形作られ機器室11と相似形の大きな八角形状を呈している。その内部は、隔壁12A…によって機器室11の外側の各辺と対応する台形のコンパートメント12B…に分割されて、各コンパートメント12B…に図示しないバラストポンプによって海水の注入・排水が行われるようになっており、その注水量によって全体の浮力を調節し得るようになっている。このバラストタンク12への注排水による浮力バランスの調節範囲は、最も浮力が大きい場合に本体部10の上面が水面上所定高さに浮かび、最も浮力が小さい場合には本体部が没水するように設定される。バラストタンク12への注排水は、機器室11内に設けられた制御装置によってバラストポンプを制御駆動することによって行われる。尚、本体部10の平面形状は八角形に限らず他の多角形や円形であっても良く、潮流による抵抗を考慮すれば円形とするのがより好ましい。
【0017】
機器室11の上側には、機器室11の天板(機器室上部構造板11A)から所定間隔離間して流路板15が配設されており、この流路板15と機器室上部構造板11Aの間に周方向全域に放水口16Aが開口する所定厚さの放流通路16が形成されている。
【0018】
放流通路16の平面中心部には、流路板15と機器室上部構造板11Aと連続して形成されたポンプケーシング41の内部にインペラ42が設けられて汲み上げ機構としての放流ポンプ40が構成されている。
【0019】
ポンプケーシング41は、その全側周囲が放流通路16に連続し、上部吸入口41Uに塔管部20(管状本体21)の下端が接続され、下部吸入口41Lには機器室11を貫通する取水管路14が接続されている。
【0020】
インペラ42は、管塔部20側(上部吸入口41U側)の上インペラ42Uと深層水取水管30側(下部吸入口41L側)の下インペラ42Lとから成り、ポンプケーシング41の内部に上下境界部を放流通路16の高さ(厚さ)方向中心に一致させて鉛直軸で回転可能に設けられ、その回転軸はその直上の管塔部20内部に配設されたポンプモーター43の回転軸に連結されている。
【0021】
ポンプモーター43は、水密型の電動モーターであって、後述する管塔部20のアッパーデッキ22の内部に設けられた内燃機関による発電,海洋温度差発電,風力発電,波力発電及び太陽光発電等の発電手段を単独又は組み合わせによって得られる電力で駆動されてインペラ42を回転駆動する。その回転制御は、機器室11内の制御装置によって行われる。
【0022】
上記構成の放流ポンプ40は、ポンプモーター43によるインペラ42の回転によって、管塔部20から表層水を取り入れると共に深層水取水管30を介して深層水を汲み上げ、混合して放流通路16に吐出する。表層水及び深層水の吸入・吐出量及び混合比率は、インペラ42の回転数及び羽根形状によって決まるが、混合比率は放流水の温度がその放流域における水温と略等しくなるように(即ち密度が略等しくなるように)設定される。つまり、本構成では、深層水取水管30を介して汲み上げた深層水に管塔部20を介して取り入れた表層水を混合することで放流水の温度調節を行うものであり、従って、これら管塔部20と放流ポンプ40(上インペラ42U)が本願における表層取水機構を構成しており、従って、温度調節手段をも構成しているものである。
【0023】
ウェイト室13は、機器室11と対応する平面形状で所定の高さに形成され、その内部にコンクリート13Aが所定所定厚さに充填打設されて、所定の重量を得ている。これは、万一深層水取水管30が欠損するような事態が生じても、当該海洋肥沃化装置1の姿勢を保持するためのものであり、そのために必要充分な重量に設定されている。また、このウェイト室13の中央には、機器室11から連続する取水管路14が貫通している。
【0024】
管塔部20は、所定径で所定長さの管状本体21の上端に、内部にディーゼルエンジン等の内燃機関を用いた発電機等が収容されると共に上部に通信用のアンテナ等を備える管状本体21より大径で所定高さのアッパーデッキ22が設けられて構成され、管状本体21の下端が放流ポンプ40の上部吸入口41Uに接続されている。管状本体21の内部には、図4(A),(B)に示すように、横断面において一部を占有する管塔部通路23が長手方向に沿って延設されており、該管塔部通路23の上端はハッチを介してアッパーデッキ22の内部に連通し、下端は後述する管塔基部内通路51にハッチを介して連通するようになっている。また、後述する運転時における海面と対応する外面位置に船着場24が設けられると共に、運転時所定の水深となる位置に表層水取水口25が周方向に複数開口形成されている。
【0025】
管塔部20の本体部10への接続基部には、管状本体21より太い大径基部50が所定高さに構築されている。大径基部50の内面と管状本体21の外面の間には、周方向及び上下に所定間隔でリブが配設されてこれらリブが管状本体21の外側との間の内部空間を周方向及び上下方向に複数に分割しているが、その周方向の一つの分割空間がハッチを介して上下に連通し、これが管塔基部内通路51となっている。この管塔基部内通路51は前述のごとくその上端部が管塔部通路23とハッチを介して連通し、また、下端部は当該部位のみに放流通路16を貫通して形成された通路52を介して機器室11に通じている。
【0026】
深層水取水管30は、所定径で所定長さの管状であって、その上端が本体部10の下部(ウェイト室13の下面)に結合されて取水管路14に接続されている。その下端は、取水する深層水域(例えば水深500mから600m)に達するように設定され、下端開口部周囲にはバランス調節のための鎖31が簾状に吊り下げ配設されており、海底に固定されてはいない。このため、海底に固定された深層水取水管が本体部10の揺動を阻害したりそれに起因して破損を生ずることはない。また、設置位置の移動も容易に行えるものである。
【0027】
上記のごとく構成された海洋肥沃化装置1は、海上又は海中ではウェイト室13及び深層水取水管30の重量によってその中心軸を鉛直とした姿勢で浮遊し、本体部10の最大外径部位であるバラストタンク12部位に結合されたチェーン等の係留索2によって海底に係留されて所定海域に設置される。尚、係留索2は、潮汐による海面変化及び当該海洋肥沃化装置1の深度調節を許容し得るようにその長さが設定される。
【0028】
深層水の汲み上げ放流運転時には、図7(A)に示すように、バラストタンク12への注排水による浮力調節によって、放水口16Aが有光層内の所定放流深度(例えば水深30m)に位置するよう浮遊配置される、放水口16Aは本体部10の上部に位置するためにこの設置状態では本体部10は海中所定深度に没し、管塔部20の管状本体21に開口形成された表層水取水口25が所定深度となると共に管塔部20の上端が海面上所定高さに突出してアッパーデッキ22のみが海面上に位置する。
【0029】
そして、放流ポンプ40の駆動によって管塔部20から取り入れた表層水と深層水取水管30を介して汲み上げた深層水とを混合し、略等しい温度に温度調節された深層水を全周に開口する放水口16Aから360度全周方向に放流するものである。放流された深層水は、有光層内を密度流として水平に拡散し、その有する栄養によって植物プランクトンの増殖を促し、その結果、自然環境下で漁場を造成することができる。尚、深層水の放流方向は、全周とせずに任意の方向のみに設定しても良い。
【0030】
このように、大きな体積を有する本体部10が運転時には水面下所定深度に没水することにより、水線面積を極めて小さくできるために波浪による影響を少なくして揺れを抑制することができる。これにより、安定した設置が可能となると共に、本体部10と深層水取水管30の接合部等構造に作用する負荷を小さくできるために高い安全性を有するものを小型軽量に低コストで構築できるものである。
【0031】
一方、保守点検時には、バラストタンク12から排水して浮力を増大させて、図7(B)に示すように本体部10の上面が水面上となるように浮上させることで、機器室11へ容易にアクセスできるようになるために、保守作業等の作業性が極めて良好となるものである。
【0032】
尚、上記構成例は、バラストタンク12を機器室11の周囲に配設したものであるが、バラストタンク12はこれに限らず機器室11の上部又は下部に配設しても良いものである。しかし、本構成例のごとく周囲に配設して平面形状を大径とすることで浮遊姿勢を安定化させることができると共に、保守点検時にはその上面での作業が可能となり、更に中心から離間したその外側面に係留索を結合することで放流ポンプ40のインペラ42の回転による生ずる反作用に容易に抗すことができる。
【0033】
図8は、バラストタンク12′を機械室11の下側周囲に設けて成る海洋肥沃化装置1′の一部断面断面正面図を示す。図中上記構成例と同機能の部位には同符号を付してある。図示構成では、バラストタンク12は、機械室11の外縁部から垂下された所定長さの連結部17を介して機械室11の所定量下側に配設されている。バラストタンク12′による浮力調節範囲は、最も浮力が大きい場合に当該バラストタンク12′の上面が水面上所定高さに浮かび、最も浮力が小さい場合には上記構成例と同様に放水口16Aが有光層内の所定放流深度に位置するよう機械室11が没水するように設定される。このような構成により、当該海洋肥沃化装置1′を海洋に設置する際に、本体部10をバラストタンク12′の上面が水面上となる状態で海面に浮かせ、バラストタンク12′を作業台として機械室11の下部に深層水取水管30を接続する作業を行うことができる。つまり、本体部10を作業台船に搭載して深層水取水管30の接続作業を行う必要がなく、作業台船が不要となることから設置コストを節減できるものである。
【0034】
また、その他の構成についても上記構成例に限らず適宜変更可能なものである。即ち、温度調節手段は表層水を混合することによらず汲み上げた深層水をヒーター等によって加熱して温度調節するようにしても良い。汲み上げ機構も、回転するインペラ42を備える放流ポンプ40の替わりにエアーポンプや波動ポンプを用いても良いものである。
【0035】
更に、上記構成例は、深層水を表層水と混合して拡散放流する海洋肥沃化装置として説明したが、汲み上げた深層水はタンカー等の船舶によって移送することとし、海水汲み上げ装置のみとして構成しても良いものである。
【0036】
【発明の効果】
以上述べたように、本発明に係る海水汲み上げ装置によれば、汲み上げ機構を備え水没しても浸水することのない密閉可能な装置本体の上端中心部に、少なくとも上端が常時海面上に突出する管状の管塔部が設けられ、前記装置本体の下端に、所定深度に至る海水取水管が垂下接続されると共に、前記装置本体の外側周囲の周方向に海水の注入・排水により浮力を調節し得る浮力調節手段となるバラストタンクを設け、前記浮力調節手段によるバラストタンクへの海水の注入・排出による浮力調節によって、汲み上げ作用時には前記装置本体を水面下所定深度に位置させて前記海水取水管を介して栄養塩を含んだ海水を汲み上げると共に、保守点検時には前記装置本体を水面上に位置させ得るように構成されていることにより、大きな体積を有する装置本体が汲み上げ作用時には水面下所定深度に没水することによって波浪による影響を少なくして揺れを抑制することができ、その結果、安定した設置が可能となると共に、本体部と深層水取水管の接合部等構造に作用する負荷が小さく高い安全性を有して小型軽量に低コストで構築できるものである。
【0037】
また、上記浮力調節手段は、上記装置本体の外側周囲にバラストタンクが周方向に配設されて構成されていることにより、平面形状を大径化して浮遊姿勢を安定化させることができると共に、保守点検時にはその上面での作業が可能となる。
【0038】
更に、その海水汲み上げ装置を用いた海洋肥沃化装置として、上記装置本体に、間隔をあけた2枚の流路板で構成され略水平の周方向全域に開口する放水口が設けられると共に、温度調節手段を備え、上記海水取水管を介して汲み上げた栄養塩を含んだ海水を前記温度調節手段によって所定温度に温度調節して所定深度の有光層中に前記放水口から略水平の周方向全域に放流するよう構成されていることにより、放流された深層水は密度流として水平に拡散し、その有する栄養によって植物プランクトンの増殖を促すことができ、その結果、自然環境下で漁場を造成することが可能となるものである。
【0039】
また、上記装置本体には、上部に開口する表層水取水口を有する表層取水機構が設けられており、上記温度調節手段は、表層取水機構によって取り入れた表層水と上記汲み上げられた栄養塩を含む海水とを混合して温度調節するように構成されていることにより、多量の深層水を容易且つ迅速に温度調節して放流することができるものである。
【図面の簡単な説明】
【図1】本願発明に係る海水汲み上げ装置を用いた海洋肥沃化装置の一構成例の外観を示す正面図である。
【図2】その平面図である。
【図3】本体部の縦断面図である。
【図4】(A)は図1のA−A断面図,(B)はB−B断面図,(C)はC−C断面図である。
【図5】図1のD−D断面図である。
【図6】図1のE−E断面図である。
【図7】設置状態の外観を示し、(A)は運転時,(B)は保守点検時である。
【図8】異なる構成例の海洋肥沃化装置の一部断面正面図である。
【符号の説明】
1,1′ 海洋肥沃化装置
10 本体部(装置本体)
12,12′ バラストタンク(浮力調整手段)
16A 放水口
20 管塔部(表層水取水機構,温度調節手段)
25 表層水取水口
30 深層水取水管(海水取水管)
40 放流ポンプ(汲み上げ機構,表層水取水機構,温度調節手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seawater pumping device for pumping seawater from a predetermined depth and a marine fertilizer using the same.
[0002]
[Prior art]
Deep sea water is characterized by its low temperature and cleanliness and richness in nutrient salts such as nitrates, silicates, and phosphates. It has been used for various purposes such as drinking water and fish farms by fertilizing the ocean.
[0003]
As for the structure to draw deep ocean water, the deep water intake pipe extending from the onshore facility to the specified depth is drawn up, or the deep water intake pipe that reaches the specified depth is suspended from the ship floating on the ocean or the dedicated floating structure. What is pumped up is known.
[0004]
[Problems to be solved by the invention]
However, if the deep water intake pipe is extended from the onshore facility to the specified depth and pumped up, the construction cost is high because several kilometres long deep water intake pipe is required depending on the construction and installation location of the onshore facility. However, there is a problem that the amount of water intake is limited due to the strong restriction on the diameter of the deep water intake pipe.
[0005]
In addition, when a deep water intake pipe that reaches a predetermined depth is dropped from a ship or a special floating structure, the floating structure is swayed by waves, so the deep water intake pipe that is suspended from the floating structure and its attachment Therefore, there is a problem in that the size is increased and the manufacturing cost is high.
[0006]
The present invention has been made in view of the above problems, and can be installed on the ocean by eliminating the effects of waves as much as possible, and can be constructed at low cost, and a marine fertilizer using the same. An object of the present invention is to provide a device.
[0007]
[Means for Solving the Problems]
The seawater pumping device of the present invention that achieves the above object is a tubular tube tower having a pumping mechanism and having a pumping mechanism at the top center of a sealable device body that is not submerged and at least the upper end always protruding above the sea surface. And a seawater intake pipe reaching a predetermined depth is suspended and connected to the lower end of the apparatus main body, and the buoyancy adjusting means can adjust the buoyancy by injecting / draining seawater in the circumferential direction around the outside of the apparatus main body the ballast tanks to be provided, the by buoyancy adjustment by injection and discharge of seawater into the ballast tank by buoyancy adjusting means, pumping nutrients through the seawater intake pipe by positioning the apparatus body below the water surface a predetermined depth during the action It is configured to pump up seawater containing water and to be able to position the apparatus main body on the water surface during maintenance and inspection.
[0009]
Furthermore, as a marine fertilizer using the seawater pumping device, the device body is provided with a water outlet that is formed of two flow path plates spaced apart from each other and opens in a substantially horizontal circumferential direction. Adjusting means, and adjusting the temperature of seawater containing nutrient salts pumped through the seawater intake pipe to a predetermined temperature by the temperature adjusting means, the substantially horizontal circumferential direction from the outlet in the light layer of a predetermined depth It is configured to discharge to the entire area .
[0010]
Further, the apparatus main body is provided with a surface layer water intake mechanism having a surface water intake opening opened at an upper portion, and the temperature adjusting means is configured to supply the surface water taken in by the surface layer water intake mechanism and the pumped nutrient salts. It is configured to adjust the temperature by mixing with the contained seawater.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 is a front view showing an external appearance of a configuration example of an ocean fertilizer using a seawater pumping device according to the present invention, and FIG. 2 is a plan view thereof.
[0013]
The illustrated marine fertilizer 1 has a tube tower 20 having a predetermined height on the upper side of a main body 10 serving as a substantially disk-shaped device having a predetermined thickness, and a deep layer as an ocean intake pipe on the lower side. A water intake pipe 30 is connected to form a so-called top-like shape, and the surface water taken in through the tube tower 20 and the deep water containing nutrient salts pumped through the deep water intake pipe 30 are mixed. The temperature is adjusted and discharged and diffused as a density current on the side of the surroundings, forming an artificial upwelling flow and creating a new fishing ground there.
[0014]
The main body 10 is a longitudinal cross-sectional view of FIG. 3, FIG. 4A is a cross-sectional view of AA in FIG. 1, FIG. 4B is a cross-sectional view of BB, and is a cross-section CC of FIG. 4 (C) which is a diagram, FIG. 5 which is a DD sectional view of FIG. 1, and FIG. 6 which is a EE sectional view of FIG. 1, an equipment room having a predetermined volume and an octagonal plan shape. A ballast tank 12 as a buoyancy adjusting means is disposed around 11 and a weight chamber 13 is provided on the lower side.
[0015]
The equipment room 11 is a planar octagon, has a predetermined volume, is configured to be sealed so as not to be submerged even when submerged at a predetermined depth, and has a water intake conduit 14 penetrating vertically in the center. Yes. Although not shown in detail, a control device is installed to control various devices and devices included in the marine fertilizer 1 automatically or based on a command sent from a command facility on land via wireless communication. Yes.
[0016]
The ballast tank 12 has the same height (thickness) as the equipment room 11 and is formed with a uniform width on the entire outer periphery of the equipment room 11. Therefore, the entire outer shape of the main body 10 is formed by the ballast tank 12. It has a large octagonal shape similar to the chamber 11. The inside is divided into trapezoidal compartments 12B corresponding to the outer sides of the equipment room 11 by the partition walls 12A, and seawater is injected into and drained from the respective compartments 12B by a ballast pump (not shown). The overall buoyancy can be adjusted by the amount of water injected. The adjustment range of the buoyancy balance by pouring and draining into the ballast tank 12 is such that the upper surface of the main body 10 floats at a predetermined height above the water surface when the buoyancy is greatest, and the main body is submerged when the buoyancy is the smallest. Set to Pouring and draining into the ballast tank 12 is performed by controlling and driving the ballast pump by a control device provided in the equipment room 11. The planar shape of the main body 10 is not limited to an octagon, but may be another polygon or a circle, and is more preferably a circle when resistance due to tidal current is taken into consideration.
[0017]
On the upper side of the equipment room 11, a flow path plate 15 is disposed at a predetermined distance from the top plate (the equipment room upper structural board 11A) of the equipment room 11, and this flow path board 15 and the equipment room upper structural board are disposed. Between 11A, the discharge channel 16 of the predetermined thickness which the water discharge port 16A opens in the circumferential direction whole region is formed.
[0018]
At the center of the plane of the discharge passage 16, an impeller 42 is provided in a pump casing 41 formed continuously with the flow path plate 15 and the equipment room upper structure plate 11A, thereby forming a discharge pump 40 as a pumping mechanism. ing.
[0019]
The pump casing 41 is continuously connected to the discharge passage 16 at all sides thereof, the lower end of the tower pipe section 20 (tubular body 21) is connected to the upper suction port 41U, and the lower suction port 41L is connected to the equipment chamber 11. A water pipe 14 is connected.
[0020]
The impeller 42 includes an upper impeller 42U on the tube tower 20 side (upper suction port 41U side) and a lower impeller 42L on the deep water intake pipe 30 side (lower suction port 41L side). The rotation axis of the pump motor 43 disposed in the tube tower 20 directly above the rotation axis is provided so that the section is aligned with the center of the discharge passage 16 in the height (thickness) direction and is rotatable about the vertical axis. It is connected to.
[0021]
The pump motor 43 is a water-tight type electric motor, and generates power by an internal combustion engine provided in the upper deck 22 of the tube tower section 20 described later, ocean temperature difference power generation, wind power generation, wave power generation, and solar power generation. The impeller 42 is driven to rotate by being driven by electric power obtained by a single or a combination of power generation means. The rotation control is performed by a control device in the equipment room 11.
[0022]
The discharge pump 40 having the above configuration takes in the surface water from the tube tower 20 by the rotation of the impeller 42 by the pump motor 43, pumps the deep water through the deep water intake pipe 30, mixes it, and discharges it to the discharge passage 16. . The intake / discharge amount and the mixing ratio of the surface water and the deep water are determined by the rotational speed of the impeller 42 and the blade shape, but the mixing ratio is set so that the temperature of the discharged water is substantially equal to the water temperature in the discharge area (that is, the density is Set to be approximately equal). That is, in this configuration, the temperature of the discharged water is adjusted by mixing the surface water taken in through the tube tower section 20 with the deep water pumped up through the deep water intake pipe 30. The tower portion 20 and the discharge pump 40 (upper impeller 42U) constitute the surface layer water intake mechanism in the present application, and thus also constitute the temperature adjusting means.
[0023]
The weight chamber 13 has a planar shape corresponding to the device chamber 11 and is formed at a predetermined height, and a concrete 13A is filled in a predetermined thickness to obtain a predetermined weight. This is for maintaining the attitude of the marine fertilizer 1 even if the deep water intake pipe 30 is lost, and is set to a weight that is necessary and sufficient for that purpose. In addition, a water intake conduit 14 continuing from the equipment chamber 11 passes through the center of the weight chamber 13.
[0024]
The tube tower 20 has a tubular body 21 in which a generator or the like using an internal combustion engine such as a diesel engine is housed in an upper end of a tubular body 21 having a predetermined diameter and a predetermined length, and a communication antenna or the like is provided in the upper portion. The upper deck 22 having a diameter larger than 21 and having a predetermined height is provided, and the lower end of the tubular body 21 is connected to the upper suction port 41U of the discharge pump 40. As shown in FIGS. 4 (A) and 4 (B), a tube tower passage 23 that occupies a part in the cross section extends in the longitudinal direction inside the tubular main body 21. The upper end of the section passage 23 communicates with the inside of the upper deck 22 through a hatch, and the lower end communicates with a passage 51 in the tube tower base section described later through the hatch. In addition, a landing site 24 is provided at an outer surface position corresponding to the sea level during operation, which will be described later, and a plurality of surface water intakes 25 are formed in the circumferential direction at positions where the predetermined water depth is obtained during operation.
[0025]
A large-diameter base 50 thicker than the tubular main body 21 is constructed at a predetermined height at the connection base to the main body 10 of the tube tower 20. Between the inner surface of the large-diameter base 50 and the outer surface of the tubular main body 21, ribs are arranged in the circumferential direction and vertically at predetermined intervals, and these ribs circumferentially and vertically move the internal space between the outer side of the tubular main body 21. Although divided into a plurality of directions, one circumferential space in the circumferential direction communicates vertically through a hatch, and this is a tube tower base passage 51. As described above, the upper end of the tube tower base passage 51 communicates with the tube tower passage 23 via a hatch, and the lower end thereof has a passage 52 formed through the discharge passage 16 only in the portion. To the equipment room 11.
[0026]
The deep water intake pipe 30 is a tube having a predetermined diameter and a predetermined length, and an upper end of the deep water intake pipe 30 is connected to the lower part of the main body 10 (the lower surface of the weight chamber 13) and connected to the intake pipe 14. Its lower end is set to reach the deep water area (for example, from 500m to 600m) where water is taken, and a chain 31 for balance adjustment is suspended around the lower end opening to secure it to the seabed. It has not been done. For this reason, the deep water intake pipe fixed to the seabed does not obstruct the swinging of the main body part 10 or cause damage due to it. Further, the installation position can be easily moved.
[0027]
The marine fertilizer 1 configured as described above floats in a posture in which the central axis is vertical depending on the weight of the weight chamber 13 and the deep water intake pipe 30 at sea or in the sea. It is moored on the sea floor by a mooring line 2 such as a chain coupled to a certain ballast tank 12 site and installed in a predetermined sea area. The length of the mooring line 2 is set so as to allow sea level change due to tides and depth adjustment of the marine fertilizer 1.
[0028]
At the time of deep water pumping and discharging operation, as shown in FIG. 7 (A), the outlet 16A is located at a predetermined discharge depth (for example, water depth 30 m) in the lighted layer by adjusting the buoyancy by pouring water into the ballast tank 12. Since the water outlet 16A is located at the upper part of the main body part 10 in this floating state, the main body part 10 is submerged at a predetermined depth in the sea in this installation state, and surface water is formed in the tubular main body 21 of the tube tower part 20 so as to be opened. The intake 25 has a predetermined depth, and the upper end of the tube tower 20 protrudes to a predetermined height on the sea surface so that only the upper deck 22 is positioned on the sea surface.
[0029]
Then, the surface water taken in from the tube tower 20 by driving the discharge pump 40 and the deep water pumped up through the deep water intake pipe 30 are mixed, and the deep water whose temperature is adjusted to substantially the same temperature is opened to the entire circumference. It is discharged from the water outlet 16A to 360 degrees in the entire circumferential direction. The discharged deep water diffuses horizontally in the light layer as a density current, and promotes the growth of phytoplankton by its nutrition, and as a result, a fishing ground can be created in a natural environment. In addition, the discharge direction of the deep water may be set only in an arbitrary direction, not the entire circumference.
[0030]
Thus, since the main body 10 having a large volume is submerged at a predetermined depth below the surface of the water during operation, the water line area can be made extremely small, so that the influence of waves can be reduced and the shaking can be suppressed. As a result, stable installation is possible, and a load that acts on the structure such as the joint portion of the main body 10 and the deep water intake pipe 30 can be reduced, so that a highly safe one can be constructed small and light at low cost. Is.
[0031]
On the other hand, at the time of maintenance and inspection, the buoyancy is increased by draining from the ballast tank 12, and as shown in FIG. 7 (B), the main body portion 10 is floated so that the upper surface is on the water surface. Therefore, workability such as maintenance work becomes very good.
[0032]
In the above configuration example, the ballast tank 12 is disposed around the equipment room 11. However, the ballast tank 12 is not limited to this and may be disposed at the upper part or the lower part of the equipment room 11. . However, as in this configuration example, the floating shape can be stabilized by arranging it in the periphery and having a large planar shape, and at the time of maintenance inspection, it is possible to work on the upper surface and further away from the center. By coupling the mooring line to the outer surface , it is possible to easily resist the reaction caused by the rotation of the impeller 42 of the discharge pump 40.
[0033]
FIG. 8 shows a partial cross-sectional front view of an ocean fertilizer 1 ′ in which a ballast tank 12 ′ is provided around the lower side of the machine room 11. In the figure, parts having the same functions as those in the configuration example are given the same reference numerals. In the configuration shown in the drawing, the ballast tank 12 is disposed below a predetermined amount of the machine chamber 11 via a connecting portion 17 having a predetermined length depending from the outer edge of the machine chamber 11. The buoyancy adjustment range by the ballast tank 12 'is such that when the buoyancy is the highest, the upper surface of the ballast tank 12' floats at a predetermined height above the water surface, and when the buoyancy is the smallest, there is a water outlet 16A as in the above configuration example. The machine room 11 is set to be submerged so as to be located at a predetermined discharge depth in the optical layer. With this configuration, when the marine fertilizer 1 'is installed in the ocean, the main body 10 is floated on the sea surface with the upper surface of the ballast tank 12' on the water surface, and the ballast tank 12 'is used as a work table. The operation of connecting the deep water intake pipe 30 to the lower part of the machine room 11 can be performed. That is, it is not necessary to mount the main body unit 10 on the work table ship and connect the deep water intake pipe 30 and the work table ship is unnecessary, so that the installation cost can be reduced.
[0034]
Further, the other configurations are not limited to the above configuration example and can be changed as appropriate. That is, the temperature adjusting means may adjust the temperature by heating the deep water pumped up by a heater or the like without mixing the surface water. The pumping mechanism may also use an air pump or a wave pump instead of the discharge pump 40 including the rotating impeller 42.
[0035]
Furthermore, the above configuration example has been described as an ocean fertilizer that diffuses and discharges deep water mixed with surface water, but the deep water pumped up is transported by a ship such as a tanker and is configured only as a seawater pumping device. It is good.
[0036]
【The invention's effect】
As described above, according to the seawater pumping apparatus according to the present invention , at least the upper end always protrudes above the sea surface at the center of the upper end of the sealable apparatus main body that has a pumping mechanism and is not submerged even if submerged. A tubular tube tower is provided, and a seawater intake pipe reaching a predetermined depth is suspended from the lower end of the apparatus body, and buoyancy is adjusted by injecting and draining seawater in the circumferential direction around the outside of the apparatus body. The buoyancy adjusting means is provided with a ballast tank, and the buoyancy adjustment by the buoyancy adjustment means by injecting and discharging seawater into the ballast tank, the apparatus main body is positioned at a predetermined depth below the water surface during the pumping operation, and the seawater intake pipe is Pumping up the seawater containing nutrients, and the device main body can be positioned on the water surface during maintenance and inspection. When the main body of the equipment to be pumped is submerged at a predetermined depth below the surface of the water, it is possible to reduce the influence of waves and suppress shaking, and as a result, stable installation is possible and the main body and deep water intake are The load acting on the structure such as the joint portion of the water pipe is small and has high safety, and can be constructed in a small size and at a low cost.
[0037]
In addition, the buoyancy adjusting means is configured by arranging a ballast tank in the circumferential direction around the outside of the apparatus main body, so that the planar shape can be enlarged and the floating posture can be stabilized. Work on the top surface is possible during maintenance inspection.
[0038]
Furthermore, as a marine fertilizer using the seawater pumping device, the device body is provided with a water outlet that is formed of two flow path plates spaced apart from each other and opens in a substantially horizontal circumferential direction. Adjusting means, and adjusting the temperature of seawater containing nutrient salts pumped through the seawater intake pipe to a predetermined temperature by the temperature adjusting means, the substantially horizontal circumferential direction from the outlet in the light layer of a predetermined depth By being configured to discharge to the entire area, the discharged deep water spreads horizontally as a density flow, and the nutrition it has can promote the growth of phytoplankton, resulting in the creation of a fishing ground in the natural environment. It is possible to do.
[0039]
Further, the apparatus main body is provided with a surface layer water intake mechanism having a surface water intake opening opened at an upper portion, and the temperature adjusting means includes the surface water taken in by the surface layer water intake mechanism and the pumped nutrient salts. By being configured to adjust the temperature by mixing with seawater, a large amount of deep water can be easily and quickly temperature-controlled and discharged.
[Brief description of the drawings]
FIG. 1 is a front view showing an external appearance of a configuration example of an ocean fertilizer using a seawater pumping device according to the present invention.
FIG. 2 is a plan view thereof.
FIG. 3 is a longitudinal sectional view of a main body.
4A is a cross-sectional view taken along the line AA in FIG. 1, FIG. 4B is a cross-sectional view taken along the line BB, and FIG. 4C is a cross-sectional view taken along the line CC.
FIG. 5 is a cross-sectional view taken along the line DD of FIG.
6 is a cross-sectional view taken along the line E-E in FIG. 1;
FIGS. 7A and 7B show the appearance of the installation state, in which FIG. 7A is during operation and FIG. 7B is during maintenance inspection.
FIG. 8 is a partial cross-sectional front view of a marine fertilizer of a different configuration example.
[Explanation of symbols]
1,1 'Marine fertilizer 10 Main body (device main body)
12, 12 'Ballast tank (buoyancy adjustment means)
16A Water outlet 20 Tube tower (surface water intake mechanism, temperature control means)
25 Surface water intake 30 Deep water intake pipe (seawater intake pipe)
40 Discharge pump (pumping mechanism, surface water intake mechanism, temperature control means)

Claims (3)

汲み上げ機構を備え水没しても浸水することのない密閉可能な装置本体の上端中心部に、少なくとも上端が常時海面上に突出する管状の管塔部が設けられ、前記装置本体の下端に、所定深度に至る海水取水管が垂下接続されると共に、前記装置本体の外側周囲の周方向に海水の注入・排水により浮力を調節し得る浮力調節手段となるバラストタンクを設け、前記浮力調節手段によるバラストタンクへの海水の注入・排出による浮力調節によって、汲み上げ作用時には前記装置本体を水面下所定深度に位置させて前記海水取水管を介して栄養塩を含んだ海水を汲み上げると共に、保守点検時には前記装置本体を水面上に位置させ得るように構成されていることを特徴とする海水汲み上げ装置。At the center of the upper end of the sealable device main body equipped with a pumping mechanism that does not become submerged even if submerged, a tubular tube tower at least at the upper end always protruding above the sea surface is provided. with seawater intake pipe is suspended connections leading to the depth provided the ballast tanks to be buoyant adjusting means capable of adjusting the buoyancy around the outside of the circumferential direction by the injection and drainage of seawater of the apparatus body, ballast by the buoyancy adjusting means By adjusting the buoyancy by injecting and discharging seawater into the tank, the device body is positioned at a predetermined depth below the surface of the water when pumping up, and the seawater containing nutrient salts is pumped through the seawater intake pipe, and at the time of maintenance inspection the device A seawater pumping device, characterized in that the main body can be positioned on the water surface. 上記装置本体に、間隔をあけた2枚の流路板で構成され略水平の周方向全域に開口する放水口が設けられると共に、温度調節手段を備え、上記海水取水管を介して汲み上げた栄養塩を含んだ海水を前記温度調節手段によって所定温度に温度調節して所定深度の有光層中に前記放水口から略水平の周方向全域に放流するよう構成されていることを特徴とする請求項1記載の海水汲み上げ装置を用いた海洋肥沃化装置。The apparatus main body is provided with a water outlet which is composed of two flow path plates spaced apart from each other and opens in a substantially horizontal circumferential direction, and is provided with temperature adjusting means, and the nutrient pumped up through the seawater intake pipe claims, characterized in that it is configured to discharge the entire circumferential direction of the substantially horizontally from the outlets in the photic zone in a predetermined depth thermostatted to a predetermined temperature by the temperature adjusting means seawater containing salt An ocean fertilizer using the seawater pumping device according to Item 1 . 上記装置本体には、上部に開口する表層水取水口を有する表層取水機構が設けられており、上記温度調節手段は、前記表層取水機構によって取り入れた表層水と上記汲み上げられた栄養塩を含んだ海水とを混合して温度調節するように構成されていることを特徴とする請求項2に記載の海洋肥沃化装置。The apparatus main body is provided with a surface layer water intake mechanism having a surface water intake opening opened at an upper portion, and the temperature adjusting means includes the surface water taken in by the surface layer water intake mechanism and the pumped nutrient salt. The marine fertilizer according to claim 2 , wherein the apparatus is configured to adjust the temperature by mixing with seawater.
JP2001178376A 2001-06-13 2001-06-13 Sea water pumping device and ocean fertilizer using the same Expired - Lifetime JP4678992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178376A JP4678992B2 (en) 2001-06-13 2001-06-13 Sea water pumping device and ocean fertilizer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178376A JP4678992B2 (en) 2001-06-13 2001-06-13 Sea water pumping device and ocean fertilizer using the same

Publications (2)

Publication Number Publication Date
JP2002370690A JP2002370690A (en) 2002-12-24
JP4678992B2 true JP4678992B2 (en) 2011-04-27

Family

ID=19019087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178376A Expired - Lifetime JP4678992B2 (en) 2001-06-13 2001-06-13 Sea water pumping device and ocean fertilizer using the same

Country Status (1)

Country Link
JP (1) JP4678992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104026048A (en) * 2014-05-20 2014-09-10 杭州电子科技大学 Device and method for lifting seabed nutritive salt in thermal differential mode

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143403A (en) * 2003-11-17 2005-06-09 Ouchi Ocean Consultant Inc Drifting installation for utilizing ocean deep water
JP2005290767A (en) * 2004-03-31 2005-10-20 Kazuo Nakamura Coastal zone fertilizing system
JP2006264343A (en) * 2005-03-22 2006-10-05 Ouchi Ocean Consultant Inc Generating enrichment floating body
CN102524124A (en) * 2012-01-04 2012-07-04 浙江大学舟山海洋研究中心 Device and method for lifting shallow sea bed nutrients by air injection
KR20150118524A (en) * 2013-03-13 2015-10-22 존 오리지 Oceanic algal fostering and fishery initiating and maintaining system
CN104041434B (en) * 2014-05-20 2016-01-20 杭州电子科技大学 A kind of inertial pump's of utilization principle realizes the device and method that seabed nutritive salt promotes
CN107878682A (en) * 2017-12-01 2018-04-06 浙江海洋大学 Multi-functional based on green energy resource can dive Large marine buoy
NO344396B1 (en) * 2018-11-01 2019-11-25 Mbs Int As Offshore farming system
JP2022112319A (en) * 2021-01-21 2022-08-02 幸 常田 Typhoon occurrence suppression device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069877A (en) * 1998-09-01 2000-03-07 Teruo Kinoshita Ocean fertilizing unit of type 2
JP2001328589A (en) * 2000-05-19 2001-11-27 Hitachi Zosen Corp Ocean deep water collecting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144400B2 (en) * 1973-02-20 1976-11-27
NL173670C (en) * 1979-10-30 1984-02-16 Hollandsche Betongroep Nv FLOATING INSTALLATION WITH A PIPE SUSPENDED TO THE RESTRICTION.
JPH01219360A (en) * 1988-02-26 1989-09-01 Shimizu Corp Intake-drainage system for bathy-water
JP2915557B2 (en) * 1990-11-22 1999-07-05 株式会社青木建設 Deep water pumping equipment
JPH04190729A (en) * 1990-11-26 1992-07-09 Takeo Sakamoto Upwelling foam generator and anchor also used as jetting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069877A (en) * 1998-09-01 2000-03-07 Teruo Kinoshita Ocean fertilizing unit of type 2
JP2001328589A (en) * 2000-05-19 2001-11-27 Hitachi Zosen Corp Ocean deep water collecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104026048A (en) * 2014-05-20 2014-09-10 杭州电子科技大学 Device and method for lifting seabed nutritive salt in thermal differential mode
CN104026048B (en) * 2014-05-20 2015-11-18 杭州电子科技大学 A kind of differential thermal formula seabed nutritive salt lifting device and method

Also Published As

Publication number Publication date
JP2002370690A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP4678992B2 (en) Sea water pumping device and ocean fertilizer using the same
JP4197929B2 (en) Seawater pumping device using a mechanism for suppressing the shaking of floating structures
US4316680A (en) Air-assisted hydraulic re-circulatory bouyancy pump
KR101828455B1 (en) Water Circulating Apparatus
JP5879641B1 (en) Oxygen replenishment device for seabed waters
JP2006264343A (en) Generating enrichment floating body
CN107849861A (en) Artificial dynamic wave apparatus for surfing
US7832657B2 (en) Apparatus for lowering water temperature of sea surface
TWI653376B (en) Water work platform
JPH1098973A (en) Marine plankton culture unit
JP2016047514A (en) Oxygen supply device to sea bottom area
CN207153609U (en) Seawater stirs lifting device
KR101666627B1 (en) Water purification device that is concealed by water plant island
KR101792105B1 (en) Water Circulation System for Removing Water-bloom
JP4529103B2 (en) Water circulation device using floating dredging
KR101411521B1 (en) Spud can of floating structure
JPH1128495A (en) Water stream generation device
JP2005143403A (en) Drifting installation for utilizing ocean deep water
JP3243114B2 (en) Self-propelled fountain type water purification device
JP4592824B1 (en) Underwater structure
CN219215320U (en) Floating submerged type floating offshore platform and offshore photovoltaic power generation system
CN212838376U (en) Sink from inhaling formula assembly type flotation tank pump station
CN106984232A (en) Seawater stirs lifting device
KR20110056199A (en) Apparatus for preventing the inflow of jellyfish into the intake of power plant
JP3110189B2 (en) Aeration system for moss using land-based power transmission marine aquaculture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4678992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term