JP4678076B2 - Resonator, oscillator, filter, duplexer, and communication device - Google Patents

Resonator, oscillator, filter, duplexer, and communication device Download PDF

Info

Publication number
JP4678076B2
JP4678076B2 JP18879899A JP18879899A JP4678076B2 JP 4678076 B2 JP4678076 B2 JP 4678076B2 JP 18879899 A JP18879899 A JP 18879899A JP 18879899 A JP18879899 A JP 18879899A JP 4678076 B2 JP4678076 B2 JP 4678076B2
Authority
JP
Japan
Prior art keywords
resonator
line
filter
resonance
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18879899A
Other languages
Japanese (ja)
Other versions
JP2001024434A (en
Inventor
文俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18879899A priority Critical patent/JP4678076B2/en
Publication of JP2001024434A publication Critical patent/JP2001024434A/en
Application granted granted Critical
Publication of JP4678076B2 publication Critical patent/JP4678076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Filters And Equalizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はストリップラインやマイクロストリップラインによる共振器、発振器、フィルタ、デュプレクサおよびそれらを備えた通信装置に関するものである。
【0002】
【従来の技術】
従来、マイクロ波帯における電圧制御発振器(VCO)は、誘電体板にマイクロストリップラインによる共振器を設け、その共振器に負性抵抗回路を接続して、帯域反射型の発振器として構成されている。そして、電圧制御によって発振周波数を制御するために、上記マイクロストリップラインによる共振器にバリキャップダイオードなどの可変容量素子を装荷し、外部から与える制御電圧によって共振器の共振周波数を変化させ、それによって発振周波数を制御するようにしていた。
【0003】
従って発振周波数の可変範囲は可変容量ダイオードの容量変化範囲で決定され、容量変化比の大きな可変容量をダイオードを用いれば、それだけ周波数可変範囲が広くとれるが、一般に、容量変化比の大きなバリキャップダイオードは等価直列抵抗が大きいため、C/N比特性が悪くなる。また、電圧可変範囲を広くとることにより周波数可変範囲を広くすることができるが、制御電圧変化に対する発振周波数変化の直線性が悪くなる。
【0004】
そこで、周波数可変範囲を広くする場合には、図9に示すようなダイオードスイッチによって、共振線路の共振周波数を切り替えるようにしていた。図9の(A)に示す例では、マイクロストリップラインによる共振線路S1,S2に可変容量素子DV1および発振回路を接続し、可変容量素子DV1に対する、インダクタL1およびキャパシタC1による制御電圧供給回路を設けて、全体として電圧制御発振器を構成している。共振線路S1,S2はダイオードD1を介して接続し、このダイオードD1に対して、インダクタL2およびキャパシタC2によるRF信号阻止回路を介して、帯域切り替え用の電圧信号を与えるようにしている。この構成により、帯域切替端子に対するバイアス電圧によって、ダイオードD1をオン/オフさせ、マイクロストリップラインによる共振線路の共振器長を切り替えて共振周波数を変化させる。
【0005】
また図9の(B)に示す例では、マイクロストリップラインによる共振線路S1にキャパシタC3,C4を接続すると共に、C4に対してダイオードD1を並列に接続する構造をとり、帯域切替端子に対するバイアス電圧によって、ダイオードD1をオン/オフさせ、これにより共振線路S1の開放端に付加されるキャパシタンスを切り替えて共振周波数を切り替える。
【0006】
【発明が解決しようとする課題】
ところが、このように共振線路の共振周波数を切り替えるためにダイオードを用いると、ダイオードの等価直列抵抗により共振器の損失が増大し、ダイオードのない場合に比べてC/N比が劣化するという問題があった。
【0007】
この発明の目的は、共振周波数の可変範囲を広くすると共にQの低下を防止した共振器、発振周波数の可変範囲を広くすると共にC/N比の劣化を防止した発振器、周波数特性の切替を可能にすると共に低損失化を図ったフィルタ、デュプレクサ、およびそれらを用いた通信装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明の共振器は、誘電体板にストリップラインまたはマイクロストリップラインによる、共振周波数の異なる2つの共振線路を設け、この2つの共振線路に選択的に導通する線路切替用可動部を設けた共振器であって、
前記誘電体板は、前記2つの共振線路の開放端が形成された内側面を有し、
前記誘電体板内の前記内側面で囲まれる空間で前記2つの共振線路の開放端の間に、前記線路切替用可動部が配置されていることを特徴とする。
【0009】
このように線路切替用可動部で、2つの共振線路に選択的に導通させることによって、ダイオードの等価直列抵抗より低抵抗で線路を導通させることができ、共振器のQの低下が抑えられる。
【0010】
また、この発明の共振器は前記線路切替用可動部の駆動源を圧電素子とする。また、前記線路切替用可動部の駆動源をコイルと可動磁性体片とで構成する。
【0011】
この発明の発振器は、上記共振器に負性抵抗回路を接続して構成する。
【0012】
この発明のフィルタは、入力端子および出力端子の間に接続された伝送線路と、上記共振器と、を有し、線路切替用可動部を共振器の伝送線路に接続し、2つの共振線路の開放端とは反対側の端部を接地して、構成する。
【0013】
この発明のデュプレクサは、一方を受信フィルタ、他方を送信フィルタとして、上記フィルタを2組備え、前記受信フィルタの阻止帯域は送信信号帯域であり、前記送信フィルタの阻止帯域は受信信号帯域であるものとする。
【0014】
更に、この発明の通信装置は、上記共振器、発振器、フィルタまたはデュプレクサを用いて構成する。
【0015】
【発明の実施の形態】
この発明の第1の実施形態に係る電圧制御発振器の構成を図1および図2を参照して説明する。
図1はその回路図である。ここで2a,2bはそれぞれマイクロストリップラインによる共振線路であり、互いに線路長を異なったものとし、それらの共振周波数を所定値にしている。3は線路切替用可動部であり、この線路切替用可動部の状態によって、共振線路2aまたは2bのいずれか一方が発振回路に接続されるようにする。発振回路は負性抵抗特性を示すFETや、それに対するバイアス電圧供給回路などから成る。DV1は可変容量ダイオードであり共振線路2a,2bに並列に接続している。インダクタL1およびキャパシタC1はRF信号を阻止して、可変容量ダイオードDV1に対して制御電圧を供給する。
【0016】
図2は上記電圧可変発振器の構成を示す部分斜視図である。ここで1は誘電体板であり、その上面にマイクロストリップラインによる共振線路2a,2bを形成している。誘電体板1の下面には略全面の接地電極を形成している。この2つの共振線路2a,2bに共通に接続した端部はスルーホールを介して、下面の接地電極に接続している。(この接地電極に対する接続部を、図においてはアース記号で表している。)また、誘電体板1の上面には、共振線路の一部として作用し、且つ発振回路へつながるマイクロストリップライン4を形成している。このマイクロストリップライン4と共振線路2a,2bの開放端との間に線路切替用可動部3を設けている。この線路切替用可動部3は図中に示す矢印方向に変位して、共振線路2aまたは2bのいずれか一方の開放端に接して電気的に導通する。尚、発振回路や可変容量ダイオード等の回路はチップ部品5などを用いてマイクロストリップライン4の端部に構成している。
【0017】
次に、上記線路切替用可動部の、より具体的な構成例を図3〜図5を参照して説明する。
図3において7は磁性体片であり、FeやNi合金などの強磁性体で且つ導電率の高い金属材料からなる。6は磁性体片7を吸引する電磁石である。この電磁石6のコイルへの通電時には、磁性体片7の端部を共振線路2b側へ接触させる。コイルへの非通電時には、磁性体片7の弾性によって、その端部が共振線路2a側に接するようにしておく。これにより、電磁石6の駆動によって共振線路を切り替える。
【0018】
図4において、線路切替用可動部3はバネ性を持った金属板であり、8は圧電アクチュエータである。通常は、図に示すように共振線路2a側に接しているが、圧電アクチュエータ8に対し駆動電圧を印加することによって、圧電アクチュエータ8は可動部3を共振線路2b側に押し出す。
【0019】
図5において、9はバイモルフ構造の圧電アクチュエータであり、その端部付近に、マイクロストリップライン4に連続する電極10を形成している。この圧電アクチュエータ9に対して駆動電圧を印加していない状態で、電極10は共振線路2aの端部に接触している。圧電アクチュエータ9に対し制御電圧を印加すると、電極10は共振線路2b側に変位して電気的に導通する。
【0020】
尚、図2〜図5に示したいずれの例においても、線路切替可動部が大きく変位するように誇張して描いたが、線路切替可動部の実際の変位量は極僅かであってもよい。
【0021】
次に、別の回路構成の発振器の例を図6を基に説明する。
図1に示した例では、2つの共振線路の一方端をそれぞれ接地し、他方端に発振回路を選択的に接続するようにしたが、この図6に示す例では、2つの共振線路2a,2bの一端を共通に接続して発振回路に接続すると共に、他方の端部を線路切替用可動部3を介して選択的に接地するようにしている。これにより線路切替用可動部3の切り替えによって接地された側の共振線路の共振周波数で発振させることができる。尚、接地されていない側の共振線路は一端が開放された共振器の構造をとるが、その共振周波数は所定の周波数帯から離れたものとなって、実質上影響を与えない。
【0022】
次に、フィルタの構成例を図7を参照して説明する。
図7はフィルタの回路図であり、二つの共振線路2a,2bの一方端をそれぞれ接地し、他方端を線路切替用可動部3を介して伝送線路の所定点に接続している。従って、線路切替用可動部3が共振線路2a側を選択しているとき、共振線路2aの共振周波数付近を阻止するトラップフィルタとして作用し、線路切替用可動部3が共振線路2b側を選択しているとき、共振線路2bの共振周波数付近を阻止するトラップフィルタとして作用する。
【0023】
図7に示した例では、伝送線路に単一の共振線路を選択的に接続するようにしただけであるが、同様にして伝送線路に複数の共振線路を接続することによって、所定帯域幅を減衰させる帯域阻止型フィルタを構成することができる。
【0024】
次に、デュプレクサおよび通信装置の構成例を図8を参照して説明する。
ここで、受信フィルタと送信フィルタには、上記帯域阻止型フィルタを用いる。そして、送信フィルタの阻止帯域を受信信号帯域に合わせ、受信フィルタの阻止帯域を送信信号帯域に合わせる。このようなデュプレクサに対して受信回路と送信回路を接続し、アンテナを接続することによって、通信装置を構成する。
【0025】
【発明の効果】
請求項1に記載の発明によれば、線路切替用可動部で、2つの共振線路に選択的に導通させることによって、ダイオードの等価直列抵抗より低抵抗で線路を導通させることができ、共振器のQの低下が抑えられる。
【0026】
請求項2に記載の発明によれば、全体を大型化することなく、基板上に線路切替用可動部を容易に構成できる。
【0027】
請求項3に記載の発明によれば、線路切替用可動部の可動量を大きく確保することができ、2つの共振線路の選択的切替を確実に行えるようになる。
【0028】
請求項4に記載の発明によれば、発振周波数の可変範囲を広くすると共にC/N比の劣化を防止した発振器が得られる。
【0029】
請求項5,6に記載の発明によれば、周波数特性の切替を可能にすると共に低損失化が図れる。
【0030】
請求項7に記載の発明によれば、周波数切替部に生じる損失が少ないため、高効率化を図ることができる。
【図面の簡単な説明】
【図1】実施形態に係る発振器の構成を示す回路図
【図2】同発振器の構成を示す部分斜視図
【図3】第2の実施形態に係る発振器の構成を示す部分斜視図
【図4】第3の実施形態に係る発振器の構成を示す部分斜視図
【図5】第4の実施形態に係る発振器の構成を示す部分斜視図
【図6】第5の実施形態に係る発振器の構成を示す回路図
【図7】第6の実施形態に係るフィルタの構成を示す図
【図8】第7の実施形態に係るデュプレクサおよび通信装置の構成を示す図
【図9】従来の発振器の構成を示す回路図
【符号の説明】
1−誘電体板
2a,2b−共振線路
3−線路切替用可動部
4−マイクロストリップライン
5−チップ部品
6−電磁石
7−磁性体片
8,9−圧電アクチュエータ
10−電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resonator using a stripline or a microstripline, an oscillator, a filter, a duplexer, and a communication device including them.
[0002]
[Prior art]
Conventionally, a voltage controlled oscillator (VCO) in a microwave band is configured as a band reflection type oscillator by providing a resonator by a microstrip line on a dielectric plate and connecting a negative resistance circuit to the resonator. . In order to control the oscillation frequency by voltage control, a variable capacitance element such as a varicap diode is loaded on the resonator by the microstrip line, and the resonance frequency of the resonator is changed by a control voltage applied from the outside, thereby The oscillation frequency was controlled.
[0003]
Therefore, the variable range of the oscillation frequency is determined by the capacitance change range of the variable capacitance diode. If a variable capacitor with a large capacitance change ratio is used, the frequency variable range can be increased accordingly, but in general, a varicap diode with a large capacitance change ratio is used. Since the equivalent series resistance is large, the C / N ratio characteristic is deteriorated. In addition, the frequency variable range can be widened by widening the voltage variable range, but the linearity of the oscillation frequency change with respect to the control voltage change is deteriorated.
[0004]
Therefore, when the frequency variable range is widened, the resonance frequency of the resonance line is switched by a diode switch as shown in FIG. In the example shown in FIG. 9A, the variable capacitance element DV1 and the oscillation circuit are connected to the resonance lines S1 and S2 by the microstrip line, and a control voltage supply circuit by the inductor L1 and the capacitor C1 is provided for the variable capacitance element DV1. Thus, a voltage controlled oscillator is constituted as a whole. The resonance lines S1 and S2 are connected via a diode D1, and a voltage signal for band switching is given to the diode D1 via an RF signal blocking circuit including an inductor L2 and a capacitor C2. With this configuration, the diode D1 is turned on / off by the bias voltage applied to the band switching terminal, and the resonance length of the resonance line of the microstrip line is switched to change the resonance frequency.
[0005]
In the example shown in FIG. 9B, the capacitor C3 and C4 are connected to the resonance line S1 of the microstrip line, and the diode D1 is connected in parallel to C4, and the bias voltage for the band switching terminal is taken. Thus, the diode D1 is turned on / off, whereby the capacitance added to the open end of the resonance line S1 is switched to switch the resonance frequency.
[0006]
[Problems to be solved by the invention]
However, when a diode is used to switch the resonance frequency of the resonance line in this way, the loss of the resonator increases due to the equivalent series resistance of the diode, and the C / N ratio deteriorates as compared with the case without the diode. there were.
[0007]
An object of the present invention is to enable a resonator that widens the variable range of the resonance frequency and prevents the Q from being lowered, an oscillator that widens the variable range of the oscillation frequency and prevents the deterioration of the C / N ratio, and frequency characteristics can be switched. It is another object of the present invention to provide a filter, a duplexer, and a communication device using the same, which achieve low loss.
[0008]
[Means for Solving the Problems]
Resonator of the present invention is by strip line or microstrip line on a dielectric plate, a different Do that two resonant lines of the resonant frequency provided, provided line switch movable portion for selectively turned into the two resonant lines A resonator,
The dielectric plate has an inner surface on which open ends of the two resonance lines are formed,
The line switching movable portion is disposed between the open ends of the two resonance lines in a space surrounded by the inner surface in the dielectric plate.
[0009]
In this way, by selectively conducting the two resonant lines with the line switching movable part, the line can be conducted with a resistance lower than the equivalent series resistance of the diode, and the decrease in the Q of the resonator can be suppressed.
[0010]
In the resonator according to the present invention, the drive source of the line switching movable part is a piezoelectric element. The drive source of the movable section for switching lines is composed of a coil and a movable magnetic piece.
[0011]
Oscillator of the present invention is constructed by connecting a negative resistance circuits to the resonator.
[0012]
The filter according to the present invention includes a transmission line connected between an input terminal and an output terminal, and the resonator, and connects the line switching movable portion to the transmission line of the resonator, The end opposite to the open end is grounded to configure.
[0013]
Duplexer of the present invention, receives one filter, as transmission filter while the filter 2 Kumisonae stopband of the reception filter is a transmission signal band, stop band of the transmission filter Ru received signal band der Shall .
[0014]
Furthermore, the communication device of the present invention is configured using the resonator, the oscillator, the filter, or the duplexer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the voltage controlled oscillator according to the first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
FIG. 1 is a circuit diagram thereof. Here, reference numerals 2a and 2b denote resonant lines using microstrip lines, the line lengths of which are different from each other, and their resonant frequencies are set to predetermined values. Reference numeral 3 denotes a line switching movable portion. Depending on the state of the line switching movable portion, either one of the resonance lines 2a or 2b is connected to the oscillation circuit. The oscillation circuit includes an FET exhibiting negative resistance characteristics, a bias voltage supply circuit for the FET, and the like. DV1 is a variable capacitance diode and is connected in parallel to the resonance lines 2a and 2b. The inductor L1 and the capacitor C1 block the RF signal and supply a control voltage to the variable capacitance diode DV1.
[0016]
FIG. 2 is a partial perspective view showing the configuration of the voltage variable oscillator. Here, 1 is a dielectric plate, and resonance lines 2a and 2b by microstrip lines are formed on the upper surface thereof. A substantially entire ground electrode is formed on the lower surface of the dielectric plate 1. The end connected in common to the two resonance lines 2a and 2b is connected to the ground electrode on the lower surface through a through hole. (The connection to the ground electrode is represented by a ground symbol in the figure.) Further, on the upper surface of the dielectric plate 1, a microstrip line 4 that acts as a part of the resonance line and is connected to the oscillation circuit is provided. Forming. A line switching movable portion 3 is provided between the microstrip line 4 and the open ends of the resonance lines 2a and 2b. This line switching movable part 3 is displaced in the direction of the arrow shown in the figure, and is in electrical contact with the open end of one of the resonance lines 2a or 2b. A circuit such as an oscillation circuit or a variable capacitance diode is formed at the end of the microstrip line 4 using a chip component 5 or the like.
[0017]
Next, a more specific configuration example of the line switching movable portion will be described with reference to FIGS.
In FIG. 3, reference numeral 7 denotes a magnetic piece, which is made of a ferromagnetic material such as Fe or Ni alloy and a metal material having high conductivity. An electromagnet 6 attracts the magnetic piece 7. When the coil of the electromagnet 6 is energized, the end of the magnetic piece 7 is brought into contact with the resonance line 2b side. When the coil is not energized, its end is in contact with the resonance line 2a due to the elasticity of the magnetic piece 7. Thereby, the resonance line is switched by driving the electromagnet 6.
[0018]
In FIG. 4, the line switching movable portion 3 is a metal plate having a spring property, and 8 is a piezoelectric actuator. Normally, as shown in the figure, it is in contact with the resonance line 2a side, but by applying a drive voltage to the piezoelectric actuator 8, the piezoelectric actuator 8 pushes the movable part 3 toward the resonance line 2b side.
[0019]
In FIG. 5, 9 is a bimorph piezoelectric actuator, and an electrode 10 continuous with the microstrip line 4 is formed in the vicinity of the end of the piezoelectric actuator. In a state where no driving voltage is applied to the piezoelectric actuator 9, the electrode 10 is in contact with the end of the resonance line 2a. When a control voltage is applied to the piezoelectric actuator 9, the electrode 10 is displaced toward the resonance line 2b and becomes electrically conductive.
[0020]
In any of the examples shown in FIGS. 2 to 5, the line switching movable part is exaggeratedly drawn so as to be largely displaced, but the actual displacement amount of the line switching movable part may be very small. .
[0021]
Next, an example of an oscillator having another circuit configuration will be described with reference to FIG.
In the example shown in FIG. 1, one end of each of the two resonance lines is grounded, and the oscillation circuit is selectively connected to the other end. However, in the example shown in FIG. 6, two resonance lines 2a, One end of 2b is connected in common and connected to the oscillation circuit, and the other end is selectively grounded via the line switching movable part 3. Thereby, it is possible to oscillate at the resonance frequency of the resonance line on the side grounded by switching of the line switching movable portion 3. Although the resonance line on the side not grounded has a resonator structure with one end open, the resonance frequency is far from a predetermined frequency band, and has no substantial effect.
[0022]
Next, a configuration example of the filter will be described with reference to FIG.
FIG. 7 is a circuit diagram of the filter. One end of each of the two resonance lines 2a and 2b is grounded, and the other end is connected to a predetermined point on the transmission line via the line switching movable portion 3. Therefore, when the line switching movable part 3 selects the resonance line 2a side, it acts as a trap filter that blocks the vicinity of the resonance frequency of the resonance line 2a, and the line switching movable part 3 selects the resonance line 2b side. When this occurs, it acts as a trap filter that blocks the vicinity of the resonant frequency of the resonant line 2b.
[0023]
In the example shown in FIG. 7, only a single resonant line is selectively connected to the transmission line. Similarly, by connecting a plurality of resonant lines to the transmission line, a predetermined bandwidth can be obtained. A band-rejecting filter that attenuates can be configured.
[0024]
Next, a configuration example of the duplexer and the communication device will be described with reference to FIG.
Here, the band rejection filter is used as the reception filter and the transmission filter. Then, the stop band of the transmission filter is matched with the reception signal band, and the stop band of the reception filter is matched with the transmission signal band. A communication device is configured by connecting a receiving circuit and a transmitting circuit to such a duplexer and connecting an antenna.
[0025]
【The invention's effect】
According to the first aspect of the invention, the line can be conducted with a resistance lower than the equivalent series resistance of the diode by selectively conducting the two resonance lines with the line switching movable portion. The decrease in Q is suppressed.
[0026]
According to the second aspect of the present invention, the line switching movable part can be easily configured on the substrate without increasing the size of the whole.
[0027]
According to the third aspect of the present invention, a large movable amount of the line switching movable portion can be ensured, and the selective switching between the two resonance lines can be reliably performed.
[0028]
According to the fourth aspect of the present invention, an oscillator in which the variable range of the oscillation frequency is widened and the deterioration of the C / N ratio is prevented can be obtained.
[0029]
According to the fifth and sixth aspects of the invention, it is possible to switch the frequency characteristics and reduce the loss.
[0030]
According to the seventh aspect of the invention, since the loss generated in the frequency switching unit is small, high efficiency can be achieved.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of an oscillator according to an embodiment. FIG. 2 is a partial perspective view showing a configuration of the oscillator. FIG. 3 is a partial perspective view showing a configuration of an oscillator according to a second embodiment. FIG. 5 is a partial perspective view showing the configuration of the oscillator according to the third embodiment. FIG. 5 is a partial perspective view showing the configuration of the oscillator according to the fourth embodiment. FIG. 6 shows the configuration of the oscillator according to the fifth embodiment. FIG. 7 is a diagram showing a configuration of a filter according to a sixth embodiment. FIG. 8 is a diagram showing a configuration of a duplexer and a communication device according to the seventh embodiment. FIG. 9 is a diagram showing a configuration of a conventional oscillator. Circuit diagram shown [Explanation of symbols]
1-dielectric plates 2a, 2b-resonance line 3-line switching movable part 4-microstrip line 5-chip component 6-electromagnet 7-magnetic body piece 8, 9-piezoelectric actuator 10-electrode

Claims (7)

誘電体板にストリップラインまたはマイクロストリップラインによる、共振周波数の異なる2つの共振線路を設け、当該2つの共振線路に選択的に導通する線路切替用可動部を設けた共振器であって、
前記誘電体板は、前記2つの共振線路の開放端が形成された内側面を有し、
前記誘電体板内の前記内側面で囲まれる空間で前記2つの共振線路の開放端の間に、前記線路切替用可動部が配置されていることを特徴とする共振器。
By strip line or microstrip line on a dielectric plate, a different Do that two resonant lines of the resonant frequency provided, a resonator having a line switching movable portion for selectively turned to the two resonant lines,
The dielectric plate has an inner surface on which open ends of the two resonance lines are formed,
The resonator, wherein the line switching movable portion is disposed between the open ends of the two resonance lines in a space surrounded by the inner surface in the dielectric plate.
前記線路切替用可動部の駆動源を圧電素子としたことを特徴とする請求項1に記載の共振器。  The resonator according to claim 1, wherein a drive source of the movable part for line switching is a piezoelectric element. 前記線路切替用可動部の駆動源をコイルと可動磁性体片とで構成したことを特徴とする請求項1に記載の共振器。The resonator according to claim 1, wherein a drive source of the movable section for line switching is configured by a coil and a movable magnetic piece. 請求項1、2または3に記載の共振器に負性抵抗回路を接続して成る発振器。  An oscillator comprising a negative resistance circuit connected to the resonator according to claim 1. 入力端子および出力端子の間に接続された伝送線路と、請求項1、2または3に記載の共振器と、を有し、前記共振器の前記線路切替用可動部が前記伝送線路に接続され、前記共振器の前記2つの共振線路の開放端とは反対側の端部が接地されている、フィルタ。A transmission line connected between the input terminal and the output terminal, and the resonator according to claim 1, 2, or 3, wherein the line switching movable portion of the resonator is connected to the transmission line. A filter in which an end of the resonator opposite to the open ends of the two resonance lines is grounded. 一方を受信フィルタ、他方を送信フィルタとして、請求項5に記載のフィルタを2組備え、前記受信フィルタの阻止帯域は送信信号帯域であり、前記送信フィルタの阻止帯域は受信信号帯域であるデュプレクサ。Receiving one filter, the other as a transmission filter, 2 Kumisonae a filter according to claim 5, the stop band of the reception filter is a transmission signal band, stop band of the transmit filter received signal band der Lud Duplexer. 請求項1〜3のうちいずれかに記載の共振器、請求項4に記載の発振器、請求項5に記載のフィルタまたは請求項6に記載のデュプレクサを設けて成る通信装置。  A communication apparatus comprising the resonator according to claim 1, the oscillator according to claim 4, the filter according to claim 5, or the duplexer according to claim 6.
JP18879899A 1999-07-02 1999-07-02 Resonator, oscillator, filter, duplexer, and communication device Expired - Lifetime JP4678076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18879899A JP4678076B2 (en) 1999-07-02 1999-07-02 Resonator, oscillator, filter, duplexer, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18879899A JP4678076B2 (en) 1999-07-02 1999-07-02 Resonator, oscillator, filter, duplexer, and communication device

Publications (2)

Publication Number Publication Date
JP2001024434A JP2001024434A (en) 2001-01-26
JP4678076B2 true JP4678076B2 (en) 2011-04-27

Family

ID=16229997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18879899A Expired - Lifetime JP4678076B2 (en) 1999-07-02 1999-07-02 Resonator, oscillator, filter, duplexer, and communication device

Country Status (1)

Country Link
JP (1) JP4678076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017112659B4 (en) * 2017-06-08 2020-06-10 RF360 Europe GmbH Electrical component wafer and electrical component
JP2024513511A (en) * 2021-04-19 2024-03-25 ケーエムダブリュ・インコーポレーテッド switchable filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104315A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd High frequency oscillation circuit
JPH11122139A (en) * 1997-10-17 1999-04-30 Murata Mfg Co Ltd Antenna multicoupler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104315A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd High frequency oscillation circuit
JPH11122139A (en) * 1997-10-17 1999-04-30 Murata Mfg Co Ltd Antenna multicoupler

Also Published As

Publication number Publication date
JP2001024434A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP3570375B2 (en) Frequency variable filter, antenna duplexer and communication device
US6756857B2 (en) Planar circuit
EP0851526B1 (en) Filtering device
US5065120A (en) Frequency agile, dielectrically loaded resonator filter
US8760244B2 (en) Multirole circuit element capable of operating as variable resonator or transmission line and variable filter incorporating the same
US20070030100A1 (en) LTCC based electronically tunable multilayer microstrip-stripline combline filter
US4020429A (en) High power radio frequency tunable circuits
JP4180635B2 (en) Short length microstrip filter
JPH11195960A (en) Semiconductor phase shifter
JP3613156B2 (en) Dielectric filter, antenna duplexer, and communication device
JP4678076B2 (en) Resonator, oscillator, filter, duplexer, and communication device
JP4724152B2 (en) Non-reciprocal circuit element
JP3915499B2 (en) Resonator and antenna using TEM mode transmission line
CN114267927B (en) Switchable microwave filter based on phase-change material
US4818956A (en) Dielectrically stabilized GaAs FET oscillator with two power output terminals
US20050116797A1 (en) Electronically tunable block filter
JP2008078734A (en) Variable frequency rf filter
JP4122600B2 (en) Field effect transistor and semiconductor circuit
JP4374544B2 (en) Method for adjusting characteristics of 2-port isolator
JPH06252606A (en) High frequency filter
Bakhit et al. Switchable Band-stop to All Pass Filter Using Stepped Impedance Resonator.
JPH06112702A (en) High frequency filter
JPS61108204A (en) Electronic tuning circuit
JPH01190008A (en) Varactor loading dielectric resonator and voltage controlled oscillator
KR20020049744A (en) Small variable attenuation circuit using pin diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4678076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

EXPY Cancellation because of completion of term