JP4678765B2 - A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid. - Google Patents

A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid. Download PDF

Info

Publication number
JP4678765B2
JP4678765B2 JP2005136654A JP2005136654A JP4678765B2 JP 4678765 B2 JP4678765 B2 JP 4678765B2 JP 2005136654 A JP2005136654 A JP 2005136654A JP 2005136654 A JP2005136654 A JP 2005136654A JP 4678765 B2 JP4678765 B2 JP 4678765B2
Authority
JP
Japan
Prior art keywords
metal oxide
catalyst
producing
oxide catalyst
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005136654A
Other languages
Japanese (ja)
Other versions
JP2006312149A (en
Inventor
正英 近藤
正範 新田
啓幸 内藤
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005136654A priority Critical patent/JP4678765B2/en
Publication of JP2006312149A publication Critical patent/JP2006312149A/en
Application granted granted Critical
Publication of JP4678765B2 publication Critical patent/JP4678765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は金属酸化物触媒の製造方法、ならびに、この方法で製造した属酸化物触媒の存在下で、プロピレン、イソブチレン、第三級ブチルアルコール(以下、TBAともいう)またはメチル第三級ブチルエーテル(以下、MTBEともいう)を分子状酸素により気相接触酸化する、不飽和アルデヒドおよび不飽和カルボン酸製造法に関する。 Production method of the present invention is a metal oxide catalyst, and in the presence of a metallic oxide catalyst prepared in this way, propylene, isobutylene, tertiary butyl alcohol (hereinafter, also referred to as TBA) or methyl tert-butyl ether (hereinafter also referred to as MTBE) to gas phase catalytic oxidation with molecular oxygen, for producing how the unsaturated aldehyde and unsaturated carboxylic acid.

従来、例えばプロピレン、イソブチレン、TBAまたはMTBEを気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を製造する際に用いられる酸化触媒やその製造方法については数多くの提案がなされている。例えば特許文献1には複合酸化物等の触媒材料の粉体を成形した柱状物を切断した回転刃に研磨材を押し当てることで洗浄する方法が開示されている。また非特許文献2には触媒材料の粉体を取り扱う成形設備を水、アルカリ、酸で洗浄する方法が開示されている。
特開2001−47396号公報 造粒ハンドブック(1991年)、日本粉体工業技術協会編、(株)オーム社発行、341−342ページ
Conventionally, many proposals have been made on oxidation catalysts used for producing unsaturated aldehydes and unsaturated carboxylic acids by gas phase catalytic oxidation of, for example, propylene, isobutylene, TBA or MTBE, and methods for producing the same. For example, Patent Document 1 discloses a method of cleaning by pressing an abrasive against a rotary blade obtained by cutting a columnar material formed with a powder of a catalyst material such as a composite oxide. Non-Patent Document 2 discloses a method of cleaning a molding facility that handles catalyst material powder with water, alkali, or acid.
JP 2001-47396 A Granulation Handbook (1991), edited by Japan Powder Industrial Technology Association, published by Ohm Co., Ltd., pages 341-342

しかしながら、これらの方法で洗浄した回転刃や成形設備等の装置を用いて成形する工程を経て製造された触媒は、触媒活性と目的生成物選択性の点で工業触媒としては必ずしも十分ではなく、さらなる改良が望まれている。   However, a catalyst produced through a molding process using an apparatus such as a rotary blade or molding equipment washed by these methods is not necessarily sufficient as an industrial catalyst in terms of catalytic activity and target product selectivity. Further improvements are desired.

またこれらの方法では触媒材料が回転刃や成形設備等の装置に付着するため成形品が安定して製造できず成形品の生産性が低下するという問題もあった。   Further, in these methods, since the catalyst material adheres to devices such as a rotary blade and molding equipment, there is a problem that the molded product cannot be stably manufactured and the productivity of the molded product is lowered.

本発明は、触媒活性と目的生成物選択性が優れた金属酸化物触媒の製造方法、この方法で製造した不飽和アルデヒドおよび不飽和カルボン酸製造用の金属酸化物触媒、および、この触媒を用いた高活性かつ高選択性の不飽和アルデヒドおよび不飽和カルボン酸の製造方法を提供することを目的とする。   The present invention relates to a method for producing a metal oxide catalyst having excellent catalytic activity and target product selectivity, a metal oxide catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid produced by this method, and the use of this catalyst. It is an object of the present invention to provide a method for producing highly active and highly selective unsaturated aldehydes and unsaturated carboxylic acids.

また本発明は、生産性良く金属酸化物触媒を製造する方法を提供することを目的とする。   It is another object of the present invention to provide a method for producing a metal oxide catalyst with high productivity.

本発明者らは上記目的を達成するために、金属酸化物および金属酸化物の前駆体の少なくとも一方を含む触媒材料を成形する工程を含む金属酸化物触媒の製造方法において、該触媒材料が接触した部分の洗浄方法について鋭意検討を行い、驚くべきことにアルコールを用いて触媒材料が接触した部分を洗浄することで、触媒活性および選択性に優れた触媒を生産性良く製造できることを見出し、本発明を完成するに至った。   In order to achieve the above object, the inventors of the present invention provide a method for producing a metal oxide catalyst comprising a step of forming a catalyst material containing at least one of a metal oxide and a metal oxide precursor. As a result, it was found that a catalyst excellent in catalytic activity and selectivity can be produced with high productivity by washing the portion in contact with the catalyst material using alcohol. The invention has been completed.

すなわち本発明の第一は、金属酸化物および金属酸化物の前駆体の少なくとも一方を含む触媒材料を成形して成形品を製造する工程を含む金属酸化物触媒の製造方法において、該工程で使用した装置の該触媒材料および/または成形品が接触した部分を間欠的または連続的にアルコールを用いて洗浄することを特徴とする方法である。   That is, the first of the present invention is a method for producing a metal oxide catalyst comprising a step of producing a molded product by molding a catalyst material containing at least one of a metal oxide and a metal oxide precursor. In this method, the portion of the apparatus in contact with the catalyst material and / or the molded article is washed intermittently or continuously with alcohol.

さらに本発明は、第一発明の方法で製造した金属酸化物触媒の存在下で、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素により気相接触酸化することを特徴とする、不飽和アルデヒドおよび不飽和カルボン酸製造法である。
Furthermore, the present invention provides an unsaturated aldehyde and an unsaturated aldehyde characterized by subjecting propylene, isobutylene, TBA or MTBE to gas phase catalytic oxidation with molecular oxygen in the presence of the metal oxide catalyst produced by the method of the first invention. it is a manufacturing how saturated carboxylic acid.

本発明の金属酸化物触媒の製造方法によれば、触媒活性と目的生成物選択性が優れた金属酸化物触媒が得られ、また生産性良く金属酸化物触媒を製造することができる。   According to the method for producing a metal oxide catalyst of the present invention, a metal oxide catalyst having excellent catalytic activity and target product selectivity can be obtained, and a metal oxide catalyst can be produced with high productivity.

本発明の方法で製造した金属酸化物触媒は、不飽和アルデヒドおよび不飽和カルボン酸製造用に使用することができる。   The metal oxide catalyst produced by the method of the present invention can be used for producing unsaturated aldehydes and unsaturated carboxylic acids.

本発明の不飽和アルデヒドおよび不飽和カルボン酸の製造方法によれば、高活性かつ高選択性で不飽和アルデヒドおよび不飽和カルボン酸を製造することができる。   According to the method for producing an unsaturated aldehyde and unsaturated carboxylic acid of the present invention, an unsaturated aldehyde and unsaturated carboxylic acid can be produced with high activity and high selectivity.

以下、本発明の一実施形態である金属酸化物触媒の製造方法について詳細に説明する。本発明の金属酸化物触媒の製造方法は、前述したように、金属酸化物および金属酸化物の前駆体の少なくとも一方を含む触媒材料を成形して成形品を製造する工程を含む金属酸化物触媒の製造方法において、該工程で使用した装置の該触媒材料および/または成形品が接触した部分をアルコールで間欠的または連続的に洗浄するものである。   Hereinafter, the manufacturing method of the metal oxide catalyst which is one Embodiment of this invention is demonstrated in detail. As described above, the method for producing a metal oxide catalyst of the present invention includes a step of producing a molded product by molding a catalyst material containing at least one of a metal oxide and a precursor of the metal oxide. In this production method, the part of the apparatus used in the step that is in contact with the catalyst material and / or the molded product is washed intermittently or continuously with alcohol.

金属酸化物触媒の組成は特に限定されないが、例えばMo−Bi−Co−Fe−Cs等のMo−Bi系酸化物触媒(Mo等の記号は元素記号、以下同様)、Mo−V−Co−Cu等のMo−V系酸化物触媒、リンモリブデン酸の部分中和塩等のヘテロポリ酸系触媒が挙げられる。   The composition of the metal oxide catalyst is not particularly limited. For example, a Mo—Bi-based oxide catalyst such as Mo—Bi—Co—Fe—Cs (a symbol such as Mo is an element symbol, the same shall apply hereinafter), Mo—V—Co—. Examples include Mo-V based oxide catalysts such as Cu and heteropolyacid based catalysts such as partially neutralized salts of phosphomolybdic acid.

本発明は、触媒の比表面積や表面の細孔の状態が目的生成物の選択率(以下、選択率ともいう)に大きく影響を及ぼす酸化反応、例えば、イソブチレン、TBAおよびMTBE(以下、イソブチレン等ともいう)から選ばれる少なくとも一種の化合物からメタクロレインおよびメタクリル酸への酸化反応、プロピレンからアクロレインおよびアクリル酸への酸化反応、メタクロレインからメタクリル酸への酸化反応、アクロレインからアクリル酸への酸化反応、n−ブタン、n−ブテンから無水マレイン酸への酸化反応、o−キシレン、ナフタレンからの無水フタル酸への酸化反応、メタノールからホルムアルデヒドへの酸化反応等の反応に使用される金属酸化物触媒の製造に適している。特に、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素により気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造に適している。酸化反応以外にも、例えば、プロピレンからアクリロニトリルへのアンモ酸化反応、炭化水素の水蒸気改質等にも適用できる。   The present invention relates to an oxidation reaction in which the specific surface area of the catalyst and the state of pores on the surface greatly affect the selectivity of the target product (hereinafter also referred to as selectivity), for example, isobutylene, TBA and MTBE (hereinafter referred to as isobutylene and the like). Oxidation reaction from at least one compound selected from methacrolein and methacrylic acid, oxidation reaction from propylene to acrolein and acrylic acid, oxidation reaction from methacrolein to methacrylic acid, oxidation reaction from acrolein to acrylic acid Metal oxide catalyst used for reactions such as oxidation reaction from n-butane, n-butene to maleic anhydride, oxidation reaction from o-xylene, naphthalene to phthalic anhydride, oxidation reaction from methanol to formaldehyde Suitable for manufacturing. In particular, propylene, isobutylene, TBA or MTBE is suitable for the production of a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids by gas phase catalytic oxidation with molecular oxygen. In addition to the oxidation reaction, for example, it can be applied to an ammoxidation reaction from propylene to acrylonitrile, steam reforming of hydrocarbons, and the like.

イソブチレン等からメタクロレイン等への酸化反応やプロピレンからアクロレイン等への酸化反応には、次の式(1)で表される組成を有する金属酸化物触媒が好適である。
MoBiFeSi (1)
(1)式において、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を示し、Mはコバルトおよびニッケルからなる群より選ばれた少なくとも1種の元素を示し、Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛からなる群より選ばれた少なくとも1種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンからなる群より選ばれた少なくとも1種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g、hおよびiは各元素の原子比を表し、a=12の時b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素の原子比である。
For an oxidation reaction from isobutylene or the like to methacrolein or the like, or an oxidation reaction from propylene to acrolein or the like, a metal oxide catalyst having a composition represented by the following formula (1) is suitable.
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
In the formula (1), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, M represents at least one element selected from the group consisting of cobalt and nickel, and X Represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents phosphorus, boron, sulfur, selenium, tellurium, cerium , Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1 -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an atomic ratio of oxygen necessary to satisfy the valence of each component. It is.

アクロレインからアクリル酸への酸化反応には、次の式(2)で表される組成を有する金属酸化物触媒が好適である。
Mo (2)
(2)式において、Mo、VおよびOはそれぞれモリブデン、バナジウムおよび酸素を示し、Aは鉄、コバルト、クロム、アルミニウムおよびストロンチウムからなる群より選ばれた少なくとも一種の元素を示し、Xはゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウム、およびバリウムからなる群より選ばれた少なくとも1種の元素を示し、Yは、マグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズおよびビスマスからなる群より選ばれた少なくとも1種の元素を示す。また、j、k、l、m、nおよびoは各元素の原子比を表し、j=12のときk=0.01〜6、l=0〜5、m=0〜10、n=0〜5であり、oは前記各成分の原子価を満足するのに必要な酸素の原子比である。
A metal oxide catalyst having a composition represented by the following formula (2) is suitable for the oxidation reaction from acrolein to acrylic acid.
Mo j V k Al x m Y n O o (2)
In the formula (2), Mo, V and O represent molybdenum, vanadium and oxygen, respectively, A represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, X represents germanium, Represents at least one element selected from the group consisting of boron, arsenic, selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium, and barium; Y represents magnesium, titanium, manganese, copper, It represents at least one element selected from the group consisting of zinc, zirconium, niobium, tungsten, tantalum, calcium, tin and bismuth. J, k, l, m, n, and o represent the atomic ratio of each element. When j = 12, k = 0.01 to 6, l = 0 to 5, m = 0 to 10, n = 0. -5, and o is the atomic ratio of oxygen necessary to satisfy the valence of each component.

メタクロレインからメタクリル酸への酸化反応には、次の式(3)で表される組成を有する金属酸化物触媒が好適である。
MoCu (3)
(3)式において、P、Mo、V、CuおよびOはそれぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、ヒ素、ゲルマニウム、ジルコニウム、テルル、セレン、ケイ素、タングステン、ホウ素および銀からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示し、p、q、r、s、t、u、vおよびwは各元素の原子比を表し、q=12のときp=0.5〜3、r=0.01〜3、s=0〜2、t=0〜3、u=0〜3、v=0.01〜3であり、wは前記各成分の原子価を満足するのに必要な酸素の原子比である。
For the oxidation reaction from methacrolein to methacrylic acid, a metal oxide catalyst having a composition represented by the following formula (3) is suitable.
P p Mo q V r Cu s X t Y u Z v O w (3)
In the formula (3), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, selenium, silicon, tungsten, boron And at least one element selected from the group consisting of silver and Y is at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and p, q, r, s, t, u, v and w represent atomic ratios of the respective elements. And when q = 12, p = 0.5-3, r = 0.01-3, s = 0-2, t = 0-3, u = 0-3, v They are 0.01 to 3, w is an atomic ratio of oxygen required to satisfy the valence of each component.

金属酸化物触媒の製造方法は、例えば、次の工程(1)〜(3)で実施される。ここで、金属酸化物は単独酸化物であっても複合酸化物であってもよく、さらにイソポリ酸およびその塩、リン、ケイ素およびヒ素等をヘテロ原子とするヘテロポリ酸およびその塩も含む。金属酸化物触媒には金属酸化物以外の成分を含んでいてもよく、このような成分としては例えば白金、コバルト等が挙げられる。また金属酸化物の前駆体とは熱処理により金属酸化物に変化しうる化合物で、例えば金属元素の硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等が挙げられる。
(1)金属酸化物および金属酸化物の前駆体の少なくとも一方を含む触媒材料(以下、単に触媒材料ともいう)を製造する工程
(2)触媒材料を成形して成形品を製造する工程
(3)成形品を乾燥および/または熱処理して金属酸化物触媒を製造する工程
The manufacturing method of a metal oxide catalyst is implemented by the following process (1)-(3), for example. Here, the metal oxide may be a single oxide or a complex oxide, and further includes an isopolyacid and a salt thereof, a heteropolyacid having a heteroatom such as phosphorus, silicon, and arsenic and a salt thereof. The metal oxide catalyst may contain components other than the metal oxide, and examples of such components include platinum and cobalt. The metal oxide precursor is a compound that can be converted into a metal oxide by heat treatment, and examples thereof include sulfates, nitrates, carbonates, hydroxides, ammonium salts, and halides of metal elements.
(1) A step of producing a catalyst material containing at least one of a metal oxide and a metal oxide precursor (hereinafter also simply referred to as a catalyst material) (2) A step of producing a molded product by molding the catalyst material (3) ) A process for producing a metal oxide catalyst by drying and / or heat-treating a molded article.

工程(1)の触媒材料を製造する工程には公知の種々の方法が適用できる。例えば、金属酸化物の原料となる各金属元素を含む化合物(以下、触媒原料ともいう)の水性スラリーを乾燥し、必要に応じて粉砕して触媒材料である粒子を製造する方法等が挙げられる。触媒材料の形態は特に限定されず、粒子状以外に例えば、粉体状、塊状等であってもよい。しかし、最終的な触媒の細孔や表面積を制御しやすいという理由で粒子状であることが好ましい。   Various known methods can be applied to the step (1) of producing the catalyst material. For example, a method of producing particles as a catalyst material by drying an aqueous slurry of a compound (hereinafter also referred to as catalyst raw material) containing each metal element that is a raw material of a metal oxide, and pulverizing as necessary. . The form of the catalyst material is not particularly limited, and may be, for example, a powder form or a lump form other than the particulate form. However, it is preferably particulate because it is easy to control the pores and surface area of the final catalyst.

前記水性スラリーを製造する方法は特に限定されず、例えば、沈殿法、酸化物混合法等の公知の方法が挙げられる。水性スラリーの製造に用いる触媒原料としては、各金属元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等が挙げられる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。触媒成分の原料は各元素に対して1種を用いても2種以上を組み合わせて用いてもよい。   The method for producing the aqueous slurry is not particularly limited, and examples thereof include known methods such as a precipitation method and an oxide mixing method. Examples of the catalyst raw material used for the production of the aqueous slurry include oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides and the like of each metal element. For example, examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. The raw material of the catalyst component may be used alone or in combination of two or more for each element.

水性スラリーから触媒材料を製造する方法は特に限定されないが、粒子状の触媒材料を製造する方法としては、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固して塊状の乾燥物を粉砕する方法等が挙げられる。   The method for producing the catalyst material from the aqueous slurry is not particularly limited. Examples of the method for producing the particulate catalyst material include a method of drying using a spray dryer, a method of drying using a slurry dryer, and a drum dryer. And the like, and a method of pulverizing a lump-like dried product by evaporating to dryness.

このようにして得られた触媒材料は触媒原料等に由来する硝酸塩等の塩を含んでいることがある。塩を含む触媒材料を後述するように成形した後に熱処理すると、熱処理時に塩が分解して成形品の強度が低下することがある。このため、触媒材料は乾燥するだけでなく、この時点で熱処理を施しておいてもよい。熱処理条件は特に限定されず、例えば公知の条件等を適用することができる。熱処理は、酸素、空気、窒素、窒素酸化物等の存在下、200〜600℃の温度範囲で行うことが好ましい。熱処理の温度は、例えば、前記(1)式で示される組成の触媒の場合400℃〜600℃が好ましく、前記(2)式で示される組成の触媒の場合250℃〜450℃が好ましく、前記(3)式で示される組成の触媒の場合250℃〜450℃が好ましい。熱処理時間は目的とする触媒によって適宜選択されるが、5時間〜30時間が好ましい。   The catalyst material obtained in this way may contain a salt such as nitrate derived from the catalyst raw material. When the catalyst material containing salt is molded as described later and then heat-treated, the salt may be decomposed during the heat treatment to lower the strength of the molded product. For this reason, the catalyst material is not only dried, but may be heat-treated at this point. The heat treatment conditions are not particularly limited, and for example, known conditions can be applied. The heat treatment is preferably performed in the temperature range of 200 to 600 ° C. in the presence of oxygen, air, nitrogen, nitrogen oxides and the like. The heat treatment temperature is preferably, for example, 400 ° C. to 600 ° C. in the case of the catalyst having the composition represented by the formula (1), and preferably 250 ° C. to 450 ° C. in the case of the catalyst having the composition represented by the formula (2). (3) In the case of the catalyst having the composition represented by the formula, 250 ° C. to 450 ° C. is preferable. The heat treatment time is appropriately selected depending on the target catalyst, but is preferably 5 hours to 30 hours.

工程(2)では工程(1)で製造した触媒材料を成形して成形品を製造する。成形方法は特に限定されず、例えば、打錠成形、担持成形、押出成形等の方法が挙げられる。触媒成形体の細孔を容易に制御できるという点で粒子状の触媒材料を押出成形する方法が好ましい。   In step (2), the catalyst material produced in step (1) is molded to produce a molded product. The molding method is not particularly limited, and examples thereof include tableting molding, support molding, and extrusion molding. A method of extruding the particulate catalyst material is preferable in that the pores of the catalyst molded body can be easily controlled.

成形に際しては、触媒材料に有機バインダーを加えることができる。使用できる有機バインダーは特に限定されないが、例えば、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、ポリビニルアルコール等の水溶性または水分散性を有する合成高分子化合物、カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等のβ−1,3−グルカン等を挙げることができる。中でも、成形性や触媒の選択性が優れているという理由によりセルロース誘導体が好ましく、なかでもメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースが特に好ましい。有機バインダーの使用量は、触媒材料の種類や大きさ、液体の種類等により適宜選択されるが、通常は工程(1)で得られた触媒材料100質量部に対して0.05〜15質量部であり、好ましくは0.1〜10質量部である。有機バインダーの添加量は、多くなるほど成形性が向上する傾向があり、少なくなるほど成形後の熱処理による有機バインダーの除去が簡単になる傾向がある。   In molding, an organic binder can be added to the catalyst material. The organic binder that can be used is not particularly limited. Cellulose derivatives, water-soluble or water-dispersible synthetic polymer compounds such as polyvinyl alcohol, and β-1,3-glucans such as curdlan, laminaran, paramylon, callose, pakiman, and scleroglucan. . Among these, cellulose derivatives are preferable because of their excellent moldability and catalyst selectivity, and methyl cellulose, hydroxypropyl methyl cellulose, and hydroxyethyl methyl cellulose are particularly preferable. The amount of the organic binder used is appropriately selected depending on the type and size of the catalyst material, the type of liquid, and the like, but is usually 0.05 to 15 mass with respect to 100 mass parts of the catalyst material obtained in the step (1). Part, preferably 0.1 to 10 parts by weight. As the amount of the organic binder added increases, the moldability tends to improve, and as the amount decreases, the removal of the organic binder by heat treatment after molding tends to become easier.

成形品は、例えば、公知のシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイド、チタニア、マグネシア、グラファイトやケイソウ土等の無機化合物、ガラス繊維、セラミックボールやステンレス鋼、セラミックファイバーや炭素繊維等の無機ファイバー等の不活性担体を含んでいてもよい。このような成形品は成形前に触媒材料と不活性担体を混合することにより製造することができる。   Molded articles include, for example, known silica, alumina, silica-alumina, silicon carbide, titania, magnesia, inorganic compounds such as graphite and diatomaceous earth, glass fibers, ceramic balls and stainless steel, inorganic fibers such as ceramic fibers and carbon fibers. An inert carrier such as Such a molded article can be produced by mixing a catalyst material and an inert carrier before molding.

本発明は触媒材料に有機バインダーを加えて押出成形する工程を含む触媒の製造に好適であり、特に押出成形品を切断する切断装置を洗浄しながら触媒を製造する場合に好適である。このような押出成形工程の具体例としては、例えば、触媒材料、有機バインダーおよび液体を混練して混練品を得て、これをオーガー式押出成形機やピストン式押出成形機等の装置を用いて押出成形して押出品とし、これを切断して成形品にする方法等が挙げられる。得られる成形品の形状は特に限定されないが、例えば、リング状、円柱状、底面が星型の柱状等が挙げられる。   The present invention is suitable for the production of a catalyst including a step of adding an organic binder to a catalyst material and extruding it, and particularly suitable for producing a catalyst while washing a cutting device for cutting an extruded product. As a specific example of such an extrusion molding process, for example, a catalyst material, an organic binder and a liquid are kneaded to obtain a kneaded product, which is used with an apparatus such as an auger type extruder or a piston type extruder. Examples thereof include a method of extruding to form an extrudate, and cutting this into a formed product. The shape of the obtained molded product is not particularly limited, and examples thereof include a ring shape, a columnar shape, and a columnar shape having a star shape at the bottom.

触媒材料の成形を行うと、使用した装置の触媒材料および/またはその成形品が接触した部分に金属酸化物やその前駆体等が付着する。付着が起きる箇所としては、例えば、打錠成形の場合は打錠成形機の杵や臼の部分、押出成形の場合は混練機や押出機の内部あるいは切断装置の切断刃等が挙げられる。このような箇所は成形品を安定して製造するために洗浄する必要がある。   When the catalyst material is molded, a metal oxide or a precursor thereof adheres to a portion where the catalyst material of the used apparatus and / or the molded product is in contact. Examples of the place where the adhesion occurs include, for example, a punch or a mortar part of a tableting machine in the case of tableting, and a cutting blade of a kneader or an extruder or a cutting device in the case of extrusion molding. Such a part needs to be washed in order to stably produce a molded product.

本発明では工程(2)で使用した装置の触媒材料および/またはその成形品が接触した部分の洗浄はアルコールを用いて間欠的または連続的に行う。間欠的とは、例えば、一定時間間隔や金属酸化物やその前駆体等の付着が許容範囲を超えた場合等間隔をおいて洗浄することを意味する。また連続的とは、例えば、円形の回転式切断刃(回転刃)等のように触媒材料および/またはその成形品が常時接触していない箇所について間隔をおかずに洗浄を続けることを意味する。なお、洗浄の際に成形品の生産性の観点から成形作業を休止しないことが好ましいが、休止しても差し支えない。   In the present invention, the portion of the apparatus used in step (2) where the catalyst material and / or the molded product thereof is in contact is washed intermittently or continuously using alcohol. The term “intermittent” means, for example, that the cleaning is performed at regular intervals or when the adhesion of the metal oxide or its precursor exceeds an allowable range. Further, continuous means, for example, that a portion where the catalyst material and / or the molded product thereof is not always in contact, such as a circular rotary cutting blade (rotating blade), is continuously cleaned without leaving an interval. In addition, it is preferable not to suspend the molding operation from the viewpoint of the productivity of the molded product at the time of cleaning, but it may be suspended.

アルコールを用いて洗浄する方法は、使用した装置の触媒材料および/またはその成形品が接触した部分(以下、汚れ部ともいう)にアルコールが接触する方法であれば特に限定されない。洗浄方法としては、例えば、汚れ部をアルコールで洗い流す方法、汚れ部に噴霧する等してアルコールを接触させて付着物と共に拭取るまたは掻き取る方法、アルコールを染み込ませた部材で汚れ部を拭くまたは付着物を掻き取る方法等が挙げられる。このように、洗浄にはアルコールだけでなく拭取りや掻き取り等の物理的な洗浄手段を併用してもよい。   The method of cleaning with alcohol is not particularly limited as long as it is a method in which alcohol comes into contact with the catalyst material of the apparatus used and / or the part (hereinafter also referred to as a soiled part) in contact with the molded product. As a cleaning method, for example, a method of washing out a dirty part with alcohol, a method of spraying the dirt part to contact the alcohol and wiping or scraping with an adhering substance, or wiping the dirty part with a member soaked with alcohol or For example, a method of scraping off deposits may be used. As described above, not only alcohol but also physical cleaning means such as wiping or scraping may be used in combination for cleaning.

図1および図2は、触媒材料の押出品を切断するために好適に使用できる多回転刃の切断機である。以下、この切断機を例にとって本願発明を説明する。符号1は触媒材料を押出成形して得られた柱状の押出品である。まず、押出品1を傾斜した板形状の下部ガイド板2の後方に配置する。この下部ガイド板2の先端側には、円柱形状の回転ロール7がその軸線回りに回転するように設けられており、この回転ロール7と下部ガイド板2の上には、板形状の上部ガイド板4が設けられている。この上部ガイド板4の先端部分4aは櫛刃状になっており、複数のスリットである切り込み4bが設けられている。これら切り込み4bのひとつひとつには、上部ガイド板4の上に設けられた切断機6の複数の円盤形状の回転刃6aの周縁部分がそれぞれ回動自在に挿入されている。この切断機6は、各回転刃6aが、相互に所定距離ずつ離間してそれぞれ配置された状態で回転軸6bに一体に固定されたもので、この回転軸6bが回転することによって全ての回転刃6aが同一方向に回転するようになっている。ついで、前記押出品1を、下部ガイド板2の傾斜にしたがって下部ガイド板2と上部ガイド板4との間に送り込む。すると、この上部ガイド板4の各切り込み4bの下に送り込まれた押出品1は、回転ロール7と、これらの切り込み4bから突出する複数の回転刃6aとが回転することによって挟み込まれて切断され、複数の成形品1aが得られる。したがって、下部ガイド板2、上部ガイド板4、切断機6、回転ロール7によって切断手段8が構成されている。押出品1の切断を繰り返すうちに、各回転刃6aの外周縁と両側面の両方に汚れが蓄積する。この場合、両側面への汚れの付着は、押出品1の肉厚が大きいほど顕著となり、各回転刃6aの切断能力を大きく低下させる。図1に示すように、各回転刃6aの近傍には、ドレッシング部材9が設けられている。このドレッシング部材9は、付着物の性状によって選択されるものであり、特に限定されないが、例えば、ナイロン製のブラシ、研磨材、不織布等が適用可能である。このドレッシング部材9はホルダ10に保持されており、図示されない駆動機構によって、回転軸6bの軸線に垂直に移動させられて各回転刃6aに食い込むように押し当てられ、該押し当て状態のまま回転軸6bの軸線方向に移動させられるようになっている。したがって、前記駆動機構やドレッシング部材9等によって洗浄装置は構成されている。   1 and 2 show a multi-rotating blade cutting machine that can be suitably used for cutting an extrudate of a catalyst material. Hereinafter, the present invention will be described by taking this cutting machine as an example. Reference numeral 1 denotes a columnar extrudate obtained by extruding a catalyst material. First, the extruded product 1 is disposed behind the inclined plate-shaped lower guide plate 2. A cylindrical rotary roll 7 is provided on the distal end side of the lower guide plate 2 so as to rotate about its axis. On the rotary roll 7 and the lower guide plate 2, a plate-like upper guide is provided. A plate 4 is provided. The tip portion 4a of the upper guide plate 4 has a comb blade shape and is provided with a plurality of slits 4b. In each of the cuts 4b, peripheral portions of a plurality of disk-shaped rotary blades 6a of a cutting machine 6 provided on the upper guide plate 4 are respectively inserted rotatably. In this cutting machine 6, the rotary blades 6a are integrally fixed to the rotary shaft 6b in a state where the rotary blades 6a are spaced apart from each other by a predetermined distance, and all the rotations are made by the rotation of the rotary shaft 6b. The blade 6a rotates in the same direction. Next, the extruded product 1 is fed between the lower guide plate 2 and the upper guide plate 4 according to the inclination of the lower guide plate 2. Then, the extruded product 1 fed under the respective cuts 4b of the upper guide plate 4 is sandwiched and cut by the rotation of the rotary roll 7 and the plurality of rotary blades 6a protruding from the cuts 4b. A plurality of molded products 1a are obtained. Accordingly, the lower guide plate 2, the upper guide plate 4, the cutting machine 6, and the rotary roll 7 constitute a cutting means 8. As the cutting of the extruded product 1 is repeated, dirt accumulates on both the outer peripheral edge and both side surfaces of each rotary blade 6a. In this case, the adhesion of dirt on both side surfaces becomes more significant as the thickness of the extruded product 1 increases, and the cutting ability of each rotary blade 6a is greatly reduced. As shown in FIG. 1, dressing members 9 are provided in the vicinity of each rotary blade 6a. The dressing member 9 is selected depending on the properties of the deposit, and is not particularly limited. For example, a nylon brush, an abrasive, a non-woven fabric, or the like is applicable. The dressing member 9 is held by a holder 10 and is moved perpendicularly to the axis of the rotary shaft 6b by a drive mechanism (not shown) and pressed so as to bite each rotary blade 6a, and rotates in the pressed state. It can be moved in the axial direction of the shaft 6b. Accordingly, the cleaning device is constituted by the drive mechanism, the dressing member 9 and the like.

続いて、前記回転刃6aの洗浄方法について説明する。まず、押出品1の切断を行っている回転刃6aの外縁の部分に噴霧器(図示せず)により回転ロールの反対側よりアルコールを吹付ける。この吹付け動作は連続的に行っても、間欠的に行ってもよい。また、図3に示すようにドレッシング部材9を、ホルダ10を介して前記駆動機構の駆動によって回転軸6bの軸線CLに対して垂直に移動させてこれに各回転刃6aが食い込むように押し当てる(押し当て工程(a))。この押し当て工程(a)の後、図4に示すように、ドレッシング部材9を、ホルダ10を介して前記駆動機構の駆動によって回転軸6bの軸線CL方向右側に平行に移動させる(右側平行移動工程(b))。この右側平行移動工程(b)の後、図5に示すように、ドレッシング部材9を、ホルダ10を介して駆動機構の駆動によって回転軸6bの軸線CL方向左側に平行に移動させる(左側平行移動工程(c))。以上により、前記押し当て工程(a)の際に各回転刃6aの外周縁6eから付着物が取り除かれて洗浄され、さらに、前記右側平行移動工程(b)および前記左側平行移動工程(c)では、各回転刃6aの両側面6s(左側面および右側面)にドレッシング部材9が接触してこれらを擦って付着物Fが取り除かれる。なお、前記押し当て工程(a)の際には、回転刃6aがある程度ドレッシング部材9に食い込むことが必要である。また、食い込みを容易にするために、ドレッシング部材9に予め切り込みを入れておいても良い。前記工程(a)および(b)および(c)の操作は、連続的に行っても、間欠的に行ってもよいが、各回転刃6aの外周縁6eや各側面6sにドレッシング部材9を常に押しあてていると、各回転刃6aや該回転刃6aを回転駆動する回転駆動機構に対して常時負荷が加わった状態となり、これらの損耗が早まる等の問題が発生する恐れがあるため間欠的に行うのが好ましい。前記工程(a)および(b)および(c)の操作を間欠的に行う場合、この操作とアルコールの吹付け動作は連動していても、していなくてもよい。しかし、洗浄効果が大きいという理由で、(b)および/または(c)の動作に連動してその直前にアルコールを多く噴霧するようにする方法が好ましい。   Next, a method for cleaning the rotary blade 6a will be described. First, alcohol is sprayed from the opposite side of the rotary roll to the outer edge portion of the rotary blade 6a that is cutting the extrudate 1 by a sprayer (not shown). This spraying operation may be performed continuously or intermittently. Further, as shown in FIG. 3, the dressing member 9 is moved perpendicularly to the axis CL of the rotary shaft 6b by driving the drive mechanism through the holder 10, and pressed so that each rotary blade 6a bites into this. (Pressing step (a)). After this pressing step (a), as shown in FIG. 4, the dressing member 9 is moved in parallel to the right side in the direction of the axis CL of the rotating shaft 6 b by driving the drive mechanism via the holder 10 (right side parallel movement). Step (b)). After this right translation step (b), as shown in FIG. 5, the dressing member 9 is moved in parallel to the left side in the direction of the axis CL of the rotating shaft 6b by driving the drive mechanism via the holder 10 (left side translation) Step (c)). As described above, in the pressing step (a), the adhering matter is removed from the outer peripheral edge 6e of each rotary blade 6a for cleaning, and the right side translation step (b) and the left side translation step (c). Then, the dressing member 9 comes into contact with both side surfaces 6s (left side surface and right side surface) of each rotary blade 6a and rubs them to remove the deposit F. In the pressing step (a), the rotary blade 6a needs to bite into the dressing member 9 to some extent. In order to facilitate biting, the dressing member 9 may be cut in advance. The operations of the steps (a) and (b) and (c) may be performed continuously or intermittently, but the dressing member 9 is applied to the outer peripheral edge 6e and the side surfaces 6s of each rotary blade 6a. If they are always pressed, a load is always applied to each rotary blade 6a and the rotary drive mechanism that rotationally drives the rotary blade 6a, which may cause problems such as rapid wear and tear. Preferably. When the operations of the steps (a) and (b) and (c) are performed intermittently, the operation and the alcohol spraying operation may or may not be linked. However, for the reason that the cleaning effect is great, a method of spraying a large amount of alcohol just before the operation of (b) and / or (c) is preferable.

本発明で洗浄に使用するアルコールは特に限定されないが、例えば、エチルアルコール、メチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコール、オクチルアルコール、デシルアルコール、ラウリルアルコール等の高級アルコール等が挙げられる。これらの中では経済性と取り扱い易さの点で低級アルコールが好ましく、なかでもエチルアルコールが特に好ましい。使用するアルコールは1種類でも2種類以上の組み合わせでもよい。市販のアルコールには水やその他の化合物が含まれている場合があるが、そのまま使用しても差し支えない。また、洗浄にはアルコール以外の洗浄剤を併用してもよい。ここで併用とはアルコールとアルコール以外の洗浄剤とを混合して使用する場合だけでなく、個別に洗浄する場合も含む。アルコール以外の洗浄剤としては、例えば、水、酸水溶液、アルカリ水溶液、界面活性剤、せっけん等が挙げられる。ただし、これらを使用して洗浄すると、金属酸化物触媒の反応性能が低下することがあるので、その使用量は少ない方が好ましい。   The alcohol used for washing in the present invention is not particularly limited, and examples thereof include lower alcohols such as ethyl alcohol, methyl alcohol, propyl alcohol, and butyl alcohol, and higher alcohols such as octyl alcohol, decyl alcohol, and lauryl alcohol. Of these, lower alcohols are preferred in view of economy and ease of handling, and ethyl alcohol is particularly preferred. The alcohol used may be one type or a combination of two or more types. Commercially available alcohols may contain water and other compounds, but they can be used as they are. Moreover, you may use together cleaning agents other than alcohol for washing | cleaning. Here, the combined use includes not only the case of using a mixture of alcohol and a cleaning agent other than alcohol, but also the case of individual cleaning. Examples of the cleaning agent other than alcohol include water, an aqueous acid solution, an aqueous alkaline solution, a surfactant, and soap. However, if these are used for washing, the reaction performance of the metal oxide catalyst may be lowered, so that the amount used is preferably small.

工程(3)では工程(2)で製造した成形品を乾燥および/または熱処理して金属酸化物触媒を製造する。成形品を乾燥する場合の方法は特に限定されず、例えば、熱風乾燥、湿度乾燥、遠赤外線乾燥、マイクロ波乾燥等の任意の方法を用いることができる。なかでも簡便でかつ選択率に優れているというの理由で熱風乾燥またはマイクロ波乾燥が好ましい。乾燥は成形品の含液率を下げて目標値にすることができるような条件を適宜選択できる。乾燥温度は50〜150℃が好ましい。熱処理、いわゆる焼成を行う場合の方法は特に限定されず、例えば、金属酸化物触媒を使用した反応を行う反応器の内部で行う方法、箱型焼成炉で行う方法、トンネル型焼成炉で行う方法等の任意の方法を用いることができる。焼成は公知の条件を適用することができる。熱処理は、酸素、空気、窒素、窒素酸化物等の存在下、200〜600℃の温度範囲で行うことが好ましい。熱処理の温度は、例えば、前記(1)式で示される組成の触媒の場合400℃〜600℃が好ましく、前記(2)式で示される組成の触媒の場合250℃〜450℃が好ましく、前記(3)式で示される組成の触媒の場合250℃〜450℃が好ましい。熱処理時間は目的とする触媒によって適宜選択されるが、5時間〜30時間が好ましい。工程(1)で触媒材料を熱処理している場合は工程(3)での熱処理は省略することもできる。また、工程(1)で触媒材料の熱処理を行い、工程(3)の熱処理でバインダー等の添加剤を分解することもできる。   In step (3), the molded product produced in step (2) is dried and / or heat-treated to produce a metal oxide catalyst. The method in the case of drying a molded article is not specifically limited, For example, arbitrary methods, such as hot-air drying, humidity drying, far-infrared drying, and microwave drying, can be used. Of these, hot air drying or microwave drying is preferred because it is simple and excellent in selectivity. Conditions for drying can be appropriately selected so that the liquid content of the molded product can be lowered to the target value. The drying temperature is preferably 50 to 150 ° C. The method for performing heat treatment, so-called calcination, is not particularly limited. For example, a method of performing a reaction using a metal oxide catalyst, a method of performing in a box-type calcination furnace, a method of performing in a tunnel-type calcination furnace Any method can be used. Known conditions can be applied for firing. The heat treatment is preferably performed in the temperature range of 200 to 600 ° C. in the presence of oxygen, air, nitrogen, nitrogen oxides and the like. The heat treatment temperature is preferably, for example, 400 ° C. to 600 ° C. in the case of the catalyst having the composition represented by the formula (1), and preferably 250 ° C. to 450 ° C. in the case of the catalyst having the composition represented by the formula (2). (3) In the case of the catalyst having the composition represented by the formula, 250 ° C. to 450 ° C. is preferable. The heat treatment time is appropriately selected depending on the target catalyst, but is preferably 5 hours to 30 hours. When the catalyst material is heat-treated in step (1), the heat treatment in step (3) can be omitted. In addition, the catalyst material can be heat-treated in the step (1), and additives such as a binder can be decomposed by the heat-treatment in the step (3).

次に、金属酸化物触媒を用いて反応を行う方法を説明する。使用できる反応は、前述した酸化反応や酸化反応以外の反応であり、金属酸化物触媒を使用できる反応であれば特に限定されない。また、反応形式は気相反応および液相反応のいずれでもよい。しかし、本発明の方法は気相接触酸化反応用の金属酸化物触媒を製造するのに好適である。特に、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素により気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造に適している。   Next, a method for performing a reaction using a metal oxide catalyst will be described. The reaction that can be used is a reaction other than the above-described oxidation reaction or oxidation reaction, and is not particularly limited as long as the reaction can use a metal oxide catalyst. The reaction format may be either a gas phase reaction or a liquid phase reaction. However, the method of the present invention is suitable for producing a metal oxide catalyst for a gas phase catalytic oxidation reaction. In particular, propylene, isobutylene, TBA or MTBE is suitable for the production of a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids by gas phase catalytic oxidation with molecular oxygen.

反応に使用する反応器の形式は特に限定されないが、例えば、固定床管型反応器、流動床等が挙げられる。前記(1)〜(3)式で示される組成の触媒を使用する気相接触酸化反応の場合は固定床管型反応器、特に固定床多管式反応器を用いることが好ましい。固定床管型反応器を用いて反応を実施する際の諸条件は、反応の種類により異なることから一概に言えないが、それぞれの反応における公知の条件が適用できる。以下に前記式(1)の組成の金属酸化物触媒を用いてイソブチレン等からメタクロレインおよびメタクリル酸への酸化反応を行う場合と、プロピレンからアクロレインおよびアクリル酸への酸化反応を行う場合を例にとって反応の諸条件について説明する。   The type of the reactor used for the reaction is not particularly limited, and examples thereof include a fixed bed tubular reactor and a fluidized bed. In the case of the gas phase catalytic oxidation reaction using the catalyst having the composition represented by the above formulas (1) to (3), it is preferable to use a fixed bed tubular reactor, particularly a fixed bed multitubular reactor. Various conditions for carrying out the reaction using a fixed bed tubular reactor vary depending on the type of reaction and cannot be generally stated, but known conditions for each reaction can be applied. Examples of the case of performing an oxidation reaction from isobutylene or the like to methacrolein and methacrylic acid and the case of performing an oxidation reaction from propylene to acrolein and acrylic acid using the metal oxide catalyst having the composition of the formula (1) are shown below. The conditions for the reaction will be described.

イソブチレン等からメタクロレインおよびメタクリル酸への酸化反応を行う場合、イソブチレン等と分子状酸素とを含む原料ガスを金属酸化物触媒に接触させる。原料ガス中のイソブチレン等の濃度は1〜20容量%が好ましく、原料ガス中のイソブチレン等と酸素のモル比は1:0.5〜1:3が好ましい。原料ガスには水蒸気を1〜45容量%の濃度で含むことが好ましい。反応ガスの残余は窒素、二酸化炭素等の不活性ガス、空気やイソブチレン等に含まれている微量成分等で構成される。また、反応圧力は通常0〜数100kPa(ゲージ圧)、反応温度は通常250〜400℃である、接触時間は通常1.5〜15秒である。   When an oxidation reaction from isobutylene or the like to methacrolein or methacrylic acid is performed, a raw material gas containing isobutylene or the like and molecular oxygen is brought into contact with the metal oxide catalyst. The concentration of isobutylene or the like in the raw material gas is preferably 1 to 20% by volume, and the molar ratio of isobutylene or the like and oxygen in the raw material gas is preferably 1: 0.5 to 1: 3. The source gas preferably contains water vapor at a concentration of 1 to 45% by volume. The remainder of the reaction gas is composed of inert gas such as nitrogen and carbon dioxide, trace components contained in air, isobutylene, and the like. The reaction pressure is usually 0 to several hundred kPa (gauge pressure), the reaction temperature is usually 250 to 400 ° C., and the contact time is usually 1.5 to 15 seconds.

また、プロピレンからアクロレインおよびアクリル酸への酸化反応を行う場合、プロピレンと分子状酸素とを含む原料ガスを金属酸化物触媒に接触させる。原料ガス中のプロピレン濃度は1〜20容量%が好ましく、原料ガス中のプロピレンと酸素のモル比は1:0.5〜1:3が好ましい。原料ガスには水蒸気を1〜45容量%の濃度で含むことが好ましい。反応ガスの残余は窒素、二酸化炭素等の不活性ガス、および空気やイソブチレン等に含まれている微量成分等で構成される。また、反応圧力は通常0〜数100kPa(ゲージ圧)、反応温度は通常250〜400℃である、接触時間は通常1.5〜15秒である。   When an oxidation reaction from propylene to acrolein and acrylic acid is performed, a raw material gas containing propylene and molecular oxygen is brought into contact with the metal oxide catalyst. The propylene concentration in the raw material gas is preferably 1 to 20% by volume, and the molar ratio of propylene and oxygen in the raw material gas is preferably 1: 0.5 to 1: 3. The source gas preferably contains water vapor at a concentration of 1 to 45% by volume. The remainder of the reaction gas is composed of inert gases such as nitrogen and carbon dioxide, and trace components contained in air and isobutylene. The reaction pressure is usually 0 to several hundred kPa (gauge pressure), the reaction temperature is usually 250 to 400 ° C., and the contact time is usually 1.5 to 15 seconds.

本発明方法で製造した金属酸化物触媒の活性と目的生成物選択性が優れている理由の詳細は不明であるが、次のような機構を推定している。従来の水だけを使用して洗浄する方法では、水が触媒材料や成形品に付着して表面の一部を溶解させてその部分の組成や細孔の状態を変化させていた。すなわち、アルカリ金属やバインダー等の水に溶解しやすい成分が溶解することで触媒組成の局所的な変化や細孔の閉塞が起きていたため触媒性能が低下していた。本発明では、アルコールが触媒材料やバインダーを溶解しにくいのでこのような問題が少なくなると推定される。   The details of the reason why the metal oxide catalyst produced by the method of the present invention is excellent in activity and target product selectivity are unknown, but the following mechanism is estimated. In the conventional cleaning method using only water, the water adheres to the catalyst material or the molded product and dissolves a part of the surface to change the composition and the state of the pores of the part. That is, the catalyst performance was lowered due to the local change of the catalyst composition and the clogging of the pores caused by the dissolution of the easily soluble components such as alkali metal and binder. In the present invention, it is presumed that such problems are reduced because the alcohol hardly dissolves the catalyst material and the binder.

また、水を使用せず汚れを掻き落とす方法では、洗浄力不足のため小さな触媒材料の乾燥粒子が切断刃や成形機に残り、製品中に混入したり、成形性を悪化させたりするため、選択性や形状の悪化のような問題が起きていたと考えられるが、本発明では洗浄力が高いという理由でこのような問題が少なくなると推定される。   Also, in the method of scraping off dirt without using water, dry particles of small catalyst material remain on the cutting blade and molding machine due to insufficient cleaning power, and it mixes in the product and deteriorates moldability. Although it is considered that problems such as selectivity and shape deterioration have occurred, it is presumed that in the present invention, such problems are reduced because the cleaning power is high.

以下、本発明を実施例および比較例を用いて説明する。ここで「部」は質量部を意味する。反応の原料ガスおよび反応ガス(生成ガス)の分析はガスクロマトグラフィーを用いて行った。実施例および比較例中の原料オレフィン等(イソブチレン、TBAまたはプロピレン)の反応率、生成する不飽和アルデヒド(メタクロレインまたはアクロレイン)の選択率、不飽和カルボン酸(メタクリル酸またはアクリル酸)の選択率、不飽和アルデヒドおよび不飽和カルボン酸の合計収率(以下、合計収率ともいう)は次式により算出した。
原料オレフィン等の反応率(%)=A/B×100
不飽和アルデヒドの選択率(%)=C/A×100
不飽和カルボン酸の選択率(%)=D/A×100
合計収率(%)=(C+D)/B×100
ここで、Aは反応した原料オレフィン等のモル数、Bは供給した原料オレフィン等のモル数、Cは生成した不飽和アルデヒドのモル数、Dは生成した不飽和カルボン酸のモル数である。
Hereinafter, the present invention will be described using examples and comparative examples. Here, “part” means part by mass. The analysis of the reaction source gas and the reaction gas (product gas) was performed using gas chromatography. Reaction rate of raw material olefins (isobutylene, TBA or propylene) in Examples and Comparative Examples, selectivity of unsaturated aldehyde to be produced (methacrolein or acrolein), selectivity of unsaturated carboxylic acid (methacrylic acid or acrylic acid) The total yield of unsaturated aldehyde and unsaturated carboxylic acid (hereinafter also referred to as total yield) was calculated by the following formula.
Reaction rate of raw material olefin, etc. (%) = A / B × 100
Selectivity of unsaturated aldehyde (%) = C / A × 100
Selectivity of unsaturated carboxylic acid (%) = D / A × 100
Total yield (%) = (C + D) / B × 100
Here, A is the number of moles of the reacted raw material olefin, B is the number of moles of the supplied raw material olefin, C is the number of moles of the generated unsaturated aldehyde, and D is the number of moles of the generated unsaturated carboxylic acid.

また、実施例および比較例中の原料不飽和アルデヒド(メタクロレインまたはアクロレイン)の反応率、生成する不飽和カルボン酸(メタクリル酸またはアクリル酸)の選択率、不飽和カルボン酸の収率は次式により算出した。
不飽和アルデヒドの反応率(%)=E/F×100
不飽和カルボン酸の選択率(%)=G/E×100
不飽和カルボン酸の収率(%)=G/F×100
ここで、Eは反応した不飽和アルデヒドのモル数、Fは供給した原料不飽和アルデヒドのモル数、Gは生成した不飽和カルボン酸のモル数である。
The reaction rate of the raw material unsaturated aldehyde (methacrolein or acrolein), the selectivity of the unsaturated carboxylic acid (methacrylic acid or acrylic acid) to be produced, and the yield of the unsaturated carboxylic acid in the examples and comparative examples are as follows: Calculated by
Reaction rate of unsaturated aldehyde (%) = E / F × 100
Selectivity of unsaturated carboxylic acid (%) = G / E × 100
Unsaturated carboxylic acid yield (%) = G / F × 100
Here, E is the number of moles of reacted unsaturated aldehyde, F is the number of moles of supplied raw material unsaturated aldehyde, and G is the number of moles of unsaturated carboxylic acid produced.

(実施例1)
純水1000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、硝酸セシウム23.0部、三酸化アンチモン24.0部および三酸化ビスマス33.0部を加え、加熱攪拌した(A液)。別に純水1000部に、硝酸第二鉄209.8部、硝酸ニッケル68.6部、硝酸コバルト446.4部、硝酸鉛23.5部および85%リン酸2.8部を順次加え、溶解した(B液)。A液にB液を加えて水性スラリーとした後、この水性スラリーをスプレー乾燥機を用いて平均粒径60μmの乾燥球状粒子とした。この乾燥球状粒子を300℃で1時間、510℃で3時間焼成を行い、球状粒子形状の触媒材料を製造した。
Example 1
To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 24.0 parts of antimony trioxide and 33.0 parts of bismuth trioxide were added and stirred with heating. (Liquid A). Separately, add 209.8 parts of ferric nitrate, 68.6 parts of nickel nitrate, 446.4 parts of cobalt nitrate, 23.5 parts of lead nitrate, and 2.8 parts of 85% phosphoric acid to 1000 parts of pure water and dissolve. (Liquid B). After liquid B was added to liquid A to form an aqueous slurry, this aqueous slurry was formed into dry spherical particles having an average particle diameter of 60 μm using a spray dryer. The dried spherical particles were calcined at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to produce a catalyst material having a spherical particle shape.

この触媒材料500部に対して、ヒドロキシプロピルメチルセルロース20部およびカードラン5部を加え、乾式混合した。ここに純水190部を混合し、混練り機で粘土状物質になるまで混合(混練り)した後、得られた混練物をピストン式押出し成形機を用いて押し出し成形し、外径5mm、内径2mm、平均長さ5mmの押出品を製造した。切断には、図1および図2に示した切断機を使用し、10分おきに間欠的に成形を止め、1回毎に20部のエチルアルコール(純度99.5質量%の特級グレード)を切断刃の外縁に噴霧し、ドレッシング部材であるナイロンブラシで回転刃を洗浄した。押し出し成形を繰り返し5時間行ったときの成形品収量は100000部であった。なお、押し出し成形に要した時間には途中に混練物を成形機に充填するための休止期間、成形不良品を取り除くための休止期間を含み、成形品の収量には成形不良品を含まない(以下、同様)。   To 500 parts of the catalyst material, 20 parts of hydroxypropylmethylcellulose and 5 parts of curdlan were added and dry mixed. 190 parts of pure water was mixed here, and after mixing (kneading) until it became a clay-like substance with a kneader, the obtained kneaded product was extruded using a piston-type extruder, the outer diameter was 5 mm, An extruded product having an inner diameter of 2 mm and an average length of 5 mm was produced. The cutting machine shown in FIGS. 1 and 2 was used for cutting, and the molding was stopped intermittently every 10 minutes, and 20 parts of ethyl alcohol (a special grade with a purity of 99.5% by mass) was added each time. It sprayed on the outer edge of the cutting blade, and the rotary blade was washed with a nylon brush as a dressing member. When the extrusion molding was repeated for 5 hours, the yield of the molded product was 100,000 parts. The time required for extrusion molding includes a pause period for filling the kneaded material into the molding machine in the middle and a pause period for removing molding defects, and the yield of molded articles does not include molding defects ( The same applies hereinafter).

次いで、成形品を熱風乾燥機を用いて110℃で乾燥し、さらに反応器中で400℃で3時間焼成を行って金属酸化物触媒を製造した。金属酸化物触媒の酸素以外の元素の組成(以下同じ)は、Mo120.1Bi0.6Fe2.2Sb0.7Ni1.0Co6.5Pb0.30.1Cs0.5であった。 Next, the molded product was dried at 110 ° C. using a hot air dryer, and further calcined at 400 ° C. for 3 hours in a reactor to produce a metal oxide catalyst. The composition of elements other than oxygen in the metal oxide catalyst (hereinafter the same) is Mo 12 W 0.1 Bi 0.6 Fe 2.2 Sb 0.7 Ni 1.0 Co 6.5 Pb 0.3 P 0. 1 Cs was 0.5 .

この金属酸化物触媒をステンレス製反応管に充填し、イソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度340℃で反応させた。その結果、イソブチレンの反応率98.0%、メタクロレインの選択率89.9%、メタクリル酸の選択率4.0%であった。   This metal oxide catalyst was filled in a stainless steel reaction tube, and using a source gas of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73% by volume of nitrogen, under atmospheric pressure, a contact time of 3.6 seconds, The reaction was carried out at a reaction temperature of 340 ° C. As a result, the reaction rate of isobutylene was 98.0%, the selectivity of methacrolein was 89.9%, and the selectivity of methacrylic acid was 4.0%.

(実施例2)
実施例1において、10分おきに間欠的に成形を止めて行っていた洗浄に代えて、成形を止めずに10分毎に20部のエチルアルコール(純度99.5質量%の特級グレード)を噴霧し、ドレッシング部材であるナイロンブラシで回転刃を洗浄した以外は、実施例1と同様に金属酸化物触媒を製造し、反応を行った。その結果、成形品収量は120000部であった。また、イソブチレンの反応率98.0%、メタクロレインの選択率89.9%、メタクリル酸の選択率3.9%であった。
(Example 2)
In Example 1, in place of the cleaning that was performed by intermittently stopping the molding every 10 minutes, 20 parts of ethyl alcohol (special grade having a purity of 99.5% by mass) was added every 10 minutes without stopping the molding. A metal oxide catalyst was produced and reacted in the same manner as in Example 1 except that the rotating blade was washed with a nylon brush as a dressing member by spraying. As a result, the yield of the molded product was 120,000 parts. Further, the reaction rate of isobutylene was 98.0%, the selectivity of methacrolein was 89.9%, and the selectivity of methacrylic acid was 3.9%.

(実施例3)
実施例1において、エチルアルコール(純度99.5質量%)の代わりに含水エチルアルコール(95質量%エタノール−5質量%水)を使用し、反応の原料をイソブチレンからTBAに変えた以外は実施例1と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形品収量は90000部であった。また、TBAの反応率100%、メタクロレインの選択率89.1%、メタクリル酸の選択率3.2%であった。
(Example 3)
In Example 1, water-containing ethyl alcohol (95 mass% ethanol-5 mass% water) was used instead of ethyl alcohol (purity 99.5 mass%), and the reaction raw material was changed from isobutylene to TBA. As in Example 1, a metal oxide catalyst was produced and reacted. As a result, the yield of the molded product was 90000 parts. The reaction rate of TBA was 100%, the selectivity of methacrolein was 89.1%, and the selectivity of methacrylic acid was 3.2%.

(比較例1)
実施例1においてエチルアルコールの代わりに水を使用した以外は、実施例1と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形の際に切断刃への成形品の付着や形状変化が発生して休止時間と不良成形品が増加したため、成形品収量は60000部であった。また、イソブチレンの反応率97.6%、メタクロレインの選択率89.6%、メタクリル酸の選択率3.4%であった。
(Comparative Example 1)
A metal oxide catalyst was produced and reacted in the same manner as in Example 1 except that water was used instead of ethyl alcohol in Example 1. As a result, adhesion of the molded product to the cutting blade and a change in shape occurred during molding, resulting in an increase in downtime and defective molded product, resulting in a molded product yield of 60000 parts. The reaction rate of isobutylene was 97.6%, the selectivity of methacrolein was 89.6%, and the selectivity of methacrylic acid was 3.4%.

(比較例2)
実施例2においてエチルアルコールの代わりに水を使用した以外は、実施例2と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形の際に切断刃への成形品の付着や形状変化が著しく発生して休止時間と不良成形品が増加したため、成形品収量は45000部であった。また、イソブチレンの反応率97.4%、メタクロレインの選択率89.5%、メタクリル酸の選択率3.4%であった。
(Comparative Example 2)
A metal oxide catalyst was produced and reacted in the same manner as in Example 2 except that water was used instead of ethyl alcohol in Example 2. As a result, the adhesion of the molded product to the cutting blade and the shape change occurred remarkably during the molding, resulting in an increase in downtime and defective molded product, resulting in a molded product yield of 45,000 parts. The reaction rate of isobutylene was 97.4%, the selectivity of methacrolein was 89.5%, and the selectivity of methacrylic acid was 3.4%.

(比較例3)
実施例1において、エチルアルコールを噴霧せず、ナイロンブラシのみで洗浄を行った以外は実施例1と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形の際に切断刃への成形品の付着や形状変化が発生して休止時間と不良成形品が増加したため、成形品収量は50000部であった。また、イソブチレンの反応率97.5%、メタクロレインの選択率89.5%、メタクリル酸の選択率3.4%であった。
(Comparative Example 3)
In Example 1, a metal oxide catalyst was produced and reacted in the same manner as in Example 1 except that ethyl alcohol was not sprayed and cleaning was performed only with a nylon brush. As a result, adhesion of the molded product to the cutting blade and shape change occurred during molding, resulting in an increase in downtime and defective molded product, resulting in a molded product yield of 50000 parts. The reaction rate of isobutylene was 97.5%, the selectivity of methacrolein was 89.5%, and the selectivity of methacrylic acid was 3.4%.

(比較例4)
実施例3において、含水エチルアルコールの代わりに水を使用した以外は実施例3と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形の際に切断刃への成形品の付着や形状変化が発生して休止時間と不良成形品が増加したため、成形品収量は42000部であった。また、TBAの反応率100%、メタクロレインの選択率88.5%、メタクリル酸の選択率2.8%であった。
(Comparative Example 4)
In Example 3, a metal oxide catalyst was produced and reacted in the same manner as in Example 3 except that water was used instead of hydrous ethyl alcohol. As a result, adhesion of the molded product to the cutting blade and shape change occurred during molding, resulting in an increase in downtime and defective molded product, resulting in a yield of the molded product of 42000 parts. Further, the reaction rate of TBA was 100%, the selectivity of methacrolein was 88.5%, and the selectivity of methacrylic acid was 2.8%.

(実施例4)
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム3.3部および硝酸カリウム4.8部を純水400部に溶解した。これを攪拌しながら85質量%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.2部を純水10部に溶解した溶液を加えた。次に、硝酸亜鉛1.4部を純水10部に溶解した溶液を加えた後、95℃に昇温した。これに60質量%ヒ酸3.3部を純水10部に溶解した溶液を加え、つづいて三酸化アンチモン2.8部、二酸化ゲルマニウム2.0部を加えた。この溶液を加熱攪拌しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。その後、ボールミルを用いて触媒材料を粉砕して粉状の触媒材料を製造した。
Example 4
100 parts of ammonium paramolybdate, 3.3 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85 mass% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.2 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, after adding a solution obtained by dissolving 1.4 parts of zinc nitrate in 10 parts of pure water, the temperature was raised to 95 ° C. A solution prepared by dissolving 3.3 parts of 60% by mass of arsenic acid in 10 parts of pure water was added, followed by 2.8 parts of antimony trioxide and 2.0 parts of germanium dioxide. The solution was evaporated to dryness with stirring, and the resulting solid was dried at 130 ° C. for 16 hours. Thereafter, the catalyst material was pulverized using a ball mill to produce a powdery catalyst material.

この触媒材料500部に対してヒドロキシプロピルメチルセルロース15部を加え、乾式混合した。ここにエチルアルコール175部を合し、混練り機で粘土状になるまで混合(混練り)した後、ピストン式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmの押出品を製造した。切断には、図1および図2に示した切断機を使用し、10分おきに成形を止めずに、20部のエタノールを切断刃の外縁に噴霧しナイロンブラシのドレッシング部材で回転刃を洗浄した。押し出し成形を繰り返し5時間行ったときの成形品収量は125000部であった。   To 500 parts of this catalyst material, 15 parts of hydroxypropylmethylcellulose was added and dry mixed. 175 parts of ethyl alcohol was added here and mixed (kneaded) until it became clay-like with a kneader, then extruded using a piston-type extruder, and had an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. Extrudates were produced. The cutting machine shown in FIGS. 1 and 2 is used for cutting, and without stopping molding every 10 minutes, 20 parts of ethanol is sprayed on the outer edge of the cutting blade and the rotary blade is washed with a dressing member of nylon brush did. The molded product yield was 125,000 parts when extrusion molding was repeated for 5 hours.

次いで、成形品を熱風乾燥機を用いて130℃で6時間乾燥し、さらに反応器内で空気流通下、380℃で5時間焼成を行って金属酸化物触媒を製造した。金属酸化物触媒の元素の組成は、P1.5Mo120.6Cu0.1Sb0.4Ge0.4As0.3Zn0.1であった。 Next, the molded article was dried at 130 ° C. for 6 hours using a hot air dryer, and further calcined at 380 ° C. for 5 hours in an air stream to produce a metal oxide catalyst. The elemental composition of the metal oxide catalyst was P 1.5 Mo 12 V 0.6 Cu 0.1 Sb 0.4 Ge 0.4 As 0.3 Zn 0.1 K 1.

この金属酸化物触媒をステンレス製反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%および窒素55%(容量%)の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度290℃で反応させた。その結果、メタクロレインの反応率86.5%、メタクリル酸の選択率86.2%であった。   This metal oxide catalyst is packed into a stainless steel reaction tube, and using a source gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% (volume%) nitrogen, at atmospheric pressure, a contact time of 3.6 seconds. The reaction was carried out at a reaction temperature of 290 ° C. As a result, the reaction rate of methacrolein was 86.5%, and the selectivity of methacrylic acid was 86.2%.

(比較例5)
実施例4においてエチルアルコールの代わりに水を使用した以外は、実施例4と同様にして金属酸化物触媒を製造し、反応を行った。その結果、成形の際に切断刃への成形品の付着や形状変化が著しく発生して休止時間と不良成形品が増加したため、成形品収量は38000部であった。また、メタクロレインの反応率84.2%、メタクリル酸の選択率84.3%であった。
(Comparative Example 5)
A metal oxide catalyst was produced and reacted in the same manner as in Example 4 except that water was used in place of ethyl alcohol in Example 4. As a result, adhesion of the molded product to the cutting blade and a change in shape occurred significantly during molding, resulting in an increase in downtime and defective molded product, resulting in a molded product yield of 38000 parts. The reaction rate of methacrolein was 84.2%, and the selectivity of methacrylic acid was 84.3%.

本発明の回転刃の洗浄装置の一実施形態を示す図であって、斜視図である。It is a figure which shows one Embodiment of the washing | cleaning apparatus of the rotary blade of this invention, Comprising: It is a perspective view. 同洗浄装置で洗浄する切断機を示す図であって、図1の矢印A側から見た視図である。It is a figure which shows the cutting machine wash | cleaned with the same washing | cleaning apparatus, Comprising: It is the view seen from the arrow A side of FIG. 同洗浄装置による洗浄方法の始めの工程を示す図であって、要部拡大図である。It is a figure which shows the first process of the washing | cleaning method by the washing | cleaning apparatus, Comprising: It is a principal part enlarged view. 同洗浄装置による洗浄方法の次の工程を示す図であって、要部拡大図である。It is a figure which shows the next process of the washing | cleaning method by the washing | cleaning apparatus, Comprising: It is a principal part enlarged view. 同洗浄装置による洗浄方法の次の工程を示す図であって、要部拡大図である。It is a figure which shows the next process of the washing | cleaning method by the washing | cleaning apparatus, Comprising: It is a principal part enlarged view.

符号の説明Explanation of symbols

6a・・・回転刃
6b・・・回転軸
6e・・・外周縁
6s・・・側面
9・・・ドレッシング部材(研磨材)
CL・・・軸線
F・・・付着物
6a ... rotary blade 6b ... rotating shaft 6e ... outer peripheral edge 6s ... side face 9 ... dressing member (abrasive)
CL ... axis F ... deposit

Claims (2)

金属酸化物および金属酸化物の前駆体の少なくとも一方を含む触媒材料を成形して成形品を製造する工程を含む金属酸化物触媒の製造方法において、該工程で使用した装置の該触媒材料および/または該成形品が接触した部分を間欠的または連続的にアルコールを用いて洗浄することを特徴とする方法。   In a method for producing a metal oxide catalyst comprising a step of producing a molded product by molding a catalyst material containing at least one of a metal oxide and a metal oxide precursor, the catalyst material of the apparatus used in the step and / or Alternatively, the method is characterized in that the part in contact with the molded product is washed intermittently or continuously with alcohol. 請求項1記載の製造方法により金属酸化物触媒を製造し、得られた触媒の存在下で、プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素により気相接触酸化することを特徴とする、不飽和アルデヒドおよび不飽和カルボン酸の製造方法。A metal oxide catalyst is produced by the production method according to claim 1, and propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the obtained catalyst. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid.
JP2005136654A 2005-05-09 2005-05-09 A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid. Active JP4678765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136654A JP4678765B2 (en) 2005-05-09 2005-05-09 A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136654A JP4678765B2 (en) 2005-05-09 2005-05-09 A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid.

Publications (2)

Publication Number Publication Date
JP2006312149A JP2006312149A (en) 2006-11-16
JP4678765B2 true JP4678765B2 (en) 2011-04-27

Family

ID=37533856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136654A Active JP4678765B2 (en) 2005-05-09 2005-05-09 A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid.

Country Status (1)

Country Link
JP (1) JP4678765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413702A (en) * 2015-10-26 2016-03-23 万华化学集团股份有限公司 Multi-layer catalyst, preparation method thereof, and method for preparing unsaturated aldehyde (acid) by using multi-layer catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301110B2 (en) * 2007-05-15 2013-09-25 三菱レイヨン株式会社 Method for producing methacrolein
WO2023162794A1 (en) * 2022-02-25 2023-08-31 三菱ケミカル株式会社 METHOD FOR PRODUCING CATALYST MOLDED ARTICLE USED WHEN PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND α,β-UNSATURATED CARBOXYLIC ACID ESTER USING SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292290A (en) * 2001-03-30 2002-10-08 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, preparation method thereof and synthetic method of unsaturated aldehyde and unsaturated carboxylic acid using its catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292290A (en) * 2001-03-30 2002-10-08 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, preparation method thereof and synthetic method of unsaturated aldehyde and unsaturated carboxylic acid using its catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413702A (en) * 2015-10-26 2016-03-23 万华化学集团股份有限公司 Multi-layer catalyst, preparation method thereof, and method for preparing unsaturated aldehyde (acid) by using multi-layer catalyst
CN105413702B (en) * 2015-10-26 2017-09-19 万华化学集团股份有限公司 A kind of multi-layer catalyst and preparation method thereof and prepare unsaturated aldehyde using the multi-layer catalyst(Acid)Method

Also Published As

Publication number Publication date
JP2006312149A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP5550343B2 (en) Mixed oxide catalysts for catalytic gas phase oxidation
KR100904134B1 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR20070018578A (en) Complex metal oxide catalyst with high acrylic acid selectivity
JP2008155126A (en) Method for producing metal component-containing catalyst
JP4678765B2 (en) A method for producing a metal oxide catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid.
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
KR101860595B1 (en) Method for preparing catalyst for production of methacrylic acid
JP2003201261A (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by the same method and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by using the same catalyst
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP5828260B2 (en) Catalyst production method
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3936055B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and / or unsaturated carboxylic acid and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
WO2007004662A1 (en) Process for producing catalyst
JP3370548B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
WO2007105523A1 (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2007130519A (en) Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP7105395B1 (en) Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst
JP2010207803A (en) Compound oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

R151 Written notification of patent or utility model registration

Ref document number: 4678765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250