JP4676176B2 - Control method of photovoltaic power generation system - Google Patents

Control method of photovoltaic power generation system Download PDF

Info

Publication number
JP4676176B2
JP4676176B2 JP2004240257A JP2004240257A JP4676176B2 JP 4676176 B2 JP4676176 B2 JP 4676176B2 JP 2004240257 A JP2004240257 A JP 2004240257A JP 2004240257 A JP2004240257 A JP 2004240257A JP 4676176 B2 JP4676176 B2 JP 4676176B2
Authority
JP
Japan
Prior art keywords
solar cell
value
output
gene
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004240257A
Other languages
Japanese (ja)
Other versions
JP2006059126A (en
Inventor
克樹 常次
哉三 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004240257A priority Critical patent/JP4676176B2/en
Publication of JP2006059126A publication Critical patent/JP2006059126A/en
Application granted granted Critical
Publication of JP4676176B2 publication Critical patent/JP4676176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Description

本発明は、太陽電池からの出力電力値が略最大値となるように制御する太陽光発電システムに係り、特に太陽電池のパネル面の日射量が不均一によって生じる出力電力の複数の極大値のうち、最大電力を的確に追従する技術に関するものである。   The present invention relates to a photovoltaic power generation system that controls so that the output power value from a solar cell becomes a substantially maximum value, and in particular, a plurality of maximum values of output power that are generated due to uneven solar radiation on the panel surface of the solar cell. Of these, it relates to a technology that accurately follows the maximum power.

図6は、従来技術の太陽光発電システムのブロック図である。同図において、SC1乃至SC3は太陽電池で3枚並列に接続され、PTは太陽電池の出力電圧を検出する出力電圧検出回路、CTは太陽電池の出力電流を検出する出力電流検出回路、CCはマイクロプロセッサにより山登り法を用いたMPPT制御(Maximum Power Point Tracking)(以後、山登り法と言う)を行なうコントローラで、上記マイクロプロセッサCCには太陽電池の出力電圧値及び出力電流値を読み込むためのAD変換器が内蔵されている。INは太陽電池からの直流出力を電圧に変換するDC/ACインバータ回路(又はDC/DCインバータ回路)、ADは負荷、SPは商用の系統電源である。ここで、コントローラCCのマイクロプロセッサは太陽電池SCの出力電圧と出力電流とを乗算することによって太陽電池SCからの出力電力を算出し、メモリー内にその電圧、電力値を記憶する。また、コントローラCCはパルス幅制御回路PWMを介してDC/ACインバータ回路INの出力を制御し、太陽電池SCからの出力電圧を制御させることができる。   FIG. 6 is a block diagram of a conventional photovoltaic power generation system. In the figure, SC1 to SC3 are three solar cells connected in parallel, PT is an output voltage detection circuit for detecting the output voltage of the solar cell, CT is an output current detection circuit for detecting the output current of the solar cell, and CC is A controller that performs MPPT control (Maximum Power Point Tracking) (hereinafter referred to as hill-climbing method) using a hill-climbing method by a microprocessor. The microprocessor CC has an AD for reading the output voltage value and output current value of a solar cell. Built-in converter. IN is a DC / AC inverter circuit (or DC / DC inverter circuit) that converts a direct current output from a solar cell into a voltage, AD is a load, and SP is a commercial power supply. Here, the microprocessor of the controller CC calculates the output power from the solar cell SC by multiplying the output voltage and output current of the solar cell SC, and stores the voltage and power value in the memory. Further, the controller CC can control the output voltage from the solar cell SC by controlling the output of the DC / AC inverter circuit IN via the pulse width control circuit PWM.

図7は、従来技術の太陽光発電システムの山登り法を説明するためのフローチャートであり、このフローチャートと図8の極大値を捜索する図を参照しながら動作を説明する。   FIG. 7 is a flowchart for explaining the hill-climbing method of the conventional photovoltaic power generation system, and the operation will be described with reference to this flowchart and the diagram for searching for the maximum value in FIG.

図8に示す、電力−電圧特性の所定の動作点Aに対応する太陽電池出力設定値を初期値とする(ステップS1)。この初期値を第1の太陽電池出力設定値としてインバータを動作させて第1の太陽電池出力電圧V1を設定する(ステップS2)。上記第1の太陽電池出力設定値に応じて出力される第1の太陽電池出力電流I1を測定する(ステップT3)。コントローラCCのマイクロプロセッサは、上記第1の太陽電池出力電圧V1と第1の太陽電池出力電流I1とを乗算して第1の太陽電池出力電力W1を算出し、メモリーに上記第1の太陽電池出力電圧V1と第1の太陽電池出力電力W1との値を記憶する(ステップS4)。   A solar cell output set value corresponding to a predetermined operating point A of the power-voltage characteristic shown in FIG. 8 is set as an initial value (step S1). Using this initial value as the first solar cell output set value, the inverter is operated to set the first solar cell output voltage V1 (step S2). The first solar cell output current I1 output in accordance with the first solar cell output set value is measured (step T3). The microprocessor of the controller CC calculates the first solar cell output power W1 by multiplying the first solar cell output voltage V1 and the first solar cell output current I1, and stores the first solar cell in the memory. The values of the output voltage V1 and the first solar cell output power W1 are stored (step S4).

次に、第1の太陽電池出力設定値より所定量高い第2の太陽電池出力設定値を設定してインバータを動作させて、図8に示す第1の太陽電池出力電圧V1から第2の太陽電池出力電圧V2へと上昇させる(ステップS5)。   Next, a second solar cell output set value that is higher than the first solar cell output set value by a predetermined amount is set to operate the inverter, and the second solar cell is changed from the first solar cell output voltage V1 shown in FIG. The battery output voltage is increased to V2 (step S5).

上記第2の太陽電池出力設定値に応じて出力される第2の太陽電池出力電流I2を測定する(ステップT6)。コントローラCCのマイクロプロセッサは、上記第2の太陽電池出力電圧V2と第2の太陽電池出力電流I2とを乗算して第2の太陽電池出力電力W2を算出し、メモリーに上記第2の太陽電池出力電圧V2と第2の太陽電池出力電力W2との値を記憶する(ステップS7)。   The second solar cell output current I2 output according to the second solar cell output set value is measured (step T6). The microprocessor of the controller CC calculates the second solar cell output power W2 by multiplying the second solar cell output voltage V2 and the second solar cell output current I2, and stores the second solar cell in the memory. The values of the output voltage V2 and the second solar cell output power W2 are stored (step S7).

続いて、第2の太陽電池出力設定値より所定量低い第3の太陽電池出力設定値を設定してインバータを動作させて、図8に示す第1の太陽電池出力電圧V1から第3の太陽電池出力電圧V3へと降下させる(ステップS8)。   Subsequently, a third solar cell output set value that is a predetermined amount lower than the second solar cell output set value is set and the inverter is operated, so that the third solar cell is changed from the first solar cell output voltage V1 shown in FIG. The voltage is lowered to the battery output voltage V3 (step S8).

上記第3の太陽電池出力設定値に応じて出力される第3の太陽電池出力電流I3を測定する(ステップT9)。コントローラCCのマイクロプロセッサは、上記第3の太陽電池出力電圧V3と第3の太陽電池出力電流I3とを乗算して第3の太陽電池出力電力W3を算出してメモリーに上記第3の太陽電池出力電圧V3と第3の太陽電池出力電力W3との値を記憶する(ステップS10)。   The third solar cell output current I3 output in accordance with the third solar cell output set value is measured (step T9). The microprocessor of the controller CC calculates the third solar cell output power W3 by multiplying the third solar cell output voltage V3 and the third solar cell output current I3, and stores the third solar cell in the memory. The values of the output voltage V3 and the third solar cell output power W3 are stored (step S10).

上記より記憶された、図8に示す太陽電池出力電圧V1、V2、V3に(V3<V1<V2)における出力電力値W1、W2、W3の相互の大小を比較し、最も出力電力値が大きかった点へ動作点Aを移動し、この一連の操作を繰り返すことにより、図8に示す最大電力点へと追従を行なう。上述の技術を開示した先行文献として、例えば、特許文献1がある。   The solar cell output voltages V1, V2, and V3 shown in FIG. 8 stored as described above are compared with the output power values W1, W2, and W3 at (V3 <V1 <V2), and the output power value is the largest. The operating point A is moved to the point and the series of operations is repeated to follow the maximum power point shown in FIG. As a prior document disclosing the above technique, for example, there is Patent Document 1.

特開2001−325031号公報JP 2001-325031 A

上述に示す従来技術の山登り法では、図8に示す、動作点Aを所定の場所に設定しこの動作点Aでの出力電力を求める。次に、強制的に動作点Aをある任意の太陽電池出力電圧の高い方に移動させ、その動作点での出力電力を求める。次に低い方へ移動させ、同様に出力電力を求める。このようにして求めた3点の動作点での出力電力を比較し、電力が大きい点へと動作点Aを移動しこの一連の操作を繰り返すことにより、最大電力点への追従を行なう。   In the conventional hill-climbing method described above, the operating point A shown in FIG. 8 is set at a predetermined location, and the output power at this operating point A is obtained. Next, the operating point A is forcibly moved to a certain higher solar cell output voltage, and the output power at the operating point is obtained. Next, move to the lower side, and calculate the output power in the same way. The output power at the three operating points thus obtained is compared, the operating point A is moved to a point where the power is high, and this series of operations is repeated to follow the maximum power point.

しかし、太陽電池の日射状態が変化してパネルの一部に影が生じると、図8に示す、2つの極大値をもつ大小の山が生じる。このような場合に、動作点をBに設定して山登り法で最大電力点を追従すると第2の極大値を最大電力点と判別するが、動作点をAに設定して最大電力点を追従すると第1の極大値を最大電力点とて停滞し、真の最大電力点である第2の極大値へと追従できなくなる。   However, when the solar radiation changes and a shadow is generated on a part of the panel, large and small peaks having two maximum values shown in FIG. 8 are generated. In such a case, if the operating point is set to B and the maximum power point is tracked by the hill climbing method, the second maximum value is determined as the maximum power point, but the operating point is set to A and the maximum power point is tracked. Then, the first maximum value stagnates as the maximum power point, and it becomes impossible to follow the second maximum value, which is the true maximum power point.

また、太陽電池の日射状態が複雑に変化してパネルの数ヶ所に影が生じると、図示省略の複数の極大値が発生し、最大電力点の追従がさらに困難になる。この場合、太陽光発電システムは最大電力で運転できなくなる。   Further, when the solar radiation state of the solar cell changes in a complicated manner and shadows are generated at several places on the panel, a plurality of maximum values (not shown) are generated, making it more difficult to follow the maximum power point. In this case, the solar power generation system cannot be operated with the maximum power.

そこで、本発明は、上記課題を解決することができる太陽光発電システムの制御方法である遺伝的アルゴリズム制御(GA)を提供することにある。   Then, this invention is providing the genetic algorithm control (GA) which is a control method of the photovoltaic power generation system which can solve the said subject.

上述した課題を解決するために、第1の発明は、太陽電池からの出力電圧又は出力電流が予め定めた太陽電池出力設定値と略等しくなるようにインバータを制御し、日射状態の変化に追従して太陽電池からの出力電力値が略最大値になるように上記太陽電池出力設定値を適正値に制御する太陽光発電システムの制御方法において、上記太陽電池出力設定値を遺伝子と見なしかつ太陽電池からの出力電力値を遺伝子の評価値とする遺伝的アルゴリズムに基づくGA制御器を具備し、第1ステップでは上記太陽電池出力設定値の設定範囲から複数個の遺伝子を無作為又は予め定めた条件に基づき抽出して第1世代の初期集団を形成しこの初期集団の各遺伝子に対応する各太陽電池出力設定値によって上記インバータを順次動作させると共に動作中の太陽電池からの出力電力値を各遺伝子の評価値として記憶し、続いて上記初期集団の遺伝子を上記GA制御器に入力し各遺伝子の評価値によって選択しかつ交叉・突然変異させて所定個数の遺伝子を出力して第2世代集団を形成し、第2ステップでは上記第2世代集団の各遺伝子に対応する各太陽電池出力設定値によって上記インバータを順次動作させると共に動作中の太陽電池からの出力電力値を各遺伝子の評価値として記憶し、続いて上記第2世代遺伝子を上記GA制御器に入力し各遺伝子の評価値によって選択しかつ交叉・突然変異させて所定個数の遺伝子を出力して第3世代集団を形成し、以後上記第2ステップの動作を繰り返すことによって次々と遺伝子集団の世代を新しくして太陽電池からの出力電力値が略最大値となるように制御することを特徴とする太陽光発電システムの制御方法である。   In order to solve the above-described problem, the first invention controls the inverter so that the output voltage or output current from the solar cell is substantially equal to a predetermined solar cell output set value, and follows the change in the solar radiation state. In the control method of the solar power generation system for controlling the solar cell output set value to an appropriate value so that the output power value from the solar cell becomes a substantially maximum value, the solar cell output set value is regarded as a gene and A GA controller based on a genetic algorithm using the output power value from the battery as a gene evaluation value is provided, and in the first step, a plurality of genes are randomly or previously determined from the set range of the solar cell output set value. Extracting based on conditions to form an initial population of the first generation, and operating the inverter sequentially according to each solar cell output set value corresponding to each gene of the initial population The output power value from the solar cell is stored as an evaluation value of each gene, and then the genes of the initial population are input to the GA controller, selected according to the evaluation value of each gene, and crossed and mutated to obtain a predetermined number of genes. Genes are output to form a second generation population, and in the second step, the inverter is sequentially operated according to each solar cell output set value corresponding to each gene of the second generation population, and output from the operating solar cells. The power value is stored as an evaluation value of each gene, and then the second generation gene is input to the GA controller, selected according to the evaluation value of each gene, and crossover / mutation is performed to output a predetermined number of genes. A third generation population is formed, and thereafter the operation of the second step is repeated so that the generation of the gene population is updated one after another so that the output power value from the solar cell becomes a substantially maximum value. A method of controlling a photovoltaic power generation system characterized by control.

第2の発明は、上記突然変異の確率を3%乃至5%とすることを特徴とする請求項1記載の太陽光発電システムの制御方法である。   According to a second aspect of the present invention, in the method for controlling a solar power generation system according to claim 1, the probability of the mutation is 3% to 5%.

第1の発明によれば、太陽電池の日射状態が変化しパネルの一部に影が生じて太陽電池の出力電力に複数の極大値が発生しても、本発明の遺伝的アルゴリズム処理を行なうと、上記複数の極大値の発生に関係なく最大電力の極大値の追従が可能となり、太陽電池からの出力電力値を略最大値で制御できる。   According to the first invention, the genetic algorithm processing of the present invention is performed even if the solar radiation state of the solar cell changes and a shadow is generated on a part of the panel and a plurality of maximum values are generated in the output power of the solar cell. The maximum power maximum value can be tracked regardless of the occurrence of the plurality of maximum values, and the output power value from the solar cell can be controlled at a substantially maximum value.

第2の発明によれば、最大電力の極大値追従中において日射状態が変化し、太陽電池の出力電力の複数の極大値(山の形状)に変化が生じても、遺伝子集団を形成する各太陽電池出力設定値によってインバータを逐次動作させると共に遺伝子アルゴリズムの突然変異の確率を最適な値に設定することにより、上記極大値の形状変化に応じて再度最大電力の追従を開始し、常に最新の最大電力を追従して太陽電池からの出力電力値を略最大値で制御できる。   According to the second invention, even when the solar radiation state changes during the maximum power maximum value tracking and the plurality of maximum values (mountain shapes) of the output power of the solar cell change, each of the genes forming the gene population By sequentially operating the inverter according to the solar cell output set value and setting the mutation probability of the genetic algorithm to the optimum value, the tracking of the maximum power is started again according to the shape change of the maximum value, and the latest Following the maximum power, the output power value from the solar cell can be controlled at a substantially maximum value.

[実施の形態1]
図1は、本発明の実施の形態の太陽光発電システムのブロック図である。同図において、図6に示す、従来技術の太陽光発電システムのブロック図と同一符号は同一動作を行なうので説明は省略し符号が相違する構成について説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a photovoltaic power generation system according to an embodiment of the present invention. In this figure, the same reference numerals as those in the block diagram of the conventional solar power generation system shown in FIG.

図1に示す、太陽光発電システムのブロック図において、コントローラCCは、遺伝的アルゴリズム制御(GA)を行なうコントローラであってマイクロプロセッサである。ここで、コントローラCCのマイクロプロセッサは、太陽電池SCの出力電圧と出力電流とを乗算することによって太陽電池SCの出力電力を算出し、メモリー内にその出力電圧、出力電力値を記憶する。また、コントローラCCはパルス幅制御回路PWMを介してDC/ACインバータINの出力を制御して、太陽電池SCからの出力電圧を制御する。   In the block diagram of the photovoltaic power generation system shown in FIG. 1, a controller CC is a controller that performs genetic algorithm control (GA) and is a microprocessor. Here, the microprocessor of the controller CC calculates the output power of the solar cell SC by multiplying the output voltage and the output current of the solar cell SC, and stores the output voltage and the output power value in the memory. In addition, the controller CC controls the output voltage from the solar cell SC by controlling the output of the DC / AC inverter IN via the pulse width control circuit PWM.

次に、遺伝的アルゴリズム制御(GA)について説明する。コントローラCCはGA制御器であり、図示省略の太陽電池出力設定値を遺伝子と見なしかつ太陽電池からの出力電力値を遺伝子の評価値として記憶し、太陽電池出力設定値の設定範囲から複数個の遺伝子を無作為又は予め定めた条件に基づき抽出して集団を形成し、上記遺伝子を選択しかつ交叉・突然変異させて所定個数の遺伝子を生成して第2世代集団を形成し、上記の動作を繰り返しすことによって、次々と次世代の集団を形成し、上記集団の遺伝子の値に基づいて最大電力値の追従を行なう。   Next, genetic algorithm control (GA) will be described. The controller CC is a GA controller, regards a solar cell output set value (not shown) as a gene, stores an output power value from the solar cell as a gene evaluation value, and sets a plurality of values from a set range of the solar cell output set value. Genes are generated randomly or based on predetermined conditions to form a population, and the above genes are selected, crossed and mutated to generate a predetermined number of genes to form a second generation population, and the above operations By repeating the above, the next generation population is formed one after another, and the maximum power value is followed based on the gene value of the population.

図2は本発明の実施の形態1の動作を説明するフローチャートである。このフローチャートと図3の集団の遺伝子が遺伝的アルゴリズムにより収束し極大値を追従する図とを参照しながら動作を説明する。   FIG. 2 is a flowchart for explaining the operation of the first embodiment of the present invention. The operation will be described with reference to this flowchart and a diagram in which the genes of the group in FIG. 3 converge by the genetic algorithm and follow the maximum value.

太陽電池出力設定値の設定範囲から複数個(例えば、10個)の遺伝子を無作為に又は予め定めた条件に基づき抽出する(ステップT1)。そして、カウンタiを1に設定する(ステップT2)。   A plurality of (for example, 10) genes are extracted at random or based on predetermined conditions from the set range of the solar cell output set value (step T1). Then, the counter i is set to 1 (step T2).

上記複数個の遺伝子のうち所定の遺伝子に対応する太陽電池出力設定値を第1の太陽電池出力設定値とし、上記第1の太陽電池出力設定値によってインバータを動作させて第1の太陽電池出力電圧V1を設定する(ステップT3)。上記第1の太陽電池出力設定値に応じて出力される第1の太陽電池出力電流I1を測定する(ステップT4)。コントローラCCのマイクロプロセッサは、上記第1の太陽電池出力電圧V1と第1の太陽電池出力電流I1とを乗算して第1の太陽電池出力電力W1を算出してメモリーに記憶する(ステップT5)。そして、カウンタiに1を加算する。(ステップT6)   A solar cell output set value corresponding to a predetermined gene among the plurality of genes is set as a first solar cell output set value, and an inverter is operated according to the first solar cell output set value to thereby output a first solar cell output. The voltage V1 is set (step T3). The first solar cell output current I1 output according to the first solar cell output set value is measured (step T4). The microprocessor of the controller CC calculates the first solar cell output power W1 by multiplying the first solar cell output voltage V1 and the first solar cell output current I1, and stores it in the memory (step T5). . Then, 1 is added to the counter i. (Step T6)

次に、太陽電池出力設定値n個(例えば、10個)の出力電力を全て測定したかを判別して、Noの場合にはステップT3に戻り、上記残りの複数個の遺伝子のうち所定の遺伝子に対応する太陽電池出力設定値を第2の太陽電池出力設定値とし、上記第2の太陽電池出力設定値によってインバータを動作させて第2の太陽電池出力電圧V2を設定とする(ステップT3)。上記第2の太陽電池出力設定値に応じて出力される第2の太陽電池出力電流I2を測定する(ステップT4)。コントローラCCのマイクロプロセッサは、第2の太陽電池出力電圧V2と第2の太陽電池出力電流I2とを乗算して第2の太陽電池出力電力W2を算出してメモリーに記憶する(ステップT4)。続いて、カウンタiに1を加算する(ステップT6)。   Next, it is determined whether all n (for example, 10) output powers of the solar cell output set values have been measured. If No, the process returns to step T3, and a predetermined number of the remaining plurality of genes is determined. The solar cell output set value corresponding to the gene is set as the second solar cell output set value, and the inverter is operated according to the second solar cell output set value to set the second solar cell output voltage V2 (step T3). ). The second solar cell output current I2 output according to the second solar cell output set value is measured (step T4). The microprocessor of the controller CC calculates the second solar cell output power W2 by multiplying the second solar cell output voltage V2 and the second solar cell output current I2, and stores it in the memory (step T4). Subsequently, 1 is added to the counter i (step T6).

以後同様の動作を繰り返し、第nの太陽電池出力設定値に応じた第nの太陽電池出力電流Inを測定し、第nの太陽電池出力電力Wnを算出してメモリーに記憶し、図3(A)に示す第1世代の初期集団に対する評価値を決定する(ステップT7)。   Thereafter, the same operation is repeated, the nth solar cell output current In corresponding to the nth solar cell output set value is measured, the nth solar cell output power Wn is calculated and stored in the memory, and FIG. An evaluation value for the first generation initial population shown in A) is determined (step T7).

次に、上記初期集団のうち、無作為に遺伝子2個を抽出して評価値(太陽電池出力電力)の大きい方を選択し上記選択を繰り返して2個の遺伝子を選択する(ステップT8)。   Next, in the initial population, two genes are randomly extracted, the one having the larger evaluation value (solar cell output power) is selected, and the above selection is repeated to select two genes (step T8).

上記選択した2個の遺伝子の評価値を2進数の文字列に変換し、予め定めた確率である任意点で交叉させて新たに2個の遺伝子を生成する(ステップT9)。   The evaluation values of the two selected genes are converted into binary character strings and crossed at an arbitrary point having a predetermined probability to generate two new genes (step T9).

上記交叉した遺伝子に対して、予め定めた低い確率で意図的に文字列の一部を変化させて突然変異を行なう(ステップT10)。   The crossed gene is mutated by intentionally changing a part of the character string with a predetermined low probability (step T10).

上記選択と交叉との回数がn/2(例えば10/2)以下のとき、ステップT8に戻る(ステップT11)。そして、上記初期集団のうち、再度無作為に遺伝子2個を抽出して評価値(太陽電池出力電力)の大きい方を選択し、上記選択を繰り返して新たに2個の遺伝子を選択する(ステップT8)。   When the number of selections and crossovers is n / 2 (for example, 10/2) or less, the process returns to step T8 (step T11). Then, from the initial population, two genes are randomly extracted again and the one with the larger evaluation value (solar cell output power) is selected, and the above selection is repeated to newly select two genes (step) T8).

上記選択した2個の遺伝子の評価値を2進数の文字列に変換し、予め定めた確率である任意点で交叉させて新たに2個の遺伝子を生成する(ステップT9)。   The evaluation values of the two selected genes are converted into binary character strings and crossed at an arbitrary point having a predetermined probability to generate two new genes (step T9).

上記交叉した遺伝子に対して、予め定めた低い確率で意図的に文字列の一部を変化させて突然変異を行なう(ステップT10)。   The crossed gene is mutated by intentionally changing a part of the character string with a predetermined low probability (step T10).

上記選択、交叉及び突然変異の回数がn/2(例えば10/2)のとき、ステップ12に進み、上記生成された遺伝子によって、図3(B)に示す第2世代集団を形成する。   When the number of selections, crossovers, and mutations is n / 2 (for example, 10/2), the process proceeds to step 12, and a second generation population shown in FIG. 3B is formed by the generated genes.

以後、上記の動作を繰り返すことによって次々と遺伝子集団の世代を新しくして、図3(C)に第n世代の集団が形成され、この第n世代集団の遺伝子は極大値近傍に収束されている。   Thereafter, the generation of the gene population is renewed one after another by repeating the above operation, and the nth generation population is formed in FIG. 3C. The genes of the nth generation population are converged to the vicinity of the maximum value. Yes.

上述の遺伝的アルゴリズムを用いて複数の極大値を追従すると、最大電力でない小さい山の極大値を回避し、大きい山の極大値の追従が可能となる。   When a plurality of maximum values are tracked using the genetic algorithm described above, it is possible to avoid the maximum value of a small mountain that is not the maximum power and to follow the maximum value of a large mountain.

[実施の形態2]
遺伝的アルゴリズム制御GAを用いて最大電力の追従中において、日射状態(影の状態)が変化し、図4(A)に示すように、複数の極大値の形状に変化が生じると、上記極大値の形状の変化に応じて、第n世代集団も移動する。
[Embodiment 2]
If the solar radiation state (shadow state) changes during tracking of the maximum power using the genetic algorithm control GA, and the shape of a plurality of local maximum values changes as shown in FIG. The nth generation group also moves according to the change in the shape of the value.

以後、図2に示すフローチャートの動作を繰り返す。このときに、突然変異の動作により、集団の各遺伝子が全て同質になることを防ぎ、日射状態の変化に適応できない極値解に陥るのを防ぐことができ、図4(B)及び図4(C)に示すように、遺伝子集団の世代を新しくして第n+1世代集団、第n+2世代集団へと次々と遺伝子集団の世代を新しくし、太陽電池からの最大出力電力の近傍に上記集団の遺伝子を収束していく。   Thereafter, the operation of the flowchart shown in FIG. 2 is repeated. At this time, it is possible to prevent all the genes of the group from being homogeneous by the mutation operation, and to prevent an extreme value solution that cannot be adapted to the change in the solar radiation state, and FIG. 4 (B) and FIG. As shown in (C), the generation of the gene population is renewed, and the generations of the gene population are renewed one after another to the (n + 1) th generation population and the (n + 2) generation population, and in the vicinity of the maximum output power from the solar cell, Converge genes.

図5は、突然変異の確率と最大電力の追従時間及び電力損失との関係を示す図である。図5より、突然変異の確率が2%以下になると太陽電池の最大出力電力の近傍への追従時間が長くなり、日射状態の変化に対して追従性が悪くなる。   FIG. 5 is a diagram illustrating the relationship between the probability of mutation, the follow-up time of maximum power, and power loss. From FIG. 5, when the probability of mutation is 2% or less, the follow-up time to the vicinity of the maximum output power of the solar cell becomes longer, and the follow-up performance becomes worse with respect to changes in the solar radiation state.

逆に、突然変異の確率が6%以上になると、追従性は改善されるが上記突然変異の確率に応じて太陽電池出力設定値の変動回数が増加し、インバータの出力電力の変動率が大きくなり、太陽電池からの出力電力値を略最大値で制御できなくなる。上述より、突然変異の確率を3%〜5%が適正値と考える。   On the contrary, when the mutation probability is 6% or more, the followability is improved, but the number of fluctuations of the solar cell output set value increases according to the mutation probability, and the fluctuation rate of the output power of the inverter is large. Thus, the output power value from the solar cell cannot be controlled at a substantially maximum value. From the above, it is considered that the mutation probability is 3% to 5% as an appropriate value.

本発明の実施形態に係る太陽光発電システムのブロック図である。1 is a block diagram of a photovoltaic power generation system according to an embodiment of the present invention. 本発明の実施の形態1の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of Embodiment 1 of this invention. 集団が遺伝的アルゴリズムにより収束し極大値を追従する図である。It is a figure in which a population converges by a genetic algorithm and follows a maximum value. 集団が遺伝的アルゴリズムにより収束し極大値を追従する第2の図である。It is the 2nd figure where a population converges by a genetic algorithm and follows a maximum value. 突然変異の確率と電力の追従時間及び電力損失との関係を示す図である。It is a figure which shows the relationship between the probability of a mutation, the follow-up time of electric power, and electric power loss. 従来技術の太陽光発電システムのブロック図である。It is a block diagram of the solar power generation system of a prior art. 従来技術の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of a prior art. 従来技術により極大値を捜索する図である。It is a figure which searches for a local maximum by a prior art.

符号の説明Explanation of symbols

AD 負荷
CC コントローラ
CT 電流検出回路
IN インバータ回路
PT 電圧検出回路
PWM パルス幅制御回路
SP 系統電源
SC1 太陽電池
SC2 太陽電池
SC3 太陽電池
AD load CC controller CT current detection circuit IN inverter circuit PT voltage detection circuit PWM pulse width control circuit SP system power supply SC1 solar cell SC2 solar cell SC3 solar cell

Claims (2)

太陽電池からの出力電圧又は出力電流が予め定めた太陽電池出力設定値と略等しくなるようにインバータを制御し、日射状態の変化に追従して太陽電池からの出力電力値が略最大値になるように前記太陽電池出力設定値を適正値に制御する太陽光発電システムの制御方法において、前記太陽電池出力設定値を遺伝子と見なしかつ太陽電池からの出力電力値を遺伝子の評価値とする遺伝的アルゴリズムに基づくGA制御器を具備し、第1ステップでは前記太陽電池出力設定値の設定範囲から複数個の遺伝子を無作為又は予め定めた条件基づいて抽出して第1世代の初期集団を形成しこの初期集団の各遺伝子に対応する各太陽電池出力設定値によって前記インバータを順次動作させると共に動作中の太陽電池からの出力電力値を各遺伝子の評価値として記憶し、続いて前記初期集団の遺伝子を前記GA制御器に入力し各遺伝子の評価値によって選択しかつ交叉・突然変異させて所定個数の遺伝子を出力して第2世代集団を形成し、第2ステップでは前記第2世代集団の各遺伝子に対応する各太陽電池出力設定値によって前記インバータを順次動作させると共に動作中の太陽電池からの出力電力値を各遺伝子の評価値として記憶し、続いて前記第2世代遺伝子を前記GA制御器に入力し各遺伝子の評価値によって選択しかつ交叉・突然変異させて所定個数の遺伝子を出力して第3世代集団を形成し、以後前記第2ステップの動作を繰り返すことによって次々と遺伝子集団の世代を新しくして太陽電池からの出力電力値が略最大値となるように制御することを特徴とする太陽光発電システムの制御方法。   The inverter is controlled so that the output voltage or output current from the solar cell becomes substantially equal to a predetermined solar cell output set value, and the output power value from the solar cell becomes a substantially maximum value following the change in the solar radiation state. In the control method of the photovoltaic power generation system for controlling the solar cell output set value to an appropriate value as described above, the solar cell output set value is regarded as a gene and the output power value from the solar cell is used as a gene evaluation value. A GA controller based on an algorithm is provided, and in the first step, a plurality of genes are randomly or based on a predetermined condition to form a first generation initial population from the set range of the solar cell output set value. The inverter is sequentially operated according to each solar cell output set value corresponding to each gene of this initial population, and the output power value from the operating solar cell is evaluated as the evaluation value of each gene. Then, the genes of the initial population are input to the GA controller, selected according to the evaluation value of each gene, and crossover / mutated to output a predetermined number of genes to form a second generation population. In the second step, the inverter is sequentially operated according to each solar cell output setting value corresponding to each gene of the second generation population, and the output power value from the operating solar cell is stored as an evaluation value of each gene. Subsequently, the second generation gene is input to the GA controller, selected according to the evaluation value of each gene, crossed and mutated, and a predetermined number of genes are output to form a third generation population. A photovoltaic power generation system characterized in that the generation of gene populations is renewed one after another by repeating the operation of the step so that the output power value from the solar cell becomes a substantially maximum value. Control method. 前記突然変異の確率を3%乃至5%とすることを特徴とする請求項1記載の太陽光発電システムの制御方法。























The method of controlling a solar power generation system according to claim 1, wherein the probability of the mutation is 3% to 5%.























JP2004240257A 2004-08-20 2004-08-20 Control method of photovoltaic power generation system Expired - Fee Related JP4676176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240257A JP4676176B2 (en) 2004-08-20 2004-08-20 Control method of photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240257A JP4676176B2 (en) 2004-08-20 2004-08-20 Control method of photovoltaic power generation system

Publications (2)

Publication Number Publication Date
JP2006059126A JP2006059126A (en) 2006-03-02
JP4676176B2 true JP4676176B2 (en) 2011-04-27

Family

ID=36106547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240257A Expired - Fee Related JP4676176B2 (en) 2004-08-20 2004-08-20 Control method of photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JP4676176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955394A (en) * 2016-06-24 2016-09-21 华北水利水电大学 MPPT method of photovoltaic system based on ant colony optimization and variable step size disturbance observation algorithms

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770954B2 (en) 2009-03-16 2011-09-14 Tdk株式会社 Multiple power supply integration device, multiple power supply integration system, and multiple power supply integration program
CN101873091A (en) * 2010-07-12 2010-10-27 中电电气集团有限公司 Method for tracking solar double-peak maximum power point

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347753A (en) * 1999-06-08 2000-12-15 Mitsubishi Electric Corp Solar battery controller and solar power generating device
JP2001325031A (en) * 2000-05-16 2001-11-22 Daihen Corp Solar power generation controller
JP2003288579A (en) * 2001-07-27 2003-10-10 National Institute Of Advanced Industrial & Technology Method and apparatus for optimum fitting parameter determination, and optimum fitting parameter determining program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347753A (en) * 1999-06-08 2000-12-15 Mitsubishi Electric Corp Solar battery controller and solar power generating device
JP2001325031A (en) * 2000-05-16 2001-11-22 Daihen Corp Solar power generation controller
JP2003288579A (en) * 2001-07-27 2003-10-10 National Institute Of Advanced Industrial & Technology Method and apparatus for optimum fitting parameter determination, and optimum fitting parameter determining program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955394A (en) * 2016-06-24 2016-09-21 华北水利水电大学 MPPT method of photovoltaic system based on ant colony optimization and variable step size disturbance observation algorithms
CN105955394B (en) * 2016-06-24 2017-09-15 华北水利水电大学 The photovoltaic system MPPT methods of observation algorithm are disturbed based on ant group optimization and variable step

Also Published As

Publication number Publication date
JP2006059126A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4606935B2 (en) Control method of photovoltaic power generation system
JP2006134118A (en) Method for controlling solar photovoltaic system
US8810069B2 (en) System and method for maximizing power output of photovoltaic strings
JP5320144B2 (en) Solar cell maximum output power tracking control device
JP5794542B2 (en) How to determine the maximum power point of a photoelectric generator
US20220376513A1 (en) Power systems with inverter input voltage control
Deboucha et al. Voltage track optimizer based maximum power point tracker under challenging partially shaded photovoltaic systems
JP5903341B2 (en) Power generation control device, solar power generation system, and power generation control method
JP4676176B2 (en) Control method of photovoltaic power generation system
JP2014067258A (en) Power conditioner
JP2012221151A (en) Control device for photovoltaic power generation device
JP4541828B2 (en) Control method of photovoltaic power generation system
Kumar et al. A new fuzzy based INC-MPPT algorithm for constant power generation in PV systems
CN100517158C (en) Method of controlling solor generation system
US9608439B2 (en) Method for optimizing the yield of a partially shaded photovoltaic array
EP4266542A1 (en) Power converter, power system, and control method for power converter
CN110249497B (en) Bus voltage adjusting method and related equipment
JPH09258838A (en) Maximum electric power control method for photovolatic power generation system
KR101336811B1 (en) High Speed MPPT Algorithm method
US20150142189A1 (en) Power generation control system, method and non-transitory computer readable storage medium of the same
WO2023181302A1 (en) Control device, power control system, control method, and program
CN111969945B (en) quasi-MPPT novel photovoltaic panel tracking method, equipment and storage medium
JP2016081083A (en) Solar battery controller
WO2018159383A1 (en) Power conversion control device, power generation system, and power conversion control method
JP2019057362A (en) Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees